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Abstract: This paper investigates fixed-time consensus (FXTC) for second-order nonlinear multi-
agent systems under denial of service (DoS) attacks using event-triggered control. First, consensus in
second-order nonlinear multi-agent systems with directed topologies is studied under a static event-
triggered mechanism. Building upon this, dynamic auxiliary variables are introduced, and a dynamic
event-triggered mechanism is designed. Consensus control protocols are proposed for both leader-
follower and leaderless scenarios. Using Lyapunov stability theory and algebraic graph theory, the
fixed-time consensus of multi-agent systems with directed topologies under DoS attacks is analyzed.
Furthermore, Zeno behavior is excluded. Finally, numerical examples are presented to validate the
theoretical results.
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1. Introduction

Cooperative control of multi-agent systems is a cutting-edge topic in control theory, that has
attracted the attention of researchers across various fields. It has broad applications, including
information control [1], clustering science [2], distributed sensor networks [3], and more. Meanwhile,
synergy control holds significant potential for application prospects in engineering and technology
fields, such as collaborative robot control [4] and aircraft formation control [5]. The literature [6]
explores the relationship between networked dynamic systems and consensus problems across various
applications, presenting simulation results that demonstrate the impact of the small-world effect on the
convergence speed of consensus algorithms and on the cooperative control of multi-vehicle formations.
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In collaborative control, each system requires coordination through interactions among multiple agents,
and these interactions must be synchronized to achieve consensus.

The consensus problem is a fundamental challenge in cooperative control, with significant progress
made in the study of multi-agent system consensus [7–9]. Early works, the literature [10] introduced
a continuous control strategy that enables continuous information exchange. However, in practical
applications, information transfer is often disrupted by various issues, and the continuous operation
of multiple agents leads to frequent controller updates, which can result in resource exhaustion. To
address this challenge, researchers have incorporated an event-triggered mechanism into periodic
control. Specifically, reference [11] explored an event-triggered mechanism where the controller
updates its state only when the sampled measurement meets a predefined condition, remaining
inactive otherwise. Furthermore, reference [12] explored the consensus of multi-agent systems
represented by undirected graphs, employing an event-triggered mechanism in conjunction with an
apt control protocol. Notably, the static event-triggered mechanism used in these studies relies on
a fixed threshold, which may not adequately respond to sudden environmental changes. Antoine’s
groundbreaking work revolutionized the field by integrating dynamic auxiliary variables into the event-
triggered mechanism, leading to the development of the dynamic event-triggered mechanism [13].
This pivotal innovation significantly reduced the frequency of triggers, sparking a wave of subsequent
research, as demonstrated by numerous studies [14–16]. To reduce communication frequency and
minimize reliance on global information, literature [17] employed an adaptive dynamic event-triggered
mechanism to investigate the consensus problem in multi-agent systems with general linear dynamics.
Meanwhile, to further reduce communication, [18] developed an observer-based dynamic event-
triggered (DET) mechanism that incorporating discontinuous nonlinear terms, specifically designed
to address the event-triggered mechanism consensus problem in multi-agent systems (MASs) with
switched topologies. Compared to the results in [11, 12], this paper argues that the directed topology
graph under the dynamic event-triggered mechanism achieves faster stabilized and reduces resource
wastage. It is worth noting, however, that while the event-triggered mechanism effectively minimizes
the controller’s update frequency, it does not explicitly specify the time needed to achieve consensus.
This aspect remains an area of ongoing research and optimization efforts.

In real-world applications, systems that aim to achieve consensus within a specified time frame
often prefer finite-time strategies due to their faster consensus rates, enabling quicker attainment of
consensus [19,20]. Nevertheless, the settling time in finite-time mechanisms is often dependent on the
initial conditions. Recognizing this limitation, the stability of fixed-time strategies was first explored
in [21], where it was show that the settling time under fixed-time control is independent of initial
conditions, ensuring stabilization within a more precise timeframe. As a result, extensive research
has been conducted on fixed-time control [22–24]. Compared to the results in [19, 20], this paper
studies fixed-time consensus in multi-agent systems, which achieves faster convergence than finite-
time consensus. For multi-agent systems, network security is crucial. With the rapid advancements
of network technology, attacks, such as denial of service (DoS) attacks, spoofing and replay attacks,
have become increasingly prevalent. Among these, DoS attacks present a significant challenge due to
their ease of execution, difficulty in prevention, and anonymity, making them one of the most common
and hard to address network threats [25, 26]. Consequently, DoS attacks have garnered significant
attention from researchers. To mitigate their impact, some scholars have proposed dynamic event-
triggered mechanisms, which, due to their low triggering frequency, effectively reduce vulnerability
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to such attacks [27–29]. In [30], the consensus of nonlinear multi-agent systems with switching
topologies under DoS attacks was investigated. In [31], the observer-based event-triggered mechanism
containment control problem for linear multi-agent systems (MASs) under denial of service attacks
is studied. In [32], the secure event-triggered mechanism control problem for multi-agent systems
(MASs) compromised by DoS attacks with multiple modes is investigated. Additionally, reference [33]
delved into the fixed-time average consensus (FxTAC) of nonlinear multi-agent systems (MAS) under
DoS attacks, proposing less conservative fixed-time criteria to address these challenges.

Building on the aforementioned findings, this paper investigates the fixed-time consensus of second-
order multi-agent systems under DoS attacks, utilizing dynamic event-triggered mechanisms. The
innovations of this paper, compared to existing research, are as follows:

(1) Directed Networks in Practical Applications: Compared to [25, 26, 29], this paper studies the
consensus of multi-agent systems under directed connectivity topology, while also considering the
impact of external factors during information transmission that may prevent the system from receiving
information. This highlights the need to address multi-agent systems with directed networks under
denial of service (DoS) attacks.

(2) Event-triggered Mechanism and Fixed-time Consensus: Inspired by [22], an event-triggered
mechanism is designed using the hyperbolic tangent function to avoid the discontinuity in the symbolic
function. The fixed-time consensus is studied, which does not depend on the initial velocity and
achieves faster convergence. Compared to [22], a denial of service (DoS) attack is introduced in the
second-order multi-agent system, and a dynamic event-triggered mechanism is employed to reduce the
frequency of control protocol updates, saving resources and minimizing unnecessary waste.

(3) DoS Attacks in Fixed-time Systems: Inspired by [33], this paper explores the introduction of
DoS attacks into fixed-time systems, which offers broader applications than [22, 33]. It investigates
the fixed-time consensus of event-triggered mechanism second-order multi-agent systems under DoS
attacks.
Notations. The following notations are used throughout this paper. Let R denote the set of real number
set; Rn stands for the n-dimensional Euclidean space, and RN×N represents the N × N dimensional real
matrices. Let AT represent the transpose of matrix A. In is n-order identity matrix, 0n ∈ R

N×Nis a
vector with all the entries being 0, diag{. . .} represents a diagonal matrix, 1N represents (1, 1, . . . , 1)T .
λmin(M) represents minimum eigenvalues of a symmetric matrix M. The norm of a vector x is defined
as ‖ x ‖=

√
xT x and the symbol ⊗ represents the Kronecker product.

2. Preliminaries

2.1. Graph theory

Let G = {V,E,A} be a directed graph where the set of nodes isV = {v1, v2, . . . , vN}, {vi} the set of
edges E ⊆ V × V, and a weighted adjacency matrix A = [ai j] ∈ RN×N with non-negative adjacency
elements ai j. Let Ni = {v j ⊆ V | (v j, vi) ∈ E} represent the set of neighbors of vertex i. Define the
matrix of the Laplacian matrix L as L = [li j] ∈ RN×N , its element li j satisfies the following definition:

li j =


−ai j, i , j,
N∑

j=1
ai j, i = j.
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A directed path from node vi to v j is a finite-ordered sequence of edges (vi, vk1), (vk1 , vk2), . . . , (vki , v j),
with distinct nodes vkm , m = 1, 2 . . . , l. In a directed graph, if there is a root node that can
follow the edge to all other nodes, it is called the directed spanning tree of the graph. Denote

D=diag{d1, d2, . . . , dN} by the degree diagonal matrix, where di =
N∑

j=1
ai j for i = 1, . . . ,N. Adding

a leader to the above multi-agent system, denoted by D̂=diag{d̂1, d̂2, . . . , d̂N} the communication
relationship between each follower i and the leader, where di = 1 if agent i can use the leader’s
information and di = 0, otherwise, the matrix H = L + D̂.

2.2. Problem formulation

Consider a multi-agent system consisting of N +1 agents, where one is the leader and the remaining
N are followers. The leader is labeled as given as 0. The dynamics of the i-th follower are described
by {

ẋi(t) = vi(t),
v̇i(t) = f (xi(t), vi(t), t) + ui(t),

(2.1)

where xi(t) ∈ RN , vi(t) ∈ RN , and ui(t) ∈ RN represent the position state, velocity state, and control
input of the i-th agent, respectively. The function f : RN × RN × R+ −→ RN describes a nonlinear
continuous function governing the dynamics of the agent i. Furthermore, the leader’s dynamics are
governed by {

ẋ0(t) = v0(t),
v̇0(t) = f (x0(t), v0(t), t),

(2.2)

where x0(t) ∈ RN and v0(t) ∈ RN represent the position state and velocity state of the leader,
respectively.

Lemma 2.1. (see [34]) Let c1, c2, . . . , cN . Then

N∑
i=1

cσi ≥

 N∑
i=1

ci

σ , if 0 < σ < 1,
N∑

i=1

cωi ≥ N1−ω

 N∑
i=1

ci

ω , 1 < ω < ∞. (2.3)

Lemma 2.2. (see [35]) For any ϕ ∈ R, we have

0 ≤ |ϕ| − ϕ tanh (µϕ) ≤
ι

µ
, (2.4)

where µ � 1 and ι=0.2785.

Lemma 2.3. (see [36]) For matrices Z1,Z2,Z3, and Z4, the Kronecker product is denoted by the ⊗
symbol. The following properties hold:

(Z1 ⊗ Z2)T = ZT
1 ⊗ ZT

2 ,

(Z1 + Z2) ⊗ Z3 = Z1 ⊗ Z3 + Z2 ⊗ Z3,

(Z1 ⊗ Z2)(Z3 ⊗ Z4) = (Z1Z3) ⊗ (Z2Z4).

Assumption 2.1. The communication topology of the system, denoted by G, is strongly connected.
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To facilitate a better analysis of DoS attacks, the following standard assumptions are made:

Assumption 2.2. (see [33]) There exists Nd(T2,T1) ≤ n0 + ς(T2 − T1), where n0 > 0, ς ∈
(0, 1),Nd(T2,T1) is the number of DoS attacks in [T1,T2).

Assumption 2.3. (see [33]) There exists Ξd(T2,T1) ≤ n1 + ΞaNd(T2,T1), where n1 > 0,Ξa is the
duration of each attack, and Ξd(T2,T1) is the total attack duration in [T1,T2). Let Ξc(T1,T2) be the

total control duration in [T1,T2), so Ξc(T2,T1) =
Ξd(T2,T1)

[T1,T2]
, and

Ξc(T2,T1) ≥ ε(T2 − T1) − Tε ,∀T2 > T1 ≥ 0, (2.5)

where ε = 1−ςΞa, Tε = n1 +Ξan0, Tε is called the elasticity number. Additionally, ε can be interpreted
as the non-attack rate.

Lemma 2.4. (see [33]) For the system (2.1), if there exists a Lyapunov function V(t) such that{
V̇(t) ≤ b3V(t) − b1V(t)σ − b2V(t)%, t ∈ [Tm, S m),
V̇(t) ≤ b4V(t), t ∈ [S m,Tm+1),

(2.6)

where % ∈ (1,∞), σ ∈ (0, 1), bk > 0 (k = 1, 2, 3, 4) satisfying b3 + ω(1 − ε) < min{b1, b2 exp((1 −
%)ωTε)}, b4 − ωθ1 < 0 and ω > 0. Then the above system is fixed-time stable, and the settling time T ∗

satisfies

T ∗ ≤
1 +

(
b̂3 − b̂2

)
(1 − %)Tε(

b̂3 − b̂2

)
(1 − %)ε

+
−1 +

(
b̂3 − b1

)
(1 − σ)Tε(

b̂3 − b1

)
(1 − σ)ε

, (2.7)

where b̂3 = b3 + ω(1 − ε), b̂2 = b2 exp {(1 − %)ωTε} .

Assumption 2.4. For any x, y, v, u ∈ RN and t ≥ 0, there exist two nonnegative constants ρ1 and ρ2

such that
‖ f (x, v, t) − f (y, u, t)‖ ≤ ρ1‖x − y‖ + ρ2‖v − u‖.

Lemma 2.5. (see [37]) Suppose that L is irreducible. Then, L1N = 0, and there is a positive vector

ξ = (ξ1, ξ2, . . . , ξN)T satisfies
N∑

i=1
ξi = 1 such that ξT L = 0. In addition, there exists a positive-definite

diagonal matrix M = diag(ξ1, ξ2, . . . , ξN) such that L̂ =

(
ML + LT M

)
2

is symmetric, and
N∑

i=1
L̂i j =

N∑
j=1

L̂ ji = 0 for all i, j = 1, 2, . . . ,N.

Definition 2.1. (see [37]) For a strongly connected network with Laplacian matrix L, the general
algebraic connectivity is defined by

a (L) = min
xT ξ=0,x,0

xT L̂x
xT Mx

> 0,

where L̂ =

(
ML + LT M

)
2

, M = diag (ξ1, ξ2, . . . , ξN), ξ = (ξ1, ξ2, . . . , ξN)T > 0, and ξT L = 0,
N∑

i=1
ξi = 1.
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Lemma 2.6. (see [38]) Given x, y ∈ R, for any k ∈ R > 0, |xy| ≤
x2

2k
+

ky2

2
, |xy| ≤

1
4

x2 + y2.

Lemma 2.7. (see [39]) Let L be the Laplacian matrix of the graph G, H =

(
0

IN−1

)
∈ RN×N−1. If the

graph G is strongly connected, then HT LT LH is a positive definite matrix.

Definition 2.2. (see [40]) The consensus for second-order MAS described by (2.1) is said to be reached
if, for any initial conditions,

lim
t→∞
‖ xi(t) − x j(t) ‖= 0, lim

t→∞
‖ vi(t) − v j(t) ‖= 0,

where i, j = 1, 2, . . . ,N.

3. Results

3.1. Centralized static event-triggered mechanism consensus analysis

In this section, we study the consensus problem of a centralized static event-triggered mechanism
multi-agent system with a directed topology. Using Lyapunov stability theory and inequality scaling ,
Zeno behavior is excluded. Finally, the validity of the theoretical results is verified through numerical
examples.

First, the following control protocols are examined:

ui(t) = −α

N∑
j=1

ai j(xi(tk) − x j(tk)) − β
N∑

j=1

ai j(vi(tk) − v j(tk)), (3.1)

where, tk represents the k-th trigger time of the agent. Define the position and velocity errors of the i-th
agent as

ei(t) =α

N∑
j=1

ai j(xi(tk) − x j(tk)) − α
N∑

j=1

ai j(xi(t) − x j(t))

+ β

N∑
j=1

ai j(vi(tk) − v j(tk)) − β
N∑

j=1

ai j(vi(t) − v j(t)). (3.2)

For subsequent description, let yi(t) =
N∑

j=1
ai j(xi(t)− x j(t)), zi(t) =

N∑
j=1

ai j(vi(t)−v j(t)). These are obtained

from (3.2), and then we obtain

u(t) = −e(t) − αy(t) − βz(t). (3.3)

Let x(t) = (xT
1 (t), xT

2 (t), . . . , xT
N(t))T , v(t) = (vT

1 (t), vT
2 (t), . . . , vT

N(t))T , y(t) = (yT
1 (t), yT

2 (t), . . . , yT
N(t))T ,

z(t) = (zT
1 (t), zT

2 (t), . . . , zT
N(t))T and e(t) = (eT

1 (t), eT
2 (t), . . . , eT

N(t))T . Then, y(t) = Lx(t), z(t) = Lv(t), it is
obtained by (2.1) and (3.3),

ẋi(t) = vi(t),

v̇i(t) = f (xi(t), vi(t), t) −
N∑

i=1
ei(t) − α

N∑
i=1

yi(t) − β
N∑

i=1
zi(t),

(3.4)
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where f (x(t), v(t), t) = ( f (x1(t), v1(t), t), f (x2(t), v2(t), t) . . . f (xN(t), vN(t), t)). Therefore,
ẏi(t) = zi(t),

żi(t) = L f (yi(t), zi(t), t) − L
N∑

i=1
ei(t) − αL

N∑
i=1

yi(t) − βL
N∑

i=1
zi(t).

(3.5)

The consensus for the second-order MAS (2.1) is said to be reached if, for any initial conditions,

lim
t→∞
‖ yi(t) − y j(t) ‖= 0, lim

t→∞
‖ zi(t) − z j(t) ‖= 0.

Let ϕ(t) =
(
yT (t), zT (t)

)T
and it can be rewritten as

ϕ̇(t) = L
[
F(y(t), z(t), t) − (B ⊗ In)ϕ(t)

]
− Le(t), (3.6)

where F(y(t), z(t), t) =

(
0nN

(IN − 1N×N ⊗ In) f (y(t), z(t), t)

)
, B =

(
0N IN

αIN βIN

)
.

Theorem 3.1. Suppose that the digraph G is connected and Assumption 2.1 holds. Then, second-order
consensus in system (3.5) is achieved if the following conditions are satisfied:

N2 >
−λ∗ (aLλmax(B) − 2)

2l2ξ2
max

, (3.7)

event-triggered mechanism satisfies the following conditions:

‖ e ‖≤
σ∆1

2λ∗ ‖ M ‖‖ L ‖
‖ ϕ ‖, (3.8)

where N is a positive constant, ∆1 = λ∗(aLλmax(B) − 2) + 2N2l2ξ2
max > 0, ξmax = max{ξ1, ξ2, . . . , ξN}, i =

1, 2, . . .N, l1 = ρ1· | lii |, l2 = ρ2· | lii |, l2 = 2 max{l2
1, l

2
2}, λ∗ = λmin(HT LT LH). Under protocol (3.1),

multiple agents can reach agreement.

Proof. Consider the following Lyapunov function:

V(t) =
1
2
ϕT (t)Mϕ(t). (3.9)

Taking the derivative of V(t), we conclude

V̇(t) = ϕT (t)Mϕ̇(t)
= ϕT (t)M[L(F(y(t), z(t), t) − (B ⊗ In)ϕ(t)) − Le(t)]

≤ ϕT (t)MLF(y(t), z(t), t) −
1
2
ϕT (t)B

(
ML + LT M

)
ϕ(t) + ϕT (t)MLe(t)

≤ ϕT (t)MLF(y(t), z(t), t) −
1
2

aLλmax(B) ‖ ϕ(t) ‖2 + ‖ ϕ(t) ‖‖ M ‖‖ L ‖‖ e(t) ‖, (3.10)

where F(y(t), z(t), t) = ( f T (y1(t), z1(t), t), f T (y2(t), z2(t), t), . . . , f T (yN(t), zN(t), t))T .
Let P = ϕT (t)MLF(y(t), z(t), t), then we know from Assumption 2.4,

P = ϕT (t)ML[ f (yi(t), zi(t), t) − f (y j(t), z j(t), t)]
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=

N∑
i=1

ϕi(t)ξi

N∑
j=1

li j( f (yi(t), zi(t), t) − f (y j(t), z j(t), t))

≤

N∑
i=1

N∑
j=1

l1ξi|ϕi(t)| · |yi(t) − y j(t)| +
N∑

i=1

N∑
j=1

l2ξi|ϕi(t)| · |zi(t) − z j(t)|. (3.11)

This is given by Lemma 2.6,

P ≤

l1ξmax

N∑
i=1

N∑
j=1

1
2Nl1ξmax

|ϕi(t)|2 +
Nl1ξmax

2
|yi(t) − y j(t)|2


+

l2ξmax

N∑
i=1

N∑
j=1

1
2Nl2ξmax

|ϕi(t)|2 +
Nl2ξmax

2
|zi(t) − z j(t)|2


≤

1
2
‖ ϕ(t) ‖2 +

N2l2
1ξ

2
max

2

N∑
j=1

(yi(t) − y j(t))2 +
1
2
‖ ϕ(t) ‖2 +

N2l2
2ξ

2
max

2

N∑
j=1

(zi(t) − z j(t))2. (3.12)

This can be obtained by Eqs (3.10) and (3.12),

V̇(t) ≤ −
aLλmax(B) − 2

2
‖ ϕ(t) ‖2 +

N2l2
1ξ

2
max

2

N∑
j=1

(yi(t) − y j(t))2

+
N2l2

2ξ
2
max

2

N∑
j=1

(zi(t) − z j(t))2+ ‖ ϕT (t) ‖‖ M ‖‖ L ‖‖ e(t) ‖ . (3.13)

From Lemma 2.7, we deduce matrix HT LT LH is a positive definite matrix, so δT
i HT LT LH δi ≥ λ∗ ‖

δi ‖
2, δi = (ϕ2 − ϕi, ϕ3 − ϕi, . . . , ϕ j − ϕi)T . On the basis of λ∗ = λmin(HT LT LH), we can get ‖ δi ‖

2≤
‖ϕ‖2

λ∗
,

so

V̇(t) ≤ −
λ∗(aLλmax(B) − 2) + 2N2l2ξ2

max

2λ∗
‖ ϕ(t) ‖2 + ‖ ϕT ‖‖ M ‖‖ L ‖‖ e(t) ‖ . (3.14)

From formula (3.8), one has

V̇(t) ≤ (σ − 1)
∆1

2λ∗
‖ ϕ(t) ‖2 . (3.15)

According to the above Eq (3.8), when 0 < σ < 1 and satisfy N2 > −λ∗(aLλmax(B)−2)
2l2ξ2

max
can guarantee

V̇(t) ≤ 0, then we can obtain all the agents to reach consensus. Therefore, we will propose that Zeno
behavior can be excluded. �

Remark 3.1. Literature [40, 41] studies the consensus of multi-agent systems under event-triggered
mechanism protocols. However, this work is all focused on first-order multi-agent systems. Compared
to the first-order multi-agent system, the consensus problem for second-order multi-agent systems
under the event-triggered control protocol is more challenging. An important question is how to design
an appropriate event-triggered mechanism protocol for such systems.
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Theorem 3.2. Assume that the topology of the second-order multi-agent system (2.1) under the
consensus protocol (3.1) is directed and strongly connected, and that the triggered conditions are
satisfied. Then, the time interval ti

k+1 − ti
k between two consecutive events is not less than

τ =
−

(
α2 + β2

)
(2λ∗ ‖ M ‖‖ L ‖)

ω2

(
σ∆1 +

√
α2 + β22λ∗ ‖ M ‖‖ L ‖

) , (3.16)

where ω1 =
ρ1+ρ2
√
λ∗

+ ‖ B ‖, ω1 >‖ L ‖, ω2 = ω1

√
α2 + β2. Q = (αIN , βIN) , ė(t) = (Q ⊗ IN) ϕ̇(t).

Proof. When ‖e(t)‖
‖ϕ(t)‖ = σ∆1

2λ∗‖M‖‖L‖
, an immediate system trigger, we take the derivative of ‖e(t)‖

‖ϕ(t)‖ with respect
to time t:

d
dt

(
‖ e(t) ‖
‖ ϕ(t) ‖

)
=

d
dt

(
eT (t)e(t)

) 1
2

(ϕT (t)ϕ(t))
1
2

=

(
eT (t)(e(t)

)− 1
2
· eT (t)ė(t) ‖ ϕ ‖ −(ϕT (t)ϕ(t))−

1
2 · ϕT (t)ϕ̇(t) ‖ e(t) ‖

[(ϕT (t)ϕ(t))
1
2 ]2

=
ė(t)eT (t)

‖ e(t) ‖‖ ϕ(t) ‖
−
ϕT (t)ϕ̇(t) ‖ e(t) ‖
‖ ϕ(t) ‖3

≤
‖ ė(t) ‖
‖ ϕ(t) ‖

+
‖ ϕ̇(t) ‖‖ e(t) ‖
‖ ϕ(t) ‖2

≤
‖ Q ‖‖ ϕ̇(t) ‖
‖ ϕ(t) ‖

+
‖ ϕ̇(t) ‖‖ e(t) ‖
‖ ϕ(t) ‖2

≤
√
α2 + β2 ‖ ϕ̇(t) ‖

‖ ϕ(t) ‖

1 +
‖ e(t) ‖√

α2 + β2 ‖ ϕ(t) ‖


≤

√
α2 + β2

(
ρ1 + ρ2
√
λ∗

+ ‖ B ‖ + ‖ L ‖
‖ e(t) ‖
‖ ϕ(t) ‖

) 1 +
‖ e(t) ‖√

α2 + β2 ‖ ϕ(t) ‖


≤

√
α2 + β2ω1

1 +
‖ e(t) ‖√

α2 + β2 ‖ ϕ(t) ‖

2

= ω2

1 +
‖ e(t) ‖√

α2 + β2 ‖ ϕ(t) ‖

2

. (3.17)

Let µ =
‖e(t)‖
‖ϕ(t)‖ , we can obtain µ̇ ≤ ω2

(
1 + 1√

α2+β2
µ

)2

, and satisfy µ(t) ≤ µ(t, µ0), µ(t, µ0) is the solution

to µ̇(t) = ω2

(
1 + 1√

α2+β2
µ

)2

, µ(0, µ0) = µ0. We know from the triggered conditions µ(τ, 0) = σ∆1
2λ∗‖M‖‖L‖

,

solve this equation as

τ =
−(α2 + β2)(2λ∗ ‖ M ‖‖ L ‖)

ω2

(
σ∆1 +

√
α2 + β22λ∗ ‖ M ‖‖ L ‖

) . (3.18)

The proof of Theorem 3.2 is finished. �
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3.2. Fixed-time consensus for dynamic event-triggered mechanism under DoS attacks.

First, the consensus of second-order nonlinear multi-agent systems with a directed topology is
studied under a static event-triggered mechanism. Second, dynamic auxiliary variables are introduced,
and a dynamic event-triggered mechanism is designed. A consensus control protocol is proposed for
both leader and leaderless cases. Using Lyapunov stability theory and algebraic graph theory, the
fixed-time consensus of a multi-agent system under a DoS attack with directed topology is analyzed.
In addition, Zeno behavior is excluded, and the validity of the theoretical results is verified through
numerical examples.

3.2.1. Leaderless multi-agent consensus.

Under the dynamic event-triggered control (ETC) strategy, the control input of agent i is first
constructed as

ui(t) = − α1

N∑
i=1

ai j(xi(ti
k) − x j(ti

k))
p − β1

N∑
i=1

ai j(vi(ti
k) − v j(ti

k))
p

− α2

N∑
i=1

ai j(xi(ti
k) − x j(ti

k)) − β2

N∑
i=1

ai j(vi(ti
k) − v j(ti

k))

− α3

N∑
i=1

ai j tanh(µ(xi(ti
k) − x j(ti

k))) − β3

N∑
i=1

ai j tanh(µ(vi(ti
k) − v j(ti

k))), (3.19)

where α1, α2, α3, β1, β2, β3 > 0, p ∈ (1,∞) is the ratio of positive odd numbers, t ∈ [ti
k, t

i
k+1), ti

k is the
latest triggering instant of agent i. The measurement error ei(t) is designed as

ei(t) =α1

N∑
i=1

ai j(xi(ti
k) − x j(ti

k))
p + β1

N∑
i=1

ai j(vi(ti
k) − v j(ti

k))
p

+ α2

N∑
i=1

ai j(xi(ti
k) − x j(ti

k)) + β2

N∑
i=1

ai j(vi(ti
k) − v j(ti

k))

+ α3

N∑
i=1

ai j tanh(µ(xi(ti
k) − x j(ti

k))) + β3

N∑
i=1

ai j tanh(µ(vi(ti
k) − v j(ti

k)))

− α1

N∑
i=1

ai j(xi(t) − x j(t))p − β1

N∑
i=1

ai j(vi(t) − v j(t))p

− α2

N∑
i=1

ai j(xi(t) − x j(t)) − β2

N∑
i=1

ai j(vi(t) − v j(t))

− α3

N∑
i=1

ai j tanh(µ(xi(t) − x j(t))) − β3

N∑
i=1

ai j tanh(µ(vi(t) − v j(t))). (3.20)

Then, we have

ui(t) = −

N∑
i=1

ei(t) − α1

N∑
i=1

ai j(xi(t) − x j(t))p − β1

N∑
i=1

ai j(vi(t) − v j(t))p

AIMS Mathematics Volume 10, Issue 1, 1501–1528.
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− α2

N∑
i=1

ai j(xi(t) − x j(t)) − β2

N∑
i=1

ai j(vi(t) − v j(t))

− α3

N∑
i=1

ai j tanh(µ(xi(t) − x j(t))) − β3

N∑
i=1

ai j tanh(µ(vi(t) − v j(t))). (3.21)

Let yi(t) =
N∑

j=1
ai j(xi(t) − x j(t)), zi(t) =

N∑
j=1

ai j(vi(t) − v j(t)), ϕ(t) = (yT (t), zT (t))T . To describe whether the

DoS attacks occur or not; the attack signal Γattrack is defined as follows:

Γattrack =

{
0, [Tm, S m),
1, [S m,Tm+1),

(3.22)

the dynamics of system (2.1) is written as{
ẏi(t) = zi(t),
żi(t) = L[ f (xi(t), vi(t), t) + (1 − Γattrack)ui(t)],

(3.23)

ϕ̇(t) =L[F(y(t), z(t), t) − (1 − Γattrack)((B1 ⊗ In)
(
ypT (t) zpT (t)

)T

+ (B2 ⊗ In)ϕ(t) − (B3 ⊗ In) tanh(µϕ(t)) − e(t))], (3.24)

where F(y(t), z(t), t) =

(
0nN

(IN − 1N×N ⊗ In) f (y(t), z(t), t)

)
, B1 =

(
0N 0N

α1IN β1IN

)
, B2 =

(
0N IN

α2IN β2IN

)
, B3 =(

0N 0N

α3IN β3IN

)
. And the dynamic triggered function of each agent is designed as follows:

ψi(t) = ||ei(t)|| + θ (k1||ϕi(t)||p + k2||ϕi(t)|| − k3) , (3.25)

where k1, k2, k3 ∈ (0, 1) and θ > 0. The event-triggered condition is given as follows:

ti
k+1 = inf

{
t > ti

k|ψi(t) ≥ χi(t)
}
, (3.26)

where χi(t) is a dynamic variable and designed as follows:

χ̇i(t) =δ||ϕi(t)||(−θk1||ϕi(t)||p − θk2||ϕi(t)|| + θk3 − ||ei(t)||)

− k4χ
p+1

2
i (t) − k5χ

1
2
i (t) − k6χ

2
i (t) + χi(t) −

ιN‖L̂‖‖B3‖

µ
, (3.27)

where χi(0) > 0, δ ∈ (0, 1), k4, k5 and k6 are positive constants. Then, based on (3.26) and (3.27),

we have χ̇i(t) ≥ −δ||ϕi(t)||χi(t) − k4χ
p+1

2
i (t) − k5χ

1
2
i (t) − k6χ

2
i (t) + χi(t) −

ιN‖L̂‖‖B3‖

µ
. Thus, we have

χi(t) ≥ e
∫ t

0 ηi(s)dsχi(0) > 0 with ηi(t) = −δ||ϕi(t)|| − k4χ
p−1

2
i (t) − k5χ

− 1
2

i (t) − k6χi(t) + 1 for all t > 0.

Remark 3.2. Compared to the finite-time methods in [19] and [42], the convergence time achieved
by the fixed-time consensus approach is independent of the initial conditions. This characteristic
enables a more precise determination of the required time. Furthermore, the use of the hyperbolic
tangent function helps mitigate discontinuities that may arise from the sign function, thus preventing
unnecessary resource wastage.
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Theorem 3.3. For the nonliner MASs (3.23), the dynamic event-triggered mechanism practical fixed-
time consensus (FTC) can be achieved if the following inequalities and equality hold:

∆ > ‖L̂‖‖B2‖ +
1
2

(λmin(L̂) + δ)δθk2 + δθk2, ‖L̂‖‖B3‖ > λmin(L̂ + δ + 1)δθk3, (3.28)

λmax(L̂) + δ = 2k2k6δθ,∆ +
2
kδ

+ 1 > 2δθk2, (3.29)

b̂3 + ω(1 − ε) < min
{
b̂2, b̂1exp((1 − %)ωTε)

}
, b̂4 − ωTε < 0, ω > 0. (3.30)

Proof. Consider the following Lyapunov function

V(t) = V1(t) + V2(t),

where V1 =
1
2
ϕT (t)Mϕ(t) and V2 =

N∑
i=1
χi(t). When t ∈ [Tm, S m), it yields

V̇(t) =V̇1(t) + V̇2(t)

=ϕT (t)Mϕ̇(t) +

N∑
i=1

χ̇i(t)

=ϕT (t)ML[F(y(t), z(t), t) + u(t)] + δ|ϕT (t)|(−θk1||ϕ(t)||p − θk2||ϕ(t)|| + θk3

− ||e(t)||) − k4

N∑
i=1

χ
p+1

2
i (t) − k5

N∑
i=1

χ
1
2
i (t) − k6χ

2
i (t) + χi(t) −

ιN‖L̂‖‖B3‖

µ

≤ϕT (t)ML[F(y(t), z(t), t) − (B1 ⊗ In)||ϕ(t)||
p
2 − (B2 ⊗ In)||ϕ(t)||

− (B3 ⊗ In) tanh(µϕ(t)) − ||e(t)||] + δ||ϕ(t)||(−θk1||ϕ(t)||p − θk2||ϕ(t)|| + θk3

− ||e(t)||) − k4

N∑
i=1

χ
p+1

2
i (t) − k5

N∑
i=1

χ
1
2
i (t) − k6χ

2
i (t) + χi(t) −

ιN‖L̂‖‖B3‖

µ
. (3.31)

From Theorem 3.1 above, it follows

V̇(t) ≤∆ ‖ ϕ(t) ‖2 −
ML + LT M

2
‖ B1 ‖ ||ϕ||

p+2
2 −

ML + LT M
2

‖ B2 ‖ ||ϕ||
2

−
ML + LT M

2
‖ B3 ‖ ||ϕ(t)|| tanh(µ||ϕ(t)||) − ϕT (t)ML||e(t)||

− δθk1||ϕ(t)||p+1 − δθk2||ϕ(t)||2 + δθk3||ϕ(t)|| − δ||ϕ(t)||||e(t)||

− k4

N∑
i=1

χ
p+1

2
i (t) − k5

N∑
i=1

χ
1
2
i (t) − k6χ

2
i (t) + χi(t) −

ιN‖L̂‖‖B3‖

µ
. (3.32)

According to Lemma 2.2, one has

V̇(t) ≤∆||ϕ(t)||2 − ‖L̂‖‖B1‖||ϕ(t)||
p+2

2 − ‖L̂‖‖B2‖||ϕ(t)||2 − ‖L̂‖‖B3‖||ϕ(t)||

− δθk1||ϕ(t)||p+1 − δθk2||ϕ(t)||2 + δθk3||ϕ(t)|| − k4

N∑
i=1

χ
p+1

2
i (t) − k5

N∑
i=1

χ
1
2
i (t)
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− k6χ
2
i (t) + χi(t) + (λmax(L̂) + δ)||ϕ(t)||||e(t)||, (3.33)

where ∆ = −
λ∗(aLλmax(B)−2)+2N2l2ξ2

max
2λ∗

, we use the event-triggered condition to obtain

V̇(t) ≤∆||ϕ(t)||2 − ‖L̂‖‖B1‖||ϕ(t)||
p+2

2 − ‖L̂‖‖B2‖||ϕ(t)||2 − ‖L̂‖‖B3‖||ϕ(t)||

− δθk1||ϕ(t)||p+1 − δθk2||ϕ(t)||2 + δθk3||ϕ(t)|| − k4

N∑
i=1

χ
p+1

2
i (t)

− k5

N∑
i=1

χ
1
2
i (t) − k6χ

2
i (t) + χi(t) + (λmax(L̂) + δ)(|χi(t)|||ϕi(t)||

− δθk1||ϕ(t)||p+1 − δθk2||ϕ(t)||2 + δθk3||ϕ(t)||). (3.34)

Then according to Lemmas 2.1 and 2.6, we have

V̇(t) ≤
[
∆ − ‖L̂‖‖B2‖ −

1
2

(λmin(L̂) + δ)δθk2 − δθk2

] N∑
i=1

ϕ2
i (t)

− (λmin(L̂) + δ + 1)δθk1N
1−p

2

N∑
i=1

(ϕ2
i (t))

p+1
2

−
[
‖L̂‖‖B3‖ − (λmin(L̂) + δ + 1)δθk3

] N∑
i=1

(ϕ2
i (t))

1
2

− k4N
1−p

2

N∑
i=1

χ
p+1

2
i (t) − k5

N∑
i=1

χ
1
2
i (t) +

N∑
i=1

χi(t)

≤

∆ − ‖L̂‖‖B2‖ −
1
2

(λmin(L̂) + δ)δθk2 − δθk2

λmin(M)

N∑
i=1

ξiϕ
2
i (t)

−
(λmin(L̂) + δ + 1)δθk1N

1−p
2

λ
p+1

2
min(M)

N∑
i=1

(
ξiϕ

2
i (t)

) p+1
2

−
‖L̂‖‖B3‖ − (λmin(L̂) + δ + 1)δθk3

λ
1
2
min(M)

N∑
i=1

(
ξiϕ

2
i (t)

) 1
2

− k4N
1−p

2

N∑
i=1

χ
p+1

2
i (t) − k5

N∑
i=1

χ
1
2
i (t) +

N∑
i=1

χi(t)

=

∆ − ‖L̂‖‖B2‖ −
1
2

(λmin(L̂) + δ)δθk2 − δθk2

λmin(M)
2V1(t)

−
(λmin(L̂) + δ + 1)δθk1N

1−p
2

λ
p+1

2
min(M)

(2V1(t))
p+1

2

−
‖L̂‖‖B3‖ − (λmin(L̂) + δ + 1)δθk3

λ
1
2
min(M)

(2V1(t))
1
2
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− k4N
1−p

2 V
p+1

2
2 (t) − k5V

1
2

2 (t) + V2(t)

≤b̂3V(t) − b̂1V
p+1

2 (t) − b̂2V
1
2 (t), (3.35)

with b̂1 = min
{
λmin(L̂) + δ + 1)δθk1N

1−p
2

λ
p+1

2
min(M)

, k4N
1−p

2

}
, b̂2 = min

{
|L̂‖‖B3‖ − (λmin(L̂) + δ + 1)δθk3

λ
1
2
min(M)

, k5

}
,

b̂3 = min
{∆ − ‖L̂‖‖B2‖ −

1
2

(λmin(L̂) + δ)δθk2 − δθk2

λmin(M)
, 1

}
.

When t ∈ [S m,Tm+1), it yields

V̇(t) =ϕT (t)MLF(y(t), z(t), t) + δ||ϕ(t)||(−θk1||ϕ(t)||p − θk2||ϕ(t)|| + θk3

− ||e(t)||) − k4

N∑
i=1

χ
p+1

2
i (t) − k5

N∑
i=1

χ
1
2
i (t) − k6χ

2
i (t) + χi(t) −

ιN‖L̂‖‖B3‖

µ

≤∆

N∑
i=1

||ϕi(t)||2 +

N∑
i=1

χi(t) − 2δθk2

N∑
i=1

||ϕi(t)||2 − k6

N∑
i=1

χ2
i (t) + δ||ϕi(t)|||χi(t)|

+ (δθk3)2 +

N∑
i=1

||ϕi(t)||2 −
ιN‖L̂‖‖B3‖

µ

≤

(
∆ − 2δθk2 +

2
kδ

+ 1
) N∑

i=1

||ϕi(t)||2 +

N∑
i=1

χi(t) ≤ b̂4V(t), (3.36)

with b̂4 = max
{

∆ − 2δθk2 +
2
kδ

+ 1, 1
}

,
ιN‖L̂‖‖B3‖

µ
> (δθk3)2 and

2
kδ

= k6.

Combining (3.35) and (3.36){
V̇(t) ≤ b̂3V(t) − b̂1V(t)

p+1
2 − b̂2V(t)

1
2 , t ∈ [Tm, S m),

V̇(t) ≤ b̂4V(t), t ∈ [S m,Tm+1).
(3.37)

From Lemma 2.4, if t ≥ T ∗, where T ∗ satisfies

T ∗ ≤
−2 +

(
b̂3 − b̂2

)
Tε(

b̂3 − b̂2

)
ε

+
1 +

(
b̂3 − b̂1

)
(1 − σ̂)Tε(

b̂3 − b̂1

)
(1 − σ̂)ε

, (3.38)

where σ̂ =
p + 1

2
.

The proof of Theorem 3.3 is finished. �

Remark 3.3. As shown in [13,43,44], many similar dynamic models for multi-agent systems have been
developed to address the consensus problem. This paper investigates the timing consensus problem
under a directed topology and introduces dynamic auxiliary variables. The generalization from the
first-order to the second-order increases the complexity due to the asymmetry of the Laplace matrix.
Additionally, the case of instability under a DoS attack is also considered.

Now, it is proved that there is no Zeno behavior in this dynamic event-triggered mechanism.
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Proof. Evidence similar to that of literature [29], based on the above analysis , we have ||ϕi(t)|| ≤√
2λmax(M)V1(t) ≤

√
2λmax(M)V(t) for t ∈ [ti

k, t
i
k+1), the definition of measurement error gives us

D+|e(t)| ≤‖ ė(t) ‖=
[
‖ B̄1 ‖‖ ϕ(t) ‖p − ‖ B̄2 ‖‖ ϕ(t) ‖ − ‖ B̄3 ‖ tanh(µ ‖ ϕ(t) ‖)

]′
≤

(
p ‖ B̄1 ‖‖ ϕ(t) ‖p−1 + ‖ B̄2 ‖ +µ ‖ B̄3 ‖ (1 − tanh2(µ ‖ ϕ(t) ‖))

)
‖ ϕ̇(t) ‖, (3.39)

where B̄1 =

(
0N 0N

α1IN β1IN

)
, B̄2 =

(
0N 0N

α2IN β2IN

)
, B̄3 =

(
0N 0N

α3IN β3IN

)
, then one can obtain

D+|e(t)| ≤
(
p||B̄1||||ϕ(t)||p−1 + ||B̄2|| + µ||B̄3||(1 − tanh2(µ||ϕ(t)||))

)
 N∑

i=1

ai j( f (yi(t), zi(t), t) − f (y j(t), z j(t), t)) +

N∑
i=1

ai j(ui(t) − u j(t))


≤

(
p||B̄1||||ϕ(t)||p−1 + ||B̄2|| + µ||B̄3||

) (
−
λ∗(aLλmax(B) − 2) + 2N2l2ξ2

max

2λ∗
‖ ϕ(t) ‖

)
+

N∑
i=1

ai j(ui(t) − u j(t))

≤

[
U −

λ∗(aLλmax(B) − 2) + 2N2l2ξ2
max

2λ∗
‖ ϕ(t) ‖

] (
p||B̄1||||ϕ(t)||p−1 + ||B̄2|| + µ||B̄3||

)
, (3.40)

where U = max
t∈[tik ,t

i
k+1)
{‖ ui(t) ‖}, one has

‖ ė(t) ‖≤
[
U + A

√
2λmax(M)V(t)

]
C1, (3.41)

where A = −
λ∗(aLλmax(B)−2)+2N2l2ξ2

max
2λ∗

, C1 = p||B̄1||||ϕ(t)||p−1 + ||B̄2||+µ||B̄3||. ti
k′

is the latest triggering time of

agent i. Since e(ti
k′

) = 0, it follows that |e(t)| ≤
∫ t

tik

[
U + A

√
2λmax(M)V(t)

]
C1ds + |e(ti

k′
)|. According to

the dynamics of the event-triggered condition, we have |e(ti
k+1)| ≤

∫ tik+1

tik

[
U + A

√
2λmax(M)V(t)

]
C1ds,

which yields ti
k+1 − ti

k ≥
θk3[

U + A
√

2λmax(M)V(t)
]
C1

. �

3.2.2. Leader multi-agent consensus

The control protocol for the dynamic event-triggered mechanism is given for systems (2.1) and (2.2)
as follows:

ui(t) = − α1

N∑
i=1

ai j(xi(ti
k) − x j(ti

k))
p − β1

N∑
i=1

ai j(vi(ti
k) − v j(ti

k))
p

− α2

N∑
i=1

ai j(xi(ti
k) − x j(ti

k)) − β2

N∑
i=1

ai j(vi(ti
k) − v j(ti

k))

− α3

N∑
i=1

ai j tanh(µ(xi(ti
k) − x j(ti

k))) − β3

N∑
i=1

ai j tanh(µ(vi(ti
k) − v j(ti

k)))
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− α1

N∑
i=1

ai jdi(xi(ti
k) − x0(t))p − β1

N∑
i=1

ai jdi(vi(ti
k) − v0(t))p

− α2

N∑
i=1

ai jdi(xi(ti
k) − x0(t)) − β2

N∑
i=1

ai jdi(vi(ti
k) − v0(t))

− α3

N∑
i=1

ai jdi tanh(µ(xi(ti
k) − x0(t))) − β3

N∑
i=1

ai jdi tanh(µ(vi(ti
k) − v0(t))). (3.42)

The measurement error ei(t) is designed as

ei(t) =α1

N∑
i=1

ai j(xi(ti
k) − x j(ti

k))
p + β1

N∑
i=1

ai j(vi(ti
k) − v j(ti

k))
p

+ α2

N∑
i=1

ai j(xi(ti
k) − x j(ti

k)) + β2

N∑
i=1

ai j(vi(ti
k) − v j(ti

k))

+ α3

N∑
i=1

ai j tanh(µ(xi(ti
k) − x j(ti

k))) + β3

N∑
i=1

ai j tanh(µ(vi(ti
k) − v j(ti

k)))

− α1

N∑
i=1

ai j(xi(t) − x j(t))p − β1

N∑
i=1

ai j(vi(t) − v j(t))p

− α2

N∑
i=1

ai j(xi(t) − x j(t)) − β2

N∑
i=1

ai j(vi(t) − v j(t))

− α3

N∑
i=1

ai j tanh(µ(xi(t) − x j(t))) − β3

N∑
i=1

ai j tanh(µ(vi(t) − v j(t))). (3.43)

Combining (3.42) and (3.43), we can obtain

ui(t) = −

N∑
i=1

ei(t) − α1

N∑
i=1

ai j(xi(t) − x j(t))p − β1

N∑
i=1

ai j(vi(t) − v j(t))p

− α2

N∑
i=1

ai j(xi(t) − x j(t)) − β2

N∑
i=1

ai j(vi(t) − v j(t))

− α3

N∑
i=1

ai j tanh(µ(xi(t) − x j(t))) − β3

N∑
i=1

ai j tanh(µ(vi(t) − v j(t)))

− α1

N∑
i=1

ai jdi(xi(ti
k) − x0(t))p − β1

N∑
i=1

ai jdi(vi(ti
k) − v0(t))p

− α2

N∑
i=1

ai jdi(xi(ti
k) − x0(t)) − β2

N∑
i=1

ai jdi(vi(ti
k) − v0(t))

− α3

N∑
i=1

ai jdi tanh(µ(xi(ti
k) − x0(t))) − β3

N∑
i=1

ai jdi tanh(µ(vi(ti
k) − v0(t))). (3.44)
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Let ŷi(t) =
N∑

i=1
ai j(xi(t)−x0(t)), ẑi(t) =

N∑
i=1

ai j(vi(t)−v0(t)), ȳ(t) =
N∑

i=1
ai jxi(ti

k)−x(t0), z̄(t) =
N∑

i=1
ai jvi(ti

k)−v(t0).

The error dynamics system is then:

˙̂yi(t) = ẑi(t),

˙̂zi(t) = L
[
f (ŷi(t), ẑi(t), t) − f (ŷ0(t), ẑ0(t), t)

]
− (1 − Γattrack)[L

N∑
i=1

ei(t) − α1L

[
N∑

i=1
ai j(ŷi(t) − ŷ j(t))p +

N∑
i=1

ai jdiȳ
p
i (t)] − β1L[

N∑
i=1

ai j(ẑi(t) − ẑ j(t))p

+
N∑

i=1
ai jdiz̄

p
i (t)] − α2L[

N∑
i=1

ai j(ŷi(t) − ŷ j(t)) +
N∑

i=1
ai jdiȳi(t)] − β2L

[
N∑

i=1
ai j(ẑi(t) − ẑ j(t)) +

N∑
i=1

ai jdiz̄(t)] − α3L[
N∑

i=1
ai j tanh(µ(ŷi(t) − ŷ j(t)))

+
N∑

i=1
ai jdi tanh(µȳi(t))] − β3L[

N∑
i=1

ai j tanh(µ(ẑi(t) − ẑ j(t)))

+
N∑

i=1
ai jdi tanh(µz̄i(t))]].

Let ϕ̂(t) = (ŷT (t), ẑT (t))T , ϕ̄(t) = (ȳT (t), z̄T (t)), f̂ (ŷi(t), ẑi(t), t) = f (ŷi(t), ẑi(t), t) − f (ŷ0(t), ẑ0(t), t), so the
above equation can be rewritten in the following form:

˙̂ϕ(t) =L[F̂(ŷ(t), ẑ(t), t) − (1 − Γattrack)(B1 ⊗ In)(ŷpT (t), ẑpT (t))T − (B2 ⊗ In)ϕ̂(t) − (B3 ⊗ In)
tanh(µϕ̂(t)) − e(t) − (B̂1 ⊗ In)(ȳpT (t), z̄pT (t)) − (B̂2 ⊗ In)ϕ̄(t) − (B̂3 ⊗ In)ϕ̄(t)], (3.45)

where B1, B2 and B3 are the same as the above definition, F̂(ŷ(t), ẑ(t), t) =

(
0nN

(IN ⊗ In) f̂ (ŷ(t), ẑ(t), t)

)
, B̂1 =(

0N 0N

α1D̂ β1D̂

)
, B̂2 =

(
0N 0N

α2D̂ β2D̂

)
, B̂3 =

(
0N 0N

α3D̂ β3D̂

)
. And the dynamic triggered function of each agent

is designed as follows:

Ψi(t) = ||ei(t)|| + θ(k1||ϕ̂i(t)||p + k2||ϕ̂i(t)|| − k3) − Υ
1
2
i (t), (3.46)

where k1, k2, k3 ∈ (0, 1) and θ > 0. The event-triggered condition is given as follows:

ti
k+1 = inf

{
t > ti

k|Ψi(t) ≥ Υi(t)
}
, (3.47)

where Υi(t) is a dynamic variable and designed as follows:

Υ̇i(t) =δ||ϕ̂i(t)||(−θk1||ϕ̂i(t)||p − θk2||ϕ̂i(t)|| + θk3 − ||ei(t)||)

− k4Υ
p+1

2
i (t) − k5Υ

1
2
i (t) − k6Υ

2
i (t) −

ιN‖L̂‖‖B3‖

µ
−
ιN‖L̂‖‖B̂3‖

µ
, (3.48)

where Υi(0) > 0, δ ∈ (0, 1), k4, k5, and k6 are positive constants. Then, based on (3.47) and (3.48),

we have Υ̇i(t) ≥ −k4Υ
p+1

2
i (t) − k5Υ

1
2
i (t) − k6Υ

2
i (t) − δ||ϕ̂i(t)||Υ

1
2
i (t) −

ιN‖L̂‖‖B3‖

µ
−
ιN‖L̂‖‖B̂3‖

µ
. Thus,

Υi(t) ≥ e
∫ t

0 ξi(s)dsΥi(0) > 0 with ξi(t) = −k4Υ
p−1

2
i (t) − k5Υ

− 1
2

i (t) − k6Υi(t) − δ||ϕ̂i(t)||Υ
− 1

2
i (t), for all t > 0.
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Theorem 3.4. For the MASs, practical fixed-time consensus can be achieved if the following
inequalities are satisfied under the conditions imposed by the control inputs (3.44) and the dynamic
event-triggered mechanism (3.47).

∆ +
‖L̂‖‖B̂2‖

λ2
min(H)

+ 2(λmin(L̂) + δ) > λmin(L̂)θk2 + 2δθk2 + ‖L̂‖‖B2‖, (3.49)

‖L̂‖‖B1‖ + λmin(L̂)θk1 + 2δθk1 >
‖L̂‖‖B̂1‖

λ
p+1
min (H)

, ‖L̂‖‖B3‖ > θk3 +
||L̂‖‖B̂3‖

λmin(H)
+ 2δθk3, (3.50)

∆ + 2δ + 1 > 2δθk2, ĉ3 + ω(1 − ε) < min {ĉ2, ĉ1exp((1 − %)ωTε)} , ĉ4 − ωTε < 0. (3.51)

Proof. Choose the Lyapunov function as

W(t) = W1(t) + W2(t),

where W1 =
1
2
ϕ̂T (t)Mϕ̂(t) and W2 =

N∑
i=1

Υi(t). When t ∈ [Tm, S m), we have

Ẇ(t) =Ẇ1(t) + Ẇ2(t)

=ϕ̂T (t)M ˙̂ϕ(t) +

N∑
i=1

Υ̇i(t)

=ϕ̂T (t)ML[F̂((t), z(t), t) + u(t)] + δ|ϕ̂T (t)|(−θk1||ϕ̂(t)||p − θk2||ϕ̂(t)|| + θk3 − ||e(t)||)

− k4

N∑
i=1

Υ
p+1

2
i (t) − k5

N∑
i=1

Υ
1
2
i (t) − Nk6

N∑
i=1

Υ2
i (t) −

ιN‖L̂‖‖B3‖

µ
−
ιN‖L̂‖‖B̂3‖

µ

≤ϕ̂T (t)ML[F̂(y(t), z(t), t) − (B1 ⊗ In)||ϕ̂(t)||
p
2 − (B2 ⊗ In)||ϕ̂(t)||

− (B3 ⊗ In) tanh(µ ˆ||ϕ(t)||) − ||e(t)|| + (B̂1 ⊗ In)||ϕ̄(t)||
p
2 − (B̂2 ⊗ In)||ϕ̄(t)||

− (B̂3 ⊗ In) tanh(µ ¯||ϕ(t)||)] + δ| ˆ||ϕ(t)||(−θk1||ϕ̂(t)||p − θk2||ϕ̂(t)|| + θk3

− ||e(t)||) − k4

N∑
i=1

Υ
p+1

2
i (t) − k5

N∑
i=1

Υ
1
2
i (t) − k6

N∑
i=1

Υ2
i (t) −

ιN‖L̂‖‖B3‖

µ
−
ιN‖L̂‖‖B̂3‖

µ
. (3.52)

From Theorem 3.1 and ‖ ϕ̄(t) ‖≤

N∑
i=1
‖ ϕ̂(t) ‖

λmin(H)
, then one can obtain

Ẇ(t) ≤∆ ‖ ϕ̂(t) ‖2 −
ML + LT M

2
‖ B1 ‖ ||ϕ̂(t)||

p+2
2 −

ML + LT M
2

‖ B2 ‖ ||ϕ̂(t)||2

−
ML + LT M

2
‖ B3 ‖ ||ϕ̂(t)|| tanh(µ||ϕ̂(t)||) + ||ϕ̂(t)||ML||e(t)||

+ ‖L̂‖‖B̂1‖||

N∑
i=1
‖ ϕ̂(t) ‖

λmin(H)
||

p+2
2 + ‖L̂‖‖B̂2‖||

N∑
i=1
‖ ϕ̂(t) ‖

λmin(H)
||2 + ‖L̂‖‖B̂3‖|ϕ̂(t)|| tanh(

µ
N∑

i=1
‖ ϕ̂(t) ‖

λmin(H)
)

− δθk1||ϕ̂(t)||p+1 − δθk2||ϕ̂(t)||2 + δθk3||ϕ̂(t)|| + δ||ϕ̂(t)||||e(t)||
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− k4

N∑
i=1

Υ
p+1

2
i (t) − k5

N∑
i=1

Υ
1
2
i (t) − k6

N∑
i=1

Υ2
i (t) −

ιN‖L̂‖‖B3‖

µ
−
ιN‖L̂‖‖B̂3‖

µ
, (3.53)

where ∆ = −
λ∗(aLλmax(B)−2)+2N2l2ξ2

max
2λ∗

. Under Definition 2.1, by Lemma 2.2, it follows that

Ẇ(t) ≤∆ ‖ ϕ̂(t) ‖2 −‖L̂‖‖B1‖||ϕ̂(t)||
p+2

2 − ‖L̂‖‖B2‖||ϕ̂(t)||2 − ‖L̂‖‖B3‖||ϕ̂(t)||

+ λmax(L̂)||ϕ̂(t)||||e(t)|| + ‖L̂‖‖B̂1‖||

N∑
i=1
‖ ϕ̂(t) ‖

λmin(H)
||p + ‖L̂‖‖B̂2‖||

N∑
i=1
‖ ϕ̂(t) ‖

λmin(H)
||2

+ ‖L̂‖‖B̂3‖||

N∑
i=1
‖ ϕ̂(t) ‖

λmin(H)
|| − δθk1||ϕ̂(t)||p+1 − δθk2||ϕ̂(t)||2 + δθk3||ϕ̂(t)|| + δ||ϕ̂(t)||||e(t)||

− k4

N∑
i=1

Υ
p+1

2
i (t) − k5

N∑
i=1

Υ
1
2
i (t) − k6

N∑
i=1

Υ2
i (t). (3.54)

Substituting (3.47) into (3.54), one has

Ẇ ≤∆ ‖ ϕ̂(t) ‖2 −‖L̂‖‖B1‖||ϕ̂(t)||
p+2

2 − ‖L̂‖‖B2‖||ϕ̂(t)||2 − ‖L̂‖‖B3‖|ϕ̂(t)|

+ λmax(L̂)
[
−θk1||ϕ̂(t)||p+1 − θk2||ϕ̂(t)||2 + θk3||ϕ̂(t)|| + ||ϕ̂(t)||||Υ(t)|| + ||ϕ̂(t)||||Υ

1
2 (t)||

]
+ ‖L̂‖‖B̂1‖‖

N∑
i=1
‖ ϕ̂(t) ‖

λmin(H)
‖

p+2
2 + ‖L̂‖‖B̂2‖||

N∑
i=1
‖ ϕ̂(t) ‖

λmin(H)
||2 + ‖L̂‖‖B̂3‖||

N∑
i=1
‖ ϕ̂(t) ‖

λmin(H)
|| − δθk1||ϕ̂(t)||p+1

− δθk2||ϕ̂(t)||2 + δθk3||ϕ̂(t)|| − δθk1||ϕ̂(t)||p+1 − δθk2||ϕ̂(t)||2 + δθk3||ϕ̂(t)||

+ δ||ϕ̂(t)||||Υ(t)|| + δ||ϕ̂(t)||||Υ
1
2 (t)|| − k4

N∑
i=1

Υ
p+1

2
i (t) − k5

N∑
i=1

Υ
1
2
i (t) − k6

N∑
i=1

Υ2
i (t). (3.55)

According to Lemma 2.6, it yields

Ẇ ≤
[
∆ − λmin(L̂)θk2 +

‖L̂‖‖B̂2‖

λ2
min(H)

− 2δθk2 + 2λmin(L̂) + 2δ − ‖L̂‖‖B2‖

]
|ϕ̂(t)|2

−

‖L̂‖‖B1‖ + λmin(L̂)θk1 −
‖L̂‖‖B̂1‖

λ
p+1
min (H)

+ 2δθk1

 |ϕ̂2(t)|
p+1

2

−

[
‖L̂‖‖B3‖ − θk3 −

‖L̂‖‖B̂3‖

λmin(H)
− 2δθk3

]
|ϕ̂2(t)|

1
2

− k4

N∑
i=1

Υ
p+1

2
i (t) − k5

N∑
i=1

Υ
1
2
i (t) +

λmax(L̂) + δ

4
Υi(t), (3.56)

where k6 =
λmax(L̂) + δ

4
, according to Lemma 2.1 the following inequality can be obtained

Ẇ(t) ≤
[
∆ − λmin(L̂)θk2 +

‖L̂‖‖B̂2‖

λ2
min(H)

− 2δθk2 + 2λmin(L̂) + 2δ − ‖L̂‖‖B2‖

]
2W1(t)
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−

‖L̂‖‖B1‖ + λmin(L̂)θk1 −
‖L̂‖‖B̂1‖

λ
p+1
min (H)

+ 2δθk1

 2
1−p

2 N
1−p

2

λ
1+p

2
min(M)

W
p+1

2
1

−

[
‖L̂‖‖B3‖ − θk3 −

‖L̂‖‖B̂3‖

λmin(H)
− 2δθk3

]
2

1
2

λ
1
2
min(M)

W
1
2

1

− k4N
1−p

2 W
p+1

2
2 (t) − k5W

1
2

2 (t) + k6W2(t)

≤ĉ3W(t) − ĉ1W
p+1

2 (t) − ĉ2W
1
2 (t), (3.57)

with ĉ3 = min
{

∆ − λmin(L̂)θk2 +
‖L̂‖‖B̂2‖

λ2
min(H)

− 2δθk2 + 2λmin(L̂) + 2δ − ‖L̂‖‖B2‖, k6

}
, ĉ2 = min

{
2

1
2

λ
1
2
min(M)[

‖L̂‖‖B3‖ − θk3 −
‖L̂‖‖B̂3‖

λmin(H)
− 2δθk3

]
, k5

}
, ĉ1 = min

{ ‖L̂B1‖ + λmin(L̂)θk1 −
‖L̂‖‖B̂1‖

λ
p+1
min (H)

+ 2δθk1

 2
1−p

2 N
1−p

2

λ
1+p

2
min(M)

,

k4N
1−p

2

}
. When t ∈ [S m,Tm+1), it yields

Ẇ(t) =ϕT (t)MLF(y(t), z(t), t) + δ|ϕT (t)|(−θk1||ϕ(t)||p − θk2||ϕ(t)|| + θk3

− ||e(t)||) − k4

N∑
i=1

Υ
p+1

2
i (t) − k5

N∑
i=1

Υ
1
2
i (t) − k6Υ

2
i (t) −

ιN‖L̂‖‖B3‖

µ
−
ιN‖L̂‖‖B̂3‖

µ

≤∆||

N∑
i=1

ϕi(t)||2 − δθk1||

N∑
i=1

ϕi(t)||p+1 − δθk2||

N∑
i=1

ϕi(t)||2 + δθk3||

N∑
i=1

ϕi(t)||

+ δ||ϕi(t)||Υi(t)|| − δθk1||

N∑
i=1

ϕi(t)||p+1 − δθk2||

N∑
i=1

ϕi(t)||2 + δθk3||

N∑
i=1

ϕi(t)||

+ δ||ϕi(t)||||Υi(t)||
1
2 − k4

N∑
i=1

Υ
p+1

2
i (t) − k5

N∑
i=1

Υ
1
2
i (t) − k6Υ

2
i (t) −

ιN‖L̂‖‖B3‖

µ
−
ιN‖L̂‖‖B̂3‖

µ

≤∆||

N∑
i=1

ϕi(t)||2 − 2δθk2||

N∑
i=1

ϕ2
i (t)||2 + 2δ||ϕi(t)||2 − k6

N∑
i=1

Υ2
i (t) +

δ

4
||Υi(t)||2 +

δ

4
||Υi(t)||

+ (δθk3)2 + ||

N∑
i=1

ϕ2
i (t)|| −

ιN‖L̂‖‖B3‖

µ
−
ιN‖L̂‖‖B̂3‖

µ

≤ (∆ − 2δθk2 + 2δ + 1) ||
N∑

i=1

ϕ2
i (t)|| +

δ

4

N∑
i=1

Υi(t)

≤ĉ4V(t), (3.58)

with ĉ4 = max
{
∆ − 2δθk2 + 2δ + 1,

δ

4

}
,
ιN‖L̂‖‖B3‖

µ
+
ιN‖L̂‖‖B̂3‖

µ
> (δθk3)2 and

δ

4
= k6.

Then the combination of (3.57) and (3.58), there holds{
Ẇ(t) ≤ ĉ3W(t) − ĉ1W(t)

p+1
2 − ĉ2W(t)

1
2 , t ∈ [Tm, S m),

Ẇ(t) ≤ ĉ4W(t), t ∈ [S m,Tm+1).
(3.59)
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From Lemma 2.4, if t ≥ T ∗, where T ∗ satisfies

T ∗ ≤
−2 + (ĉ3 − ĉ2) Tε

(ĉ3 − ĉ2) ε
+

1 + (ĉ3 − ĉ1) (1 − σ̂)Tε

(ĉ3 − ĉ1) (1 − σ̂)ε
, (3.60)

where σ̂ =
p + 1

2
. The proof of Theorem 3.4 is finished. �

Remark 3.4. Compared to references [22, 33], this paper introduces a leader and considers
fixed-time consensus under DoS attacks. The types of attacks are more relevant to real-world
networks. Additionally, since nonlinear systems and second-order dynamics are prevalent in practical
applications, we incorporate a nonlinear term, making the model more applicable to real-world
scenarios.

Next, we demonstrate that the control system, when subject to the control protocol and
trigger function, is free from Zeno behavior. Similar to Theorem 3.3, we have |e(ti

k+1)| ≤∫ tik+1

tik

[
U + A

√
2λmax(M)W(t)

]
C2ds, which yields ti

k+1 − ti
k ≥

θk3[
U + A

√
2λmax(M)W(t)

]
C2

> 0. where

C2 = pB̂1ϕ̂
p−1(t) + B̂2 + µB̂3.

4. Numerical simulation

We will consider a second-order multi-agent with five agents, and the corresponding graph is shown
in Figure 1. Based on Figure 1, the Laplacian matrix is given as follows:

Figure 1. The communication graph.

Based on Figure 1, the Laplacian matrix is given by the following

L =


2 −1 −1 0 0
0 2 0 −1 −1
−1 0 2 −1 0
0 −1 0 2 −1
0 0 0 −1 2


.
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The nonlinear function is given by f (xi(t), vi(t), t) = 0.05cos(xi(t)) + 0.05sin(vi(t)). The initial
conditions are xi(0) = (0,−0.2, 1.2, 2.3,−1.4)T and vi(0) = (0.8, 1, 2.3,−0.6,−0.8)T . To guarantee the
congditions of Theorem 3.1, simple calculations yield α = 20, β = 15 and using Lemmas 2.7 and 2.5,
we obtain λ∗ = 1.238, aL = 0.191, these values were calculated with N2 = 25 and σ = 0.3. The
position and velocity trajectories of the agents are shown in Figure 2, and the triggering instants for,
event-triggered condition of the multi-agent system (MAS) are presented in Figure 3.
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Figure 2. Trajectories of MAS.
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Figure 3. Trajectories of MAS with event-triggered mechanism and DoS attacks.

To satisfy Theorem 3.3, simulations are conducted using the topology shown in Figure 1. The
initial conditions are set as xi(0) = (0, 3,−4,−5.5,−6)T and vi(0) = (−1.8,−2.9, 2.3,−1.6, 0.8)T . The
system’s dynamic variables are defined accordingly. Under the dynamic event-triggered mechanism,
the parameters are specified as: p = 7

5 , µ = 500, θ = 0.8, k1 = 0.05, k2 = 0.1, k3 = 0.1, k4 = 0.05, k5 =
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0.001, k60.031, α1 = 5, α2 = 0.5, α3 = 0.2, β1 = 1, β2 = 0.5, β3 = 0.3. The attack intervals are
defined as

⋃+∞
m=0 [S m,Tm+1) and the non-attack rate is set to θ = 0.8, with attack intervals specified as⋃+∞

g=0.8
[
g, g + 0.4

]
, where g is the attack start time. The position and velocity trajectories of the agents

are illustrated in Figure 4, respectively.

0 5 10 15
-8

-6

-4

-2

0

2

4

6

8

agent1

agent2

agent3

agent4

agent5

(a) position

0 5 10 15
-10

-5

0

5

10

15

20

agent1

agent2

agent3

agent4

agent5

(b) velocity

Figure 4. Trajectories of Leaderless MAS.

We consider the following topology with one leader and five followers, as shown in
Figure 5. The initial conditions for the system are xi(0) = (0, 3,−4,−5.5,−6,−1)T and vi(0) =

(−1.8,−2.9, 2.3,−1.6,−0.8)T . The initial values of the dynamic variables are given by Υi(t) =

(1, 1, 1, 1, 1)T . Under the dynamic event-triggered mechanism, the parameters are specified as p =
7
5 , µ = 5, θ = 10, k1 = 10, k2 = 15, k3 = 20, k4 = 35, k525, k61, α1 = 0.5, α2 = 5, α3 = 1, β1 = 5, β2 =

1, β3 = 3, δ = 0.69. The position and velocity trajectories, as well as event-triggered mechanisms for
the agents, are shown in Figures 6 and 7, respectively.

Figure 5. The communication graph.
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Figure 6. Trajectories of Leader MAS.
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Figure 7. Trajectories of MAS with event-triggered mechanism.

5. Conclusions

In this paper, we have proposed a fixed-time consensus protocol based on a dynamic event-triggered
strategy. This protocol enables a nonlinear second-order leader-follower multi-agent system, operating
under a directed topology, to achieve consensus in fixed-time. In contrast to finite-time consensus
protocols, the fixed-time consensus protocol ensure that the consensus time is independent of the
system’s initial conditions. Finally, simulation examples demonstrate the feasibility of the proposed
theory. Future work will focus on addressing computational complexity and extending the approach to
higher-order multi-agent systems. In addition, other types of DoS attacks, such as random or protocol-
aware DoS attacks, will be considered.
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