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1. Introduction

Graph covering and partitioning problems are among the most classical and central subjects in graph
theory. They also have extensive applications in a variety of routing problems, such as robot navigation
and city snow plowing planning [16]. In this paper, all graphs considered are finite, undirected, and
simple. We refer to [4] for unexplained terminology and notation.

Let G = (V(G), E(G)) be a graph. The order |V(G)| and size |E(G)| are denoted by n(G) and
e(G), respectively. The degree and the neighborhood of a vertex v are denoted by dG(v) and NG(v),
respectively. A vertex is called odd or even depending on whether its degree is odd or even, respectively.
A graph in which every vertex is odd or even is called an odd graph or an even graph. The number of
odd vertices of G is denoted by no(G). The union of simple graphs G and H is the graph G ∪ H with
vertex set V(G) ∪ V(H) and edge set E(G) ∪ E(H). Let X be a set of vertices of V(G). We use G − X
to denote the graph that arises from G by deleting the set X. For any u, v ∈ V(G), we use Puv to denote
the path of G with ends u and v. As usual, we use Kn to denote the complete graph of order n.

A path decomposition P of a graph G is a collection of edge-disjoint paths that covers all the
edges of G. We use p(G) to denote the minimum number of paths needed for a path decomposition
of G. Erdős asked what is the minimum number of paths into which every connected graph can be
decomposed. As a response to the question of Erdős, Gallai made the following conjecture:

Conjecture 1.1 ( [19]). For any connected graph G of order n, then p(G) ≤ ⌈n
2⌉.
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Indeed, one can see that this bound is sharp by considering a graph in which every vertex has an
odd degree; then in any path decomposition of G, each vertex must be the end vertex of some path, and
so at least n

2 paths are required. In 1968, Lovász [19] proved the following two theorems.

Theorem 1.2 ( [19]). Every graph on n vertices can be decomposed into at most n
2 paths and cycles.

Theorem 1.3 ( [19]). Every odd graph on n vertices can be decomposed into n
2 paths.

In 1980, Donald [12] showed that if G is allowed to be disconnected, then p(G) ≤ ⌊ 3n
4 ⌋, which was

improved by Dean and Kouider [11], is as follows.

Theorem 1.4 ( [11]). For any graph G with n vertices (possibly disconnected), p(G) ≤ 2n
3 .

Furthermore, Conjecture 1.1 was verified for several classes of graphs. Let GE denote the subgraph
of G induced by the vertices of even degree. In 1996, Pyber [21] proved the following theorem.

Theorem 1.5 ( [21]). If G is a graph on n vertices such that GE is a forest, then p(G) ≤ n
2 .

A block of a graph is a maximal 2-connected subgraph of this graph. Theorem 1.5 was strengthened
by Fan [13], who proved the following.

Theorem 1.6 ( [13]). If G is a graph on n vertices such that each block of GE is a triangle-free graph
of maximum degree at most 3, then p(G) ≤ n

2 .

The girth of a graph is the length of the shortest cycle in G, denoted by g(G). Harding and
McGuinness [15] investigated graphs with high girth and proved the following result.

Theorem 1.7 ( [15]). For any graph G with g(G) ≥ 4, p(G) ≤ no(G)
2 + ⌊(

g(G)+1
2g(G) )ne(G)⌋.

In 2022, Chu, Fan, and Zhou [10] proved the following result.

Theorem 1.8 ( [10]). For any triangle-free graph G with n vertices, p(G) ≤ 3n
5 .

More results regarding Conjecture 1.1 can be found in [3, 5–9, 13, 14, 17]. But in general, it is still
open.

A vertex v is a cut vertex of G if the number of components increases in G − v. We call a block of
G an end block if it exactly contains one cut vertex of G. Specifically, if G is a maximal 2-connected
graph, we also call G an end block of itself. A maximal complete subgraph of G is called a clique of G.
For two blocks A and B, we call A adjacent to B if A and B have a common vertex. A connected graph
is called a block graph if each of its blocks is a clique. A non-complete block graph has at least two
blocks. We refer to [1, 2, 18, 20, 22] for some recent results on block graphs. In this paper, we prove
that Gallai’s conjecture holds for block graphs.

2. Path decomposition of block graph

In this section, we discuss the path decomposition of block graphs. First, we present a path
decomposition of Kn, as shown in Lemma 2.1, in which the subscripts of vertices are taken modular n.
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Lemma 2.1. Let n be a positive integer. If V(Kn) = {v1, v2, · · · , vn}, then there exists a path
decomposition P(Kn) of Kn as follows:

(1) if n is even, then P(Kn) = {Pi : 1 ≤ i ≤ n
2 }, where Pi = vivi+1vi+(n−1)vi+2 · · · vi+( n

2+1)vi+ n
2
;

(2) if n is odd, then P(Kn) = {P n+1
2
} ∪ {P′i : 1 ≤ i ≤ n−1

2 }, where P′i = Pi \ E(P n+1
2

),
Pi = vivi+1vi+(n−1)vi+2 · · · vi+( n−1

2 )vi+ n+1
2

, and

P n+1
2
=

vnv1v2vn−1vn−2v3 · · · v n−3
2

v n−1
2

v n+3
2
, i f n = 1 (mod 4),

vnv1v2vn−1vn−2v3 · · · v n+5
2

v n+3
2

v n−1
2
, i f n = 3 (mod 4).

Thus,

p(Kn) =
{ n

2 , if n is even,
n+1

2 , if n is odd.

Proof. It is clear that P(Kn) given in the statement of the lemma is a path decomposition of Kn of
cardinality n

2 (if n is even) and n+1
2 (if n is odd). Thus, p(Kn) ≤ n

2 if n is even, and p(Kn) ≤ n+1
2 if n is

odd. On the other hand, since p(Kn) ≥ n(n−1)
2 /(n − 1) = n

2 , we have

p(Kn) =
{ n

2 , if n is even,
n+1

2 , if n is odd.
□

Remark 1. For an illustration of the decomposition P(Kn) of Kn given in the above lemma, one may
see it in Figure 1(a) and (b), which are the examples when n = 6 and n = 7, respectively. It is
worth noting that for the case when n is odd, in the decomposition P(Kn) in the above lemma, by the
transitivity of Kn, the n+1

2 vertices can be selected arbitrarily as the end vertices of exactly two paths,
and the remaining n−1

2 vertices are not the end vertex of any path of P(Kn).

For convenience, in the remainder of this paper we will refer to the end vertices of the paths in
P(Kn) simply as the end vertices of P(Kn). Before proving our main theorem, we tackle some of its
special cases.

Figure 1. (a) A path decomposition P(K6) of K6 in which each vertex is the end vertex of a
path of P(K6). (b) A path decomposition P(K7) of K7 where each vertex of {v2, v3, v5, v7} is
the end vertex of exactly two paths of P(K7).
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Lemma 2.2. Let G be a block graph in which all blocks share a common vertex. If all blocks of G have
even order, then

p(G) =
{ n

2 , if r is odd,
n−1

2 , if r is even,

where n is the order of G and r is the number of blocks of G.

Proof. Let B1, . . . , Br be all blocks of G and x be their common vertex. It is easy to check that n =∑r
i=1 n(Bi) − r + 1. If r is odd, then G is odd. By Theorem 1.3, p(G) = n

2 .
If r is even, then dG(x) is even, and no(G) = n − 1, and hence p(G) ≥ no(G)

2 = n−1
2 . By Lemma 2.1,

let P(Bi) be a path decomposition of Bi with |P(Bi)| =
n(Bi)

2 for each i ∈ {1, . . . , r}. Furthermore, let Pi

be the path in P(Bi) with x as its end. One can see that P(G) =
⋃r

i=1(P(Bi) \ {Pi}) ∪ {Pi ∪ Pi+1 : i ∈
{1, 3, · · · , r − 1}} is a path decomposition of G with

|P(G)| =
r∑

i=1

|P(Bi)| −
r
2
=

r∑
i=1

n(Bi)
2
−

r
2
=

∑r
i=1 n(Bi) − r

2
=

n − 1
2
.

Thus, we have p(G) ≤ n−1
2 . This proves p(G) = n−1

2 if r is even. □

For any odd integer t > 0, letHt be the family of graphs, each element H of which is a block graph
and obtained from attaching an odd number of cliques with even order to a vertex of Kt. We use c(H)
to denote the number of cut vertices of H. Clearly, 1 ≤ c(H) ≤ t. For an illustration, one may see an
example in Figure 2 for the case when t = 7.

Figure 2. An example of H ∈ H7, where v2, v4, v6, v7 are the cut vertices of H7, each of
which is connected to an odd number of end blocks with order even.

Lemma 2.3. Let t > 0 be an odd integer. If H ∈ Ht with n vertices, then

p(H) ≤
{ n−1

2 , if 2 ≤ c(H) ≤ t − 1,
n
2 , if c(H) = 1 or c(H) = t.
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Proof. Let V(Kt) = {v1, v2, · · · , vt}. For each i ∈ {1, 2, · · · , t}, let Gi be a subgraph of H consisting of
those blocks containing vi but Kt. In addition, let ri be the number of the blocks of Gi. Since ri is odd,
Gi is odd. By Lemma 2.2, Gi has a path decomposition P(Gi) with |P(Gi)| =

n(Gi)
2 . Let Qvi ∈ P(Gi) be

the path with vi as its end vertex.
Let P(Kt) be a path decomposition of Kt as described in Lemma 2.1. By Remark 1, there are t+1

2
vertices (these vertices can be selected arbitrarily) that are the end vertices of P(Kt) and the remaining
t−1
2 vertices are not the end vertices of P(Kt). We use a to denote the number of the cut vertices of

Ht that are end vertices of P(Kt) and b to denote the number of the cut vertices of Ht that are not end
vertices of P(Kt).

Clearly, if c(H) = 1 or c(H) = t, then a = b+1. Now we assume that 2 ≤ c(H) ≤ t−1. If c(H) ≤ t+1
2 ,

we choose the all cut vertices of H as the end vertices of P(Kt). If c(H) > t+1
2 , we first choose t+1

2 cut
vertices of H as end vertices of P(Kt), then the number of remaining cut vertices is at most t−3

2 . It is
easy to obtain that a ≥ b + 2, since t+1

2 −
t−3
2 = 2.

For vi ∈ V(Kt), if vi is an end vertex of P(Kt), then there is a path Pvi ∈ P(Kt) with vi as its end.
Clearly, Pvi ∪ Qvi is a path of H. Let V1 = {vi : vi is a cut vertex of H and is an end vertex of P(Kt)}
and V2 = {vi : vi is a cut vertex of H and is not an end vertex of P(Kt)}. One can see that

P(H) = (P(Kt) \ {Pvi : vi ∈ V1}) ∪ (
⋃
vi∈V1

(P(Gi) \ {Qvi})) ∪ (
⋃
vi∈V2

P(Gi)) ∪ {Pvi ∪ Qvi : vi ∈ V1}

is a path decomposition of H with

|P(H)| = (|P(Kt)| − a) + (
∑
vi∈V1

n(Gi)
2
− a) +

∑
vi∈V2

n(Gi)
2
+ a

=
t + 1

2
+
∑
vi∈V1

n(Gi)
2
+
∑
vi∈V2

n(Gi)
2
− a.

On the other hand,
n = t +

∑
vi∈V1

n(Gi) +
∑
vi∈V2

n(Gi) − (a + b).

If a ≥ b + 2, then |P(H)| ≤ n−1
2 , and thus p(H) ≤ n−1

2 . If a = b + 1, then |P(H)| ≤ n
2 , and thus

p(H) ≤ n
2 . □

Now we will prove our main result.

Theorem 2.4. If G is a non-complete block graph of order n, then p(G) ≤ n
2 .

Proof. Let B1, . . . , Bk be all blocks of G. For each i ∈ {1, 2, · · · , k}, we use ni to denote the order of Bi.
Let P(Bi) be a path decomposition of Bi as described in Lemma 2.1. To show p(G) ≤ n

2 , it is enough
to show that G has a path decomposition P(G) with |P(G)| ≤ n

2 .
The proof is by induction on k. Since G is a non-complete block graph, we have k ≥ 2. If k = 2,

then n = n1 + n2 − 1. Let x be the common vertex of B1 and B2. By Lemma 2.1, for each i ∈ {1, 2}, Bi

has a path decomposition P(Bi) in which x can be chosen as an end vertex of P(Bi). We consider the
following three cases.
Case 1. n1 and n2 are even.
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By Lemma 2.1, we have |P(Bi)| = ni
2 for each i ∈ {1, 2}. Let Px and Qx be the two paths of P(B1)

and P(B2) with x as their ends, respectively. Clearly, Px ∪ Qx is a path of G. Thus, (P(B1) \ {Px}) ∪
(P(B2) \ {Qx}) ∪ {Px ∪ Qx} is a path decomposition of G with cardinality

|P(B1)| + |P(B2)| − 1 =
n1

2
+

n2

2
− 1 =

n − 1
2
.

Case 2. n1 and n2 have distinct parity.
Without loss of generality, assume that n1 is odd and n2 is even. By Lemma 2.1, P(B1) is a path

decomposition of B1 with |P(B1)| = n1+1
2 in which x is the end of a path Px. Also, P(B2) is a path

decomposition of B2 with |P(B2)| = n2
2 in which x is the end of a path Qx. Let Px ∪ Qx be a path of G.

Thus, (P(B1) \ {Px}) ∪ (P(B2) \ {Qx}) ∪ {Px ∪ Qx} is a path decomposition of G with cardinality

|P(B1)| + |P(B2)| − 1 =
n1 + 1

2
+

n2

2
− 1 =

n
2
.

Case 3. n1 and n2 are odd.
By Lemma 2.1, we have |P(Bi)| = ni+1

2 for each i ∈ {1, 2}. Let P1
x and P2

x be the two paths of P(B1)
with x as their ends, and Q1

x and Q2
x be the two paths of P(B2) with x as their ends. Let P1

x ∪ Q1
x and

P2
x ∪ Q2

x be two paths of G. Thus, (P(B1) \ {P1
x, P

2
x})∪ (P(B2) \ {Q1

x,Q
2
x})∪ {P

1
x ∪ Q1

x, P
2
x ∪ Q2

x} is a path
decomposition of G with cardinality

|P(B1)| + |P(B2)| − 2 =
n1 + 1

2
+

n2 + 1
2
− 2 =

n − 1
2
.

Thus, p(G) ≤ n
2 for k = 2.

Now we consider the case when k ≥ 3. Assuming that this result is true for any block graph with
the number of blocks less than k. We consider the following two cases.
Case 1. G has an end block with odd order.

Let B be a block of G with odd order, and x ∈ V(B) be a cut vertex of G. By Lemma 2.1, P(B) is
a path decomposition of B with |P(B)| = n(B)+1

2 in which x can be chosen as the end vertex of P(B).
Suppose Q1

x and Q2
x are two paths of P(B) with x as their end vertices. Let G′ = G − (V(B) \ {x}).

Clearly, n(G′) = n − n(B) + 1. By the induction hypothesis, G′ has a path decomposition P(G′) with
|P(G′)| ≤ n−n(B)+1

2 . Now we consider the following subcases.
Subcase 1.1. dG′(x) is odd.

Since an odd vertex serves as an end vertex of at least one path in P(G′), Px ∈ P(G′) denotes a path
with x as its end. Let Q1

x ∪ Px be a path of G. Clearly, (P(G′) \ {Px}) ∪ (P(B) \ {Q1
x}) ∪ {Q

1
x ∪ Px} is a

path decomposition of G with cardinality

|P(G′)| + |P(B)| − 1 ≤
n − n(B) + 1

2
+

n(B) + 1
2

− 1 =
n
2
.

Subcase 1.2. dG′(x) is even.
Since dG′(x) is even, there are at least two paths in P(G′) with x as their ends, or there are no such

paths at all.
First assume that there are two paths P1

x and P2
x in P(G′) with x as their ends. Let P1

x ∪ Q1
x and

P2
x ∪ Q2

x be two paths of G. Obviously, (P(G′) \ {P1
x, P

2
x}) ∪ (P(B) \ {Q1

x,Q
2
x}) ∪ {P

1
x ∪ Q1

x, P
2
x ∪ Q2

x} is a
path decomposition of G with cardinality
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|P(G′)| + |P(B)| − 2 ≤
n − n(B) + 1

2
+

n(B) + 1
2

− 2 =
n − 2

2
.

Now assume that there is no path in P(G′) with x as its end. Assuming that Puv ∈ P(G′) containing
x. Let Pux and Pxv be subpaths of Puv. Clearly, Pux ∪ Q1

x and Pxv ∪ Q2
x be two paths of G. Hence

(P(G′) \ {Puv}) ∪ (P(B) \ {Q1
x,Q

2
x}) ∪ {Pux ∪ Q1

x, Pxv ∪ Q2
x} is a path decomposition with cardinality

|P(G′)| + |P(B)| − 1 ≤
n − n(B) + 1

2
+

n(B) + 1
2

− 1 =
n
2
.

Case 2. All end blocks in G have even order.
If all blocks of G are end blocks, then they share the same vertex. By Lemma 2.2, p(G) ≤ n

2 . So,
next assume that not all blocks of G, are end blocks. Take an end block B of G. Suppose x ∈ V(B) is
the cut vertex of G and the end blocks containing x are B1, B2, · · · , Br where B1 = B. Let H =

⋃r
i=1 Bi

and G′′ = G− (V(H) \ {x}) (see Figure 3). Trivially, n(G′′) = n−n(H)+1. By the induction hypothesis,
G′′ has a path decomposition P(G′′) with |P(G′′)| ≤ n−n(H)+1

2 .

Figure 3. The subgraph H of G and G′′ = G − (V(H) \ {x}).

Subcase 2.1. There exists such a subgraph H with r being even.
By Lemma 2.2, H has a path decomposition P(H) with |P(H)| = n(H)−1

2 . Clearly, P(G′′) ∪ P(H) is
a path decomposition of G with cardinality

|P(G′′)| + |P(H)| ≤
n − n(H) + 1

2
+

n(H) − 1
2

=
n
2
.

Subcase 2.2. For each H, r is odd.
Since r is odd, H is odd. By Theorem 1.3, H has a path decomposition P(H) with |P(H)| = n(H)

2
in which x is the end of a path Qx. Let G0 be the graph obtained from G after deleting all end blocks.
Assume that A is an end block of G0 containing x. We consider the following two subcases.
Subcase 2.2.1. The order of A is even.

Since the order of A is even, dA(x) is odd. Moreover, by dG′′(x) = dA(x), dG′′(x) is odd. Thus, there
must exist a path Px in P(G′′) with x as its end vertex. Let Px ∪ Qx be a path of G. One can see that
(P(G′′) \ {Px}) ∪ (P(H) \ {Qx}) ∪ {Px ∪ Qx} is a path decomposition with cardinality

|P(G′′)| + |P(H)| − 1 ≤
n − n(H) + 1

2
+

n(H)
2
− 1 =

n − 1
2
.
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Subcase 2.2.2. The order of A is odd.
If G0 is a complete graph, by Lemma 2.3, p(G) ≤ n

2 . Now we assume that G0 is not a complete graph.
Let y ∈ V(A) be the cut vertex of G0. Let G′′′ = G − (V(H′) \ {y}), where H′ is the union of A and the
end blocks of G that contain the vertices of A other than y (see Figure 4). By the induction hypothesis,
G′′′ has a path decomposition P(G′′′) with |P(G′′′)| ≤ n(G′′′)

2 . Now we consider the following two cases.
(1) If there is only one cut vertex x in H′, by Lemma 2.3, H′ has a path decomposition P(H′)

with |P(H′)| ≤ n(H′)
2 , in which x and y are the end vertices of P(A). We denote Q1

y ,Q
2
y ∈ P(H′) as

two paths with y as their ends. On the other hand, there must exist a path Puv ∈ P(G′′′) pass through
y. Let Puy and Pyv be subpaths of Puv. Clearly, Puy ∪ Q1

y and Pyv ∪ Q2
y are two paths of G. Thus,

(P(G′′′)\ {Puv})∪ (P(H′)\ {Q1
y ,Q

2
y})∪{Puy∪Q1

y , Pyv∪Q2
y} is a path decomposition of G with cardinality

|P(G′′′)| + |P(H′)| − 1 ≤
n − n(H′) + 1

2
+

n(H′)
2
− 1 =

n − 1
2
.

(2) If there are at least two cut vertices in H′, by Lemma 2.3, H′ has a path decomposition P(H′)
with |P(H′)| = n(H′)−1

2 . Hence P(G′′′) ∪ P(H′) is a path decomposition of G with cardinality

|P(G′′′)| + |P(H′)| ≤
n(G′′′)

2
+

n(H′) − 1
2

=
n
2
.

The proof is now finished. □

Figure 4. The subgraph H′ of G and G′′′ = G − (V(H′) \ {y}).
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