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Abstract: In this study, we introduce a novel reaction-diffusion epidemic model to analyze
the transmission dynamics of the hepatitis B virus (HBV). The model captured the interactions
between five population groups: Susceptible individuals, those in the latent stage, acutely infected
individuals, chronically infected individuals, and those who have recovered, while considering the
spatial movement of these groups. Chronic HBV infection contributes to severe liver diseases such
as cirrhosis and hepatocellular carcinoma. It is also a major cause of long-term disability due to
complications that impair daily functioning. The stability conditions for the model were derived,
and the basic reproductive number, R0, was calculated using the next-generation matrix approach.
Numerical simulations were performed using the Crank-Nicolson operator splitting method and the
Unconditionally Positivity Preserving technique to solve the model under scenarios with and without
diffusion. The stability of the endemic equilibrium point was analyzed comprehensively. Detailed
simulation results are presented, highlighting a comparative analysis of the numerical findings in cases
where exact solutions were unavailable. The reliability of the numerical results was validated by their
alignment with theoretical expectations.
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1. Introduction

Hepatitis B is a life-threatening viral infection that presents a significant global public health
challenge. It is associated with severe chronic conditions, including cirrhosis and hepatocellular
carcinoma, which are major contributors to mortality among affected individuals. Beyond the
immediate health impacts, chronic Hepatitis B infection can lead to long-term disabilities due to liver
damage and related complications. The hepatitis B virus (HBV) targets liver cells, where it
establishes infection, replicates extensively, and releases large quantities of viral particles into the
bloodstream. The infection manifests in two forms: Acute and chronic. Acute hepatitis B often
resolves within six months, with the immune system effectively clearing the virus and leading to full
recovery. However, if the infection persists beyond six months, it progresses to a chronic state, which
is where many disability-related complications arise. Chronic Hepatitis B, especially in those infected
during childhood, increases the risk of progressive liver disease and complications that severely
impair daily functioning. Common symptoms in advanced stages, such as hepatic encephalopathy,
cause cognitive impairments, while fatigue and pain limit physical activity and mobility, leading to
functional disabilities. Children infected with HBV between the ages of 1 and 8 years are at
significant risk of developing chronic, often asymptomatic infection, yet they remain carriers capable
of transmitting the virus to others. Globally, an estimated 240 million people live with chronic
HBV-related liver infections, with around 600,000 deaths annually from both acute and chronic forms
of the disease [1, 2]. HBV transmission primarily occurs through contact with infected blood or
bodily fluids, including through sexual contact, blood transfusions, and perinatal transmission from
mother to child. Age at infection is a critical factor in disease progression and the potential for
disability. Infants and young children, particularly those under six, are more likely to develop chronic
hepatitis B, leading to an 80-90% likelihood of chronic infection in those infected within the first year
of life and 30-35% in those infected between ages 1 and 6. By contrast, less than 5% of adults who
acquire HBV progress to chronic symptoms. Nevertheless, 15-25% of individuals who contract HBV
early in life experience HBV-related complications, including liver cancer, cirrhosis, and associated
disabilities due to extensive liver damage [3, 4].

Chronic carriers of the hepatitis B virus (HBV) typically do not exhibit a history of acute illness;
however, they are at risk for developing cirrhosis, which involves scarring of the liver and can
potentially lead to liver failure or hepatocellular carcinoma. A small percentage (1%–6%) of chronic
carriers are able to clear the virus naturally. Some individuals infected with HBV may present
symptoms similar to those caused by other viral infections, while many remain asymptomatic until
serious complications, such as liver damage, emerge. In some cases, it can take 2 to 5 months for
symptoms of hepatitis B to appear [5, 6]. However, for others, symptoms may be minimal or
completely absent, despite the potential for severe disease progression. Asymptomatic individuals,
although not manifesting symptoms, can still transmit the virus and may develop chronic HBV
infection later in life . Additionally, certain individuals may act as carriers of the virus without being
infected [7]. Prophylactic administration of the HBV vaccine and hepatitis B immune globulin within
12 hours of birth can significantly reduce the risk of mother-to-child transmission of HBV, lowering it
from 20-90% to 5-10%. Subsequent doses of the vaccine are typically given at 1–2 months and again
at 6 months of age, but not beyond that [8, 9]. In many adult cases, treatment is not required as
spontaneous immunity often develops [10]. In any case, antiviral treatment might be vital in the

AIMS Mathematics Volume 10, Issue 1, 1322–1349.



1324

beginning phases for people with compromised resistant frameworks or those encountering a forceful
beginning of contamination. For those with ongoing HBV disease, therapy is vital to decrease the
gamble of serious intricacies like liver malignant growth or cirrhosis. The span and way to deal with
treatment are impacted by the HBV genotype and the particular antiviral routine utilized, which might
go from a half year to a year [11].

One of the primary concerns in the study of hepatitis B virus (HBV) infection is developing
strategies to control the infection rate and eradicate the virus from the population. Mathematical
models are valuable tools for optimizing resources and implementing control measures more
effectively [12, 13]. Anderson and May used a simple mathematical model to illustrate the effect of
carriers on HBV transmission [14]. A mathematical model was also developed to control HBV
infection, which was later employed to formulate a strategy for eliminating HBV [7, 15]. An
age-structured model was proposed by Zheo et al. [16] for predicting HBV transmission and
evaluating the effectiveness of vaccination programs in China. A model developed by Wang et al. [17]
was used to analyze the impact of vaccination on a population and to assess other control measures
for HBV infection, with further analysis and applications provided by Zhang and Zhou [18]. Khan et
al. proposed a mathematical model aimed at controlling the spread of both chronic and acute HBV
transmission [19]. Pulse vaccination epidemic models [20, 21] have demonstrated that pulse
vaccination can maintain the epidemic in a stable state by optimizing the quantity of vaccines
administered and the intervals between vaccinations. However, the costs associated with vaccination
and treatment strategies can be significant and may not always be feasible. Therefore, it is crucial to
predict and implement vaccination and treatment strategies that are well-suited to the specific context.
In this regard, Khan and Zaman developed a model for HBV transmission and vaccination [21], while
Jaouade Danane and Karam Allali conducted mathematical analysis on the delayed treatment of HBV
infection, considering the immune response and the role of DNA-containing capsids in the host’s
body [22].

Over the last decade, the study of mathematical models for biological systems has gained
considerable attention within the scientific community, as highlighted in studies [23, 24]. These
models often incorporate state variables that are inherently nonnegative, such as physical attributes,
chemical concentrations, population densities, and other measurable properties. Diffusion
significantly impacts the spatial and temporal variation of these variables within a system. It
represents the movement of particles such as molecules or individuals in a population from areas of
higher concentration to areas of lower concentration. These models are generally built upon systems
of differential equations. However, obtaining exact solutions to such systems is often challenging and
complex, necessitating the use of approximation techniques. We aim to investigate the influence of
diffusion on these models by employing numerical methods.

2. Model formulation

Hepatitis B, a viral infection instigated by the Hepatitis B Virus (HBV), predominantly targets and
inflicts damage on the liver. A detailed mathematical model addressing HBV dynamics was recently
introduced by Zada et al. [25]. This model categorizes the total population N(t) at any time t into five
distinct compartments: the susceptible individuals S (t), those in the latent stage L(t), the acutely
infectious group I(t), chronic HBV carriers C(t), and those who have recovered R(t). The total
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population at any time can thus be expressed as:

N(t) = S (t) + L(t) + I(t) +C(t) + R(t).

This equation captures the overall flow of individuals through different stages of the disease,
describing how HBV transmission and progression occur across these compartments. The model is
governed by the following set of nonlinear ordinary differential equations (ODEs):

dS
dt
= µω(1 − vC(t)) − (µ0 + βI(t) + ϵβC(t) + γ3) S (t),

dL
dt
= (βI(t) + ϵβC(t))S (t) − (µ0 + σ) L(t),

dI
dt
= σL(t) − (µ0 + γ1) I(t),

dC
dt
= µωνC(t) + qγ1I(t) − (µ0 + µ1 + γ2) C(t),

dR
dt
= γ2C(t) + (1 − q)γ1I(t) − µ0R(t).

(2.1)

The parameters in the given system of equations represent various aspects of the hepatitis B virus
(HBV) dynamics. The parameter µ represents the birth rate, and ω denotes the proportion of the
population without vaccination. The term ν is the proportion of children born to chronically infected
mothers who are unvaccinated. The parameter v is related to the effect of treatment or intervention on
the susceptible population, S (t). The rate µ0 represents the natural mortality rate, while β is the
transmission rate of the virus from acutely infected individuals, I(t), to susceptible individuals.
Similarly, ϵβ indicates the transmission rate from chronically infected individuals, C(t), to
susceptibles. The vaccination rate is represented by γ3, and σ is the rate at which latently infected
individuals, L(t), progress to the acute infection stage. The parameter γ1 denotes the rate at which
acutely infected individuals either recover or progress to chronic infection, with q being the
proportion that progresses to chronic infection. The chronic infection-related mortality rate is denoted
by µ1, and γ2 is the rate at which chronically infected individuals recover.

The chronically infected compartment C(t) is of particular importance because individuals in this
class are at high risk of developing severe, long-term health complications, such as cirrhosis and
hepatocellular carcinoma. These complications are associated with significant functional impairment,
leading to long-term disability and reduced quality of life. Studying the dynamics of the chronically
infected class helps in understanding the progression from acute infection to chronic disease and the
subsequent disability burden, emphasizing the need for effective intervention strategies.
Consequently, the model captures the dynamics of susceptible (S (t)), latent (L(t)), acutely infected
(I(t)), chronically infected (C(t)), and recovered (R(t)) populations over time, providing insights into
both transmission and the long-term impact of HBV on population health.

Most of the HBV models available in the literature are non-spatial and assume that the population
is well-mixed. However, this assumption can lead to inaccuracies, as the transmission dynamics of
HBV are often influenced by spatial factors. To address this limitation, a spatially independent model
introduced by Zada et al. [25] has been expanded to include spatial dynamics by incorporating a
diffusion term, thereby creating a reaction-diffusion model. This model accounts for the movement of
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individuals and the consequent spatial variation in infection spread. The revised model is presented as
follows: 

∂S
∂t
= d1

(
∂2S
∂x2 +

∂2S
∂y2

)
+ µω(1 − νC(t)) − (µ0 + βI(t) + ϵβC(t) + γ3)S (t),

∂L
∂t
= d2

(
∂2L
∂x2 +

∂2L
∂y2

)
+ (βI(t) + ϵβC(t))S (t) − (µ0 + σ)L(t),

∂I
∂t
= d3

(
∂2I
∂x2 +

∂2I
∂y2

)
+ σL(t) − (µ0 + γ1)I(t),

∂C
∂t
= d4

(
∂2C
∂x2 +

∂2C
∂y2

)
+ µωνC(t) + qγ1I(t) − (µ0 + µ1 + γ2)C(t),

∂R
∂t
= d5

(
∂2R
∂x2 +

∂2R
∂y2

)
+ γ2C(t) + (1 − q)γ1I(t) − µ0R(t).

(2.2)

The model is initialized with the following conditions:

S (x, y, 0) = f1(x, y),
L(x, y, 0) = f2(x, y),
I(x, y, 0) = f3(x, y),

C(x, y, 0) = f4(x, y),
R(x, y, 0) = f5(x, y),

(2.3)

where f1(x, y), f2(x, y), f3(x, y), f4(x, y), and f5(x, y) define the initial spatial distributions of the various
groups within the population, categorized by their disease status, respectively.

The boundary conditions for the reaction-diffusion model (2.2) are specified as homogeneous
Neumann boundary conditions, which represent no flux across the boundaries. These conditions
ensure that the spatial derivatives of the variables with respect to the boundary normals are zero.
Mathematically, they are expressed as follows:

∂S
∂n
= 0,

∂L
∂n
= 0,

∂I
∂n
= 0,

∂C
∂n
= 0,

∂R
∂n
= 0 on ∂Ω, (2.4)

where ∂
∂n denotes the derivative in the direction normal to the boundary ∂Ω, andΩ is the spatial domain.

These boundary conditions indicate that there is no movement of individuals across the boundaries of
the spatial domain, which is biologically reasonable for modeling the dynamics of populations within
a confined area.

In this formulation, S = S (x, y, t), L = L(x, y, t), I = I(x, y, t), C = C(x, y, t), and R = R(x, y, t)
represent the spatially and temporally dependent compartments of the population. Since R(t) is not
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directly involved in the first four equations, it is convenient to consider the system (2.2) as:

∂S
∂t
= d1

(
∂2S
∂x2 +

∂2S
∂y2

)
+ µω(1 − νC(t)) − (µ0 + βI(t) + ϵβC(t) + γ3)S (t),

∂L
∂t
= d2

(
∂2L
∂x2 +

∂2L
∂y2

)
+ (βI(t) + ϵβC(t))S (t) − (µ0 + σ)L(t),

∂I
∂t
= d3

(
∂2I
∂x2 +

∂2I
∂y2

)
+ σL(t) − (µ0 + γ1)I(t),

∂C
∂t
= d4

(
∂2C
∂x2 +

∂2C
∂y2

)
+ µωνC(t) + qγ1I(t) − (µ0 + µ1 + γ2)C(t).

(2.5)

Subject to the initial conditions (2.3) and boundary conditions (2.4).

3. Steady states of the model

The hepatitis B epidemic model exhibits two primary equilibrium states: the disease-free
equilibrium (DFE) and the endemic equilibrium (EE) [25]. The disease-free equilibrium occurs when
the population is uninfected, represented mathematically as:

DFE = (S 0, L0, I0,C0) =
(
µω

µ0 + γ3
, 0, 0, 0

)
. (3.1)

In contrast, the endemic equilibrium corresponds to a steady state where the disease persists within
the population. This state can be expressed as:

EE = (S ∗, L∗, I∗,C∗). (3.2)

where 

S ∗ =
l2l3(l1 − µνω)

βσ(qγ1ϵ + l1 − µνω)
,

L∗ =
−l2

2l3l4(l1 − µνω)2(RHBV
0 + 1)

βσ(qϵγ1 + l1 − µνω)(l1l2l3 − µν(l3µ0 + µ0γ1ω − ωσγ1(1 − q)))
,

I∗ =
−l2l3l4(l1 − µνω)2(RHBV

0 + 1)
β(qϵγ1 + l1 − µνω)(l1l2l3 − µν(l3µ0 + µ0γ1ω − ωσγ1(1 − q)))

,

C∗ =
l2l3l4(l1 − µνω)(RHBV

0 + 1)
β(qϵγ1 + l1 − µνω)(l1l2l3 − µν(l3µ0 + µ0γ1ω − ωσγ1(1 − q)))

,

(3.3)

with the parameters defined as:

l1 = γ2 + µ0 + µ1, l2 = γ1 + µ0, l3 = µ0 + σ, l4 = γ3 + µ0.

3.1. Basic reproduction number

The basic reproduction number, represented as RHBV
0 , is determined here. This metric quantifies the

average number of secondary infections caused by a single infection in a completely susceptible
population. To calculate RHBV

0 , it is essential to distinguish infected and noninfected populations,
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employing the next-generation matrix approach [26, 27]. The variables L, I,C, and S represent the
respective infected and noninfected cell populations. By isolating the infection terms, the
infection-free equilibrium model is expressed using a matrix representation to account for infection
terms F and V . The F matrix specifically captures the terms driving the infection, while V includes
the remaining components of the system and D represents the diffusion coefficients, as defined below:

F =


(βI + ϵβC)S

0
0

 , V =


−(µ0 + σ)L
σL − (µ0 + γ1)I

(µνωC + qγ1I − (µ0 + µ1 + γ2)C)

 , D =


d2 0 0
0 d3 0
0 0 d4

 .
By calculating the Jacobian matrix of the system using RHBV

0 , the matrices F∗ and V∗ are obtained
as follows:

F∗ =


0 β µω

µ0+γ3
ϵβ µω
µ0+γ3

0 0 0
0 0 0

 , V∗ =


− (µ0 + σ) 0 0
σ − (µ0 + γ1) 0
0 qγ1 µων − (µ0 + µ1 + γ2)

 .
At equilibrium, the transition and infection rates are described by F∗ and V∗. The time spent in

each state is determined by the inverse of V∗, denoted as V∗−1. During an outbreak, the number of new
infections is derived from the product F∗V∗−1. The dominant eigenvalue of F∗V∗−1 represents the basic
reproduction number, which can be expressed as:

RHBV
0 =

σβµω (ϵqγ1 − (µνω − (µ0 + µ1 + γ2)))
(µ0 + σ)(µ0 + γ1)(µ0 + γ3)(µων − (µ0 + µ1 + γ2))

. (3.4)

The model predicts a disease-free state, whereas R0 > 1 indicates the persistence of the disease,
leading to the endemic equilibrium.

4. Stability of endemic equilibrium point

In this section, the stability of the two-dimensional diffusive epidemic model is examined. The
system represented by Eq (2.5) tends to converge toward the equilibrium values (S ∗, L∗, I∗,C∗). To
assess the stability of these equilibrium points, the system is linearized around the steady state,
employing the methodology outlined in [28] and [29].

Theorem 4.1. For the system (2.5), the endemic equilibrium is locally asymptotically stable if and only
if RHBV

0 > 1 and the following condition is satisfied:

µ0 + µ1 + γ2 − µων −
qγ1σ

µ0 + σ
> 0.

Proof. Let the perturbed variables of S (x, y, t), L(x, y, t), I(x, y, t), and C(x, y, t) be denoted as
S 1(x, y, t), L1(x, y, t), I1(x, y, t), and C1(x, y, t), respectively. To investigate the stability of the system,
we linearize Eq (2.5) around the equilibrium point E∗, using the methodology described in [28, 29].
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The corresponding linearized system can be written as:



∂S
∂t
= a11S 1(x, y, t) + a12L1(x, y, t) + a13I1(x, y, t) + a14C1(x, y, t) + d1

(
∂2S
∂x2 +

∂2S
∂y2

)
,

∂L
∂t
= a21S 1(x, y, t) + a22L1(x, y, t) + a23I1(x, y, t) + a24C1(x, y, t) + d2

(
∂2L
∂x2 +

∂2L
∂y2

)
,

∂I
∂t
= a31S 1(x, y, t) + a32L1(x, y, t) + a33I1(x, y, t) + a34C1(x, y, t) + d3

(
∂2I
∂x2 +

∂2I
∂y2

)
,

∂C
∂t
= a41S 1(x, y, t) + a42L1(x, y, t) + a43I1(x, y, t) + a44C1(x, y, t) + d4

(
∂2C
∂x2 +

∂2C
∂y2

)
.

(4.1)

To solve the linearized system, a Fourier series approach is employed, as outlined in references [28]
and [29] . The solution for S 1(x, y, t), L1(x, y, t), I1(x, y, t) and C1(x, y, t) can be expressed as:



S 1(x, y, t) =
∑
ζ1

∑
ζ2

S ζ1ζ2e
λtcos(ζ1x)cos(ζ2y),

L1(x, y, t) =
∑
ζ1

∑
ζ2

Lζ1ζ2e
λtcos(ζ1x)cos(ζ2y),

I1(x, y, t) =
∑
ζ1

∑
ζ2

Iζ1ζ2e
λtcos(ζ1x)cos(ζ2y),

C1(x, y, t) =
∑
ζ1

∑
ζ2

Cζ1ζ2e
λtcos(ζ1x)cos(ζ2y),

(4.2)

where ζi (for i = 1, 2) are the wave numbers corresponding to the nodes ni, with ζ1 = n1π
2 and ζ2 =

n2π
2 . The functions S 1(x, y, t), L1(x, y, t), I1(x, y, t), and C1(x, y, t) are defined over the spatial domain

(x, y) ∈ Ω ⊂ R2 and time domain t ∈ [0,T ], where Ω = [Xmin, Xmax] × [Ymin,Ymax] represents the two-
dimensional spatial region of interest. These functions represent perturbations around the equilibrium
state and evolve over time under the specified boundary and initial conditions. By substituting the
expressions for S 1(x, y, t), L1(x, y, t), I1(x, y, t), and C1(x, y, t) into the system, we obtain a system of
equations suitable for further analysis.



∑
ζ1

∑
ζ2

(
a11 − d1ζ

2
1 − d1ζ

2
2 − λ

)
S ζ1ζ2 +

∑
ζ1

∑
ζ2

a12Lζ1ζ2 +
∑
ζ1

∑
ζ2

a13Iζ1ζ2 +
∑
ζ1

∑
ζ2

a14Cζ1ζ2 = 0,∑
ζ1

∑
ζ2

a21S ζ1ζ2 +
∑
ζ1

∑
ζ2

(
a22 − d2ζ

2
1 − d2ζ

2
2 − λ

)
Lζ1ζ2 +

∑
ζ1

∑
ζ2

a23Iζ1ζ2 +
∑
ζ1

∑
ζ2

a24Cζ1ζ2 = 0,∑
ζ1

∑
ζ2

a31S ζ1ζ2 +
∑
ζ1

∑
ζ2

a32Lζ1ζ2 +
∑
ζ1

∑
ζ2

(
a33 − d3ζ

2
1 − d3ζ

2
2 − λ

)
Iζ1ζ2 +

∑
ζ1

∑
ζ2

a34Cζ1ζ2 = 0,∑
ζ1

∑
ζ2

a41S ζ1ζ2 +
∑
ζ1

∑
ζ2

a42Lζ1ζ2 +
∑
ζ1

∑
ζ2

a43Iζ1ζ2 +
∑
ζ1

∑
ζ2

(
a44 − d4ζ

2
1 − d4ζ

2
2 − λ

)
Cζ1ζ2 = 0.

(4.3)
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The variational matrix V for (4.3) is

V =


a11 − d1ζ

2
1 − d1ζ

2
2 − λ a12 a13 a14

a21 a22 − d2ζ
2
1 − d2ζ

2
2 − λ a23 a24

a31 a32 a33 − d3ζ
2
1 − d3ζ

2
2 − λ a34

a41 a42 a43 a44 − d4ζ
2
1 − d4ζ

2
2 − λ


(4.4)

where

V =


−(µ0 + βI∗ + ϵβC∗ + γ3 + d1ζ

2
1 + d1ζ

2
2 ) − λ 0

βI∗ + ϵβC∗ −(µ0 + σ + d2ζ
2
1 + d2ζ

2
2 ) − λ

0 σ

0 0

−βS ∗ −(µων + ϵβS ∗)
βS ∗ ϵβS ∗

−(µ0 + γ1 + d3ζ
2
1 + d3ζ

2
2 ) − λ 0

qγ1 −(µ0 + µ1 + γ2 − µων + d4ζ
2
1 + d4ζ

2
2 ) − λ

 .
To find the eigenvalues of the given matrix V, we reduce the matrix V to an upper triangular form

by performing the following row operations:
To eliminate a21, subtract a21

a11
r1 from r2. The updated second row becomes:

r′2 =
[
0,−(µ0 + σ + d2ζ

2
1 + d2ζ

2
2 ), βS ∗ + (βI∗+ϵβC∗)(−βS ∗)

−(µ0+βI∗+ϵβC∗+γ3+d1ζ
2
1+d1ζ

2
2 ) , ϵβS

∗ −
(βI∗+ϵβC∗)(−ϵβS ∗−µων)

−(µ0+βI∗+ϵβC∗+γ3+d1ζ
2
1+d1ζ

2
2 )

]
.

To eliminate a32, subtract a32
a22

r2 from r3. The updated third row becomes:

r′3 =
[

0, 0,−
(
µ0 + γ1 + d3ζ

2
1 + d3ζ

2
2 +

σ
(µ0+σ+d2ζ

2
1+d2ζ

2
2 )

(
βS ∗ + (βI∗+ϵβC∗)(−βS ∗)

−(µ0+βI∗+ϵβC∗+γ3+d1ζ
2
1+d1ζ

2
2 )

))
,

− σ
(µ0+σ+d2ζ

2
1+d2ζ

2
2 )

(
ϵβS ∗ − (βI∗+ϵβC∗)(−ϵβS ∗−µων)

−(µ0+βI∗+ϵβC∗+γ3+d1ζ
2
1+d1ζ

2
2 )

) ]
.

To eliminate a43, subtract a43
a33

r3 from r4. The updated fourth row becomes:

r′4 =
[
0, 0, 0,−

(
µ0 + µ1 + γ2 + d4ζ

2
1 + d4ζ

2
2 − µων −

qγ1σ

µ0+σ

)]
.

After performing the row operations, the matrix is transformed into the following upper triangular
form:

V =


−(µ0 + βI∗ + ϵβC∗ + γ3 + d1ζ

2
1 + d1ζ

2
2 ) − λ 0

0 −(µ0 + σ + d2ζ
2
1 + d2ζ

2
2 ) − λ

0 0
0 0

−βS ∗ −(ϵβS ∗ + µων)
βS ∗ + (βI∗+ϵβC∗)(−βS ∗)

−(µ0+βI∗+ϵβC∗+γ3+d1ζ
2
1+d1ζ

2
2 ) ϵβS ∗ − (βI∗+ϵβC∗)(−ϵβS ∗−µων)

−(µ0+βI∗+ϵβC∗+γ3+d1ζ
2
1+d1ζ

2
2 )

−R3 −R4

0 −
(
+d4ζ

2
1 + d4ζ

2
2 + µ0 + µ1 + γ2 − µων −

qγ1σ

µ0+σ

)
− λ

 .
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Thus,

R3 = µ0 + γ1 + d3ζ
2
1 + d3ζ

2
2 +

σ

µ0 + σ

(
βS ∗ +

(βI∗ + ϵβC∗)(βS ∗)
(µ0 + βI∗ + ϵβC∗ + γ3 + d1ζ

2
1 + d1ζ

2
2 )

)
,

R4 =
σ

µ0 + σ

(
ϵβS ∗ −

(βI∗ + ϵβC∗)(−ϵβS ∗ − µων)
−(µ0 + βI∗ + ϵβC∗ + γ3 + d1ζ

2
1 + d1ζ

2
2 )

)
.

The eigenvalues of the system are:

λ1 = −
(
µ0 + βI∗ + ϵβC∗ + γ3 + d1ζ

2
1 + d1ζ

2
2

)
, where λ1 < 0,

λ2 = −
(
µ0 + σ + d2ζ

2
1 + d2ζ

2
2

)
, where λ2 < 0,

λ3 = −

µ0 + γ1 + d3ζ
2
1 + d3ζ

2
2 +

σ

µ0 + σ

βS ∗ + (βI∗ + ϵβC∗) (βS ∗)(
µ0 + βI∗ + ϵβC∗ + γ3 + d1ζ

2
1 + d1ζ

2
2

)
 , where λ3 < 0,

λ4 = −

(
+d4ζ

2
1 + d4ζ

2
2 + µ0 + µ1 + γ2 − µων −

qγ1σ

µ0 + σ

)
.

The three eigenvalues λ1, λ2, λ3 are explicitly negative as long as the biological parameters (rates
and population sizes) remain positive and satisfy reasonable conditions. λ4 depends on the term µ0 +

µ1 + γ2 −µων−
qγ1σ

µ0+σ
, which determines whether it is positive or negative. For stability, λ4 must satisfy:

µ0 + µ1 + γ2 − µων −
qγ1σ

µ0 + σ
> 0.

Consider the eigenvalue:

λ = −

(
µ0 + µ1 + γ2 − µων −

qγ1σ

µ0 + σ

)
.

The eigenvalue λ is negative (λ < 0) if and only if:

µ0 + µ1 + γ2 − µων −
qγ1σ

µ0 + σ
> 0.

This implies that the endemic equilibrium is locally stable when the above condition holds.
Conversely, if:

µ0 + µ1 + γ2 − µων −
qγ1σ

µ0 + σ
< 0,

then λ > 0, indicating that the equilibrium is unstable.
The basic reproduction number RHBV

0 is given by:

RHBV
0 =

σβµω (ϵqγ1 − (µνω − (µ0 + µ1 + γ2)))
(µ0 + σ)(µ0 + γ1)(µ0 + γ3)(µων − (µ0 + µ1 + γ2))

.

For RHBV
0 > 1, the term µων − (µ0 + µ1 + γ2) in the denominator must be positive:

µων > µ0 + µ1 + γ2.

This implies that the inequality:

µ0 + µ1 + γ2 − µων −
qγ1σ

µ0 + σ
> 0,

holds in the endemic state (RHBV
0 > 1). In contrast, when RHBV

0 ≤ 1, the condition flips, and the
equilibrium becomes unstable (λ > 0).
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5. Numerical schemes

The finite difference (FD) schemes are formulated by discretizing the computational domain
[0, L]2 × [0,T ] into a grid comprising M2 × N discrete points. The spatial and temporal step sizes are
defined as h = L

M and τ = T
N , respectively. The coordinates of the grid points are expressed as:

xζ1 = ζ1h, ζ1 = 1, 2, 3, . . . ,M,
yζ2 = ζ2h, ζ2 = 1, 2, 3, . . . ,M,
tn = nτ, n = 1, 2, 3, . . . ,N,

(5.1)

where ζ1 and ζ2 denote spatial indices, and n represents the temporal index. The FD approximations
of the variables S n

ζ1,ζ2
, Ln
ζ1,ζ2

, In
ζ1,ζ2

, and Cn
ζ1,ζ2

are given as S (ζ1h, ζ2h, nτ), L(ζ1h, ζ2h, nτ), I(ζ1h, ζ2h, nτ),
and C(ζ1h, ζ2h, nτ), respectively.

5.1. Finite difference method

In this section, we discuss the implementation of the forward Euler finite difference (FD) scheme for
solving the two-dimensional reaction-diffusion model describing hepatitis B dynamics. In this method,
the time derivative is discretized using a forward difference approach, while the spatial derivatives are
handled through a central difference scheme. The forward Euler FD scheme applied to system (2.5) is
expressed as follows:

S n+1
ζ1,ζ2
= S n

ζ1,ζ2
+ λ1

(
S n
ζ1−1,ζ2 + S n

ζ1+1,ζ2 − 4S n
ζ1,ζ2
+ S n

ζ1,ζ2−1 + S n
ζ1,ζ2+1

)
+ τµω(1 − νCn

ζ1,ζ2
) − τ(µ0 + βIn

ζ1,ζ2
+ ϵβCn

ζ1,ζ2
+ γ3)S n

ζ1,ζ2
,

Ln+1
ζ1,ζ2
= Ln

ζ1,ζ2
+ λ2

(
Ln
ζ1−1,ζ2 + Ln

ζ1+1,ζ2 − 4Ln
ζ1,ζ2
+ Ln

ζ1,ζ2−1 + Ln
ζ1,ζ2+1

)
+ τ(βIn

ζ1,ζ2
+ ϵβCn

ζ1,ζ2
)S n
ζ1,ζ2
− τ(µ0 + σ)Ln

ζ1,ζ2
,

In+1
ζ1,ζ2
= In
ζ1,ζ2
+ λ3

(
In
ζ1−1,ζ2 + In

ζ1+1,ζ2 − 4In
ζ1,ζ2
+ In
ζ1,ζ2−1 + In

ζ1,ζ2+1

)
+ τσLn

ζ1,ζ2
− τ(µ0 + γ1)In

ζ1,ζ2
,

Cn+1
ζ1,ζ2
= Cn

ζ1,ζ2
+ λ4

(
Cn
ζ1−1,ζ2 +Cn

ζ1+1,ζ2 − 4Cn
ζ1,ζ2
+Cn

ζ1,ζ2−1 +Cn
ζ1,ζ2+1

)
+ τµωνCn

ζ1,ζ2
+ τqγ1In

ζ1,ζ2
− τ(µ0 + µ1 + γ2)Cn

ζ1,ζ2
,

(5.2)

where

λ1 =
d1τ

h2 ,

λ2 =
d2τ

h2 ,

λ3 =
d3τ

h2 ,

λ4 =
d4τ

h2 .

(5.3)
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5.2. Crank Nicolson method

In this section, we apply the Crank-Nicolson operator splitting finite difference (OS-FD) scheme to
numerically solve the hepatitis B epidemic model. Typically, reaction-diffusion equations are
decomposed into two distinct subsystems. The first subsystem addresses the nonlinear reaction terms
over a half-time step, while the second subsystem deals with the linear diffusion terms during the
subsequent time step. The implementation of the Crank-Nicolson OS-FD scheme begins with the
following procedure for the initial time step:

S n+ 1
3

ζ1,ζ2
= S n

ζ1,ζ2
+ τµω(1 − νCn

ζ1,ζ2
) − τ(µ0 + βIn

ζ1,ζ2
+ ϵβCn

ζ1,ζ2
+ γ3)S n

ζ1,ζ2
,

Ln+ 1
3

ζ1,ζ2
= Ln

ζ1,ζ2
+ τ(βIn

ζ1,ζ2
+ ϵβCn

ζ1,ζ2
)S n
ζ1,ζ2
− τ(µ0 + σ)Ln

ζ1,ζ2
,

In+ 1
3

ζ1,ζ2
= In
ζ1,ζ2
+ τσLn

ζ1,ζ2
− τ(µ0 + γ1)In

ζ1,ζ2
,

Cn+ 1
3

ζ1,ζ2
= Cn

ζ1,ζ2
+ τµωνCn

ζ1,ζ2
+ τqγ1In

ζ1,ζ2
− τ(µ0 + µ1 + γ2)Cn

ζ1,ζ2
.

(5.4)

In the second step, the methodology applied for the Crank-Nicolson OS-FD scheme is as follows:

−
λ1

2
S n+ 2

3
ζ1−1,ζ2

+ (1 + λ1)S n+ 2
3

ζ1,ζ2
−
λ1

2
S n+ 2

3
ζ1+1,ζ2

=
λ1

2
S n+ 1

3
ζ1−1,ζ2

+ (1 − λ1)S n+ 1
3

ζ1,ζ2
+
λ1

2
S n+ 1

3
ζ1+1,ζ2

,

−
λ2

2
Ln+ 2

3
ζ1−1,ζ2

+ (1 + λ2)Ln+ 2
3

ζ1,ζ2
−
λ2

2
Ln+ 2

3
ζ1+1,ζ2

=
λ2

2
Ln+ 1

3
ζ1−1,ζ2

+ (1 − λ2)Ln+ 1
3

ζ1,ζ2
+
λ2

2
Ln+ 1

3
ζ1+1,ζ2

,

−
λ3

2
In+ 2

3
ζ1−1,ζ2

+ (1 + λ3)In+ 2
3

ζ1,ζ2
−
λ3

2
In+ 2

3
ζ1+1,ζ2

=
λ3

2
In+ 1

3
ζ1−1,ζ2

+ (1 − λ3)In+ 1
3

ζ1,ζ2
+
λ3

2
In+ 1

3
ζ1+1,ζ2

,

−
λ3

2
Cn+ 2

3
ζ1−1,ζ2

+ (1 + λ3)Cn+ 2
3

ζ1,ζ2
−
λ3

2
Cn+ 2

3
ζ1+1,ζ2

=
λ3

2
Cn+ 1

3
ζ1−1,ζ2

+ (1 − λ3)Cn+ 1
3

ζ1,ζ2
+
λ3

2
Cn+ 1

3
ζ1+1,ζ2

.

(5.5)

The approach for the third step involves the following process:

−
λ1

2
S n+1
ζ1,ζ2−1 + (1 + λ1)S n+1

ζ1,ζ2
−
λ1

2
S n+1
ζ1,ζ2+1 =

λ1

2
S n+ 2

3
ζ1,ζ2−1 + (1 − λ1)S n+ 2

3
ζ1,ζ2
+
λ1

2
S n+ 2

3
ζ1,ζ2+1,

−
λ2

2
L−n+1
ζ1,ζ2−1 + (1 + λ2)L−n+1

ζ1,ζ2
−
λ2

2
l−n+1
ζ1,ζ2+1 =

λ2

2
Ln+ 2

3
ζ1,ζ2−1 + (1 − λ2)Ln+ 2

3
ζ1,ζ2
+
λ2

2
Ln+ 2

3
ζ1,ζ2+1,

−
λ3

2
In+1
ζ1,ζ2−1 + (1 + λ3)In+1

ζ1,ζ2
−
λ3

2
In+1
ζ1,ζ2+1 =

λ3

2
In+ 2

3
ζ1,ζ2−1 + (1 − λ3)In+ 2

3
ζ1,ζ2
+
λ3

2
In+ 2

3
ζ1,ζ2+1,

−
λ4

2
Cn+1
ζ1,ζ2−1 + (1 + λ4)Cn+1

ζ1,ζ2
−
λ4

2
Cn+1
ζ1,ζ2+1 =

λ4

2
Cn+ 2

3
ζ1,ζ2−1 + (1 − λ4)Cn+ 2

3
ζ1,ζ2
+
λ4

2
Cn+ 2

3
ζ1,ζ2+1.

(5.6)

The Crank Nicolson OS-FD scheme is unconditionally stable.

5.3. Unconditionally positivity preserving method

In this section, we design a UPP-FD scheme for the hepatitis B epidemic model in two dimensions.
The rules for designing the UPP-FD scheme are based on the rules given by Mickens [30]. The UPP-
FD scheme for Susceptible in Eq (2.5) is designed as follows:

S n+1
ζ1,ζ2
= S n

ζ1,ζ2
+ λ1(S n

ζ1−1,ζ2 + S n
ζ1+1,ζ2 + S n

ζ1,ζ2−1 + S n
ζ1,ζ2+1) − 4λ1S n+1

ζ1,ζ2

+ τµω(1 − νCn
ζ1,ζ2

) − τ(µ0 + βIn
ζ1,ζ2
+ ϵβCn

ζ1,ζ2
+ γ3)S n+1

ζ1,ζ2
,

(5.7)
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(1+4λ1+τ(µ0+βIn
ζ1,ζ2
+ϵβCn

ζ1,ζ2
+γ3))S n+1

ζ1,ζ2
= S n

ζ1,ζ2
+λ1(S n

ζ1−1,ζ2+S n
ζ1+1,ζ2+S n

ζ1,ζ2−1+S n
ζ1,ζ2+1)+τµω(1−νCn

ζ1,ζ2
),

S n+1
ζ1,ζ2
=

S n
ζ1,ζ2
+ λ1(S n

ζ1−1,ζ2
+ S n

ζ1+1,ζ2
+ S n

ζ1,ζ2−1 + S n
ζ1,ζ2+1) + τµω(1 − νCn

ζ1,ζ2
)

(1 + 4λ1 + τ(µ0 + βIn
ζ1,ζ2
+ ϵβCn

ζ1,ζ2
+ γ3))

 . (5.8)

The UPP-FD scheme for Exposed in Eq (2.5) is designed as follows:

Ln+1
ζ1,ζ2
= Ln

ζ1,ζ2
+ λ2(Ln

ζ1−1,ζ2 + Ln
ζ1+1,ζ2 + Ln

ζ1,ζ2−1 + Ln
ζ1,ζ2+1) − 4λ2Ln+1

ζ1,ζ2

+ τ(βIn
ζ1,ζ2
+ ϵβCn

ζ1,ζ2
)S n
ζ1,ζ2
− τ(µ0 + σ)Ln+1

ζ1,ζ2
,

(5.9)

(1 + 4λ2 + τ(µ0 + σ))Ln+1
ζ1,ζ2
= Ln

ζ1,ζ2
+ λ2(Ln

ζ1−1,ζ2 + Ln
ζ1+1,ζ2 + Ln

ζ1,ζ2−1 + Ln
ζ1,ζ2+1) + τ(βIn

ζ1,ζ2
+ ϵβCn

ζ1,ζ2
)S n
ζ1,ζ2
,

Ln+1
ζ1,ζ2
=

[Ln
ζ1,ζ2
+ λ2(Ln

ζ1−1,ζ2
+ Ln

ζ1+1,ζ2
+ Ln

ζ1,ζ2−1 + Ln
ζ1,ζ2+1) + τ(βIn

ζ1,ζ2
+ ϵβCn

ζ1,ζ2
)S n
ζ1,ζ2

(1 + 4λ2 + τ(µ0 + σ))

]
. (5.10)

The UPP-FD scheme for Infected in Eq (2.5) is designed as follows:

In+1
ζ1,ζ2
= In
ζ1,ζ2
+ λ3(In

ζ1−1,ζ2 + In
ζ1+1,ζ2 + In

ζ1,ζ2−1 + In
ζ1,ζ2+1) − 4λ3In+1

ζ1,ζ2

+ τσLn
ζ1,ζ2
− τ(µ0 + γ1)In+1

ζ1,ζ2
,

(5.11)

(1 + 4λ3 + τ(µ0 + γ1))In+1
ζ1,ζ2
= In
ζ1,ζ2
+ λ3(In

ζ1−1,ζ2 + In
ζ1+1,ζ2 + In

ζ1,ζ2−1 + In
ζ1,ζ2+1) + τσLn

ζ1,ζ2
,

In+1
ζ1,ζ2
=

[ In
ζ1,ζ2
+ λ3(In

ζ1−1,ζ2
+ In
ζ1+1,ζ2

+ In
ζ1,ζ2−1 + In

ζ1,ζ2+1) + τσLn
ζ1,ζ2

(1 + 4λ3 + τ(µ0 + γ1))

]
. (5.12)

The UPP-FD scheme for chronic in Eq (2.5) is designed as follows:

Cn+1
ζ1,ζ2
= Cn

ζ1,ζ2
+ λ4(Cn

ζ1−1,ζ2 +Cn
ζ1+1,ζ2 +Cn

ζ1,ζ2−1 +Cn
ζ1,ζ2+1) − 4λ4Cn+1

ζ1,ζ2

+ τµωνCn+1
ζ1,ζ2
+ τqγ1In

ζ1,ζ2
− τ(µ0 + µ1 + γ2)Cn+1

ζ1,ζ2
,

(5.13)

(1 + 4λ4 − τµων + τ(µ0 + µ1 + γ2))Cn+1
ζ1,ζ2
= Cn

ζ1,ζ2
+ λ4(Cn

ζ1−1,ζ2 +Cn
ζ1+1,ζ2 +Cn

ζ1,ζ2−1 +Cn
ζ1,ζ2+1) + τqγ1In

ζ1,ζ2
,

Cn+1
ζ1,ζ2
=

[Cn
ζ1,ζ2
+ λ4(Cn

ζ1−1,ζ2
+Cn

ζ1+1,ζ2
+Cn

ζ1,ζ2−1 +Cn
ζ1,ζ2+1) + τqγ1In

ζ1,ζ2

(1 + 4λ4 − τµων + τ(µ0 + µ1 + γ2))

]
. (5.14)

Theorem 5.1. The finite difference approximation method UPP-FD, as outlined in Eqs (5.8), (5.10),
(5.12), and (5.14), preserves the positivity of the solution under the assumption that the initial
conditions are non-negative. Specifically, it holds that:

S n
ζ1,ζ2
≥ 0, Ln

ζ1,ζ2
≥ 0,

In
ζ1,ζ2
⇒ S n+1

ζ1,ζ2
≥ 0, Ln+1

ζ1,ζ2
≥ 0, In+1

ζ1,ζ2
≥ 0,Cn+1

ζ1,ζ2
≥ 0. (5.15)

Proof. We prove positivity preservation by induction, analyzing each equation in the UPP-FD scheme.
The proof involves the following steps:
Step 1. Base case:

Assume that at n = 0, the initial conditions satisfy:

S 0
ζ1,ζ2
≥ 0, L0

ζ1,ζ2
≥ 0, I0

ζ1,ζ2
≥ 0, C0

ζ1,ζ2
≥ 0,
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for all ζ1, ζ2. These initial conditions are biologically realistic, as population densities cannot be
negative. Thus, the base case is satisfied.
Step 2. Inductive hypothesis:

Assume that at time step n, the positivity condition holds:

S n
ζ1,ζ2
≥ 0, Ln

ζ1,ζ2
≥ 0, In

ζ1,ζ2
≥ 0, Cn

ζ1,ζ2
≥ 0,

for all ζ1, ζ2.
We aim to prove that the positivity condition holds at time step n + 1:

S n+1
ζ1,ζ2
≥ 0, Ln+1

ζ1,ζ2
≥ 0, In+1

ζ1,ζ2
≥ 0, Cn+1

ζ1,ζ2
≥ 0.

Step 3. Inductive step:
We prove positivity for each state variable at n + 1, starting with S n+1

ζ1,ζ2
.

Positivity of S n+1
ζ1,ζ2

, from (5.8), we have:

S n+1
ζ1,ζ2
=

S n
ζ1,ζ2
+ λ1

(
S n
ζ1−1,ζ2

+ S n
ζ1+1,ζ2

+ S n
ζ1,ζ2−1 + S n

ζ1,ζ2+1

)
+ τµω(1 − νCn

ζ1,ζ2
)

1 + 4λ1 + τ(µ0 + βIn
ζ1,ζ2
+ ϵβCn

ζ1,ζ2
+ γ3)

.

Numerator analysis:

• S n
ζ1,ζ2
≥ 0 by the inductive hypothesis.

• λ1

(
S n
ζ1−1,ζ2

+ S n
ζ1+1,ζ2

+ S n
ζ1,ζ2−1 + S n

ζ1,ζ2+1

)
≥ 0, as λ1 > 0 and neighboring terms are non-negative.

• τµω(1 − νCn
ζ1,ζ2

) ≥ 0, since Cn
ζ1,ζ2
≥ 0 and ν < 1.

Denominator analysis: The denominator 1+4λ1+τ(µ0+βIn
ζ1,ζ2
+ϵβCn

ζ1,ζ2
+γ3) > 0, as all parameters

are positive. Thus, S n+1
ζ1,ζ2
≥ 0.

Positivity of Ln+1
ζ1,ζ2

, from (5.10), we have:

Ln+1
ζ1,ζ2
=

Ln
ζ1,ζ2
+ λ2

(
Ln
ζ1−1,ζ2

+ Ln
ζ1+1,ζ2

+ Ln
ζ1,ζ2−1 + Ln

ζ1,ζ2+1

)
+ τ(βIn

ζ1,ζ2
+ ϵβCn

ζ1,ζ2
)S n
ζ1,ζ2

1 + 4λ2 + τ(µ0 + σ)
.

Numerator analysis:

• Ln
ζ1,ζ2
≥ 0 by the inductive hypothesis.

• λ2

(
Ln
ζ1−1,ζ2

+ Ln
ζ1+1,ζ2

+ Ln
ζ1,ζ2−1 + Ln

ζ1,ζ2+1

)
≥ 0.

• τ(βIn
ζ1,ζ2
+ ϵβCn

ζ1,ζ2
)S n
ζ1,ζ2
≥ 0.

Denominator analysis: The denominator 1 + 4λ2 + τ(µ0 + σ) > 0. Thus, Ln+1
ζ1,ζ2
≥ 0.

Positivity of In+1
ζ1,ζ2

, from (5.12), we have:

In+1
ζ1,ζ2
=

In
ζ1,ζ2
+ λ3

(
In
ζ1−1,ζ2

+ In
ζ1+1,ζ2

+ In
ζ1,ζ2−1 + In

ζ1,ζ2+1

)
+ τσLn

ζ1,ζ2

1 + 4λ3 + τ(µ0 + γ1)
.

Numerator analysis:

• In
ζ1,ζ2
≥ 0.
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• λ3

(
In
ζ1−1,ζ2

+ In
ζ1+1,ζ2

+ In
ζ1,ζ2−1 + In

ζ1,ζ2+1

)
≥ 0.

• τσLn
ζ1,ζ2
≥ 0.

Denominator analysis: The denominator 1 + 4λ3 + τ(µ0 + γ1) > 0. Thus, In+1
ζ1,ζ2
≥ 0.

Positivity of Cn+1
ζ1,ζ2

, from (5.14), we have:

Cn+1
ζ1,ζ2
=

Cn
ζ1,ζ2
+ λ4

(
Cn
ζ1−1,ζ2

+Cn
ζ1+1,ζ2

+Cn
ζ1,ζ2−1 +Cn

ζ1,ζ2+1

)
+ τqγ1In

ζ1,ζ2

1 + 4λ4 − τµων + τ(µ0 + µ1 + γ2)
.

Numerator analysis:

• Cn
ζ1,ζ2
≥ 0.

• λ4

(
Cn
ζ1−1,ζ2

+Cn
ζ1+1,ζ2

+Cn
ζ1,ζ2−1 +Cn

ζ1,ζ2+1

)
≥ 0.

• τqγ1In
ζ1,ζ2
≥ 0.

Denominator analysis: The denominator 1+ 4λ4 − τµων+ τ(µ0 + µ1 + γ2) > 0. Thus, Cn+1
ζ1,ζ2
≥ 0. By

induction, positivity is preserved at all time steps n+ 1, provided the initial conditions are positive. □

Remark 5.1. The Eqs (5.8), (5.10), (5.12) and (5.14) ensure a positive solution due to the
non-negativity of all terms on the right-hand side, regardless of the parameters involved in the system.

5.4. Stability

In this section, we analyze the stability of the finite difference (FD) schemes. We begin by
applying the UPP-FD scheme (Eq (5.8)) to the reaction-diffusion equation for S (x, y, t) (Eq (2.5)). By
subsequently linearizing this discretized equation and substituting the perturbation Φ(t)eι(ϖ1 x+ϖ2y) for
S n
ζ1,ζ2

, we derive the following stability condition:

∣∣∣∣∣Φ(t + ∆t)
Φ(t)

∣∣∣∣∣ = ∣∣∣∣∣1 + 4λ1 − 8λ1 sin2(ϖ1
∆x
2 )

1 + 4λ1 + τ(µ0 + γ3)

∣∣∣∣∣
≤

1 + 4λ1

1 + 4λ1 + τ(µ0 + γ3)
< 1.

(5.16)

Keep in mind that ∆x = ∆y. Following a similar approach for Ln+1
ζ1,ζ2

, the result is obtained as:

∣∣∣∣∣Φ(t + ∆t)
Φ(t)

∣∣∣∣∣ = ∣∣∣∣∣1 + 4λ2 − 8λ2 sin2(ϖ1
∆x
2 )

1 + 4λ2 + τ(µ0 + σ)

∣∣∣∣∣
≤

1 + 4λ2

1 + 4λ2 + τ(µ0 + σ)
< 1.

(5.17)

Using a similar process for In+1
ζ1,ζ2

, we obtain,

∣∣∣∣∣Φ(t + ∆t)
Φ(t)

∣∣∣∣∣ = ∣∣∣∣∣1 + 4λ3 − 8λ3 sin2(ϖ1
∆x
2 )

1 + 4λ3 + τ(µ0 + γ1)

∣∣∣∣∣
≤

1 + 4λ3

1 + 4λ3 + τ(µ0 + γ1)
< 1.

(5.18)
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In the same fashion, the procedure for Cn+1
ζ1,ζ2

, we obtain,∣∣∣∣∣Φ(t + ∆t)
Φ(t)

∣∣∣∣∣ = ∣∣∣∣∣ 1 + 4λ4 − 8λ4 sin2(ϖ1
∆x
2 )

1 + 4λ4 − τµων + τ(µ0 + µ1 + γ2)

∣∣∣∣∣
≤

1 + 4λ3

1 + 4λ4 − τµων + τ(µ0 + µ1 + γ2)
< 1.

(5.19)

The analysis clearly demonstrates that the proposed UPP-FD scheme maintains stability under all
conditions.

5.5. Consistency

The consistency of the UPP-FD scheme is evaluated using the Taylor series expansion. The
expressions for S n+1

ζ1,ζ2
, S n

ζ1+1,ζ2
, S n

ζ1−1,ζ2
, S n

ζ1,ζ2+1, and S n
ζ1,ζ2−1 are derived through their Taylor series

expansions.

S n+1
ζ1,ζ2

= S n
ζ1,ζ2
+ τ
∂S
∂t
+
τ2

2!
∂2S
∂t2 +

τ3

3!
∂3S
∂t3 + · · · , (5.20)

S n
ζ1+1,ζ2 = S n

ζ1,ζ2
+ h
∂S
∂x
+

h2

2!
∂2S
∂x2 +

h3

3!
∂3S
∂x3 + · · · , (5.21)

S n
ζ1−1,ζ2 = S n

ζ1,ζ2
− h
∂S
∂x
+

h2

2!
∂2S
∂x2 −

h3

3!
∂3S
∂x3 + · · · , (5.22)

S n
ζ1,ζ2+1 = S n

ζ1,ζ2
+ h
∂S
∂y
+

h2

2!
∂2S
∂y2 +

h3

3!
∂3S
∂y3 + · · · , (5.23)

S n
ζ1,ζ2−1 = S n

ζ1,ζ2
− h
∂S
∂y
+

h2

2!
∂2S
∂y2 −

h3

3!
∂3S
∂y3 + · · · . (5.24)

Considering the UPP-FD scheme for Eq (5.8),

S n+1
ζ1,ζ2
= S n

ζ1,ζ2
+ λ1(S n

ζ1−1,ζ2 + S n
ζ1+1,ζ2 + S n

ζ1,ζ2−1 + S n
ζ1,ζ2+1) − 4λ1S n+1

ζ1,ζ2

+ τµω(1 − νCn
ζ1,ζ2

) − τ(µ0 + βIn
ζ1,ζ2
+ ϵβCn

ζ1,ζ2
+ γ3)S n+1

ζ1,ζ2
.

(5.25)

Substituting the values of S n+1
ζ1,ζ2

, S n
ζ1+1,ζ2

, S n
ζ1−1,ζ2

, S n
ζ1,ζ2+1, and S n

ζ1,ζ2−1 in the above equation and after
simplification, we get(
∂S
∂t
+
τ

2!
∂2S
∂t2 +

τ2

3!
∂3S
∂t3 + · · ·

) (
1 + 4

d1τ

h2 + τµ0 + τβIn
ζ1,ζ2
+ τϵβCn

ζ1,ζ2
+ τγ3

)
= 2d1

(
1
2!
∂2S
∂x2 +

h2

4!
∂4S
∂x4 + · · · +

1
2!
∂2S
∂y2 +

h2

4!
∂4S
∂y4 + · · ·

)
+ µω(1 − νCn

ζ1,ζ2
) − (µ0 + βIn

ζ1,ζ2
+ ϵβCn

ζ1,ζ2
+ γ3)S n

ζ1,ζ2

replace τ = h3 and h→ 0, we have

∂S
∂t
= d1

(
∂2S
∂x2 +

∂2S
∂y2

)
+ µω(1 − νC) − (µ0 + βI + ϵβC + γ3)S .

Similarly, the formulas for Ln+1
ζ1,ζ2

, Ln
ζ1+1,ζ2

, Ln
ζ1−1,ζ2

, Ln
ζ1,ζ2+1, and Ln

ζ1,ζ2−1 are

Ln+1
ζ1,ζ2

= Ln
ζ1,ζ2
+ τ
∂L
∂t
+
τ2

2!
∂2L
∂t2 +

τ3

3!
∂3L
∂t3 + · · · , (5.26)
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Ln
ζ1+1,ζ2 = Ln

ζ1,ζ2
+ h
∂L
∂x
+

h2

2!
∂2L
∂x2 +

h3

3!
∂3L
∂x3 + · · · , (5.27)

Ln
ζ1−1,ζ2 = Ln

ζ1,ζ2
− h
∂L
∂x
+

h2

2!
∂2L
∂x2 −

h3

3!
∂3L
∂x3 + · · · , (5.28)

Ln
ζ1,ζ2+1 = Ln

ζ1,ζ2
+ h
∂L
∂y
+

h2

2!
∂2L
∂y2 +

h3

3!
∂3L
∂y3 + · · · , (5.29)

Ln
ζ1,ζ2−1 = Ln

ζ1,ζ2
− h
∂L
∂y
+

h2

2!
∂2L
∂y2 −

h3

3!
∂3L
∂y3 + · · · . (5.30)

Considering the UPP-FD scheme for Eq (5.10),

Ln+1
ζ1,ζ2
= Ln

ζ1,ζ2
+ λ2(Ln

ζ1−1,ζ2 + Ln
ζ1+1,ζ2 + Ln

ζ1,ζ2−1 + Ln
ζ1,ζ2+1) − 4λ2Ln+1

ζ1,ζ2

τ(βIn
ζ1,ζ2
+ ϵβCn

ζ1,ζ2
)S n
ζ1,ζ2
− τ(µ0 + σ)Ln+1

ζ1,ζ2
.

(5.31)

Substituting the values of Ln+1
ζ1,ζ2

, Ln
ζ1+1,ζ2

, Ln
ζ1−1,ζ2

, Ln
ζ1,ζ2+1, and Ln

ζ1,ζ2−1 in the above equation and after
simplification, we get(
∂L
∂t
+
τ

2!
∂2L
∂t2 +

τ2

3!
∂3L
∂t3 + · · ·

) (
1 + 4

d2τ

h2 + τ(µ0 + σ)
)

= 2d2

(
1
2!
∂2L
∂x2 +

h2

4!
∂4L
∂x4 + · · · +

1
2!
∂2L
∂y2 +

h2

4!
∂4L
∂y4 + · · ·

)
+ (βIn

ζ1,ζ2
+ ϵβCn

ζ1,ζ2
)S n
ζ1,ζ2
− (µ0 + σ)Ln

ζ1,ζ2

replace τ = h3 and h→ 0, we have

∂L
∂t
= d2

(
∂2L
∂x2 +

∂2L
∂y2

)
+ (βI + ϵβC)S − (µ0 + σ)L.

Similarly, the formulas for In+1
ζ1,ζ2

, In
ζ1+1,ζ2

, In
ζ1−1,ζ2

, In
ζ1,ζ2+1, and In

ζ1,ζ2−1 are

In+1
ζ1,ζ2

= In
ζ1,ζ2
+ τ
∂I
∂t
+
τ2

2!
∂2I
∂t2 +

τ3

3!
∂3I
∂t3 + · · · , (5.32)

In
ζ1+1,ζ2 = In

ζ1,ζ2
+ h
∂I
∂x
+

h2

2!
∂2I
∂x2 +

h3

3!
∂3I
∂x3 + · · · , (5.33)

In
ζ1−1,ζ2 = In

ζ1,ζ2
− h
∂I
∂x
+

h2

2!
∂2I
∂x2 −

h3

3!
∂3I
∂x3 + · · · , (5.34)

In
ζ1,ζ2+1 = In

ζ1,ζ2
+ h
∂I
∂y
+

h2

2!
∂2I
∂y2 +

h3

3!
∂3I
∂y3 + · · · , (5.35)

In
ζ1,ζ2−1 = In

ζ1,ζ2
− h
∂I
∂y
+

h2

2!
∂2I
∂y2 −

h3

3!
∂3I
∂y3 + · · · . (5.36)

Considering the UPP-FD scheme for Eq (5.12)

In+1
ζ1,ζ2
= In
ζ1,ζ2
+ λ3(In

ζ1−1,ζ2 + In
ζ1+1,ζ2 + In

ζ1,ζ2−1 + In
ζ1,ζ2+1) − 4λ3In+1

ζ1,ζ2

+ τσLn
ζ1,ζ2
− τ(µ0 + γ1)In+1

ζ1,ζ2
.

(5.37)

AIMS Mathematics Volume 10, Issue 1, 1322–1349.



1339

Substituting the values of In+1
ζ1,ζ2

, In
ζ1+1,ζ2

, In
ζ1−1,ζ2

, In
ζ1,ζ2+1, and In

ζ1,ζ2−1 in the above equation and after
simplification, we get(

∂I
∂t
+
τ

2!
∂2I
∂t2 +

τ2

3!
∂3I
∂t3 + · · ·

) (
1 + 4

d3τ

h2 + τ(µ0 + γ1)
)

= 2d3

(
1
2!
∂2I
∂x2 +

h2

4!
∂4I
∂x4 + · · · +

1
2!
∂2I
∂y2 +

h2

4!
∂4I
∂y4 + · · ·

)
+ σLn

ζ1,ζ2
− (µ0 + γ1)In

ζ1,ζ2
.

replace τ = h3 and h→ 0, we have

∂I
∂t
= d3

(
∂2I
∂x2 +

∂2I
∂y2

)
+ σL − (µ0 + γ1)I.

Similarly, the formulas for Cn+1
ζ1,ζ2

, Cn
ζ1+1,ζ2

, Cn
ζ1−1,ζ2

, Cn
ζ1,ζ2+1, and Cn

ζ1,ζ2−1 are

Cn+1
ζ1,ζ2

= Cn
ζ1,ζ2
+ τ
∂C
∂t
+
τ2

2!
∂2C
∂t2 +

τ3

3!
∂3C
∂t3 + · · · , (5.38)

Cn
ζ1+1,ζ2 = Cn

ζ1,ζ2
+ h
∂C
∂x
+

h2

2!
∂2C
∂x2 +

h3

3!
∂3C
∂x3 + · · · , (5.39)

Cn
ζ1−1,ζ2 = Cn

ζ1,ζ2
− h
∂C
∂x
+

h2

2!
∂2C
∂x2 −

h3

3!
∂3C
∂x3 + · · · , (5.40)

Cn
ζ1,ζ2+1 = Cn

ζ1,ζ2
+ h
∂C
∂y
+

h2

2!
∂2C
∂y2 +

h3

3!
∂3C
∂y3 + · · · , (5.41)

Cn
ζ1,ζ2−1 = Cn

ζ1,ζ2
− h
∂C
∂y
+

h2

2!
∂2C
∂y2 −

h3

3!
∂3C
∂y3 + · · · . (5.42)

Considering the UPP-FD scheme for Eq (5.14),

Cn+1
ζ1,ζ2
= Cn

ζ1,ζ2
+ λ4(Cn

ζ1−1,ζ2 +Cn
ζ1+1,ζ2 +Cn

ζ1,ζ2−1 +Cn
ζ1,ζ2+1) − 4λ4Cn+1

ζ1,ζ2

+ τµωνCn+1
ζ1,ζ2
+ τqγ1In

ζ1,ζ2
− τ(µ0 + µ1 + γ2)Cn+1

ζ1,ζ2
.

(5.43)

Substituting the values of Cn+1
ζ1,ζ2

, Cn
ζ1+1,ζ2

, Cn
ζ1−1,ζ2

, Cn
ζ1,ζ2+1, and Cn

ζ1,ζ2−1 in the above equation and after
simplification, we get(
∂C
∂t
+
τ

2!
∂2C
∂t2 +

τ2

3!
∂3C
∂t3 + · · ·

) (
1 + 4

d4τ

h2 − τµων + τ(µ0 + µ1 + γ2)
)

= 2d4

(
1
2!
∂2C
∂x2 +

h2

4!
∂4C
∂x4 + · · · +

1
2!
∂2c
∂y2 +

h2

4!
∂4C
∂y4 + · · ·

)
+ µωνCn

ζ1,ζ2
+ qγ1In

ζ1,ζ2
− (µ0 + µ1 + γ2)Cn

ζ1,ζ2
.

replace τ = h3 and h→ 0, we have

∂C
∂t
= d3

(
∂2C
∂x2 +

∂2C
∂y2

)
+ µωνC + qγ1I − (µ0 + µ1 + γ2)C.

A similar methodology can be utilized to analyze the consistency of the well-established classical
forward Euler finite difference scheme.
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5.6. Numerical results

The nonlinearity and spatial variability in model (2.5) make deriving exact analytical solutions
under arbitrary initial conditions highly challenging. Consequently, numerical methods are employed
to approximate solutions. Various established techniques are commonly used for solving partial
differential equations (PDEs) in epidemiological models. These include methods such as the Fourier
Spectral Method (FSM), the Non-Standard Finite Difference Method (NSFDM), and the Finite
Element Method (FEM), among others. A detailed discussion of these approaches and their
applications can be found in related literature, including [31]. An ideal numerical method for solving
PDEs should strike a balance between accuracy, computational efficiency, adaptability to complex
geometries, and ease of implementation. However, no single method excels in all these aspects. For
instance, NSFDM provides a higher degree of flexibility and accuracy for certain cases but can
introduce complexity and stability challenges, as well as increased computational demands [30].
Similarly, FEM is recognized for its adaptability to irregular geometries, but it requires intensive
meshing efforts, particularly for intricate domains. Spectral methods, while highly accurate, are
constrained by their reliance on periodic boundary conditions and are generally more suitable for
problems with simple geometries [32]. Considering these trade-offs, we adopt the Crank-Nicolson
operator splitting method alongside the Unconditionally Positivity Preserving method to numerically
solve the PDEs [33, 34]. These methods are chosen for their ability to maintain a balance between
precision, stability, and computational efficiency.

The Crank-Nicolson strategy is known for its second order accuracy in both instances. By
consolidating operator splitting, the strategy decouples the complex PDE framework into less
complex subproblems, which are more straightforward to address while keeping up with solidness
and precision. This technique can manage a more extensive scope of limit conditions and calculations
contrasted with Fourier spectral strategies, which are confined to occasional circumstances. It
additionally requires meshing contrasted with FEM, making it computationally more effective in
complex geometries. Similarly, one of the vital benefits of the Unconditionally Positivity Preserving
strategy is its capacity to save the non-pessimism of the arrangement, which is pivotal in
epidemiological models where negative qualities are not truly significant. This technique stays stable
no matter what the time step size, taking into account bigger time ventures without forfeiting
exactness or presenting hazards. This is a huge improvement over conventional strategies like FDM,
which might demand modest moves toward keeping up with solidness. the Unconditionally Positivity
Preserving method is simpler to implement, particularly for problems with irregular geometries.

In this section, the CNOS-FD and UPP-FD methods are applied to compute numerical solutions
for the model described in Eq (2.5). The numerical simulations were performed using MATLAB
R2023a, a popular tool for computational analysis and simulations. The simulations utilized a spatial
step size of h = 0.1 and a time step size of dt = 0.005, ensuring compliance with the Von Neumann
stability criterion. The diffusivity constants used in all cases are d1 = 0.3, d2 = 0.1, d3 = 0.5, and
d4 = 0.01, where d1, d2, d3, and d4 correspond to the diffusion coefficients for S (x, y, t), L(x, y, t),
I(x, y, t), and C(x, y, t), respectively. The model parameters used in the numerical simulations are
q = 0.7, β = 0.0091, µ = 0.0121, µ1 = 0.01, µ0 = 0.0693, ω = 0.85, v = 0.46, ϵ = 0.02, γ1 = 0.03,
γ2 = 0.02, γ3 = 0.01, and σ = 0.04. The spatial and temporal domains are defined as Xmin = 0,
Xmax = 10, Ymin = 0, Ymax = 10, and Tmax = 30. The discretization parameters are given as h = 0.1,
Nx =

Xmax−Xmin
h + 1 = 101, Ny =

Ymax−Ymin
h + 1 = 101, ∆t = 0.005, and M = Tmax

∆t + 1 = 6001. The
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spatial grid points are x = linspace(Xmin, Xmax,Nx) and y = linspace(Ymin,Ymax,Ny). These values
define the spatial and temporal resolution of the simulation grid, as well as the model parameters
used in the reaction-diffusion equations. The initial conditions S (x, y, 0) = 5 ·

(
1 + 0.5 · sin

(
πx
5

))
·(

1 + 0.5 · cos
(
πy
5

))
, L(x, y, 0) = 3·

(
1 + 0.5 · cos

(
πx
5

))
·
(
1 + 0.5 · sin

(
πy
5

))
, I(x, y, 0) = 20·sin

(
πx
10

)
·cos

(
πy
10

)
,

and C(x, y, 0) = 0.5 · cos
(
πx
10

)
· sin

(
πy
10

)
are considered. Homogeneous Neumann boundary conditions

(∂S
∂n =

∂L
∂n =

∂I
∂n =

∂C
∂n = 0) are applied, ensuring no flux across the boundaries. Simulation results

depicting the distribution of acutely infected individuals in one, two, and three spatial dimensions,
with and without the incorporation of spatial diffusion, are shown in Figures 1–5.
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Figure 1. Simulation results depicting the distribution of susceptible individuals in one,
two, and three spatial dimensions, with and without the incorporation of spatial diffusion.
Subfigures (a), (c), and (e) correspond to the scenarios including diffusion, while subfigures
(b), (d), and (f) illustrate the results without diffusion.

Figure 1 presents the simulation results illustrating the dynamics of the susceptible population in
scenarios incorporating spatial diffusion (Figure 1a, c and e) and those without diffusion (Figure 1b, d
and f) across one, two, and three spatial dimensions. In the case of diffusion (1a), the susceptible
population exhibits a slower decline over time, as diffusion facilitates the spatial redistribution of
individuals, resulting in a more gradual exposure to infection based on proximity to infected
individuals. Conversely, the absence of diffusion (1b) leads to a faster reduction in the susceptible
population, characteristic of a well-mixed population where exposure occurs uniformly. In two
dimensions, diffusion (1c) enables a uniform spatial spread of susceptibles, reducing high-density
areas and mitigating localized outbreaks through smoother population distribution. Without
diffusion (1d), hotspots of high susceptibility persist, highlighting spatial heterogeneity and an
increased risk of concentrated outbreaks. Similarly, in three dimensions, diffusion (1e) promotes
homogeneity in the distribution of susceptibles, as evidenced by smoother surface plots, while the
absence of diffusion (1f) results in pronounced peaks and troughs, indicative of localized population
clusters prone to outbreaks. These findings underscore the critical role of diffusion in representing
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real-world movement, such as migration or urbanization, which mitigates the risk of localized
epidemics by evening out infection exposure across regions. In contrast, scenarios without diffusion
demonstrate the heightened vulnerability of a static, heterogeneous population to rapid and
concentrated outbreaks.
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Figure 2. Simulation results depicting the distribution of latent individuals in one, two, and
three spatial dimensions, with and without the incorporation of spatial diffusion. Subfigures
(a), (c), and (e) correspond to the scenarios including diffusion, while subfigures (b), (d), and
(f) illustrate the results without diffusion.

Figure 2 illustrates the spatial and temporal dynamics of the latent population under scenarios with
diffusion (Figure 2a, c and e) and without diffusion (Figure 2b, d and f) across one, two, and three
spatial dimensions. In the case of diffusion (2a), the latent population exhibits a slower decline over
time, as diffusion enables individuals to migrate from high-transmission areas or regions with intense
infection pressures, thereby slowing the transition to the infectious stage. In contrast, the absence of
diffusion (2b) results in a more rapid reduction of the latent population due to the concentration of
individuals in high-risk areas, leading to quicker progression to infection or recovery. In two
dimensions, diffusion (2c) enables a smoother spatial distribution of latent individuals, reducing the
risk of localized clusters that could exacerbate transmission rates. Without diffusion (2d), hotspots of
latent population density emerge, increasing the potential for localized outbreaks and rapid disease
progression. Similarly, in three dimensions, diffusion (2e) promotes uniformity in the latent
population distribution, reflected by smoother surface plots that highlight reduced spatial gradients.
Conversely, the absence of diffusion (2f) leads to pronounced peaks and troughs, representing
significant spatial heterogeneity with concentrated latent populations in certain areas. These results
emphasize the critical role of diffusion in real-world scenarios, where movement through migration or
travel spreads latent carriers more evenly across regions, mitigating localized risks and delaying the
progression to acute infection in high-density areas.
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Figure 3. Simulation results depicting the distribution of acutely infected individuals in one,
two, and three spatial dimensions, with and without the incorporation of spatial diffusion.
Subfigures (a), (c), and (e) correspond to the scenarios including diffusion, while subfigures
(b), (d), and (f) illustrate the results without diffusion.

Figure 3 illustrates the dynamics of the acutely infected population under conditions with diffusion
(Figure 3a, c and e) and without diffusion (Figure 3b, d and f) across one, two, and three spatial
dimensions. With diffusion (3a), the acutely infected population exhibits a slower peak and decline, as
the spatial redistribution disperses infected individuals across the domain, reducing concentrated
hotspots and delaying progression or recovery. In the absence of diffusion (3b), the infected
population peaks sharply and declines faster, indicating localized clustering of infected individuals,
which intensifies transmission and quickly depletes the compartment as individuals progress or
recover. In two dimensions, diffusion (3c) leads to a smoother spatial spread of acutely infected
individuals, highlighting the homogenizing effect of movement in reducing sharp variations and
hotspots. Without diffusion (3d), high-density clusters emerge, increasing the risk of localized
outbreaks and overburdening regional resources. Similarly, in three dimensions, diffusion (3e) ensures
a uniform spatial distribution of acutely infected individuals, as reflected in smoother surface plots
with smaller peaks, thereby preventing extreme local concentrations. Conversely, the absence of
diffusion (3f) results in pronounced peaks and troughs, indicating significant spatial heterogeneity and
highly localized infection clusters. These findings emphasize that spatial diffusion, representing
real-world movement such as migration or travel, disperses infectious individuals more evenly,
reducing localized transmission intensity and delaying the epidemic’s progression. Without diffusion,
infected individuals remain trapped in high-density regions, amplifying transmission rates,
exacerbating localized outbreaks, and straining healthcare resources.
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(d) Without Diffusion. (e) With Diffusion. (f) Without Diffusion.

Figure 4. Simulation results depicting the distribution of chronically infected individuals
in one, two, and three spatial dimensions, with and without the incorporation of spatial
diffusion. Subfigures (a), (c), and (e) correspond to the scenarios including diffusion, while
subfigures (b), (d), and (f) illustrate the results without diffusion.

(a) With Diffusion. (b) With Diffusion.

(c) With Diffusion. (d) With Diffusion.

Figure 5. Simulation results illustrating the distribution of individuals in each compartment
(Susceptible, Latent, Infected, Chronic) across three spatial dimensions. These distributions
include the effects of spatial diffusion, modeled using the Unconditionally Positivity
Preserving (UPP) method.
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Figure 4 illustrates the dynamics of chronically infected individuals with diffusion (Figure 4a, c
and e) and without diffusion (Figure 4b, d and f) across one, two, and three spatial dimensions. When
diffusion is included (4a), the chronically infected population shows a gradual rise and fall, indicating
slower accumulation and depletion as spatial movement prevents clustering and reduces the intensity
of transmission hotspots. In contrast, the absence of diffusion (4b) results in sharper peaks and faster
declines, as chronically infected individuals remain concentrated in specific regions, leading to rapid
disease progression and higher localized burdens. In two dimensions, diffusion (4c) leads to a
smoother and more uniform spatial distribution of chronically infected individuals, mitigating the
formation of high-density clusters. Without diffusion (4d), hotspots emerge, with distinct regions of
high chronic infection densities that increase the risk of long-term health complications. Similarly, in
three dimensions, diffusion (4e) promotes a more balanced spatial distribution, reflected in surface
plots with smaller peaks and smoother gradients. Conversely, the absence of diffusion (4f) produces
sharp peaks and significant spatial heterogeneity, highlighting areas of concentrated chronic infections
and potential localized healthcare burdens. These findings underscore the critical role of diffusion in
redistributing chronically infected individuals across the spatial domain, reducing the risk of localized
overburdening of healthcare resources and the perpetuation of disease transmission. Without
diffusion, chronic cases remain confined to high-density regions, exacerbating long-term health
burdens and straining regional healthcare systems. This analysis highlights the importance of
incorporating spatial diffusion in models to better understand chronic infection dynamics and inform
targeted public health interventions.

6. Conclusions

The study of traveling wave solutions within the framework of nonlinear reaction-diffusion
equations provides valuable insights into the modeling of diverse physical and biological processes.
In the context of HBV infection, while the spatial distribution of uninfected host cells and infected
hepatocytes remains largely stationary, the diffusion of viral particles and therapeutic agents plays a
critical role in disease dynamics. This observation inspired the formulation of a diffusion-based model
to better understand the mechanisms governing HBV transmission and its treatment. Through a
comprehensive analysis grounded in the theory of monotone dynamical systems, we rigorously
investigate the existence of traveling wave fronts in reaction-diffusion systems. Our findings indicate
that the traveling wave front in the modeled system, under specific initial conditions, represents the
action of therapeutic interventions, culminating in the eventual elimination of HBV. These solutions
illustrate a dynamic transition, characterized by specific wave velocities, from a persistent infection
state to one of eradication. This transition captures the gradual replacement of infection by
therapeutic effects, effectively linking equilibrium states over temporal and spatial domains. The
determination of the basic reproduction number through the next-generation matrix method offers a
crucial metric for understanding the conditions under which the disease can invade or persist in a
population. We identify the disease-free and endemic equilibria, demonstrating their stability under
specific parameter conditions. This emphasizes the importance of chronic infections, given their role
in severe long-term disabilities, such as cirrhosis and hepatocellular carcinoma, and the associated
societal and healthcare burdens. The numerical simulations, performed using advanced techniques
like the Crank-Nicolson scheme and positivity-preserving methods, validate the theoretical findings
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and provide actionable insights. These simulations underscore the importance of spatial
considerations and the effectiveness of intervention strategies, such as vaccination and treatment, in
curbing HBV transmission. This research not only advances the understanding of HBV dynamics but
also serves as a critical tool for public health planning, offering valuable guidance for designing
targeted interventions, and optimizing resource allocation. Researchers could expand upon this work
by integrating additional real-world complexities, such as heterogeneity in host immunity and varying
healthcare access, to further refine the model’s applicability and precision.
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