
https://www.aimspress.com/journal/Math

AIMS Mathematics, 10(1): 1300–1321.
DOI: 10.3934/math.2025060
Received: 28 October 2024
Revised: 08 January 2025
Accepted: 10 January 2025
Published: 21 January 2025

Research article

An application on edge irregular reflexive labeling for mt-graph of cycle
graph

Muhammad Amir Asif 1, Rashad Ismail2, Ayesha Razaq1, Esmail Hassan Abdullatif Al-Sabri2,
Muhammad Haris Mateen1,* and Shahbaz Ali3

1 School of Mathematics, Minhaj University, Lahore, Pakistan
2 Department of Mathematics, Faculty of Science and Arts, Mahayl Assir, King Khalid University,

Abha, Saudi Arabia
3 Department of Mathematics, The Islamia University of Bahawalpur, Rahim Yar Kahn Campus,

Pakistan

* Correspondence: Email: harism.math@gmail.com.

Abstract: Graph labeling is an increasingly popular problem in graph theory. A mapping converts
a collection of graph components into a set of integers known as labels. Graph labeling techniques
typically label edges with positive integers, vertices with even numbers, and edge weights with
consecutive numbers, known as edge irregular reflexive total labeling. This is achieved by utilizing the
reflexive edge irregularity strength of the graphical structure. The edge calculates the exact values of
the reflexive edge irregularity strength irregular reflexive labeling for the mt-graph of cycle graph mCn

on t = 1 with n ≥ 3 and m ≥ 4. The maximum number of assignments assigned to each individual in
a communication network, as well as providing a secure communication channel to ensure the unique
identification of each employee, are potential applications for this problem.
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1. Introduction

Graph theory is the study of the mathematical structure of networks, which have edges linked with
their vertices. The Konigsberg bridge problem [1] served as the catalyst for the development of graph
theory in 1735, the issue that led to the Eulerian graph’s perception. A collection of elements in
V(J) and E(J) make up a graph J = (V, E). Each edge in the edge set is connected to either one or
more vertices of the vertex set. The terms’ size and order describe the number of edges and vertices,
respectively. The graphs serve as useful models for various types of relationships and interactions in
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various fields such as biology, computer science, and chemistry, particularly chemical graph theory.
Researchers have utilized the graphs to organize data and depict communication networks [2–4].

Graph theory uses labeling to detect unauthorized access, assigning unique labels to each
communication medium. If numbers are allocated only to vertices, then named vertex labeling; if
allocated only to edges, then it is named edge labeling; and if both graph elements are assigned, then
it is named total labeling. Haque [5] proposed the special assignments of numbers to the edges and
vertices of a graph using various total labeling techniques. A wide range of fields of science have used
irregular graph labeling. For example: the labels on the vertices describe network routing problems in
computers.

Chartrand et al. [6] established irregular graph labeling, with the minimum largest label of graph J
being the graph strength s(J). The irregular labeling is categorized into two types: irregular edge
labeling and irregular vertex labeling. Ahmad et al. [7] stated that the labeling
y : V(J) → {1, 2, 3, · · · , k} of a simple graph is an irregular edge labeling if the weight
wt(uv) = y(u) + y(v) of edge uv ∈ E(J) with (u , v) and the edge irregularity strength is denoted as
es(J). Imran et al. [8] declared the labeling y : E(J) → {1, 2, 3, · · · , k} of cubic graphs as irregular
vertex labeling with the distinct vertex weight of v for vi such that wt(v) =

∑
y(vvi) and the vertex

irregularity strength of graph J is denoted as vs(J). Indriati et al. [9] established a new labeling
technique, totally irregular labeling, which requires both vertex weights and edge weights to be
irregular. A mapping y : V(J) ∪ E(J) → {1, 2, 3, · · · , k} is defined for double-star and related graphs
and the total irregularity strength of graph J is the minimum k for which J has an irregular total
k-labeling and is denoted by ts(J). Indriati [10] introduced the vertex irregular total k-labeling
y : E(J) ∪ V(J) → {1, 2, 3, · · · , k} of lollipop graphs with different weights of vertices such that
wt(v) = y(v) +

∑
y(vvi) for vi vertices and the total vertex irregularity strength of graph J is denoted

as tvs(J).
Jendrol et al. [11] revealed the irregular edge total labeling y : E(J) ∪ V(J) → {1, 2, 3, · · · , k} of

complete bipartite graphs and complete graphs with distinct edge weights wt(uv) = y(u) + y(uv) + y(v)
and the total edge irregularity strength of graph J is denoted as tes(J). Bača et al. [12] also stated the
concept of edge irregular total k-labeling for some generalized prism graphs and calculated the precise
values of the total edge irregularity strength of the graphs. In [13], Bača established the generalized
formula of total edge irregularity strength for any graph J with the maximum degree ∆(J) of J. Ivančo
et al. [14] proposed these results and then introduced the conjecture of tes(J). Ibrahim et al. [15]
stated the total labels for the application of star graphs, double star graphs, and caterpillar graphs.
This labeling was characterized as an irregular reflexive labeling, which affected the vertex and edge
labels as well as helping to frame the problem in terms of real networks. To express a loopless vertex,
the vertex label 0 was allowed in this labeling. Xin et al. [16] examined a wide range of labeling
techniques, including flexible labeling for magic labeling (containing all the vertex and edge weights
with the same values) and anti-magic labeling (containing all the vertex and edge weights with different
values) of some simple graphs. Liang et al. [17] established a bijective mapping y : E → {1, 2, · · · , |E|}
for anti-magic edge labeling of the Cartesian product of graphs and prism graphs with the vertex-sum
ξy(v) =

∑
y(vvi) of graph J and where vi vertices are neighboring vertices of v such that ξy(v) , ξy(u),

u, v ∈ J. The problem was introduced by Hartsfield and Ringel [18]. Lladó et al. [19] introduced
a function y : E ∪ V → {1, 2, · · · , |E| + |V |} for super-magic edge covering of cycle magic graphs
including wheels, subdivided wheels, and windmills with H-magic total labeling when subgraph H′
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of J is isomorphic to J, such that y(H′) =
∑

y(v) +
∑

y(uv), u, v ∈ J. The results rely on a technique
of partitioning sets of integers with special properties. Various properties of graphs related to labeling
and indices are discussed in [20–27].

Our concern is a cycle graph which is also called a circular graph with a single cycle Cn with n ≥ 3.
Gervacio [28] stated the concept of cycle graphs in which the order and size of the graph are equal
in number and each vertex has a degree of 2 that indicates the incidence of one vertex with precisely
two edges. Ayache and Alameri [29] defined an intriguing graph named the mt-graph. Let J(V, E)
be a simple, linked graph. The mJ graph for t = 1 requires taking similar m-copies of graph J, the
m(mJ) = m2(J) graph for t = 2 requires taking similar m-copies of graph mJ, the m(m(mJ)) = m3(J)
graph for t = 3 requires taking similar m-copies of graph m(mJ), and so on using m ≥ 2. Next, connect
each copy’s vertex to the matching vertex of every other copy using an edge. Following that, we obtain
a new graph denoted as the mt-graph, which is represented by mt(J). Let c be the size and d be the order
of simple graph J, and then the order and size of the mt-graph of graph J for non-negative integer t are
mtd and mtc +

(
m(m−1)

2

)
dtmt−1, respectively. For cycle graph Cn with (n ≥ 3), the mt-graph is denoted

as mt(Cn) with (m ≥ 2) and for the specification of the graphical model the value of t is set as t = 1.
The purpose of this specification is to tackle the complexity of graphs. Furthermore, if we set m = 2

in the mt-graph of cycle graph mCn with t = 1, then we get the Cartesian product of the path graph
with two vertices C2 and cycle graph with n vertices Cn, i.e. 2Cn = C2 ×Cn, If we take m = 3, then we
get the Cartesian product of the cycle graph with three vertices C3 and the cycle graph with n vertices
Cn, i.e., 3Cn = C3 ×Cn. Then the second specification for the construction of the mt-graph of the cycle
graph is m ≥ 4 because Ke et al. [30] already stated the reflexive edge strength of the Cartesian product
of two-cycle graphs. The mt-graph of the cycle graph mCn with (m ≥ 4) and t = 1 is formed by the
following vertex set and edge set:

V(mCn) = {a j
s : 1 ≤ s ≤ n; 1 ≤ j ≤ m}

E(mCn) = {a j
sa

j
s+1 : 1 ≤ s ≤ n − 1; 1 ≤ j ≤ m} ∪ {au

sa
j+u
s : 1 ≤ s ≤ n; 1 ≤ u ≤ m − 1; 1 ≤ j ≤ m − u}

∪{a j
1a j

n : 1 ≤ j ≤ m}.

The order and size are |V(mCn)| = mn and |E(mCn)| = (m2+m)n
2 , respectively. The graph in Figure 1 is

the generic form of the mt-graph of the cycle graph mCn with t = 1.

Figure 1. An mt-graph of the cycle graph mCn with t = 1.
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Jendrol et al. [31] examined an edge irregular total k-coloring and a vertex irregular total k-coloring
of biparite graphs and complete graphs. Ahmad et al. [32] stated the lower bounds on irregularity
strength s(J) will given by inequality s(J) ≥ max1≤i≤∆(J)

ni+i−1
i and the lower bounds of the total vertex

irregularity strength tvs(J) and the total edge irregularity strength tes(J) such as:

tvs(J) ≥
⌈

p + δ(J)
∆(J) + 1

⌉
tes(J) ≥ max

{⌈
|E(G)| + 2

3

⌉
,

⌈
|∆(G)| + 2

3

⌉}
.

Bača et al. [13] calculated the exact values of the total edge irregularity strength of the path graph,
cycle graph, star graph, wheel graph, and friendship graph, as well as also the exact values of the total
vertex irregularity strength of the cycle graph, complete graph, n-sided prism graph, and star graph
with n pendant vertices. Tanna et al. [33] determined a new labeling of an edge irregular reflexive total
k-labeling where the labels of vertices x and y and a label of edge xy add up to the weight of edge
wt(xy) in graph J. The lowest value of k for which graph J has distinct edge weights is the reflexive
edge strength, represented by res(J), and the vertex labeling can be defined through a unique mapping
yv from the vertex set to even whole numbers as:

yv : V(J)→ {0, 2, 4, · · · , 2kv}.

The function for edge labeling is defined through a unique mapping ye from the edge set to non-zero
whole numbers as:

ye : E(J)→ {1, 2, 3, · · · , ke}.

In [34, 35], the weight of the edges was defined as the total of the labels of two connection vertices
and the label of the selected edge. For every two different edges x1x2 and x3x4 of graph J, the edge
weights are:

wt(x1x2) = yv(x1) + ye(x1x2) + yv(x2)

wt(x3x4) = yv(x3) + ye(x3x4) + yv(x4)

wt(x1x2) , wt(x3x4),

where k = max{ke, 2kv} and the smallest k is the edge reflexive irregularity strength res(J). In terms of
res(J), Baca et al. [36] proposed the following conjecture and proof for Lemma 1.

Conjecture 1. For any graph with a maximum degree of graph J, ∆(J) satisfies

res(J) = max
{⌈ |E(J)|

3
+ r
⌉ ⌊∆(J) + 2

2

⌋}
where r = 1, if |E(J)| ≡ 2, 3(mod 6), and otherwise, r = 0.

Lemma 1. For every graph J,

res(J) ≥


⌈ |E(J)|

3

⌉
, i f |E(J)| . 2, 3(mod 6),⌈ |E(J)|

3

⌉
+ 1, i f |E(J)| ≡ 2, 3(mod 6),

is the lower bound of strength of the edge reflexive irregular total labeling of graph J, where |E(J)| is
the size of the graph [37]. Agustin et al. [38] also determined the precise values of the ladder graph,
triangular ladder graph, Cartesian product of paths and cycles, and some almost regular graph’s
reflexive edge irregularity strength res(J).
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2. Main results

The purpose of this study is to examine the reflexive edge irregularity strength of mt-graphs (t = 1)
of the cycle graph. In Theorem 2.1, the total reflexive edge irregularity strength for the mCn-graph with
(m ≥ 4) and (n ≥ 3) are computed to verify the result of res(mCn).

Theorem 2.1. Let the mCn-graph be the mt-graph with t = 1 of the cycle graph, and then for n ≥ 3,
m ≥ 4,

res(mCn) =


(m2 + m)n

6
, i f m ≡ 0, 3, 8, 11(mod 12),

(2m − 6)n + 2
⌈ (m2 − 11m + 36)n

12

⌉
, i f m . 0, 3, 8, 11(mod 12).

Proof. An mCn-graph is the graph with isomorphic m-copies of the cycle graphs and each vertex in
each copy of cycle graph Cn, n ≥ 3, is attached through an edge to all the corresponding vertices of the
remaining isomorphic copies of the cycle graphs containing mn vertices and (m2+m)n

2 edges with vertex
set {a j

s : 1 ≤ s ≤ n; 1 ≤ j ≤ m} and edge set {a j
sa

j
s+1 : 1 ≤ s ≤ n − 1; 1 ≤ j ≤ m} ∪ {au

sa
j+u
s : 1 ≤ s ≤

n; 1 ≤ j ≤ m − u; 1 ≤ u ≤ m − 1} ∪ {a j
1a j

n : 1 ≤ j ≤ m}. For an mCn-graph with m ≥ 4, the lower bound
of the reflexive edge strength in Lemma 1 can be written as:

res(mCn) ≥


⌈ (m2 + m)n

6

⌉
, i f |E(mCn)| . 2, 3(mod 6),⌈ (m2 + m)n

6

⌉
+ 1, i f |E(mCn)| ≡ 2, 3(mod 6).

2.1. mCn-graph

2.1.1. Vertex labeling of the mCn-graph

Now we define the labeling for vertices V(mCn) = {a j
s : 1 ≤ s ≤ n; 1 ≤ j ≤ m} of the mCn-graph

and it is clear that vertex labeling depends only on {s : 1 ≤ s ≤ n}. Therefore, the vertex labeling is
given by:

yv(a j
s) =



0, i f s = 1,m ≥ 4, 1 ≤ j ≤ m,
m2 − 1

4
, i f s = 2,m ≡ 1, 3(mod 4), 1 ≤ j ≤ m,

m2

4
, i f s = 2,m ≡ 0(mod 4), 1 ≤ j ≤ m,

m2

4
− 1, i f s = 2,m ≡ 2(mod 4), 1 ≤ j ≤ m,

m2 + m − 2
2

, i f s = 3,m ≡ 1, 2(mod 4), 1 ≤ j ≤ m, f or n ≥ 7.

For (3 ≤ s ≤ n),

yv(a j
s) =


(m2 + m)s

6
, i f m ≡ 0, 3, 8, 11(mod 12), 1 ≤ j ≤ m,

(2m − 6)s + 2
⌈ (m2 − 11m + 36)s

12

⌉
, i f m . 0, 3, 8, 11(mod 12), 1 ≤ j ≤ m.
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2.1.2. Edge labeling of the mCn-graph

We define the labeling for edge set E(mCn) = {a j
sa

j
s+1 : 1 ≤ s ≤ n − 1; 1 ≤ j ≤ m} ∪ {au

sa
j+u
s : 1 ≤

s ≤ n; 1 ≤ j ≤ m − u; 1 ≤ u ≤ m − 1} ∪ {a j
1a j

n : 1 ≤ j ≤ m} of the mCn-graph. For all edges in set

{au
sa

j+u
s : 1 ≤ s ≤ n; 1 ≤ j ≤ m − u; 1 ≤ u ≤ m − 1},

we use a function h(u) for labeling such that:

h(u) =
(2m + 1)u − u2 − 2m

2
.

Then the edge labeling is defined as:

ye(au
sa

j+u
s ) =



j + h(u), i f s = 1,m ≥ 4,

j +
⌈m

2
⌉
+ h(u), i f m . 2, 6, 10(mod 12), s = 2,

j +
m + 4

2
+ h(u), i f m ≡ 2, 6, 10(mod 12), s = 2,

j +
(m2 + m)s − 3m2 + 3m

6
+ h(u), i f m ≡ 0, 3, 8, 11(mod 12) f or 3 ≤ s ≤ n,

j +
(m2 + m)s − 3m2 + 3m

6
+ h(u), i f m ≡ 4, 7(mod 12) f or s ≡ 0(mod 3),

j +
(m2 + m)s − 3m2 + 3m

6
+ h(u), i f m ≡ 1, 10(mod 12) f or s ≡ 0(mod 6),

j +
(m2 + m)s − 3m2 + 3m

6
+ h(u), i f m ≡ 2, 5, 6, 9(mod 12) f or s ≡ 0(mod 2),

j +
(m2 + m)s − 3m2 + 3m − 8

6
+ h(u), i f m ≡ 4, 7(mod 12) f or s ≡ 1(mod 3),

j +
(m2 + m)s − 3m2 + 3m − 8

6
+ h(u), i f m ≡ 1, 10(mod 12) f or s ≡ 4(mod 6),

j +
(m2 + m)s − 3m2 + 3m − 16

6
+ h(u), i f m ≡ 4, 7(mod 12) f or s ≡ 2(mod 3),

j +
(m2 + m)s − 3m2 + 3m − 16

6
+ h(u), i f m ≡ 1, 10(mod 12) f or s ≡ 2(mod 6),

j +
(m2 + m)s − 3m2 + 3m − 4

6
+ h(u), i f m ≡ 1, 10(mod 12) f or s ≡ 5(mod 6),

j +
(m2 + m)s − 3m2 + 3m − 12

6
+ h(u), i f m ≡ 1, 10(mod 12) f or s ≡ 3(mod 6),

j +
(m2 + m)s − 3m2 + 3m − 12

6
+ h(u), i f m ≡ 2, 5, 6, 9(mod 12) f or s ≡ 1(mod 2),

j +
(m2 + m)s − 3m2 + 3m − 20

6
+ h(u), i f m ≡ 1, 10(mod 12) f or s ≡ 1(mod 6).

For the edge labeling of edge set

{au
sa

j+u
s : 1 ≤ s ≤ n; 1 ≤ j ≤ m − u; 1 ≤ u ≤ m − 1},

there are two special cases in this labeling such that, for the first case, we have s =
⌈ n+1

3

⌉
if s is odd

and then n ≥ 3s − 2 with m ≡ 1, 2(mod 4), and if s is even then n ≥ 3s − 3 also with m ≡ 1, 2(mod 4).
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Whereas, for the second case, we have s =
⌈ n

3

⌉
if n ≥ 3s − 2 and m ≡ 0, 3(mod 4). Then the edge

labeling is defined as:

ye(au
sa j+u

s ) =



j + 2 + h(u), i f m ≡ 1, 2(mod 4) f or s = 3,

j +
(m2 + m)s − 3m2 − 3m

6
+ h(u), i f m ≡ 0, 3, 8, 11(mod 12) f or 3 ≤ s ≤ n,

j +
(m2 + m)s − 3m2 − 3m

6
+ h(u), i f m ≡ 4, 7(mod 12) f or s ≡ 0(mod 3),

j +
(m2 + m)s − 3m2 − 3m

6
+ h(u), i f m ≡ 1, 10(mod 12) f or s ≡ 0(mod 6),

j +
(m2 + m)s − 3m2 − 3m

6
+ h(u), i f m ≡ 2, 5, 6, 9(mod 12) f or s ≡ 0(mod 2), 4 ≤ s ≤ n,

j +
(m2 + m)s − 3m2 − 3m − 8

6
+ h(u), i f m ≡ 1, 10(mod 12) f or s ≡ 4(mod 6),

j +
(m2 + m)s − 3m2 − 3m − 8

6
+ h(u), i f m ≡ 4, 7(mod 12) f or s ≡ 1(mod 3),

j +
(m2 + m)s − 3m2 − 3m − 16

6
+ h(u), i f m ≡ 1, 10(mod 12) f or s ≡ 2(mod 6),

j +
(m2 + m)s − 3m2 − 3m − 16

6
+ h(u), i f m ≡ 4, 7(mod 12) f or s ≡ 2(mod 3),

j +
(m2 + m)s − 3m2 − 3m − 4

6
+ h(u), i f m ≡ 1, 10(mod 12) f or s ≡ 5(mod 6),

j +
(m2 + m)s − 3m2 − 3m − 20

6
+ h(u), i f m ≡ 1, 10(mod 12) f or s ≡ 1(mod 6),

j +
(m2 + m)s − 3m2 − 3m − 12

6
+ h(u), i f m ≡ 2, 5, 6, 9(mod 12) f or s ≡ 1(mod 2), 5 ≤ s ≤ n,

j +
(m2 + m)s − 3m2 − 3m − 12

6
+ h(u), i f m ≡ 1, 10(mod 12) f or s ≡ 3(mod 6).

For all edges in set
{a j

sa
j
s+1 : 1 ≤ s ≤ n − 1; 1 ≤ j ≤ m},

we define edge labeling such as:

ye(a j
sa

j
s+1) =



j +
⌈m2 − 2m

4
⌉
, i f m . 2, 6, 10(mod 12) f or s = 1,

j +
m2 − 2m + 4

4
, i f m ≡ 2, 6, 10(mod 12) f or i = 1,

j +
⌈m2 + 2m

4
⌉
, i f m . 1, 5, 9(mod 12) f or s = 2,

j +
m2 + 2m − 3

4
, i f m ≡ 1, 5, 9(mod 12) f or s = 2,

j +
(m2 + m)s − m2 − m − 4

6
, i f m ≡ 4, 7(mod 12) f or s ≡ 0(mod 3),

j +
(m2 + m)s − m2 − m − 12

6
, i f m ≡ 4, 7(mod 12) f or s ≡ 1(mod 3),

j +
(m2 + m)s − m2 − m

6
, i f m ≡ 0, 3, 8, 11(mod 12) f or 3 ≤ s ≤ n,

j +
(m2 + m)s − m2 − m − 2

6
, i f m ≡ 1, 10(mod 12) f or s ≡ 5(mod 6),

j +
(m2 + m)s − m2 − m − 6

6
, i f m ≡ 2, 5, 6, 9(mod 12) f or 3 ≤ s ≤ n,

j +
(m2 + m)s − m2 − m − 6

6
, i f m ≡ 1, 10(mod 12) f or s ≡ 4(mod 6).
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ye(a j
sa

j
s+1) =



j +
(m2 + m)s − m2 − m − 8

6
, i f m ≡ 4, 7(mod 12) f or s ≡ 2(mod 3),

j +
(m2 + m)s − m2 − m − 10

6
, i f m ≡ 1, 10(mod 12) f or s ≡ 0, 3(mod 6),

j +
(m2 + m)s − m2 − m − 14

6
, i f m ≡ 1, 10(mod 12) f or s ≡ 2(mod 6),

j +
(m2 + m)s − m2 − m − 18

6
, i f m ≡ 1, 10(mod 12) f or s ≡ 1(mod 6).

For the edge labeling of edge set {a j
sa

j
s+1 : 1 ≤ s ≤ n − 1; 1 ≤ j ≤ m}, there is a case in this labeling

for which we have s =
⌈ n

3

⌉
if s is odd and m = 5, in which case n ≥ 3s, if s is even, m = 5, then

n ≥ 3s − 1, if m = 4 then n ≥ 3s − 1, and if m ≥ 6 then n ≥ 3s. Then the edge labeling is defined as:

ye(a j
sa

j
s+1) =



j +
⌈m2 − 2m

4
⌉
, i f m . 1, 5, 9(mod 12) f or s = 2,

j +
m2 − 2m − 3

4
, i f m ≡ 1, 5, 9(mod 12) f or s = 2,

j +
⌈m2 − 2m + 1

3
⌉
, i f m ≡ 1, 2(mod 4) f or s = 3,

j +
(m2 + m)s − m2 − 7m

6
, i f m ≡ 0, 3, 8, 11(mod 12) f or s ≥ 3,

j +
(m2 + m)s − m2 − 7m − 2

6
, i f m ≡ 1, 10(mod 12) f or s ≡ 5(mod 6),

j +
(m2 + m)s − m2 − 7m − 4

6
, i f m ≡ 4, 7(mod 12) f or s ≡ 0(mod 3),

j +
(m2 + m)s − m2 − 7m − 6

6
, i f m ≡ 2, 5, 6, 9(mod 12) f or s ≥ 4,

j +
(m2 + m)s − m2 − 7m − 6

6
, i f m ≡ 1, 10(mod 12) f or s ≡ 4(mod 6),

j +
(m2 + m)s − m2 − 7m − 8

6
, i f m ≡ 4, 7(mod 12) f or s ≡ 2(mod 3),

j +
(m2 + m)s − m2 − 7m − 10

6
, i f m ≡ 1, 10(mod 12) f or s ≡ 0, 3(mod 6),

j +
(m2 + m)s − m2 − 7m − 12

6
, i f m ≡ 4, 7(mod 12) f or s ≡ 1(mod 3),

j +
(m2 + m)s − m2 − 7m − 14

6
, i f m ≡ 1, 10(mod 12) f or s ≡ 2(mod 6),

j +
(m2 + m)s − m2 − 7m − 18

6
, i f m ≡ 1, 10(mod 12) f or s ≡ 1(mod 6).

For the labeling of edges {a j
sa

j
s+1 : 1 ≤ s ≤ n − 1; 1 ≤ j ≤ m}, there is another case where, if n ≥ 7,

then the edge labeling is defined as:

ye(a j
sa

j
s+1) =


j +
⌈m2 − 2m + 5

4
⌉
, i f m ≡ 1, 2(mod 4) f or s = 2,

j +
⌈m2 + m + 1

3
⌉
, i f m ≡ 1, 2(mod 4) f or s = 3.

For the labeling of all edges in set {a j
1a j

n : 1 ≤ j ≤ m}, which shows the connecting edges of the first
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vertex and last vertex in each copy of the cycle graph, the labeling is as follows:

ye(a
j
1a j

n) =



j, i f m ≡ 0, 3(mod 4) f or n ≡ 0(mod 3), n ≥ 6,
j, i f m ≡ 1, 2(mod 4) f or n ≡ 0(mod 6),
j + 2, i f m = 4 f or n ≡ 2(mod 3),
j + 4, i f m = 5 f or n ≡ 5(mod 6),

j +
m2 − 5m − 6

6
, i f m ≡ 1, 2(mod 4),m , 5 f or n ≡ 5(mod 6),

j +
⌈m2 − 2m − 2

3
⌉
, i f m ≡ 0, 3(mod 4) f or n ≡ 1(mod 3),

j +
⌈m2 − 2m − 2

3
i f m ≡ 1, 2(mod 4) f or n ≡ 4(mod 6),

j +
m2 − 5m

6
, i f m ≡ 0, 3(mod 4),m ≥ 8 and n ≡ 2(mod 3),

j +
m2 − 5m

6
, i f m ≡ 2, 5, 6, 9(mod 12) f or n ≡ 2(mod 6),

j +
m2 − 5m − 8

6
, i f m ≡ 4, 7(mod 12),m ≥ 7 f or n ≡ 2(mod 3),

j +
m2 − 5m − 8

6
, i f m ≡ 1, 10(mod 12) f or n ≡ 2(mod 6),

j +
m2 − m

2
, i f m ≡ 0, 3(mod 4) f or n = 3,

j +
m2 − m − 2

2
, i f m ≡ 1, 2(mod 4) f or n ≡ 3(mod 6),

j +
⌈m2 − 2m − 5

3
⌉
, i f m ≡ 1, 2(mod 4) f or n ≡ 1(mod 6).

2.1.3. Edge weights of the mCn-graph

As the weight of an edge is the sum of the edge label and the labels of two adjacent vertices, then
for the result of edge labeling {ye(au

sa
j+u
s ) : 1 ≤ s ≤ n; 1 ≤ j ≤ m − u; 1 ≤ u ≤ m − 1} with the use of

function h(u), the weights of the edges are as follows:

h(u) =
(2m + 1)u − u2 − 2m

2
.

wt(au
sa

j+u
s ) =


j + h(u), i f m ≥ 4 f or s = 1,

j +
m2 + m

2
+ h(u), i f m ≥ 4 f or s = 2,

j +
(m2 + m)s − m2 + m

2
+ h(u), i f m ≥ 4 f or 3 ≤ s ≤ n.

By using a condition for which s =
⌈ n+1

3

⌉
, if s is odd and m ≡ 1, 2(mod 4), then n ≥ 3s − 2, if s is

even and m ≡ 1, 2(mod 4), then n ≥ 3s − 3, and if m ≡ 0, 3(mod 4), then n ≥ 3s − 2. The edge weights
under this condition are defined as:

wt(au
sa

j+u
s ) =

{
j +

(m2 + m)s − m2 − m
2

+ h(u), i f 3 ≤ s ≤ n.
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For the edge labeling {ye(a
j
sa

j
s+1) : 1 ≤ s ≤ n − 1; 1 ≤ j ≤ m}, we formulate the edge weights as:

wt(a j
sa

j
s+1) =


j +

m2 − m
2
, i f m ≥ 4 f or s = 1,

j +
(m2 + m)s

2
, i f m ≥ 4 f or 2 ≤ s ≤ n.

There is a case in these weights for which we have s =
⌈n

3

⌉
, and if s is odd and m = 5, then

n ≥ 3s − 2, if s is even and m = 5, then n ≥ 3s − 1, if m = 4, then n ≥ 3s − 1, and if m ≥ 6, then
n ≥ 3s. Then the weights of the edges are defined as:

wt(a j
sa

j
s+1) =

{
j +

(m2 + m)s
2

− m, i f 2 ≤ s ≤ n.

For the edge labeling {ye(a
j
1a j

n) : 1 ≤ j ≤ m}, the edge weights are calculated as:

wt(a j
1a j

n) =



j + m2, i f m ≡ 0, 3(mod 4) and n = 3,

j +
(m2 + m)n + 2m2 − 4m

6
, i f m ≡ 0, 3(mod 4) and n ≡ 1(mod 3),

j +
(m2 + m)n + 2m2 − 4m

6
, i f m ≡ 1, 2(mod 4) and n ≡ 1, 4(mod 6),

j +
(m2 + m)n + m2 − 5m

6
, i f m ≡ 0, 3(mod 4) and n ≡ 2(mod 3),

j +
(m2 + m)n + m2 − 5m

6
, i f m ≡ 1, 2(mod 4) and n ≡ 2, 5(mod 6),

j +
(m2 + m)n

6
, i f m ≡ 0, 3(mod 4) and n ≡ 0(mod 3), n ≥ 6,

j +
(m2 + m)n

6
, i f m ≡ 1, 2(mod 4) and n ≡ 0(mod 6),

wt(a j
1a j

n) = j +
(m2 + m)n + 3m2 − 3m

6
, i f m ≡ 1, 2(mod 4) then n ≡ 3(mod 6).

It is easy to check that all the edge weights wt(mCn) for edge set E(mCn) of the mCn-graph are distinct
and consecutive integers.

wt(mCn) = {1, 2, 3, · · · · · · ,
(m2 + m)n

2
}.

As the vertex labeling is defined with even whole numbers, the edge labeling is defined with natural
numbers and a reflexive edge strength of the mt-graph of the cycle graph with t = 1 and m ≥ 4 is under
the bounds of strength for every graph in Lemma 1. □

Next, we state additional findings on total reflexive edge irregularity strength. In Theorem 2.2, the
total reflexive edge irregular labeling for the 4Cn-graph where (m = 4) and (n ≥ 3) verify the results of
total reflexive edge irregularity strength res(4Cn).

Theorem 2.2. Let the 4Cn-graph be a graph with 4 isomorphic copies of the cycle graph Cn, Then, for
n ≥ 3,

res(4Cn) = 2n + 2
⌈2n

3

⌉
.
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Proof. A 4Cn-graph is a graph with 4 isomorphic copies of the cycle graph Cn and n ≥ 3 contains 4n
vertices and 10n edges with vertex set {a j

s : 1 ≤ s ≤ n; 1 ≤ j ≤ 4} and edge set {a j
sa

j
s+1 : 1 ≤ s ≤

n − 1; 1 ≤ j ≤ 4} ∪ {au
sa

j+u
s : 1 ≤ s ≤ n; 1 ≤ j ≤ 4 − u; 1 ≤ u ≤ 3} ∪ {a j

1a j
n : 1 ≤ j ≤ 4}. For a 4Cn-graph,

the use of the lower bound of the reflexive edge strength in Lemma 1 represents two results as follows:

res(4Cn) ≥


⌈10n

3

⌉
, i f 10n . 2, 3(mod 6),

⌈10n
3

⌉
+ 1, i f 10n ≡ 2, 3(mod 6).

2.2. 4Cn-graph

2.2.1. Vertex labeling

For the precise value of the reflexive edge strength for cycle graph res(4Cn), all the labels of vertices
and edges are maximum as 2n + 2

⌈ 2n
3

⌉
. For this verification, the vertices {a j

s : 1 ≤ s ≤ n; 1 ≤ j ≤ 4} are
used for vertex labeling as:

yv(a j
s) =


0, i f s = 1 f or 1 ≤ j ≤ 4,
4, i f s = 2 f or 1 ≤ j ≤ 4,

2s + 2
⌈2s

3

⌉
, i f 3 ≤ s ≤ n f or 1 ≤ j ≤ 4.

2.2.2. Edge labeling

For the edges {au
sa

j+u
s : 1 ≤ s ≤ n; 1 ≤ j ≤ 4 − u; 1 ≤ u ≤ 3}, we define the edge labeling as:

ye(au
sa

j+u
s ) =



j +
9u − u2 − 8

2
, i f s = 1,

j + 2 +
9u − u2 − 8

2
, i f s = 2,

j +
10s − 18

3
+

9u − u2 − 8
2

, i f s ≡ 0(mod 3),

j +
10s − 22

3
+

9u − u2 − 8
2

, i f s ≡ 1(mod 3),

j +
10s − 26

3
+

9u − u2 − 8
2

, i f s ≡ 2(mod 3).

There is a case in edge labeling for which we have s =
⌈ n

3

⌉
if n ≥ 3s − 2. Then the labeling of edges is

as follows:

ye(au
sa

j+u
s ) =


j +

10s − 30
3

+
9u − u2 − 8

2
, i f s ≡ 0(mod 3),

j +
10s − 34

3
+

9u − u2 − 8
2

, i f s ≡ 1(mod 3),

j +
10s − 38

3
+

9u − u2 − 8
2

, i f s ≡ 2(mod 3).
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For the edges {a j
sa

j
s+1 : 1 ≤ s ≤ n − 1; 1 ≤ j ≤ 4}, we define the edge labeling as:

ye(a j
sa

j
s+1) =



j + 2, i f s = 1,
j + 6, i f s = 2,

j +
10s − 12

3
, i f s ≡ 0(mod 3),

j +
10s − 16

3
, i f s ≡ 1(mod 3),

j +
10s − 14

3
, i f s ≡ 2(mod 3).

There is a case in edge labeling for which we have s =
⌈ n

3

⌉
if n ≥ 3s − 1. Then the labeling of edges

is as follows:

ye(a j
sa

j
s+1) =



j + 2, i f s = 2,

j +
10s − 24

3
, i f s ≡ 0(mod 3),

j +
10s − 28

3
, i f s ≡ 1(mod 3),

j +
10s − 26

3
, i f s ≡ 2(mod 3).

For the edges {a j
1a j

n : 1 ≤ j ≤ 4}, we define the edge labeling as:

ye(a
j
1a j

n) =


j, i f n ≡ 0(mod 3), n ≥ 6,
j + 2, i f n ≡ 1, 2(mod 3),
j + 6, i f n = 3.

In Figure 2, the edge reflexive irregular total labeling of the 4C4-graph with 4 complete connections
in which the vertex labels in one complete connection are the same and also an even number with
vertex set V(4C4) = {0, 4, 10, 14}. The edges are labeled with natural numbers where the edge set
E(4C4) = {1, 2, 3, · · · , 12}. The edge weights range from 1 to 40 and are represented by the blue label
in this figure. Using Lemma 1, the reflexive edge strength of this graph res(4C4) = 14.

Figure 2. An edge reflexive irregular total labeling of 4C4.
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2.2.3. Edge weights

For the edges {ye(au
sa

j+u
s ) : 1 ≤ s ≤ n; 1 ≤ j ≤ 4 − u; 1 ≤ u ≤ 3}, the weights of the edges are:

wt(au
sa

j+u
s ) =


j +

9u − u2 − 8
2

, i f s = 1,

j + 10 +
9u − u2 − 8

2
, i f s = 2,

j + 10s − 6 +
9u − u2 − 8

2
, i f 3 ≤ s ≤ n.

There is a case in edge weights such that s =
⌈ n+1

3

⌉
, if n ≥ 3s − 2. Then the weights of the edges

are:

wt(au
sa

j+u
s ) =

{
j + 10s − 10 +

9u − u2 − 8
2

, i f s ≥ 3.

For the edges {ye(a
j
sa

j
s+1) : 1 ≤ s ≤ n − 1; 1 ≤ j ≤ 4}, the weights of the edges are:

wt(a j
sa

j
s+1) =

 j + 6, i f s = 1,
j + 10s, i f s ≥ 2.

There is a case in edge weights such that s =
⌈ n

3

⌉
if n ≥ 3s − 1. Then the weights of the edges are:

wt(a j
sa

j
s+1) =

{
j + 10s − 4, i f s ≥ 2.

For the edges {ye(a
j
1a j

n) : 1 ≤ j ≤ 4}, the weights of the edges are:

wt(a j
1a j

n) =



j + 16, i f n = 3,

j +
10n + 8

3
, i f n ≡ 1(mod 3),

j +
10n − 2

3
, i f n ≡ 2(mod 3),

j +
10n
3
, i f n ≡ 0(mod 3), n ≥ 6.

It is simple to check edge weights using the fact that the edge labeling and vertex labeling are
distinct and consecutive with a common difference equal to 1. In this theorem, the minimum weight
is 1, maximum weight is 10n, and 10n is also the size of the 4Cn-graph. □

In Theorem 2.3, the total reflexive edge irregular labeling for the 5Cn-graph where m = 5 and n ≥ 3
corroborate the outcome of the total reflexive edge irregularity strength res(5Cn).

Theorem 2.3. Let the 5Cn-graph be a graph with 5 isomorphic copies of the cycle graph Cn and then
for n ≥ 3,

res(5Cn) = 4n + 2
⌈n
2

⌉
.

Proof. An 5Cn-graph is a graph with 5 isomersen copies of the cycle graph Cn and n ≥ 3 containing 5n
vertices and 15n edges with vertex set {a j

s : 1 ≤ s ≤ n; 1 ≤ j ≤ 5} and edge set {a j
sa

j
s+1 : 1 ≤ s ≤

n − 1; 1 ≤ j ≤ 5} ∪ {au
sa

j+u
s : 1 ≤ s ≤ n; 1 ≤ j ≤ 5 − u; 1 ≤ u ≤ 4} ∪ {a j

1a j
n : 1 ≤ j ≤ 5}. For
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the 5Cn-graph, the bounds of the reflexive edge strength in Lemma 1 represent two possible cases as
follows:

res(5Cn) ≥


⌈
5n
⌉
, i f 15n . 2, 3(mod 6),⌈

5n
⌉
+ 1, i f 15n ≡ 2, 3(mod 6).

2.3. 5Cn-grah

2.3.1. Vertex labeling

For the exact value of the reflexive edge strength for cycle graph res(5Cn), all the assignments of
vertices and edges both are maximum as 4n + 2

⌈ n
2

⌉
. For this confirmation, the vertices {a j

s : 1 ≤ s ≤
n; 1 ≤ j ≤ 5} are used for vertex labeling as:

yv(a j
s) =


0, i f s = 1 f or 1 ≤ j ≤ 5,
6, i f s = 2 f or 1 ≤ j ≤ 5,
14, i f s = 3 f or 1 ≤ j ≤ 5, n ≥ 7,

4s + 2
⌈ s
2

⌉
, i f 3 ≤ s ≤ n f or 1 ≤ j ≤ 5.

2.3.2. Edge labeling

For the labeling of edge set {au
sa

j+u
s : 1 ≤ s ≤ n; 1 ≤ j ≤ 5 − u; 1 ≤ u ≤ 4}, we have:

ye(au
sa

j+u
s ) =



j +
11u − u2 − 10

2
, i f s = 1,

j + 3 +
11u − u2 − 10

2
, i f s = 2,

j + 5s − 10 +
11u − u2 − 10

2
, i f 4 ≤ s ≤ n, s ≡ 0(mod 2),

j + 5s − 12 +
11u − u2 − 10

2
, i f s ≡ 1(mod 2).

There is a case for s =
⌈

n+1
3

⌉
, where we have, n ≥ 3s − 2 if s is odd and n ≥ 3s − 3, if s is even.

Then the edge labeling is as follows:

ye(au
sa

j+u
s ) =


j + 2 +

11u − u2 − 10
2

, i f s = 3,

j + 5s − 17 +
11u − u2 − 10

2
, i f 5 ≤ s ≤ n, s ≡ 1(mod 2),

j + 5s − 15 +
11u − u2 − 10

2
, i f s ≡ 0(mod 2).

For the labeling of edges {a j
sa

j
s+1 : 1 ≤ s ≤ n − 1; 1 ≤ j ≤ 5}, we have:

ye(a j
sa

j
s+1) =



j + 4, i f s = 1,
j + 8, i f s = 2,
j + 5, i f s = 2 f or n ≥ 7,
j + 11, i f s = 3 f or n ≥ 7,
j + 5s − 6, i f 3 ≤ s ≤ n.
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There is an instance for s =
⌈

n
3

⌉
, where we have, n ≥ 3s, if s is odd and n ≥ 3s − 1, if s is even.

Then edge labeling is as follows:

ye(a j
sa

j
s+1) =


j + 3, i f s = 2,
j + 6, i f s = 3,
j + 5s − 11, i f s ≥ 4.

For the edge labeling for edge set {a j
1a j

n : 1 ≤ j ≤ 5}, we have:

ye(a
j
1a j

n) =


j + 9, i f n ≡ 3(mod 6),
j + 5, i f n ≡ 4(mod 6),
j + 4, i f n ≡ 1, 5(mod 6),
j, i f n ≡ 0, 2(mod 6).

2.3.3. Edge weights

The edge weights for edge labels

{ye(au
sa

j+u
s ) : 1 ≤ s ≤ n; 1 ≤ j ≤ 5 − u; 1 ≤ u ≤ 4}

are as follows:

wt(au
sa

j+u
s ) =


j +

11u − u2 − 10
2

, i f s = 1,

j + 15 +
11u − u2 − 10

2
, i f s = 2,

j + 15s − 10 +
11u − u2 − 10

2
, i f s ≥ 3.

There is an instance for s =
⌈

n+1
3

⌉
, where we have, n ≥ 3s − 2, if s is odd and n ≥ 3s − 3, if s is

even. Then edge weights are as follows:

wt(au
sa

j+u
s ) = j + 15s − 15 +

11u − u2 − 10
2

, i f s ≥ 3.

The edge weights for edge labels

{ye(a j
sa

j
s+1) : 1 ≤ s ≤ n − 1; 1 ≤ j ≤ 5}

are:

wt(a j
sa

j
s+1) =

 j + 10, i f s = 1,
j + 15s, i f 2 ≤ s ≤ n.

In Figure 3, the edge reflexive irregular total labeling of the 5C7-graph with 7 complete connections
in which the vertex labels in one complete connection are the same and also an even number with vertex
set V(5C7) = {0, 6, 14, 20, 26, 30, 36}. The edges are labeled with natural numbers where the edge set
E(5C7) = {1, 2, 3, · · · , 33}. The edge weights range from 1 to 105. Using Lemma 1, the reflexive edge
strength of this graph res(5C7) = 36.
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Figure 3. Edge reflexive irregular total labeling of 5C7.

There is a scenario for ye(a
j
sa

j
s+1) with s =

⌈ n
3

⌉
, where we have, n ≥ 3s if s is odd and n ≥ 3s − 1, if

s is even. Then edge weights are as follows:

wt(a j
sa

j
s+1) =

{
j + 15s − 5, i f s ≥ 2.

The edge weights of edge labels ye(a
j
1a j

n) : 1 ≤ j ≤ 5} are:

wt(a j
1a j

n) =


j + 5n + 10, i f n ≡ 3(mod 6),
j + 5n + 5, i f n ≡ 1, 4(mod 6),
j + 5n, i f n ≡ 0, 2, 5(mod 6).

This total labeling makes it easy to verify that the edge weights are consecutive, different, and have
a common difference of 1. According to this theorem, the weight ranges from 1 to 15n, where 15n is
also the graph’s size. □

In Theorem 2.3, the total reflexive edge irregular labeling for the 8Cn-graph where m = 8 and n ≥ 3
supports the consequence of total reflexive edge irregularity strength res(8Cn).

Theorem 2.4. Let the 8Cn-graph be a graph with 8 identical copies of the cycle graph Cn and then,
for n ≥ 3,

res(8Cn) = 12n.

Proof. An 8Cn-graph is a graph with 8 identical copies of the cycle graph Cn and n ≥ 3 containing 8n
vertices and 36n edges with vertex set {a j

s : 1 ≤ s ≤ n; 1 ≤ j ≤ 8} and edge set {a j
sa

j
s+1 : 1 ≤ s ≤

n − 1; 1 ≤ j ≤ 8} ∪ {au
sa

j+u
s : 1 ≤ s ≤ n; 1 ≤ j ≤ 8 − u; 1 ≤ u ≤ 7} ∪ {a j

1a j
n : 1 ≤ j ≤ 8}. For the

8Cn-graph, the exact bounds of the reflexive edge strength in Lemma 1 represent two possible cases,
which can be written as:

res(8Cn) ≥


⌈
12n
⌉
, i f 36n . 2, 3(mod 6),⌈

12n
⌉
+ 1, i f 36n ≡ 2, 3(mod 6).
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2.4. 8Cn-graph

2.4.1. Vertex labeling

For the exact value of the reflexive edge strength for cycle graph res(8Cn), all the assignments of
vertices and edges are maximum as 12n. For this confirmation, the vertices {a j

s : 1 ≤ s ≤ n; 1 ≤ j ≤ 8}
are used for vertex labeling as:

yv(a8
i ) =


0, i f s = 1,
16, i f s = 2,
12s, i f s ≥ 3.

2.4.2. Edge labeling

For 1 ≤ s ≤ n, 1 ≤ j ≤ 8 − u, and 1 ≤ u ≤ 7, the edge labeling is defined as:

ye(au
sa

j+u
s ) =



j +
17u − u2 − 16

2
, i f s = 1,

j + 4 +
17u − u2 − 16

2
, i f s = 2,

j + 12s − 28 +
17u − u2 − 16

2
, i f s ≥ 3,

j + 12s − 36 +
17u − u2 − 16

2
, i f s =

⌈n + 1
3
⌉

f or n ≥ 3s − 2.

For {1 ≤ s ≤ n − 1; 1 ≤ j ≤ 8}, we define the following edge labeling:

ye(a j
sa

j
s+1) =



j + 12, i f s = 1,

j + 12, i f s = 2 f or n ≥ 6, s =
⌈n
3
⌉
,

j + 20, i f s = 2,
j + 12s − 12, i f s ≥ 3,

j + 12i − 20, i f s ≥ 3 f or n ≥ 3s, s =
⌈n
3
⌉
.

For {1 ≤ j ≤ 8}, we define the following edge labeling:

ye(a
j
1a j

n) =


j + 28, i f n = 3,
j + 16, i f n ≡ 1(mod 3),
j + 4, i f n ≡ 2(mod 3),
j, i f n ≡ 0(mod 3), n ≥ 6.

In Figure 4, the edge reflexive irregular total labeling of the 8C3-graph with 3 complete connections
in which the vertex labels in one complete connection are the same and also an even number with vertex
set V(8C3) = {0, 16, 36}. The edges are labeled with natural numbers where the edge set E(8C3) =
{1, 2, 3, · · · , 36}. The edge weights range from 1 to 108. Using Lemma 1, the reflexive edge strength
of this graph res(8C3) = 36.
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Figure 4. Edge reflexive irregular labeling of 8C3.

2.4.3. Edge weights

For 1 ≤ s ≤ n, 1 ≤ j ≤ 8 − u, and 1 ≤ u ≤ 7, we define the following edge weights:

wt(au
sa

j+u
s ) =



j +
17u − u2 − 16

2
, i f s = 1,

j + 36 +
17u − u2 − 16

2
, i f s = 2,

j + 36s − 28 +
17u − u2 − 16

2
, i f s ≥ 3,

j + 36s − 36 +
17u − u2 − 16

2
, i f s =

⌈n + 1
3
⌉
, n ≥ 3s − 2 f or s ≥ 3.

For {1 ≤ s ≤ n − 1; 1 ≤ j ≤ 8}, we define the following edge weights:

wt(a j
sa

j
s+1) =


j + 28, i f s = 1,
j + 36s, f or s ≥ 2,

j + 36s − 8, i f n ≥ 3s, s =
⌈n
3
⌉

f or s ≥ 2.

For {1 ≤ j ≤ 8}, we define the following edge weights:

wt(a j
1a j

n) =


j + 64, i f n = 3,
j + 12n + 16, i f n ≡ 1(mod 3),
j + 12n + 4, i f n ≡ 2(mod 3),
j + 12n, i f n ≡ 0(mod 3), n ≥ 6.

It is simple to confirm that the edge weights are distinct and consecutive. This theorem states that
the weights vary from 1 to 36n, where 36n is also the size of the graph. □

3. Application

In this paper, the graphical model is made up of certain copies of a complete graph, and edges
between copies are used to form some cycles. Consider the problem illustrated by the communication
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between three company buildings. Each of the three buildings is represented as a complete graph,
where individuals within a building are authorized with some designation and represented as vertices.
These responsible vertices can receive messages from any vertex in their respective building and can
communicate with each other through the direct connection as an edge. For example, if each building
includes four working people such as a Manager, Engineer, Analyst, and Worker who need to
communicate with each other in the same building, then the message travels from a unique vertex to
any other vertex through edges and ensures a clear and traceable communication route. For
inter-building communication, edges connect vertices with matching designations across different
buildings, ensuring that only individuals with the same role can communicate between buildings. For
graph labeling, individual vertices are labeled to represent the level of authority. The inter-building
edges are also labeled to represent the number of assignments or interactions possible between
individuals of the same designation. Each individual is assigned a unique label according to their
building and designation (e.g., Mi, Ei, Ai, Wi for a Manager, Engineer, Analyst, and Worker
representative within a company, where i ≥ 2).

Within a building, the edges connecting these vertices are labeled with the number of assignments
or interactions between individuals, facilitating seamless internal communication and collaboration.
This communication model ensures efficient internal communication while maintaining controlled,
designation-specific communication between buildings. The labeling scheme in this paper ensures the
unique identification of each employee and assigns maximum assignments according to the given
lower bound in Lemma 1, facilitating distinct communication paths within buildings and intellectual
value between two special people in two different buildings through bridge edges. The graph labeling
provides unique identification for each individual and indicates the communication load, helping to
manage and secure communication while ensuring that role-specific information is exchanged
appropriately between buildings. An illustration of a communication model between three different
companies collaborating for any specific purpose or task in shown in Figure 5.

Figure 5. An illustration of the communication model between three companies.

4. Conclusions

In this paper, we have calculated the graph labels, edge weights, and reflexive edge irregularity
strength of the graph. The mapping yv is the vertex label function and ye is the edge label function for
the edge irregular reflexive total labeling for anti-magic edge weights of an mCn-graph for cycle graph
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Cn with m ≥ 4 and n ≥ 3. Applications of this labeling are dispensed through a secure communication
channel to ensure the unique identification of each employee in a company and assign maximum
assignments according to the communication load that helps to manage the number of companies.
The open problem to find exact bounds of the reflexive edge irregularity strength for an mt-graph on
t = 1 for the star graph S n with m ≥ 2 and n ≥ 3 is res(mS n), and for the mt-graph on t = 1 for the fan
graph Fn with m ≥ 2 and n ≥ 3 is res(mFn).

Author contributions

Muhammad Amir Asif: Supervision, Conceptualization, Writing-original draft; Rashad Ismail:
Supervision, Conceptualization; Ayesha Razaq: Writing-original draft; Esmail Hassan Abdullatif
Al-Sabri: Validation; Muhammad Haris Mateen: Supervision, Conceptualization; Shahbaz Ali:
Validation. All authors have read and approved the final version of the manuscript for publication.

Use of Generative-AI tools declaration

The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this
article.

Acknowledgments

The authors extend their appreciation to the Deanship of Research and Graduate Studies at King
Khalid University for funding this work through the Large Research Project under grant number
RGP2/245/45.

Conflict of interest

The authors state that they do not have a conflict of interest in relation to the publication of this
research article.

References

1. A. Naumowicz, A note on the seven bridges of Königsberg problem, Formal. Math., 22 (2014),
177–178. http://doi.org/10.2478/forma-2014-0018

2. W. Gao, H. Wu, M. K. Siddiqui, A. Q. Baig, Study of biological networks using graph theory,
Saudi J. Biol. Sci., 25 (2018), 1212–1219. https://doi.org/10.1016/j.sjbs.2017.11.022

3. N. Deo, Graph theory with applications to engineering and computer science, New York: Courier
Dover Publications, 2017.

4. E. Estrada, Graph and network theory, Glasgow: University of Strathclyde, 2013.

5. K. M. M. Haque, Irregular total labelings of generalized Petersen graphs, Theory Comput. Syst., 50
(2012), 537–544. https://doi.org/10.1007/s00224-011-9350-7

AIMS Mathematics Volume 10, Issue 1, 1300–1321.

https://dx.doi.org/http://doi.org/10.2478/forma-2014-0018
https://dx.doi.org/https://doi.org/10.1016/j.sjbs.2017.11.022
https://dx.doi.org/https://doi.org/10.1007/s00224-011-9350-7


1320

6. G. Chartrand, M. S. Jacobson, J. Lehel, O. R. Oellermann, S. Ruiz, F. Saba, Irregular networks,
Congr. Numer., 64 (1988), 197–210.
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11. S. Jendrol’, J. Miškuf, R. Soták, Total edge irregularity strength of complete graphs and complete
bipartite graphs, Discr. Math., 310 (2010), 400–407. https://doi.org/10.1016/j.disc.2009.03.006
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