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1. Introduction

Cost-effective sampling is a vital consideration in certain experiments, particularly when measuring
a characteristic of interest that is expensive or time-consuming. Ranked set sampling (RSS) offers an
efficient strategy to achieve observational economy by enhancing precision per sampling unit. Initially
introduced by McIntyre [30], RSS was designed to improve the accuracy of the sample mean as an
estimator of the population mean. Chen et al. [17] explored the theory and applications of RSS, while
other studies by Chen et al. [18, 19] identified various parametric estimations using RSS. Ali et al. [6]
applied different inference methods for linear exponential distribution based on extreme RSS. Mohie
El-Din et al. [22–25] conducted Bayesian estimation and prediction based on ordered RSS under type
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II censored samples, demonstrating that the estimations and predictions derived from ordered RSS
(ORSS) outperform those based on simple random samples (SRS). Recently, Bhushan et al. [11, 12]
investigated modified classes of estimators using RSS, providing valuable insights into the development
of new estimation techniques. Additionally, Newer et al. [31] utilized various applications of RSS to
derive inferences for the parameters of the Nadarajah-Haghighi distribution. However, the effectiveness
of an estimator relies heavily on the accuracy of the ranking process. To address this issue, Al-Odat
and Al-Saleh [3] introduced moving extremes ranked set sampling (MERSS), which aims to minimize
ranking errors while preserving the optimality of the original ranked set method. The MERSS scheme
can be outlined as follows:

1 Select m1 SRSs of sizes 1, 2, ..., m1.
2 Rank the elements of each sample through visual inspection or another cost-effective method,

without directly measuring the characteristic of interest.
3 Accurately measure the maximum ordered observation from each set: the first set, the second set,

the third set, and so forth.
4 Repeat steps 1–3 for an additional m2 sets of sizes 1, 2, ..., m2, this time measuring the minimum

ordered observations instead of the maximum ones.

The total sample size for MERSS is n = m1 + m2. The measured MERSS units are denoted as
ωMERS S = (ω1:1, ω2:2, . . . , ωm1:m1 , ω1:1, ω1:2, . . . , ω1:m2). Balakrishnan and Li [9] introduced the concept
of ORSS by utilizing order statistics derived from independent and non-identically distributed (IND)
random variables. They established optimal linear inference based on ORSS, where the values ωi:i are
arranged in increasing order. For convenience, we denote the first r observations from type II censored
ordered MERSS (OMERSS) as zOMERS S = (z1 ≤ z2 ≤ . . . ≤ zr). The literature is abundant with
studies focused on parameter estimation for various distributions using MERSS. For instance, Abu-
Dayyeh and Al Sawi [1] examined the modified maximum likelihood estimator (MLE) of the mean for
the exponential distribution under MERSS. Similarly, Al-Omari and Al-Hadhrami [2] investigated
the properties of Bayesian estimators for the population mean of the normal distribution using
MERSS. Furthermore, the authors in [4, 5] analyzed the MLE of the mean for both exponential and
normal distributions under MERSS, demonstrating that the MLEs derived from MERSS consistently
outperformed those obtained through SRS in quantitative terms. For a more thorough understanding
of MERSS, refer to the works of [17, 18].

In applied statistics and reliability analysis, linear exponential distribution (LED) finds numerous
applications. Broadbent [13] and Carbone et al. [15] utilized LED to examine survival patterns of
patients with plasmacytic myeloma. Also known as the linear failure rate distribution, LED is well-
regarded for modeling lifetime data in both reliability and medical studies, particularly effective in
representing processes characterized by an increasing linear failure rate. In survival analysis, models
featuring bathtub-shaped failure rates are highly sought after. However, LED falls short in providing
an appropriate parametric fit for phenomena exhibiting decreasing, nonlinearly increasing, or non-
monotonic failure rates—characteristics commonly observed in firmware reliability modeling and
biological studies. For further insights into these topics, refer to the works of Lai and Xie [27],
Lai et al. [28] and Zhang et al. [32]. The two-scale parameter LED, denoted as (α, λ), is defined
by the following probability density function (pdf) and cumulative distribution function (cdf):

f (y) = (α + λy) exp
(
−αy −

λ

2
y2

)
, y ≥ 0, (α, λ ≥ 0), (1.1)
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F(y) = 1 − exp
(
−αy −

λ

2
y2

)
, y ≥ 0, (α, λ ≥ 0). (1.2)

Notably, LED represents the distribution of the minimum of two independent random variables,
v and w, where v follows an exponential distribution with parameter α, and w follows a Rayleigh
distribution with parameter λ. Consequently, LED encompasses both exponential and Rayleigh
distributions as special cases:
- When λ = 0, LED simplifies to an exponential distribution.
- When α = 0, it reduces to a Rayleigh distribution.

Testing how products fail under normal operating conditions is essential for reliability analysis.
However, thorough testing can be extremely costly, especially for products known for their high
reliability. When testing becomes too expensive and the product shows a strong level of reliability,
it may not be practical to use complete samples for statistical analysis. To address these challenges of
time and cost, statisticians have introduced various censoring methods. In life or quality tests, a random
sample y1, y2, . . . , yn is taken from a distribution with cdf F(y). Instead of waiting for all n samples to
fail, the experiment is stopped after the rth failure, where 1 < r < n. The order statistics of the data can
be arranged as y1:n ≤ y2:n ≤ · · · ≤ yr:n. This approach is known as type II censored data, where only the
smallest observed values are recorded. Type II censoring is particularly beneficial when waiting for all
n individuals to fail would take a long time, helping to save both time and resources. The number of
censored samples is decided before the experiment starts. For more in-depth discussions, you can refer
to sources [16, 29, 30] and other cited works within those references.

In many real-world scenarios, the ability to predict future observations is crucial. This is especially
important in industrial applications and survival studies, where predicting ordered random variables
helps assess the likelihood of producing defective items. In lifetime testing, both interval and point
predictions are vital for identifying the most effective censoring methods. By analyzing the number of
failed items during a life-test experiment, we can estimate the failure times of the remaining objects.
Additionally, these predictions can guide decisions on whether to accelerate the life test and when the
failure of a future item might signal the end of the test. The statistical literature shows that prediction
problems have garnered significant interest from researchers in both theoretical and practical areas, as
highlighted in the works of Mohie El-Din et al. [22, 24, 25].

Our study aims to compare ORSS with OMERSS under a type II censoring scheme to derive
Bayesian estimations for the parameters of the linear exponential model. We will also develop Bayesian
point and interval predictions for the ordered future lifetime, taking into account both symmetric
and asymmetric loss functions. The estimation and prediction results obtained from ORSS will be
compared with those derived from OMERSS. To illustrate these theoretical concepts, we will use a
specific example from the medical field that incorporates real-life data. The structure of this paper is
organized as follows: Section 2 presents essential preliminary results relevant to our study. Section 3
details the derivation of Bayesian estimators for the parameters under various loss functions. Section 4
focuses on establishing Bayesian prediction bounds for LED using OMERSS. Section 5 includes a
Monte Carlo simulation and a discussion to evaluate the accuracy of the estimation and prediction
methods, along with an application to a real dataset. Section 6 concludes the study.
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2. Preliminary results

Here, let Z = (Z1,Z2, . . . ,Zr), where z1 ≤ z2 ≤ . . . ≤ zr, represent the informative type II censored
sample consisting of the first r observations (out of n ≥ r) from OMERSS. Utilizing results for order
statistics from IND random variables (refer to Balakrishnan [8]), the joint density function (JDF) of z
can be expressed as:

ζ(ϑ|z) =
1
ι!

∑
p

 r∏
κ=1

giκ: jκ(zκ)
n∏

κ=r+1

[
1 −Giκ: jκ(zr)

] , (2.1)

where ι = n − r and
∑

p signifies the summation over all n! = (m1 + m2)! permutations (i1, i2, . . . , in) of
(1, 2, . . . , n). It is clear that the JDF can be expressed as

ζ(ϑ|z) =
1
ι!

Per(νr), (2.2)

where Per(ν) =
∑

p
∏n

j=1 c j,i j represents the permanent of a real matrix ν = (ci, j) of size n × n,

νr =


g1:1(z1) . . . gm1:m1(z1) g1:1(z1) . . . g1:m2(z1)
...

. . .
...

...
. . .

...

g1:1(zr) . . . gm1:m1(zr) g1:1(zr) . . . g1:m2(zr)
1 −G1:1(zr) . . . 1 −Gm1:m1(zr) 1 −G1:1(zr) . . . 1 −G1:m2(zr)


}(n − r) rows.

(2.3)
Assuming that Zi follows the same distribution as the ith order statistic ωi: j, where i, j = 1, 2, . . . ,mς
and ς = 1, 2 with i ≤ j for for an SRS of size mς, the pdf and cdf of Z j are given by (see [7, 20]):

gi: j(z) =
i−1∑

k1=0

ak1,i( j)(1 − F(z)) j+k1−i f (z)

= (α + λz)
i−1∑

k1=0

ak1,i( j) exp
(
−α( j + k1 − i + 1)z − λ( j + k1 − i + 1)

z2

2

)
, (2.4)

and

Gi: j(z) = 1 −
i∑

k2=1

ãk2,i( j) (1 − F(z)) j+k2−i

= 1 −
i∑

k2=1

ãk2,i( j) exp
(
−α( j + k2 − i)z − λ( j + k2 − i)

z2

2

)
, (2.5)

respectively, where

ak1,i( j) = (−1)k1

(
i − 1

k1

)
ai, j, ai, j = i

(
j
i

)
, and ãk2,i( j) =

ak2−1,i( j)
( j + k2 − i)

. (2.6)

By substituting the expressions from (2.4) and (2.5) into (2.1), it follows that the likelihood function
(LF) for type II censored OMERSS can be represented as

ζ(ϑ|z) ∝
∑

p

 r∏
κ=1

(α + λzκ)
iκ−1∑
k1=0

ak1,iκ( jκ) exp
[
−α( jκ + k1 − iκ + 1)zκ − λ( jκ + k1 − iκ + 1)

z2
κ

2

]
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×

n∏
κ=r+1

iκ∑
k2=1

ãk2,iκ( jκ) exp
[
−α( jκ + k2 − iκ)zκ − λ( jκ + k2 − iκ)

z2
κ

2

] . (2.7)

By utilizing the following relations:

r∏
κ=1

iκ−1∑
k1=0

△k1(iκ) =
i1−1∑
t1=0

i2−1∑
t2=0

. . .

ir−1∑
tr=0

r∏
κ=1

△tκ(iκ), (2.8)

n∏
κ=r+1

iκ∑
k2=1

∇k2(iκ) =
ir+1∑
νr+1=1

ir+2∑
νr+2=1

. . .

in∑
νn=1

n∏
κ=r+1

∇νκ(iκ), (2.9)

where iκ (κ = 1, 2, . . . , n) are positive integers satisfying i1 < i2 < . . . < in, we can directly express the
LF as

ζ(α, λ|z) ∝
∑

p

r,n∑
t,ν,ε

Ωt,ν,ε(i)αr−εβε exp
[
−αΨt,ν (z) − λΨt,ν

(
z2

2

)]
, (2.10)

where
r,n∑

t,ν,ε

=

i1−1∑
t1=0

i2−1∑
t2=0

· · ·

ir−1∑
tr=0

.

ir+1∑
νr+1=1

ir+2∑
νr+2=1

· · ·

in∑
νn=1

r∑
ε=0

, t = (t1, ..., tr), ν = (νr+1, ..., νn),

Ωt,ν,ε(i) =

 r∏
κ=1

atκ,iκ( jκ)

  n∏
κ=r+1

ãνκ,iκ( jκ)


r−ε+1∑

J1=1

zJ1

r−ε+2∑
J2=J1+1

zJ2 · · ·

r∑
Jε=Jε−1+1

zJε

 ,

Ψt,ν (z) =
r∑
κ=1

( jκ + tκ − iκ + 1)zκ +
n∑

κ=r+1

( jκ + νκ − iκ)zr. (2.11)

3. Bayes estimation

In this section, we illustrate how to derive the Bayesian estimators for the unknown parameters α
and λ. We will explore Bayesian estimation methods under the assumption that the random variable
(ℑ,ℵ) follows an exponential prior distribution. Using the realizations (α, λ), we will estimate the
posterior density of (α, λ) based on the observed sample z. The prior distribution can be determined as
follows:

ℏ(α, λ) = ηρ exp (−αη − λρ) , α, λ > 0, (η, ρ > 0). (3.1)

The hyperparameters (η, ρ) were selected to reflect our prior knowledge of (α, λ). It is important to
highlight that we chose an exponential family prior due to its flexibility and simplicity, which allows
it to capture a wide range of the experimenter’s prior beliefs. For more details, see [10]. The posterior
density of (α, λ) can be expressed as follows, utilizing the likelihood function from Eq (2.10) and the
prior density from Eq (3.1):

ℜ(α, λ|z) =
1

k(η, ρ)

∑
p

r,n∑
t,ν,ε

Ωt,ν,ε(i)αr−εβε exp
[
−α

(
η + Ψt,ν (z)

)
− λ

(
ρ + Ψt,ν

(
z2

2

))]
, (3.2)
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where k(η, ρ) is the normalization constant,

k(η, ρ) =
∑

p

r,n∑
t,ν,ε

Ωt,ν,ε(i)Γ (r − ε + 1)Γ (ε + 1)(
η + Ψt,ν (z)

)r−ε+1
(
ρ + Ψt,ν

(
z2

2

))ε+1 .

Choosing an appropriate loss function is crucial in Bayesian analysis. To comprehensively evaluate
Bayesian estimates, we consider several types of loss functions: squared error (SR), linear exponential
(LINEX), Al-Bayyati (AB), and general entropy (GE). The definitions of the SR, AB, and GE loss
functions for the model parameter Θ are as follows:

ℓS R(Θ, Θ̃) =
(
Θ − Θ̃

)2
,

ℓLINEX(Θ, Θ̃) = ec(Θ̃−Θ) − c(Θ̃ − Θ) − 1, c , 0,

ℓAB(Θ, Θ̃) = Θa
(
Θ − Θ̃

)2
, a ∈ R,

ℓGE(Θ, Θ̃) =
(
Θ̃

Θ

)a

− a ln
(
Θ̃

Θ

)
− 1,

where Θ̃ is the estimate ofΘ, and a in the AB and GE loss functions indicates the degree of asymmetry.
In Bayesian analysis, defining an appropriate loss function is essential for determining the optimal
estimate of an unknown parameter. Numerous loss functions have been developed in the literature to
accommodate various loss structures. For further information, see Calabria and Pulcini [14] and EL-
Sagheer et al. [21]. When a > 0, a positive error (overestimation) (Θ̃ > Θ) results in more significant
consequences than a negative error (underestimation), leading to a highly skewed asymmetric loss
function. Conversely, if a < 0, the opposite is true. When a is close to zero, the estimates
derived from the asymmetric loss function and the squared error (SR) loss function tend to be quite
similar. As a result, asymmetric loss functions are particularly suitable for lifetime modeling. For
instance, overestimating the survival function and failure rate function is often more detrimental than
underestimating them. The Bayesian estimate of the model parameter T = T (Θ), based on the SR, AB,
LINEX, and GE loss functions, can generally be expressed as follows:

T̃S R = E(T (Θ)|z) =
∫
Θ

T (Θ)ℜ(Θ|z)dΘ,

whereℜ(Θ|z) is the posterior distribution of Θ given the observed data z,

T̃AB =
E((T (Θ))a+1|z)
E((T (Θ))a|z)

=

∫
Θ

(T (Θ))a+1ℜ(Θ|z)dΘ∫
Θ

(T (Θ))aℜ(Θ|z)dΘ
,

where a is the asymmetry parameter for the AB loss function,

T̃LINEX =
−1
c

log
{
E

[
exp(−cT (Θ))|z

]}
=
−1
c

log
{∫
Θ

exp[−cT (Θ)]ℜ(Θ|z)dΘ
}
,
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where c is the asymmetry parameter for the LINEX loss function,

T̃GE =
(
E

(
(T (Θ))−a|z

))−1/a
=

(∫
Θ

(T (Θ))−aℜ(Θ|z)dΘ
)−1/a

,

where a is the asymmetry parameter for the GE loss function. These expressions represent the Bayesian
estimates under various loss functions, taking into account the posterior distribution ℜ(Θ|z) of the
unknown parameter Θ based on the observed data.

Under the SR loss function, the Bayes estimators of the unknown parameters (α, λ) are given by
their respective posterior means. Specifically:

α̃S R =
1

k(η, ρ)

∑
p

r,n∑
t,ν,ε

Ωt,ν,ε(i)Γ (r − ε + 2)Γ (ε + 1)(
η + Ψt,ν (z)

)r−ε+2
(
ρ + Ψt,ν

(
z2

2

))ε+1 , (3.3)

λ̃S R =
1

k(η, ρ)

∑
p

r,n∑
t,ν,ε

Ωt,ν,ε(i)Γ (r − ε + 1)Γ (ε + 2)(
η + Ψt,ν (z)

)r−ε+1
(
ρ + Ψt,ν

(
z2

2

))ε+2 . (3.4)

Under the LINEX, AB, and GE loss functions, the Bayes estimators of the parameters (α, λ) are as
follows:

α̃LINEX =
−1
c

log


1

k(η, ρ)

∑
p

r,n∑
t,ν,ε

Ωt,ν,ε(i)Γ (r − ε + 1)Γ (ε + 1)(
c + η + Ψt,ν (z)

)r−ε+1
(
ρ + Ψt,ν

(
z2

2

))ε+1

 , (3.5)

λ̃LINEX =
−1
c

log


1

k(η, ρ)

∑
p

r,n∑
t,ν,ε

Ωt,ν,ε(i)Γ (r − ε + 1)Γ (ε + 1)(
η + Ψt,ν (z)

)r−ε+1
(
c + ρ + Ψt,ν

(
z2

2

))ε+1

 , (3.6)

α̃AB =

∑
p

r,n∑
t,ν,ε

Ωt,ν,ε(i)Qt,ν,ε(a + 1)

∑
p

r,n∑
t,ν,ε

Ωt,ν,ε(i)Qt,ν,ε(a)

, (3.7)

λ̃AB =

∑
p

r,n∑
t,ν,ε

Ωt,ν,ε(i)Ht,ν,ε(a + 1)

∑
p

r,n∑
t,ν,ε

Ωt,ν,ε(i)Ht,ν,ε(a)

, (3.8)

where

Qt,ν,ε(a) =
Γ (r − ε + a + 1)Γ (ε + 1)(

η + Ψt,ν (z)
)r−ε+a+1

(
ρ + Ψt,ν

(
z2

2

))ε+1 ,

AIMS Mathematics Volume 10, Issue 1, 1162–1182.



1169

Ht,ν,ε(a) =
Γ (r − ε + 1)Γ (ε + a + 1)(

η + Ψt,ν (z)
)r−ε+1

(
ρ + Ψt,ν

(
z2

2

))ε+a+1 ,

α̃GE =

 1
k(η, ρ)

∑
p

r,n∑
t,ν,ε

Ωt,ν,ε(i)Qt,ν,ε(−a)


−1/a

, (3.9)

λ̃GE =

 1
k(η, ρ)

∑
p

r,n∑
t,ν,ε

Ωt,ν,ε(i)Ht,ν,ε(−a)


−1/a

. (3.10)

4. Bayes prediction

Based on the observed OMERSS in the two sample cases, we present the Bayesian prediction
distribution for future order statistics.

4.1. Bayesian prediction bounds

Let ys, for s = 1, . . . , r, represent a future independent type II censored sample from the same
population. Assume that y1 ≤ y2 ≤ . . . ≤ yr constitutes a type II censored sample of size r obtained
from a life test involving n items. Our objective is to develop a method for providing a Bayesian
prediction for the sth ordered lifetime ys of a future sample of size r, based on the observed sample z
from the same population. The pdf of ys is expressed as follows:

ϕs:n(ys|α, λ) =
s−1∑
ι=0

1∑
ς=0

aι,s(n)α1−ςλςyςs exp
(
−α(n + ι − s + 1)ys − λ(n + ι − s + 1)

y2
s

2

)
.

(4.1)

According to the definition of the Bayes predictive pdf of ys,

ϕ∗s:n(ys|z) =
∫
Θ

ϕs:n(ys|Θ)ℜ(Θ|z)dΘ. (4.2)

In light of this, along with (4.1) and (3.2), we have

ϕ∗s:n(ys|z) =
1

k(η, ρ)

∑
p

r,n∑
t,ν,ε,ι,ς

Ω∗t,ν,ε,ι,ς(i, n)yςs(
η + Ψt,ν (z) + ϱys

)r−ε−ς+2
(
ρ + Ψt,ν

(
z2

2

)
+ ϱ

y2
s

2

)ε+ς+1 ,

(4.3)

where
r,n∑

t,ν,ε,ι,ς

=

r,n∑
t,ν,ε

s−1∑
ι=0

1∑
ς=0

, Ω∗t,ν,ε,ι,ς(i, n) = Ωt,ν,ε(i)aι,s(n)Γ (r − ε − ς + 2)Γ (ε + ς + 1), and ϱ = (n + ι −

s + 1).
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To establish the prediction boundaries for ys, it is essential to determine the predictive survival
function p[ys > υ|z]. Therefore, based on Eq (4.3), we have:

p[ys > υ|z] =
∫ ∞

υ

ϕ∗s:n(ys|z)dys

=
1

k(η, ρ)

∑
p

r,n∑
t,ν,ε,ι,ς

Ω∗t,ν,ε,ι,ς(i, n)Φ(0,0)
t,ν,ε,ι,ς(υ), υ > 0, (4.4)

where Φ(o,c)
t,ν,ε,ι,ς(υ) =

∫ ∞

υ

e(ς+o) log ys−cys
(
η + Ψt,ν (z) + ϱys

)−(r−ε−ς+2)
(
ρ + Ψt,ν

(
z2

2

)
+ ϱ

y2
s

2

)−(ε+ς+1)

dys.

A two-sided 100π% predictive interval for ys (1 ≤ s ≤ r) is expressed as p[K(z) < ys < H(z)] = π,
where K(z) and H(z) represent the lower and upper confidence limits, respectively. These limits satisfy
the conditions: p[K(z) < ys] = 1+π

2 and p[ys > H(z)] = 1−π
2 . In this context, obtaining analytical

solutions for these limits is also challenging, which necessitates the use of an appropriate simulation
method.

4.2. Bayesian predictor of ys

With ϕ∗s:n(ys|z) provided by (4.3), the two-sample Bayesian predictive pdf of ys under the SR function
can be expressed as

ỹS R
s =

∫ ∞

0
ysϕ
∗
s:n(ys|z)dys

=
1

k(η, ρ)

∑
p

r,n∑
t,ν,ε,ι,ς

Ω∗t,ν,ε,ι,ς(i, n)Φ(1,0)
t,ν,ε,ι,ς(0). (4.5)

Additionally, the following expressions represent the Bayes point predictors of ys under the asymmetric
LINEX and GE loss functions, respectively:

ỹLINEX
s =

−1
c

log
[∫ ∞

0
exp(−cys)ϕ∗s:n(ys|z)dys

]
=
−1
c

log

 1
k(η, ρ)

∑
p

r,n∑
t,ν,ε,ι,ς

Ω∗t,ν,ε,ι,ς(i, n)Φ(0,c)
t,ν,ε,ι,ς(0)

 , (4.6)

ỹGE
s =

(∫ ∞

0
y−a

s ϕ
∗
s:n(ys|z)dys

)−1/a

=

 1
k(η, ρ)

∑
p

r,n∑
t,ν,ε,ι,ς

Ω∗t,ν,ε,ι,ς(i, n)Φ(−a,0)
t,ν,ε,ι,ς(0)


−1/a

. (4.7)

5. Illustrative example

5.1. Simulation study

To conduct Bayesian estimation and derive two-sample Bayesian prediction intervals based on
type II censoring for the ORSS and OMERSS procedures, a simulation study is carried out following
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these steps:

1) Set the hyperparameter values (η, ρ) = (0.5, 0.3) to generate α = 0.4999 and λ = 0.2998 from
ℏ(α, λ).

2) Generate n(= 3, 4, 5) SRSs from the LED using the transformation: Zi: j =

√(
α
λ

)2
− 2
λ

ln(1 − Ui: j)−
α
λ
, for i, j = 1, . . . , n, where Ui: j follows a uniform distribution on the interval (0, 1). Next, apply

the procedures for RSS as described in [31] and for MERSS with m1(= 1, 2, 3) and m2(= 2) as
outlined in Section 1. This process will yield the RSS and MERSS, which can then be ordered to
obtain the ORSS and OMERSS, respectively.

3) Calculate the Bayes estimates of α and λ using the SR, AB, LINEX, and GE loss functions as
outlined in Section 3.

4) Repeat Steps 2 and 3 m = 1000 times to calculate the average estimates (AV(ϑ̂) = 1
m

∑m
i=1 ϑ̂i),

the mean squared error (MSE(ϑ̂) = 1
m

∑m
i=1(ϑ − ϑ̂i)2), and the relative absolute bias (RAB(ϑ̂) =

1
m

∑m
i=1
|ϑ̂i−ϑ|
ϑ

), where ϑ̂ represents an estimate of ϑ = (α, λ).
5) Display the computational results of the Bayes estimates derived based on the ORSS and

OMERSS methods in Table 1.
6) For the two-sample Bayesian prediction of yı, where ı = 1, · · · , s, set the hyperparameter values

(η, ρ) = (1.5, 1.3) to generate α = 1.5005 and λ = 1.3052 from ℏ(α, λ). Subsequently, obtain
ORSS and OMERSS samples of size n = 3, 4, 5 from LED.

7) Use the results from Section 3 to construct (95%) two-sample Bayesian prediction intervals and
the Bayes predictive estimate for yı, where ı = 1, · · · , s, under the SR, GE, and LINEX functions.
The results are summarized in Table 2 for ORSS and OMERSS, respectively.

5.2. Discussion

The numerical results from the simulation studies, as shown in Tables 1–3, reveal the following
insights:

1) The AVs, APRs, MSEs, and RABs for ORSS and OMERSS decrease as r and n increase.
2) For fixed r and n, the AVs, MSEs, and RABs of the GE and LINEX loss functions increase with

increasing a and c.
3) The Bayes estimates of λ and α from OMERSS outperform those from ORSS in terms of AVs,

APRs, MSEs, and RABs.
4) The Bayes estimates derived from the LINEX, AB, and GE (with c = −0.1, a = −0.1,−0.6)

loss functions for λ and α are superior to those obtained using the LINEX, AB, and GE (with
c = 0.1, a = 0.3,−1.6) loss functions, based on AVs, MSEs, and RABs.

5) The Bayes estimates for λ from both ORSS and OMERSS are more accurate than those for α in
terms of AVs, APRs, MSEs, and RABs.

6) According to Table 2, the prediction estimators ỹs and their prediction intervals increase as s
rises for fixed n and r but decrease as n and r increase for fixed s, applicable to both ORSS and
OMERSS.

7) The predictive intervals from OMERSS demonstrate better results compared to those from ORSS
in all scenarios analyzed.

8) The Bayes predictive estimates for ỹs, s = 1, . . . , r, based on the LINEX and GE (with c =
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−0.1, a = −0.6) loss functions outperform those from LINEX and GE (with c = 0.1, a = −1.6)
and from the SR loss function.

9) The Bayes predictive estimates obtained from OMERSS are more effective than those derived
from ORSS.

10) The choice of small sample sizes n = 3, 4, 5 was deliberate and based on several considerations:
- Practical relevance: In many real-world applications, especially in medical and reliability
studies, obtaining large sample sizes can be challenging due to cost, time, and ethical constraints.
Our choice of smaller sample sizes reflects the practical limitations often encountered in such
fields.
- Demonstration of methodology: The primary goal of our simulation study is to demonstrate the
effectiveness and applicability of our Bayesian estimation and prediction methods under type II
censoring. Using smaller sample sizes allows us to clearly illustrate the methodology and its
performance in a controlled setting.
- Computational efficiency: Smaller sample sizes enable us to conduct a more extensive
simulation study with a larger number of replications (1000 replications in our case). This ensures
that our results are statistically robust and reliable, even with smaller sample sizes.
- Comparative analysis: By using smaller sample sizes, we can effectively compare the
performance of our methods (ORSS and OMERSS) under different conditions. This comparative
analysis is crucial for understanding the strengths and limitations of our approaches.

11) The series involved in the derivation of Bayesian estimators under various loss functions (e.g.,
squared error, linear exponential, Al-Bayyati, and general entropy) have been verified for
convergence. This ensures that the estimators are well-defined and reliable.

12) The series used in the calculation of Bayesian prediction bounds and predictive distributions have
also been checked for convergence. This ensures that the prediction intervals and estimates are
accurate and meaningful.

13) In our simulation study, we have ensured that the series used in the calculations are convergent
for the sample sizes and parameters considered. This guarantees the robustness and reliability of
our simulation results.

Based on the observations mentioned, we suggest utilizing the Bayes GE (with a = −0.6) loss
function for estimating the parameters, as well as the Bayes GE (with a = −0.6) loss function for
predicting future ordered observations in the context of OMERSS under type II censoring.

The traditional sampling methods such as SRS may not be as efficient as RSS and MERSS in
terms of reducing the mean squared error and relative absolute bias (Al-Saleh and Al-Hadrami [4];
Chen et al. [17]). Maximum likelihood estimation, while widely used, can be less robust in the presence
of censored data compared to our Bayesian approaches (Lai and Xie [27]). Other Bayesian methods
may not incorporate the same loss functions or prior distributions, which can affect the accuracy
and reliability of the estimates (Berger [10]). Our methods, particularly under type II censoring,
demonstrate superior performance in these aspects.
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Table 1. Bayesian estimates of α and λ, along with their associated AVs, MSEs, and RABs,
using both ORSS (Case I) and OMERSS (Case II).

LINEX AB GE
c = 0.1 c = −0.1 a = 0.3 a = −0.1 a = −1.6 a = −0.6

AV AV AV AV AV AV AV
MSE MSE MSE MSE MSE MSE MSE

n r ϑ RAB RAB RAB RAB RAB RAB RAB
3I 2 α 1.3680 1.5110 1.2540 1.4820 1.3280 1.4710 1.2950

0.8273 1.1490 0.6165 1.0060 0.7720 0.9924 0.7252
1.0740 1.2800 0.9155 1.2280 1.0250 1.2130 0.9839

λ 0.6945 0.8142 0.6099 0.8732 0.6328 0.8420 0.5895
0.0449 0.1096 0.0171 0.1489 0.0239 0.1259 0.0139
0.3895 0.6270 0.2257 0.7436 0.2706 0.6814 0.1966

4I 2 α 2.1370 2.3430 1.9740 2.2390 2.1020 2.2340 2.0710
2.7940 3.6090 2.2330 3.1090 2.6920 3.0960 2.1090
2.2080 2.5160 1.9640 2.3610 2.1560 2.3530 2.1090

λ 0.6806 0.8129 0.5912 0.8722 0.8722 0.8392 0.5698
0.0414 0.1116 0.0143 0.1504 0.1504 0.1261 0.0119
0.3616 0.6261 0.1893 0.7449 0.7449 0.6789 0.1665

3 α 1.1740 1.2610 1.0990 1.2640 1.1420 1.2530 1.1160
0.4658 0.5987 0.3672 0.5634 0.4354 0.5550 0.4103
0.7961 0.9157 0.6960 0.9084 0.7600 0.8960 0.7311

λ 0.7552 0.8797 0.6643 0.9329 0.6926 0.9010 0.6490
0.0794 0.1666 0.0370 0.2075 0.0497 0.1794 0.0339
0.5146 0.7618 0.3371 0.8671 0.3938 0.8033 0.3136

5I 2 α 2.8320 3.0820 2.6300 2.9230 2.8010 2.9200 2.7720
5.7150 7.1350 4.7230 6.1290 5.5800 6.1200 5.4520
3.2510 3.6260 2.9550 3.3880 3.2050 3.3830 3.1610

λ 0.6509 0.7807 0.5650 0.8413 0.5869 0.8091 0.5416
0.0302 0.0919 0.0089 0.1276 0.0138 0.1059 0.0073
0.3028 0.5625 0.1419 0.6839 0.1810 0.6195 0.1244

3 α 1.7010 1.8210 1.5980 1.7850 1.6720 1.7780 1.6460
1.4200 1.7390 1.1760 1.5940 1.3630 1.5840 1.3130
1.5520 1.7310 1.3980 1.6770 1.5080 1.6660 1.4710

λ 0.7701 0.9229 0.6653 0.9728 0.7002 0.9369 0.6512
0.0857 0.1980 0.0362 0.2396 0.0515 0.2059 0.0337
0.5386 0.8438 0.3302 0.9436 0.3996 0.8718 0.3045

4 α 1.0620 1.1240 1.0060 1.1370 1.0350 1.1280 1.0130
0.3076 0.3774 0.2516 0.3691 0.2885 0.3631 0.2730
0.6422 0.7215 0.5725 0.7276 0.6151 0.7173 0.5941

λ 0.8042 0.9290 0.7100 0.9770 0.7424 0.9454 0.6995
0.1202 0.2262 0.0635 0.2648 0.0834 0.2333 0.0627

Continued on the next page
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LINEX AB GE
c = 0.1 c = −0.1 a = 0.3 a = −0.1 a = −1.6 a = −0.6

AV AV AV AV AV AV AV
MSE MSE MSE MSE MSE MSE MSE

n r ϑ RAB RAB RAB RAB RAB RAB RAB
0.6181 0.8635 0.4367 0.9554 0.5020 0.8929 0.4243

3II 2 α 0.8300 0.9062 0.7681 0.9230 0.7970 0.9120 0.7709
0.2489 0.3483 0.1884 0.3049 0.2342 0.3011 0.2218
0.5291 0.6069 0.4745 0.5770 0.5190 0.5739 0.5106

λ 0.6085 0.6944 0.5449 0.7557 0.5573 0.7302 0.5212
0.0222 0.0549 0.0091 0.0830 0.0119 0.0691 0.0079
0.2614 0.4211 0.1561 0.5296 0.1812 0.4814 0.1427

4II 2 α 1.1580 1.2630 1.0740 1.2470 1.1270 1.2400 1.1010
0.6057 0.8304 0.4594 0.7223 0.5703 0.7166 0.5387
0.8624 1.0020 0.7556 0.9543 0.8347 0.9493 0.8096

λ 0.6199 0.7208 0.5481 0.7862 0.5631 0.7575 0.5229
0.0202 0.0580 0.0064 0.0909 0.0090 0.0745 0.0051
0.2489 0.4479 0.1254 0.5757 0.1505 0.5189 0.1153

3 α 0.6660 0.7079 0.6297 0.7331 0.6421 0.7251 0.6231
0.1484 0.1795 0.1280 0.1622 0.1463 0.1625 0.1440
0.4514 0.4786 0.4327 0.4501 0.4562 0.4532 0.4589

λ 0.5992 0.6784 0.5394 0.7383 0.5504 0.7140 0.5162
0.0250 0.0558 0.0121 0.0812 0.0153 0.0683 0.0115
0.2660 0.4052 0.1763 0.5025 0.2003 0.4582 0.1701

5II 2 α 1.7390 1.8940 1.6160 1.8250 1.7090 1.8200 1.6830
1.9170 2.5250 1.5150 2.1390 1.8470 2.1320 1.7810
1.6270 1.8540 1.4490 1.7450 1.5880 1.7400 1.5520

λ 0.6200 0.7293 0.5443 0.7957 0.5606 0.7657 0.5186
0.0205 0.0620 0.0062 0.0960 0.0090 0.0785 0.0052
0.2428 0.4616 0.1176 0.5946 0.1423 0.5344 0.1136

3 α 0.9904 1.0520 0.9368 1.0580 0.9662 1.0520 0.9462
0.4222 0.5321 0.3437 0.4801 0.4050 0.4779 0.3892
0.6660 0.7385 0.6075 0.7143 0.6527 0.7124 0.6406

λ 0.6743 0.7815 0.5966 0.8419 0.6161 0.8123 0.5753
0.0412 0.0960 0.0171 0.1327 0.0230 0.1121 0.0144
0.3584 0.5699 0.2128 0.6880 0.2506 0.6293 0.1915

4 α 0.5462 0.5705 0.5239 0.5991 0.5270 0.5919 0.5122
0.1077 0.1139 0.1041 0.1009 0.1119 0.1028 0.1149
0.4101 0.4123 0.4106 0.3817 0.4233 0.3876 0.4326

λ 0.6186 0.6901 0.5623 0.7441 0.5736 0.7217 0.5422
0.0392 0.0743 0.0216 0.0980 0.0268 0.0847 0.0209
0.3290 0.4517 0.2429 0.5294 0.2701 0.4904 0.2377
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Table 2. Bayesian predictive estimators and bounds for ys, s = 1, · · · , r, using ORSS (Case
I) and OMERSS (Case II).

ỹs

SR LINEX GE
Case n r s c = 0.1 c = −0.1 a = −1.6 a = −0.6 ϵL ϵU
I 3 2 1 0.2671 0.2631 0.2712 0.3400 0.2186 0.1671 0.3671

2 0.7324 0.7165 0.7496 0.8502 0.6551 0.6324 0.8324
4 2 1 0.2345 0.2316 0.2375 0.2967 0.1927 0.1345 0.3345

2 0.6518 0.6398 0.6646 0.7524 0.5850 0.5518 0.7518
3 1 0.2978 0.2936 0.3022 0.3705 0.2475 0.1978 0.3978

2 0.6702 0.6593 0.6816 0.7604 0.6086 0.5702 0.7702
3 1.2880 1.2590 1.3200 1.4180 1.2030 1.1880 1.3880

5 2 1 0.1702 0.1687 0.1718 0.2155 0.1399 0.0702 0.2702
2 0.4896 0.4827 0.4969 0.5664 0.4386 0.3896 0.5896

3 1 0.1386 0.1376 0.1397 0.1752 0.1141 0.0386 0.2354
2 0.3354 0.3323 0.3386 0.3856 0.3017 0.5993 0.2386
3 0.6993 0.6893 0.7098 0.7790 0.6468 0.4354 0.7993

4 1 0.3052 0.3019 0.3086 0.3640 0.2621 0.2052 0.5011
2 0.6011 0.5948 0.6076 0.6611 0.5586 0.8554 1.4150
3 0.9554 0.9446 0.9667 1.0210 0.9103 0.4052 0.7011
4 1.5150 1.4910 1.5410 1.6070 1.4560 1.0550 1.6150

II 3 2 1 0.5255 0.5129 0.5391 0.6498 0.4406 0.4255 0.6255
2 1.2980 1.2560 1.3460 1.4790 1.1800 1.1980 1.3980

4 2 1 0.4187 0.4100 0.4279 0.5243 0.3474 0.3187 0.5187
2 1.0860 1.0540 1.1210 1.2470 0.9802 0.9855 1.1860

3 1 0.3111 0.3059 0.3166 0.3944 0.2556 0.2111 0.4111
2 0.7109 0.6965 0.7264 0.8210 0.6385 0.6109 0.8109
3 1.3860 1.3460 1.4330 1.5520 1.2800 1.2860 1.4860

5 2 1 0.2911 0.2867 0.2958 0.3681 0.2395 0.1911 0.3911
2 0.7981 0.7801 0.8176 0.9216 0.7166 0.6981 0.8981

3 1 0.3746 0.3687 0.3807 0.4569 0.3168 0.2746 0.4746
2 0.8109 0.7966 0.8262 0.9098 0.7441 0.7109 0.9109
3 1.5020 1.4640 1.5440 1.6450 1.4100 1.4020 1.6020

4 1 0.2564 0.2533 0.2596 0.3181 0.2139 0.1564 0.3564
2 0.5463 0.5391 0.5538 0.6189 0.4970 0.4463 0.6463
3 0.9225 0.9080 0.9380 1.0120 0.8637 0.8225 1.0230
4 1.5570 1.5210 1.5980 1.6910 1.4720 1.4570 1.6570

Notice that Lϵ = |ϵU − ϵL| = 0.2 is the length prediction bound.
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Table 3. The RSS and MERSS derived from actual data.

Scheme I Scheme II
1.2 1.5 1.8 1.8 2.2 3.0 1.2
1.2 1.5 1.6 1.6 1.9 2.2 1.2 1.5
1.4 1.5 1.7 2.2 2.7 4.1 1.4 1.5 1.7
1.6 1.6 1.7 2.2 2.3 3.0 1.6 1.6 1.7 2.2
1.4 1.5 1.6 1.8 2.7 3.0 1.4
1.3 1.4 1.6 1.7 1.9 2.0 1.3 1.4

The SR loss function is commonly used due to its simplicity and ease of mathematical tractability.
The LINEX loss function is chosen for its ability to handle asymmetric losses, which is particularly
useful in scenarios where overestimation and underestimation have different costs. The AB loss
function is selected for its flexibility in incorporating different degrees of asymmetry, making it suitable
for a wide range of applications. The GE loss function is chosen for its robustness and ability to handle
different types of data distributions. We have compared these loss functions with alternative ones,
such as the absolute error loss function. The absolute error loss function is simpler but less flexible
in handling asymmetric losses compared to the LINEX and AB loss functions. The SR loss function,
while widely used, may not be as robust as the GE loss function in certain scenarios. Our selection of
loss functions is justified by their ability to provide more accurate and reliable estimates in the context
of our study. All series involved in the equations and calculations presented in this manuscript have
been checked for convergence. This ensures the validity and reliability of the Bayesian estimators and
prediction bounds derived in our study.

5.3. Application of LED distribution to real data

In this section, we employ a real dataset from the medical domain to demonstrate the theoretical
results presented in earlier sections. The dataset consists of the times reported by a group of 20 patients
who received an analgesic and subsequently felt better. The data, derived from Gross and Clark [26],
includes the following values: 1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5, 1.2, 1.4, 3.0,
1.7, 2.3, 1.6, and 2.0. To evaluate whether LED distribution with cdf (1.2) is a suitable fit for the data,
we perform a Kolmogorov-Smirnov (K-S) test and calculate the associated p-value. From the data and
cdf (1.2), we estimate the scale parameters λ and α by maximizing the likelihood function, resulting
in λ̂ = 0.0240 and α̂ = 0.4900. The K-S test statistic is computed to be 0.2340, with a corresponding
p-value of 0.3307. The computed p-value of over 0.05 suggests a strong fit between the actual dataset
and LED with cdf (1.2). This is further illustrated in Figure 1, which displays the histogram, empirical
cdf, and pdf (1.1) along with cdf (1.2) of the dataset, indicating a good correspondence between the
fitted LED and the empirical data. We have explored the potential application of our findings to other
types of distributions. For instance, the Weibull distribution is widely used in reliability and survival
analysis due to its flexibility in modeling different types of failure rates. The gamma distribution is
commonly applied in fields such as queuing theory and hydrology, while the log-normal distribution is
useful in modeling skewed data in economics and biology. By adapting our Bayesian estimation and
prediction methods to LED, we can enhance the precision and reliability of statistical analyses in these
areas.
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Figure 1. Histogram and empirical cdf (in red) compared to the pdf and cdf (in blue) of the
LED for the given dataset.

In the RSS method (Scheme I), we begin by randomly selecting n = 6 SRSs, each of equal size.
The items within each sample are ranked based on the variable of interest. The smallest observation
is measured from the first set. Subsequently, a second SRS of size 6 is randomly selected without
replacement from the remaining data, and the second smallest observation is recorded from this set.
This process continues until the sixth SRS of size 6 is selected without replacement. As a result, we
obtain the RSS values: (1.2, 1.5, 1.7, 2.2, 2.7, 2.0). For the MERSS method (Scheme II), we first
randomly select m1 = 4 SRSs of sizes 1, 2,..., 4. The maximum ordered observation from each of these
sets is accurately measured. We then repeat this procedure for an additional m2 = 2 sets of sizes 1 and 2,
this time measuring the minimum ordered observations instead of the maximum ones. The total sample
size for MERSS is n = 6, yielding the MERSS values: (1.2, 1.5, 1.7, 2.2, 1.4, 1.3). Consequently, we
can derive ORSS and OMERSS by arranging the RSS and MERSS values in ascending order. Table 4
presents the Bayesian estimates of the parameters α and λ for both the ORSS (Case I) and OMERSS
(Case II) methods. The estimates are provided for different censoring levels r = 2, 3, 4 and sample size
n = 6. The table includes estimates under various loss functions: LINEX, AB, and GE. The results
indicate that the OMERSS method generally provides more accurate estimates (lower MSE and RAB)
compared to the ORSS method, especially for higher censoring levels. This suggests that OMERSS
is more robust and reliable for parameter estimation in the context of the linear exponential model.
Table 5 presents the Bayesian predictive estimators and bounds for the real dataset using both the
ORSS (Case I) and OMERSS (Case II) methods. The table includes predictive estimates and bounds
for different censoring levels r and sample size n = 6. The results show that the OMERSS method
generally provides more accurate predictive estimates and tighter prediction bounds compared to the
ORSS method. This is evident from the lower values of ϵL and ϵU for OMERSS, indicating better
predictive performance. The predictive estimates under different loss functions (GE and LINEX) also
demonstrate the robustness of the OMERSS method in predicting future observations.

AIMS Mathematics Volume 10, Issue 1, 1162–1182.



1178

Table 4. Bayesian estimates based on the real dataset for n = 6, η = 0.5, and ρ = 0.3, using
both ORSS (Case I) and OMERSS (Case II).

LINEX AB GE
n r ϑ c = 0.1 c = −0.1 a = 0.3 a = −0.1 a = −1.6 a = −0.6
6I 2 α 0.6121 0.6579 0.5711 0.7109 0.5749 0.6926 0.5494

λ 0.7953 0.8707 0.7292 0.9200 0.7481 0.8968 0.7158
3 α 0.3882 0.4103 0.3680 0.4639 0.3602 0.4491 0.3412
λ 0.7195 0.7624 0.6793 0.8017 0.6878 0.7873 0.6657

4 α 0.1989 0.2062 0.1921 0.2463 0.1820 0.2372 0.1704
λ 0.4782 0.4908 0.4660 0.5144 0.4644 0.5092 0.4541

6II 2 α 1.3988 1.5016 1.3132 1.4793 1.3717 1.4757 1.3465
λ 0.5981 0.7015 0.5261 0.7711 0.5398 0.7417 0.4985

3 α 0.9885 1.0441 0.9383 1.0570 0.9640 1.0507 0.9434
λ 0.7294 0.8739 0.6307 0.9311 0.6605 0.8956 0.6120

4 α 0.2642 0.2744 0.2546 0.3156 0.2453 0.3059 0.2324
λ 0.6583 0.7021 0.6185 0.7464 0.6250 0.7314 0.6015

Table 5. Bayesian predictive estimators and bounds for n = 6, η = 0.5, and ρ = 0.3 based on
the real dataset, using ORSS (Case I) and OMERSS (Case II).

ỹs

SR LINEX GE
Case n r s c = 0.1 c = −0.1 a = −1.6 a = −0.6 ϵL ϵU
I 6 2 1 0.6849 0.6709 0.6995 0.7988 0.6006 0.5849 0.7849

2 1.5260 1.4900 1.5650 1.6630 1.4320 1.4260 1.6260
3 1 0.5227 0.5148 0.5309 0.6074 0.4596 0.4227 0.6227

2 1.0270 1.0120 1.0430 1.1120 0.9668 0.9270 1.1270
3 1.7460 1.7130 1.7810 1.8550 1.6730 1.6460 1.8460

4 1 0.5546 0.5465 0.5628 0.6361 0.4932 0.4546 0.6546
2 1.0150 1.0020 1.0290 1.0900 0.9620 0.9154 1.1150
3 1.5250 1.5050 1.5460 1.6030 1.4720 1.4250 1.6250
4 2.2810 2.2410 2.3250 2.3850 2.2130 2.1810 2.3810

II 6 2 1 1.0030 0.9751 1.0340 1.1600 0.8900 0.9032 1.1030
2 2.1620 2.0890 2.2490 2.3620 2.0320 2.0620 2.2620

3 1 0.2395 0.2364 0.2428 0.3043 0.1964 0.1395 0.3395
2 0.5593 0.5502 0.5689 0.6467 0.5017 0.4593 0.6593
3 1.1160 1.0900 1.1460 1.2510 1.0300 1.0160 1.2160

4 1 0.2956 0.2917 0.2995 0.3628 0.2489 0.1956 0.3956
2 0.6117 0.6031 0.6208 0.6896 0.5595 0.5117 0.7117
3 1.0090 0.9917 1.0270 1.1050 0.9468 0.9089 1.1090
4 1.6600 1.6180 1.7090 1.8060 1.5700 1.5600 1.7600

Notice that Lϵ = |ϵU − ϵL| = 0.2 is the length prediction bound.
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6. Conclusions

The performance of Bayes estimations and predictions based on ORSS and OMERSS for the linear
exponential distribution has been examined. OMERSS offers several practical advantages, including
improved estimation accuracy, reduced mean squared error, and enhanced robustness in the presence
of censored data. OMERSS can be more efficient than traditional sampling methods such as SRS and
RSS, particularly in scenarios where the data is skewed or follows a complex distribution. The MERSS
technique allows for more flexible and adaptive sampling, which can lead to better performance in
various applications. Additionally, OMERSS can provide more reliable estimates in situations where
the data is subject to type II censoring, making it a valuable tool for statistical inference in a wide range
of fields. Under type II censoring, the Bayes estimates of the unknown parameters α and λ—using
SR, AB, LINEX, and GE loss functions—and the predictive estimates for future observations have
been established. A real dataset from the medical field has been utilized to illustrate the theoretical
concepts discussed in this study. Additionally, a Monte Carlo simulation was performed to assess the
effectiveness and accuracy of the estimation and prediction methods. Based on the numerical findings,
we recommend using the Bayes method for estimation and prediction based on OMERSS in the context
of the specified censoring scenarios.
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