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Abstract: Uncertainty measures are widely used in various statistical applications, including
hypothesis testing and characterizations. Numerous generalizations of information measures with
different extensions have been developed. Inspired by this, our study introduced the principle of the
fractional generalized entropy measure and investigated its properties through stochastic comparisons
and characterizations using order statistics and upper random variables. We explored the monotonicity
and symmetry properties of the fractional generalized entropy, emphasizing conditions under which it
uniquely identified the parent distribution. In the case of distributions that were completely continuous,
The symmetrical nature of order statistics suggested that symmetry of the underpinning distribution.
Based on the fractional generalized entropy measure in non-parametric estimate of order statistics, a
new test for the symmetry hypothesis was put forward. This test offered the supremacy of not requiring
the symmetry center to be specified. Additionally, an example of real-world data was shown to illustrate
how the suggested technique might be applied.
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1. Introduction

The measurement of a probability distribution’s uncertainty has attracted a lot of attention in recent
decades. Shannon [43] established the idea of entropy, which is a key measure of relevance in
information theory. In many scientific fields, the entropy function measure is a helpful instrument. In
the continuous domain, uncertainty measures have undergone a number of modifications. Differential
entropy is the name given to the continuous case of entropy. Throughout the entire work, Y stands
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for a random variable (r.v.) follows an entirely continuously cumulative distribution function (CDF) F
and a matching probability density function (PDF) f . The entropy model of the Shannon differential
measure is represented as follows

Ψ(Y) = −
∫ ∞

−∞

f (y) ln f (y)dy. (1.1)

The literature has presented potential substitute measurements of information. On fact, a measure
of uncertainty akin to Ψ(Y) was presented by Rao et al. [40]; located to the side of right-hand of (1.1),
the survival function in the form F(y) = 1 − F(y) = P(Y > y) takes the location of the PDF f . This
is generally recognized as the cumulative residual entropy measure (CRE), and its definition for an r.v.
that is not negative is

RΨ(Y) = −
∫ ∞

−∞

F(y) ln F(y)dy =
∫ ∞

−∞

F(y)Φ(y)dy, (1.2)

seeing that the function of the cumulative hazard rate is expressed as

Φ(y) =
[
− ln F(y)

]
=

∫ y

0
η(u)du, y ≥ 0, (1.3)

and the hazard rate function form is η(v) = f (v)
F(v)

, v ≥ 0. In keeping with this, Di Crescenzo and
Longobardi [16] established and examined cumulative entropy as a comparable measure. The CDF
F(y) = P(Y ≤ y) is used to define this, i.e., (also see Navarro et al. [34]) by

CΨ(Y) = −
∫ κ

0
F(y) ln F(y)dy, (1.4)

where Y’s support is denoted by (0, κ). It is usually quite interesting to see how Shannon entropy is
generated for different fields. Under the discrete case, the author created a novel entropy in [46] using
fractional calculus, which is the fractional entropy function given by

FΨ(p1, p2, ..., pn) =
n∑

i=1

pi(− ln pi)δ, 0 ≤ δ ≤ 1. (1.5)

It is non-additive, concave, and positive fractional entropy. It also fulfills Lesche and the
thermodynamic case of stability in a physical sense. Furthermore, compared to a single entropy value,
the research described in [27] shows that the measure of the fractional entropy model has a better
vulnerability to the signal development, enabling the revelation of additional features and information
about the underlying system.

Recently, under the continuous case, fractional versions of a number of different information
measures have been put out. Xiong et al. [48] have examined and discussed a number of aspects of the
cumulative fractional entropy model, including its limitations, how it is related to stochastic ordering
and empirical estimation, its change and adaptation under linear transformations, and its numerous
connections to other functions, which is given by

CFGRΨ(Y)δ =
∫ ∞

−∞

F(y)[Φ(y)]δdy, 0 ≤ δ ≤ 1, (1.6)
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where Φ(y) is defined in (1.3). The CRE measure was expanded to the generalization measure of the
fractional cumulative residual entropy model as a notable study by Di Crescenzo et al. [17] as follows:

FGRΨ(Y)θ = Q(θ)
∫ ∞

−∞

F(y)[Φ(y)]θdy, (1.7)

where Φ(y) is defined in (1.3), and Q(θ) = 1
Γ(θ+1) , θ ≥ 0. The cumulative residual generalized entropy,

developed by Psarrakos and Navarro [38], is identified with FGRΨ(Y)n if θ is a positive integer, such
as θ = n ∈ N, see also Psarrakos and Toomaj [39] for more features. The dispersion measure that has
a strong association with the upper record values of a set of not dependent, identically distributed r.v.’s
is FGRΨ(Y)n, it should be noted. Furthermore, it is associated with the relevation transform and the
interepoch intervals of a non-homogeneous Poisson process (for some new findings on this measure,
see, for example, Toomaj and Di Crescenzo [45] and sources therewith).

Additional findings for the fractional generalized model of the cumulative residual entropy version
were examined by Alomani and Kayid [6]. Using this model, they carried out several stochastic
comparisons and found correlations between it and other reliability measures and a few well-known
stochastic orders. Furthermore, they demonstrated that, given an appropriate prior distribution
function, the measure equals the Bayesian risk of a mean residual lifespan.

A basic premise of statistical analysis is that the population being studied has a symmetric
underlying distribution. Regression models, for example, require a symmetric distribution for errors.
As a result, we need to rigorously verify the symmetry assumption. Presume that S Y is F’s support.
Additionally, suppose that there is a mean µ such that, for every y ∈ S Y , F(µ− z)+F(µ+ z) = 1. In this
case, Y is said to have a symmetrical distribution surrounding µ. In probability and statistics, symmetry
is a basic structural assumption that may be applied to a wide range of issues. In the literature, several
elements of symmetry in probability distributions have been studied in detail. Numerous writers
have characterized symmetric distributions using order statistics and other ordered data sets (like
sequential order statistics and record values). By way of illustration, Balakrishnan and Selvitella [10]
demonstrated that, for a given sample of size n and some of fixed r = 1, . . . , n, Yr:n

D
= Yn−r+1:n, provided

and only if F is considered to be symmetric about 0, with noting that D
= indicates that the distribution

of the two r.v.s is identical. Furthermore, Ahmadi [2] provided several novel descriptions of symmetric
distributions to be continuous using k-records. Mahdizadeh and Zamanzade used ranked set samplings
to estimate the symmetrical distribution function non-parametrically [28]. Generally speaking, based
on a distribution’s unique features, criteria may be created to assess whether or not it is symmetric.
Goodness-of-fit testing is therefore used to test for the symmetry; for instance, see Dai et al. [15] and
Bozin et al. [12].

Several symmetry tests have been proposed in the literature based on uncertainty measurements
of ordered variables. Xiong et al. [49] utilized the measure of extropy model of the upper and lower
k-records to test for symmetry. Jose and Sathar [25] examined the measure of extropy of the upper and
lower k-records in the context of nth symmetry. Gupta and Chaudhary [23] recently characterized
continual symmetric distributions using the extropy measure of the record values. For additional
discussions, see Park [37], Noughabi [35], Noughabi and Jarrahiferiz [36], and Husseiny [24].

Throughout this article, we will address the stochastic orders that are remembered later with the goal
of offering appropriate comparisons. Let’s presuming that Y1 and Y2 are two r.v.’s with corresponding
PDFs f1 and f2, and CDFs of F1 and F2 with the continuous left inverses F−1

1 (y) = inf{v : F1(v) ≥ y}
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and F−1
2 (y) = inf{v : F2(v) ≥ y} , 0 < y < 1, respectively. Consequently, for all y ≥ 0, less than Y2 is Y1:

1) in the order of the likelihood of ratio, indicated by Y1 ≤Lr Y2, if f1(y)
f2(y) is decreasing in y.

2) in the order of the hazard of rate, indicated by Y1 ≤hrt Y2, if ηY1(y) ≥ ηY1(y), for all y.

3) in the order of the usual of stochastic, indicated by Y1 ≤S t Y2, if F1(y) ≤ F2(y).

4) in the order of the super-additive, indicated by Y1 ≤S u−A Y2, if F−1
2 F1(y) is super-additive.

5) in the order of the dispersive, indicated by Y1 ≤Disp Y2, if F−1
2 F1(y) − y is increasing in y ≥ 0.

For information on their primary characteristics, we direct the reader to Shaked and Shanthikumar’s
book [42].

Work motivation

Many physical and financial r.v.’s, such as stock returns, chromatographic separation, asset pricing,
and nuclear resonance spectroscopy, are predicated on the symmetrical distribution as a fundamental
premise. Because symmetrical distribution provides a consistent substructure for role-modeling,
measuring and evaluating data that is both physical and financial, it makes statistical analysis easier.
We should mention that testing for symmetry has a rich history and is among the earliest classical non-
parametric topics. A number of writers have looked at it based on characterization results. A solution
to the symmetry question is often crucial for many topics in the social sciences, computer science,
engineering, and econometrics, as noted by Jozefczyk [26]. Thus, the information gathered in this
article might help address your query by keeping an eye on some. Thus, by keeping an eye on a few
basic symmetry characteristics of the measures of uncertainty of the specified distribution, the findings
in this study could help address that query. As mentioned in different references, the extropy measure
is used to test symmetry. Therefore, we chose another measure of information to be implemented in
the symmetry test and compared the behaviors of these measures.

This article aims to present the concept of the fractional generalized entropy model and study its
features in the context of the r.v.’s, with a discussion on symmetric continuous distributions. The
remaining content of the paper is organized as follows: Section 2 discloses the continuous case
of the fractional generalized entropy model. Using order statistics and upper records, we provide
stochastic comparisons, characterizations, and monotonic properties. In Section 3, we discuss some
characteristics of symmetry and its testing based on non-parametric estimation of order statistics.

2. Fractional generalized entropy measure

In this section, we disclose the continuous case of the fractional generalized entropy. It is noted
in the literature of information theory that entropy functions appear and their properties are studied,
then the cumulative entropy or cumulative residual appears and is studied. Here, we take the concept
of the measure of the fractional generalized model of the cumulative residual entropy and define the
fractional generalized model of the entropy as follows, drawing inspiration from the characteristics of
CRE in Eq (1.2), fractional generalized version of the residual cumulative entropy measure in Eq (1.7),
and the fractional entropy in Eq (1.5), and we obtain:

FGΨ(Y)θ = Q(θ)
∫ ∞

−∞

f (y)[− ln f (y)]θdy = Q(θ)
∫ ∞

−∞

f (y)[ϕ(y)]θdy, (2.1)
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with noting that ϕ(y) =
[
− ln f (y)

]
, and Q(θ) = 1

Γ(θ+1) , θ ≥ 0.
We shall talk about some stochastic order of the fractional generalized model of the entropy measure

in the subsequent case. We may examine the following results as Shaked and Shanthikumar’s Theorem
4.B.2 [42] indicating that if Y1 ≤S t Y2, then Y1 ≤S u−A Y2 implies Y1 ≤Disp Y2.

Lemma 2.1. Provided that Y1 ≤Disp Y2, then FGΨ(Y1)θ ≤ FGΨ(Y2)θ.

Proof. It is clear that, from (2.1), we obtain:

FGΨ(Y)θ = Q(θ)
∫ ∞

−∞

f (y)[ϕ(y)]θdy = Q(θ)
∫ 1

0
[ϕ(F−1(u))]θdu.

If Y1 ≤Disp Y2, then, we obtain f1(F−1
1 (u)) ≥ f2(F−1

2 (u)) for all u ∈ (0, 1). Therefore,

FGΨ(Y1)θ = Q(θ)
∫ 1

0
[ϕ(F−1

1 (u))]θdu ≤ Q(θ)
∫ 1

0
[ϕ(F−1

2 (u))]θ = FGΨ(Y2)θ.

□

Note that, Alomani and Kayid [6] showed that if Y1 ≤Disp Y2, then FGRΨ(Y1)θ ≤ FGRΨ(Y2)θ.
Assume that the observations Y1, ...,Yn have identical distributions and are independent, with CDF

F and PDF f . Y1:n ≤ Y2:n ≤ ≤ Yn:n represents the sample’s order statistics. Shaked and Shanthikumar’s
Theorem 3.B.26 [42] asserts that Y1,i:n ≤Disp Y2,i:n, i = 1, 2, ..., n, if Y1 ≤Disp Y2. Thus, we can readily
arrive at the following conclusion based on Lemma 2.1.

Proposition 2.1. Provided that Y1 ≤Disp Y2, then FGΨ(Y1;i:n)θ ≤ FGΨ(Y2;i:n)θ.

When an observation Y j has a value that is considered to be bigger than that of all earlier
observations, it is referred to as an upper r.v.’s record; thus, Y j is considered to be an upper record
r.v., if Y j > Yi for all i < j. An analogous definition may be given for records from lower r.v. Belzunce
et al. [11] demonstrated that if Y1 ≤Disp Y2, then UY1

n ≤Disp UY2
n , where UY1

n and UY2
n are the nth

upper records r.v.’s of Y1 and Y2, correspondingly. Based on Lemma 2.1, we immediately arrive at the
following outcome.

Proposition 2.2. Provided that Y1 ≤Disp Y2, then FGΨ(UY1
n )θ ≤ FGΨ(UY2

n )θ.

2.1. Redesigned characterizations using ordered variables

The PDF of a sample of size n with an underlying distribution Y that contains the rth order statistic
Yr:n, 1 ≤ r ≤ n, is obtained by

fr:n(y) =
1

βg(r, n − r + 1)
Fr−1(y)F

n−r
(y) f (y), (2.2)

with nothing that βg(r, n − r + 1) = Γ(r)Γ(n−r+1)
Γ(n+1) .

The primary findings in this part will be demonstrated by the Stone–Weierstrass Theorem’s
corollary (Aliprantis and Burkinshaw, [3]), which is the following result.

Lemma 2.2. If ζ is a continual function on the interval [0, 1] with the condition that
∫ 1

0
xnζ(x)dx = 0

for n ≥ 0, then ζ(x) = 0 for every x ∈ [0, 1].
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Now, we demonstrate in the upcoming theorem that the features of the fractional generalized
entropy information of Yr:n may be used to characterize the parent distribution.

Theorem 2.1. Given two PDFs f1, f2 with corresponding CDFs F1, F2 of the r.v., Y1 and Y2,
respectively. For a specified value of r, where 1 ≤ r ≤ n, and θ ≥ 0, we observe the following:

Y1
D
= Y2 ⇐⇒ FGΨ(Y1;r:n)θ = FGΨ(Y2;r:n)θ,∀n ≥ r,

where

FGΨ(Yi;r:n)θ = Q(θ)
∫ 1

0
(1 − u)r−1um

[
A(u) − ln fi(F−1

i (1 − u))
]θ

du,

A(u) =
[
− ln 1

βg(r,n−r+1) (1 − u)r−1um
]
, and under the condition

∣∣∣∣ A(u)
− ln fi(F−1

i (1−u))

∣∣∣∣ < 1, m = n − r, i = 1, 2.

Proof. The necessity is inconsequential; therefore, it is essential to demonstrate the sufficiency aspect.
From (2.1) and (2.2), with m = n − r, suppose that FGΨ(Y1;r:n)θ = FGΨ(Y2;r:n)θ, and this situation can
be stated as ∫ ∞

−∞

Fr−1
1 (y)F

m
1 (y) f1(y)

[
− ln

1
βg(r, n − r + 1)

Fr−1
1 (y)F

m
1 (y) f1(y)

]θ
dy

=

∫ ∞

−∞

Fr−1
2 (y)F

m
2 (y) f2(y)

[
− ln

1
βg(r, n − r + 1)

Fr−1
2 (y)F

m
2 (y) f2(y)

]θ
dy.

Use u = F1(y) and u = F2(y) on the previous equation, respectively. As a result, it can be concluded
that ∫ 1

0
(1 − u)r−1

[
− ln

1
βg(r, n − r + 1)

(1 − u)r−1um f1(F−1
1 (1 − u))

]θ
umdu

=

∫ 1

0
(1 − u)r−1

[
− ln

1
βg(r, n − r + 1)

(1 − u)r−1um f2(F−1
2 (1 − u))

]θ
umdu.

(2.3)

Since θ ≥ 0, we can use the generalized binomial theorem for non-negative real exponents of the
following expression:[

− ln
1

βg(r, n − r + 1)
(1 − u)r−1um f (F−1(1 − u))

]θ
=

∞∑
k=0

(
θ

k

) [
− ln

1
βg(r, n − r + 1)

(1 − u)r−1um

]k

×
[
− ln f (F−1(1 − u))

]θ−k

=

∞∑
k=0

(
θ

k

)
A(u)k

[
− ln f (F−1(1 − u))

]θ−k
,

where A(u) =
[
− ln 1

βg(r,n−r+1) (1 − u)r−1um
]
. The series converges if:

∣∣∣∣ A(u)
− ln f (F−1(1−u))

∣∣∣∣ < 1, which ensures
that the ratio of A(u) to − ln f (F−1(1 − u)) lies within the radius of convergence of the binomial series
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expansion. This condition ensures that the infinite series representation is valid for non-negative real
θ. Then, we can write (2.3) as

∞∑
k=0

(
θ

k

) ∫ 1

0
A(u)k(1 − u)r−1

[
(− log f1(F−1

1 (1 − u)))θ−k − (− log f2(F−1
2 (1 − u)))θ−k

]
um du = 0.

Thus, the given condition becomes:

∞∑
k=0

(
θ

k

) ∫ 1

0
B(u; k)um du = 0,

where B(u; k) = A(u)k(1 − u)r−1
[
(− log f1(F−1

1 (1 − u)))θ−k − (− log f2(F−1
2 (1 − u)))θ−k

]
. Assuming that

interchanging the sum and integral is justified (which is valid here since the sum is finite), we have:∫ 1

0

 ∞∑
k=0

(
θ

k

)
B(u; k)

 um du = 0.

Define: ω(u) =
∑∞

k=0

(
θ
k

)
B(u; k). Then, the condition simplifies to:∫ 1

0
ω(u)um du = 0.

From Lemma 2.2, we conclude: ω(u) = 0, for every u ∈ [0, 1]. Recall that:

ω(u) =
∞∑

k=0

(
θ

k

)
B(u; k) =

∞∑
k=0

(
θ

k

)
A(u)k(1 − u)r−1[(− log f1(F−1

1 (1 − u)))θ−k

− (− log f2(F−1
2 (1 − u)))θ−k].

Factor out (1 − u)r−1:

ω(u) = (1 − u)r−1
∞∑

k=0

(
θ

k

)
A(u)k

[
(− log f1(F−1

1 (1 − u)))θ−k − (− log f2(F−1
2 (1 − u)))θ−k

]
.

Set
x1(u) = − log f1(F−1

1 (1 − u)), x2(u) = − log f2(F−1
2 (1 − u)).

Then,

ω(u) = (1 − u)r−1

 ∞∑
k=0

(
θ

k

)
A(u)kx1(u)θ−k −

∞∑
k=0

(
θ

k

)
A(u)kx2(u)θ−k

 .
Observe that

∞∑
k=0

(
θ

k

)
A(u)kxθ−k = (A(u) + x)θ.

Applying this to our context:

ω(u) = (1 − u)r−1
[
(A(u) + x1(u))θ − (A(u) + x2(u))θ

]
= 0 for all u ∈ [0, 1].

AIMS Mathematics Volume 10, Issue 1, 1116–1141.



1123

Given that (1 − u)r−1 , 0 for u ∈ [0, 1) when r ≥ 1, we can divide both sides by (1 − u)r−1, yielding:

(A(u) + x1(u))θ − (A(u) + x2(u))θ = 0 ⇒ (A(u) + x1(u))θ = (A(u) + x2(u))θ.

Therefore, we can see that,

A(u) + x1(u) = A(u) + x2(u) ⇒ x1(u) = x2(u).

Substitute back

− log f1(F−1
1 (1 − u)) = − log f2(F−1

2 (1 − u)) ⇒ f1(F−1
1 (1 − u)) = f2(F−1

2 (1 − u)).

By taking 1−u = p, we have f1(F−1
1 (p)) = f2(F−1

2 (p)) for all p ∈ [0, 1]. Thus, (F−1
1 )′(p) = (F−1

2 )′(p)
for all p ∈ [0, 1]. Hence, F−1

1 (p) = F−1
2 (p) + cn for all p ∈ [0, 1], where cn is a constant. By noting that

limp→0 F−1
1 (p) = limp→0 F−1

2 (p) = q, we have F−1
1 (p) = F−1

2 (p) for all p ∈ [0, 1]. Hence, the outcome
ensues. □

Remember that if η̃Y(y) = f (y)
F(y) is decreasing in y, then Y is said to have a decreased hazard rate

reversed (DHRV). The following theory addresses this issue based on the rth order statistics.

Theorem 2.2. If Y is DHRV, and θ takes an odd value, then FGΨ(Yr:n)θ is decreasing in n for fixed r,
1 ≤ r ≤ n.

Proof. According to (2.1) and (2.2), it follows that

FGΨ(Yr:n)θ
FGΨ(Yr:n+1)θ

=
n − r + 1

n + 1

∫ ∞
−∞

Fr−1(y)F
n−r

(y) f (y)
[
− ln Fr−1(y)F

n−r
(y) f (y)

]θ
dy∫ ∞

−∞
Fr−1(y)F

n−r+1
(y) f (y)

[
− ln Fr−1(y)F

n−r+1
(y) f (y)

]θ
dy

= C∗
∫ 1

0
1

βg(r,n−r+1)u
r−1(1 − u)n−r

[
− ln ur(1 − u)n−rη̃Y(F−1(u))

]θ
du∫ 1

0
1

βg(r,n−r+2)u
r−1(1 − u)n−r+1 [

− ln ur(1 − u)n−r+1η̃Y(F−1(u))
]θ du

=

E
[(
− ln Ur(1 − U)n−rη̃Y(F−1(U))

)θ]
E

[(
− ln Vr(1 − V)n−r+1η̃Y(F−1(V))

)θ] ,
where C∗ = (n−r+1)(n+1)

(n+1)(n−r+1) , U and V are the rth order statistics of uniform samples with sizes n and n + 1

respectively, with PDF’s
∫ 1

0
1

βg(r,n−r+1)u
r−1(1 − u)n−rdu and

∫ 1

0
1

βg(r,n−r+2)u
r−1(1 − u)n−r+1du, respectively,

and 0 ≤ u ≤ 1. As per Shaked and Shanthikumar [42], Theorem 1.B.28, U ≥hrt V , and hence, U ≥S t V .
For θ takes an odd value, then from the premise we have that

E
[(

ln Ur(1 − U)n−rη̃Y(F−1(U))
)θ]
≥ E

[(
ln Vr(1 − V)n−r+1η̃Y(F−1(V))

)θ]
,

which indicates that FGΨ(Yr:n)θ
FGΨ(Yr:n+1)θ

≥ 1. This brings the proof to a close. □
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Recall the DHRV property of Pareto distribution with CDF 1 − y−d, y ≥ 1, d > 0, and Weibull
distribution with CDF 1 − e−( y

d2
)d1 , y ≥ 0, d1 > 1, d2 > 0 (i.e., when d1 > 1, the Weibull distribution has

an increasing hazard rate and a DHRV). Figure 1 shows the factional generalized model of the entropy
measure of the rth order statistics (r = 3) with increasing n for Pareto and Weibull distribution and
θ = 1, 3, 5, 7, which ensures the decreasing property of Theorem 2.2 when θ is odd.

Figure 1. Fractional generalized entropy of 3rd order statistics Y3:n of Pareto (with parameter
d = 2), and Weibull (with parameters d1 = 3, d1 = 2) distributions, with increasing n and
θ = 1, 3, 5, 7.
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2.2. Redesigned characterizations using nth upper random variables

If Y(n) represents the component’s lifespan and n minimum repairs are permitted, then the
Y(n) survival function is equal to the (n + 1)th higher record value r.v. (refer to Shaked and
Shanthikumar [42]). As a result, researching the idea of record values is equivalent to researching
lifetimes with few repairs. The nth upper r.v. UY

n of Y has the following pdf:

fUY
n
(y) =

f (y)[− ln F(y)]n−1

(n − 1)!
. (2.4)

Goffman and Pedrick [21] provide the following lemma to support the impending characterization
findings for fractional generalized entropy of r.v.’s.

Lemma 2.3. Provide the Laguerre polynomial

Lm(y) = ey dm

dym yme−y =

m∑
j=0

(−1) j

(
m
j

)
m(m − 1)...( j + 1)y j.

In the space L2(0,∞), the set of Laguerre functions 1
m!e

−y
2 Lm(y) for m ≥ 0 forms a complete

orthonormal system. If g ∈ L2(0,∞) and
∫ ∞

0
g(y)e

−y
2 Lm(y) dy = 0 for all m ≥ 0, then g is almost

everywhere equal to zero.

Theorem 2.3. Given that UY1
n and UY2

n are the nth upper records r.v.’s of Y1 and Y2, respectively.
Assuming the conditions of Theorem 2.1, we have

Y1
D
= Y2 ⇐⇒ FGΨ(UY1

n )θ = FGΨ(UY2
n )θ,∀n ≥ 1,

where E(ln2 f1(Y)) < +∞, E(ln2 f2(Y)) < +∞,

FGΨ(UYi
n )θ = Q(θ)

∫ ∞

0
e−uun−1

[
A∗(u) − ln fi(F−1

i (1 − e−u))
]θ

du,

A∗(u) =
[
− ln un−1

(n−1)!

]
, and under the condition

∣∣∣∣ A∗(u)
− ln fi(F−1

i (1−e−u))

∣∣∣∣ < 1, i = 1 2.

Proof. The necessity is inconsequential; therefore, it is essential to demonstrate the sufficiency aspect.
From (2.1) and (2.4), suppose that FGΨ(UY1

n )θ = FGΨ(UY2
n )θ, and this situation can be stated as∫ ∞

−∞

[− ln F1(y)]n−1 f1(y)
− ln

[− ln F1(y)]n−1

(n − 1)!
f1(y)

θ dy

=

∫ ∞

−∞

[− ln F2(y)]n−1 f2(y)
− ln

[− ln F2(y)]n−1

(n − 1)!
f2(y)

θ dy.

Use u = − ln F1(y) and u = − ln F2(y) on the previous equation, respectively. As a result, it can be
concluded that ∫ ∞

0

[
− ln

un−1

(n − 1)!
f1(F−1

1 (1 − e−u))
]θ

e−uun−1du

=

∫ ∞

0

[
− ln

un−1

(n − 1)!
f2(F−1

2 (1 − e−u))
]θ

e−uun−1du.

(2.5)
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Since θ ≥ 0, we can use the generalized binomial theorem for non-negative real exponents of the
following expression:[

− ln
un−1

(n − 1)!
f (F−1(1 − e−u))

]θ
=

∞∑
k=0

(
θ

k

) [
− ln

un−1

(n − 1)!

]k

×
[
− ln f (F−1(1 − e−u))

]θ−k

=

∞∑
k=0

(
θ

k

)
A∗(u)k

[
− ln f (F−1(1 − e−u))

]θ−k
,

where A∗(u) =
[
− ln un−1

(n−1)!

]
. The series converges if:

∣∣∣∣ A∗(u)
− ln fi(F−1

i (1−e−u))

∣∣∣∣ < 1, which ensures that the ratio

of A∗(u) to − ln fi(F−1
i (1 − e−u)) lies within the radius of convergence of the binomial series expansion.

This condition ensures that the infinite series representation is valid for non-negative real θ. Then, we
can write (2.5) as

∞∑
k=0

(
θ

k

) ∫ 1

0
A∗(u)k

[
(− log f1(F−1

1 (1 − e−u)))θ−k − (− log f2(F−1
2 (1 − e−u)))θ−k

]
e−uun−1 du = 0.

Thus, the given condition becomes:

∞∑
k=0

(
θ

k

) ∫ 1

0
B∗(u; k)e

−u
2 Ln(u) du = 0,

where B∗(u; k) = e
−u
2 A∗(u)k

[
(− log f1(F−1

1 (1 − e−u)))θ−k − (− log f2(F−1
2 (1 − e−u)))θ−k

]
, and Lemma 2.3

gives the Laguerre polynomial, which is Ln(u). Assuming that interchanging the sum and integral is
justified (which is valid here since the sum is finite), we have:∫ 1

0

 ∞∑
k=0

(
θ

k

)
B∗(u; k)

 e
−u
2 Ln(u) du = 0.

Define: ω∗(u) =
∑∞

k=0

(
θ
k

)
B∗(u; k). Then, the condition simplifies to:∫ ∞

0
ω∗(u)e

−u
2 Ln(u) du = 0.

From Lemma 2.3, we conclude: ω∗(u) = 0, for all u ∈ [0, 1]. Therefore, applying the similar
substitutions in Theorem 2.1, we acquire

− log f1(F−1
1 (1 − e−u)) = − log f2(F−1

2 (1 − e−u)) ⇒ f1(F−1
1 (1 − e−u)) = f2(F−1

2 (1 − e−u)),

for all u ∈ [0,∞]. Or, in other word, f1(F−1
1 (p∗)) = f2(F−1

2 (p∗)), for all 1 − e−u = p∗ ∈ [0, 1]. The
remainder resembles that found in Theorem 2.1. The intended outcome so follows. □

The monotonic characteristics of the fractional generalized entropy of r.v.’s will be covered in the
descriptions that follow.

Theorem 2.4. Let Y be an r.v. with CDF F and PDF f . If f (F−1(y)) is increasing in y, then FGΨ(UY
n )θ

is increasing in n.
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Proof. According to (2.1) and (2.4), it follows that

FGΨ(UY
n )θ

FGΨ(UY
n+1)θ

=

∫ ∞
−∞

f (y)[− ln F(y)]n−1

(n−1)!

[
− ln f (y)[− ln F(y)]n−1

(n−1)!

]θ
dy

∫ ∞
−∞

f (y)[− ln F(y)]n

(n)!

[
− ln f (y)[− ln F(y)]n

(n)!

]θ
dy

=
n!

(n − 1)!
·

∫ ∞
0

un−1e−u
[
− ln f (F−1(1 − e−u)) − (n − 1) ln u + ln(n − 1)!

]θ
du∫ ∞

0
une−u [

− ln f (F−1(1 − e−u)) − n ln u + ln n!
]θ du

= n ·

∫ ∞
0

un−1e−u
[
− ln f (F−1(1 − e−u)) − (n − 1) ln u + ln(n − 1)!

]θ
du∫ ∞

0
une−u [

− ln f (F−1(1 − e−u)) − n ln u + ln n!
]θ du

=

∫ ∞
0

1
Γ(n)u

n−1e−u
[
− ln f (F−1(1 − e−u)) − (n − 1) ln u + ln(n − 1)!

]θ
du∫ ∞

0
1

Γ(n+1)u
ne−u [

− ln f (F−1(1 − e−u)) − n ln u + ln n!
]θ du

=

E
[(
− ln f (F−1(1−e−U ))Un−1

(n−1)!

)θ]
E

[(
− ln f (F−1(1−e−V ))Vn

(n)!

)θ] ,
where the r.v.’s U and V follows Gamma(n, 1) and Gamma(n + 1, 1) distributions with PDF’s fU(y) =
yn−1e−y

(n−1)! and fV(y) = yne−y

n! , respectively. Due to the decreasing nature of fU (y)
fV (y) =

n
y , we can infer that

U ≤Lr V , which implies U ≤S t V . Notice that for x ≥ 0, f (F−1(1 − e−x)) is increasing. Additionally,
we have

E

(
− ln

f (F−1(1 − e−U))Un−1

(n − 1)!

)θ
≤ E

(
− ln

f (F−1(1 − e−V))Vn

(n)!

)θ
,

which indicates that FGΨ(UY
n )θ

FGΨ(UY
n+1)θ
≤ 1. This brings the proof to a close. □

Under the nth record UY
n of exponential distribution with CDF F(y)1 − ey, y ≥ 0. Figure 2 shows

the factional generalized entropy with increasing n and θ = 2, 3, which ensure the increasing property
of Theorem 2.4.

Figure 2. Fractional generalized entropy of nth record UY
n of exponential distribution with

increasing n and θ = 2, 3.

AIMS Mathematics Volume 10, Issue 1, 1116–1141.



1128

3. Characteristics symmetric in the fractional generalized entropy

When the PDF of the underlying identical besides the independent distributed r.v.’s is symmetric,
several intriguing characteristics of the fractional generalized entropy of order statistics emerge. We
start with two lemmas, the proof of which flows directly from the definition of fr:n in (2.2) and the
symmetry assumption.

Lemma 3.1. (Fashandi and Ahmadi [19]) With support S Y , PDF f , and CDF F, and Y as a continual
r.v., the relationship

f
(
F−1(u)

)
= f

(
F−1(1 − u)

)
for all u ∈ (0, 1),

implies that F(y) is symmetric about a constant c ∈ S Y .

Lemma 3.2. (Balakrishnan and Selvitella [10]) Let us assume that the order statistic Y j:n, j = 1, ..., n,
has a parent distribution with a PDF f such that f (µ + y) = f (µ − y), y ≥ 0, where µ represents the
mean of Y. Next, we have

F(µ + y) = F(µ − y), f j:n(µ + y) = fn− j+1(µ − y).

Theorem 3.1. With the exception of independent distributed samples from Y whose PDF is considered
to be symmetric about its mean µ, let Y1, ...,Yn be identical. Therefore, we have

1) If n is considered to be odd, then, FGΨ(Y j:n)θ = FGΨ(Yn− j+1:n)θ, j = 1, ..., n.

2) Y has a symmetric PDF if, and only if, FGΨ(Y1:n)θ = FGΨ(Yn:n)θ, ∀n ≥ 1.

Proof. 1) From Lemma 3.2 and Eq (2.1), we get

FGΨ(Y j:n)θ = Q(θ)
∫ ∞

−∞

f j:n(y)[− ln f j:n(y)]θdy = Q(θ)
∫ ∞

−∞

f j:n(µ + y)[− ln f j:n(µ + y)]θdy

= Q(θ)
∫ ∞

−∞

fn− j+1:n(µ − y)[− ln fn+ j−1:n(µ − y)]θdy

= Q(θ)
∫ ∞

−∞

fn− j+1:n(y)[− ln fn− j+1:n(y)]θdy = FGΨ(Yn− j+1:n)θ.

2) This theorem’s first component implies the necessity. Next, we present the sufficiency. Assume
FGΨ(Y1:n)θ = FGΨ(Yn:n)θ, ∀n ≥ 1. Applying a similar approach to demonstrate Theorem 2.1’s
sufficiency, and from Lemma 3.1, we obtain for all u ∈ (0, 1),

f (F−1(1 − u)) = f (F−1(u)),

thus, − d
du F−1(1 − u) = d

du F−1(u). This implies −F−1(1 − u) = F−1(u) + Cn, then, f (−F−1(u) −
Cn) = f (F−1(u)), where Cn is a constant, and for all u ∈ (0, 1). Put F−1(u) = −Cn

2 + y, we get
f (−Cn

2 − y) = f (−Cn
2 + y), for all y ∈ R, which proves the theorem.

□

Corollary 3.1. In accordance with Theorem 3.1, given that ∆FGΨ(Yq:n)θ = FGΨ(Yq+1:n)θ−FGΨ(Yq:n)θ
is the operator for forward difference with respect to q, where 1 ≤ q ≤ n − 1. Then, ∆FGΨ(Y j:n)θ =
−∆FGΨ(Yn− j:n)θ, j = 1, ..., n.
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Remark 3.1. Let FGΨ(Y1:n)θ − FGΨ(Yn:n)θ be Ωn. If, and only if, Y is symmetric, then Ωn = 0,
n = 1, 2, .... As a result, Ωn may be used as a core idea of symmetry and as a symmetry test statistic.

We may infer that the fractional generalized entropy FGΨ(Y j:n)θ at the median is always locally
greatest or minimal based on the assumptions in Corollary 3.1. This can be demonstrated using the
uniform distribution U(−1, 1). For the fractional generalized entropy of the median ( j = 4), when n
is set to 7, the minimum values of 0.463721 with θ = 2 and 0.0843204 with θ = 4, as well as the
maximum value of 0.0259421 with θ = 3, are obtained (see Figure 3).

Figure 3. Fractional generalized entropy of the rth order statistics of U(−1, 1) distribution.

3.1. Test of symmetry via non-parametric estimation

In this part, we will discuss the non-parametric estimation form of the fractional generalized entropy
which is analogy to Vasicek [47], and use it to test the symmetry. Developing statistical processes has
made extensive use of the Vasicek entropy estimator of (1.1). It is provided by

Ψ( fn) = −
∫ ∞

−∞

f (y) ln f (y)dy = −
∫ 1

0
ln

[
d

dρ
F−1(ρ)

]−1

dρ

=
1
n

n∑
j=1

ln
[ n
2w

(Y( j+w) − Y( j−w))
]
,

(3.1)

with noting that the window positive integer size is w < n
2 and Y j = Y1 if j < 1 and Y j = Yn if j > n.

We can rewrite FGΨ(Y1:n)θ and FGΨ(Yn:n)θ, respectively, as

FGΨ(Y1:n)θ =
∫ 1

0
n(1 − u)n−1

[
− ln n(1 − u)n−1 f (F−1(y))

]θ
du,
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FGΨ(Yn:n)θ =
∫ 1

0
n(u)n−1

[
− ln n(u)n−1 f (F−1(y))

]θ
du.

Keep in mind that Park [37] suggested a symmetry test based on the entropy of order statistics,
drawing inspiration from Vasicek [47]. Therefore, we can derive the sample estimates of FGΨ(Y1:k)θ
and FGΨ(Yk:k)θ, based on sample of size n and k = 1, ...,∞, by identification to Vasicek [47],
respectively, as

̂FGΨ(Y1:k)θ =
Q(θ)

n

 n∑
j=1

k
(
1 −

j
n + 1

)k−1 [
− ln k

(
1 −

j
n + 1

)k−1 (
2w

n(Y( j+w) − Y( j−w))

)]θ
=

kQ(θ)
n

n∑
j=1

(
1 −

j
n + 1

)k−1 [
− ln k

(
1 −

j
n + 1

)k−1 (
2w

n(Y( j+w) − Y( j−w))

)]θ
,

̂FGΨ(Yk:k)θ =
Q(θ)

n

 n∑
j=1

k
( j
n + 1

)k−1 [
− ln k

( j
n + 1

)k−1 (
2w

n(Y( j+w) − Y( j−w))

)]θ
=

kQ(θ)
n

n∑
j=1

( j
n + 1

)k−1 [
− ln k

( j
n + 1

)k−1 (
2w

n(Y( j+w) − Y( j−w))

)]θ
,

Consequently, Ω̂k = ̂FGΨ(Y1:k)θ − ̂FGΨ(Yk:k)θ, where k = 1, 2, ...,∞, can be estimated using

Ω̂k =
kQ(θ)

n

n∑
j=1

(1 − j
n + 1

)k−1 [
− ln k

(
1 −

j
n + 1

)k−1 (
2w

n(Y( j+w) − Y( j−w))

)]θ

−

( j
n + 1

)k−1 [
− ln k

( j
n + 1

)k−1 (
2w

n(Y( j+w) − Y( j−w))

)]θ .
For the sake of simplicity, we simply use k = 2 in the following, and we suggest using

Ω̂2 =
2Q(θ)

n

n∑
j=1

(1 − j
n + 1

) [
− ln 2

(
1 −

j
n + 1

) ( 2w
n(Y( j+w) − Y( j−w))

)]θ
−

( j
n + 1

) [
− ln 2

( j
n + 1

) ( 2w
n(Y( j+w) − Y( j−w))

)]θ .
This is the sample estimate of Ω2 = FGΨ(Y1:2)θ − FGΨ(Y2:2)θ, used to determine if the distribution
of Y is symmetric. Therefore, we reject the premise of symmetry because small or large values of Ω2

might be interpreted as a sign of non-symmetry.
Regretfully, the values of Ω̂2 rely on the window size w in addition to the sample. Determining the

precise distribution of Ω̂2 under the null hypothesis is too difficult. As a result, to ascertain its critical
values, we employ Monte Carlo simulation. In accordance with earlier literature (see, for instance,
McWilliams [29] and Corzo and Babativa [14]), we choose the distribution of the generalized lambda
as an alternative distribution and simulate a sample of sizes n = 20, 30, 50, 100 from nine instances of
this distribution. Thus, the modeled data is expressed as

yi = γ1 +
uγ3

i − (1 − ui)γ4

γ2
, 0 ≤ ui ≤ 1, i = 1, 2, ..., n.
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Table 1 lists the values of γ1, γ2, γ3, and γ4, which were selected by McWilliams [29]. One thousand
samples with sizes of 20, 30, 50, and 100 are created for each case. To select w, the heuristic formula
used for entropy estimate, as proposed by Grzegorzewski and Wieczorkowski [22], is

r = [
√

n + 0.5], (3.2)

depending on the floor value. Based on 50,000 generated samples from the standard normal
distribution, the test statistic |Ω̂2| distribution forms for n = 25, 50, 75, 100, 150, and w selected as
defined in (3.2) are displayed in Figure 4. Wolfram Mathematica (version 13) was chosen for its
robust random number generation capabilities and symbolic computation, which were essential for
generating the samples and calculating the test statistic. R software was used for its powerful statistical
computing environment and graphics capabilities, which were utilized for the subsequent data analysis
and visualization of the distributions. Therefore, we can clearly see that as the sample size increases,
the distribution becomes more symmetrical.

Table 1. The generalized lambda distribution parameters utilized in the Monte Carlo
simulation are broken down into nine categories.

Case γ1 γ2 γ3 γ4 Skewness Kurtosis
1 0.0000 0.1975 0.1349 0.1349 0.0000 3.0000
2 -0.1167 -0.3517 -0.1300 -0.1600 0.8000 11.4000
3 0.0000 -1.0000 -0.1000 -0.1800 2.0000 21.2000
4 3.5865 0.0431 0.0252 0.0940 0.9000 4.2000
5 0.0000 -1.0000 -0.0075 -0.0300 1.5000 7.5000
6 0.0000 1.0000 1.4000 0.2500 0.5000 2.2000
7 0.0000 1.0000 0.0001 0.1000 1.5000 5.8000
8 0.0000 -1.0000 -0.0010 -0.1300 3.1600 23.8000
9 0.0000 -1.0000 -0.0001 -0.1700 3.8800 40.7000
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Figure 4. Test statistic’s empirical densities were produced with 50, 000 samples from the
null distribution with sizes of n = 25, 50, 75, 100, 150.

Tables 2 provides the precise critical values of the test statistic |Ω̂2| for different sample sizes
by a 1000-repetition Monte Carlo simulation, corresponding to the significance level α = 0.05.
Additionally, the proportion of rejections of the symmetry null hypothesis at significance level α = 0.05
among the 1000 samples that are in the crucial range is used to determine the test’s power. Table 3
displays the predicted power values for the suggested test.

Table 2. Critical intervals for the test statistic |Ω̂2| at level of significance 0.05.

n\θ 0.5 0.8 1 1.5
20 (0.27845, 0.780614) (0.568249, 0.91149) (0.763465, 0.882621) (0.965966, 1.16259)
30 (0.269064, 0.691) (0.527914, 0.820641) (0.706145,0.851285) (0.951857, 1.10022)
50 (0.248773 , 0.539401) (0.49003 ,0.702245 ) (0.657996 ,0.781161 ) (0.948808 ,1.04897 )
75 (0.231658 , 0.451866) (0.450263 ,0.631636 ) (0.605813 ,0.72826 ) (0.909779 ,0.98083 )
100 (0.195129 , 0.384403) (0.386637 ,0.553443 ) (0.526217 ,0.651678 ) (0.833306 ,0.886064 )
150 (0.162138 , 0.317101) (0.325805 ,0.477334 ) (0.448865 ,0.573832 ) (0.74274 ,0.786942 )
n\θ 2 2.5 3 3.5
20 (1.22615, 1.4222) (1.42361, 1.60101) (1.55507, 1.74352) (1.55972, 1.82734)
30 (1.17452, 1.37511) (1.36072, 1.56505) (1.48666, 1.69651) (1.52876, 1.77516)
50 (1.15663 ,1.3296 ) (1.33021 ,1.52634 ) (1.46184, 1.66176) (1.52632, 1.73709)
75 (1.1149 ,1.26238 ) (1.28865 ,1.46699 ) (1.41209, 1.60889) (1.48568, 1.68481)
100 (1.034 ,1.16065 ) (1.19667 ,1.36794 ) (1.31887, 1.51328) (1.39654, 1.59316)
150 (0.944579 ,1.04632 ) (1.10848 ,1.26421 ) (1.23693, 1.41404) (1.31222, 1.49884)
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Table 3. Comparison of the test’s power analysis at the significance level 0.05.

Alternative n |Ω̂2|

θ = 0.5 0.8 1 1.5 2 2.5 3 4
Case 1(H0) 20 0.061 0.051 0.048 0.05 0.055 0.062 0.073 0.045

30 0.061 0.061 0.052 0.062 0.058 0.044 0.055 0.051
50 0.055 0.057 0.062 0.052 0.054 0.052 0.055 0.049
100 0.058 0.06 0.05 0.052 0.074 0.056 0.042 0.063

Case 2 20 0.122 0.107 0.079 0.176 0.214 0.198 0.24 0.223
30 0.133 0.132 0.077 0.189 0.201 0.196 0.19 0.231
50 0.166 0.131 0.092 0.231 0.222 0.211 0.201 0.2
100 0.182 0.146 0.11 0.25 0.278 0.276 0.231 0.232

Case 3 20 0.204 0.302 0.089 0.59 0.55 0.864 0.889 0.965
30 0.182 0.295 0.193 0.814 0.536 0.977 0.996 1.000
50 0.356 0.367 0.263 0.913 0.733 1.000 1.000 1.000
100 0.274 0.299 0.539 0.921 0.987 1.000 1.000 0.987

Case 4 20 0.361 0.553 0.112 0.974 0.982 0.988 0.991 0.992
30 0.663 0.704 0.328 0.998 0.995 0.998 0.998 0.997
50 0.81 0.83 0.488 1.000 1.000 1.000 1.000 1.000
100 0.971 0.969 0.84 1.000 1.000 1.000 1.000 1.000

Case 5 20 1.000 0.999 0.165 1.000 1.000 0.921 0.972 1.000
30 1.000 0.996 0.451 0.998 0.983 0.729 0.939 0.993
50 1.000 1.000 0.651 0.901 0.898 0.773 0.869 0.998
100 1.000 0.955 0.938 0.948 0.814 0.783 0.956 0.914

Case 6 20 0.139 0.489 0.176 0.261 0.793 0.809 0.979 0.999
30 0.242 0.621 0.418 0.432 0.932 0.982 0.992 1.000
50 0.417 0.761 0.619 0.564 0.996 1.000 0.999 1.000
100 0.54 0.966 0.832 0.671 1.000 1.000 1.000 1.000

Case 7 20 0.76 0.551 0.165 0.784 0.734 0.913 0.865 0.998
30 0.672 0.373 0.353 0.359 0.743 0.901 0.914 0.999
50 0.986 0.377 0.403 0.538 0.943 0.908 0.993 1.000
100 0.873 0.278 0.154 0.917 1.000 0.972 0.94 1.000

Case 8 20 0.154 0.135 0.105 0.476 0.834 0.9 0.921 0.997
30 0.076 0.156 0.196 0.618 0.94 0.881 0.952 1.000
50 0.238 0.362 0.159 0.821 0.996 0.868 0.935 1.000
100 0.022 0.983 0.118 0.998 1.000 0.859 0.678 1.000

Case 9 20 0.05 0.18 0.098 0.547 0.9 0.822 0.895 0.999
30 0.017 0.384 0.138 0.741 0.985 0.754 0.896 1.000
50 0.058 0.711 0.109 0.907 1.000 0.694 0.852 1.000
100 0.05 1.000 0.21 1.000 1.000 0.514 0.592 1.000

The critical values and power of our proposed test for symmetry at significance level α = 0.05 were
computed using the subsequent steps:
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1) Create a sample of size n using the conventional normal distribution, and then compute the test
statistics for the sample data;

2) Perform 1000 repetitions of Step 1 and establish the critical values as the 25th and 975th quantiles

of the test statistics (i.e., we examined the 25th and 975th order statistics Ω̂(25)
2 and Ω̂(975)

2 and

specified the critical values Ω̂α=0.05
2 = Ω̂

(975)
2 and Ω̂α=0.05

2 = Ω̂
(975)
2 , because a α = 0.05, α2 =

0.025 = 25
1000 , 1 − α2 = 0.975 = 975

1000 : The null hypothesis is rejected if Ω̂2 < Ω̂
(25)
2 or Ω̂2 > Ω̂

(975)
2

and accepted if Ω̂(25)
2 < Ω̂2 < Ω̂

(975)
2 );

3) Create a sample of size n from the null distribution and determine if the test statistic’s absolute
value exceeds the crucial value;

4) The test’s power is the rejection percentage after 1000 repetitions of Step 3.

Monte Carlo analyses are carried out to look at how well our test performs. The tests listed below
are regarded as the competitors, and the power values of the suggested test are then contrasted with
those of the rivals in Tables 3 and 4.

1) The McWilliams test [29] relies on T s(1), the total number of runs.

2) The Baklizi test [7] relies on an adjusted runs test, as demonstrated by T s(2).

3) T s(3) represents the Wilcoxon Signed-Rank Test, which was proposed by Gibbons and
Chakraborti [20].

4) Relies on the Wilcoxon two-sample test, represented by T s(4), the Tajjudin test [44].

5) T s(5) represents the Cheng and Balakrishnan test [13].

6) The Modarres test T s(6)
p , where p is a trimming proportion, is represented as [30].

7) T s(7)
n;p represents the Baklizi test [8], where n and p represent the sample size and a trimming

proportion, respectively.

8) T s(8), the second Baklizi test [8].

9) The Baklizi test T s(9), as reported in [9].

10) T s(10) represents the Corzo and Babativa [14].

11) The Noughabi and Jarrahiferiz [36] are based on T s(11), which is the extropy of order statistics
test.
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Table 4. Comparison of the test’s power analysis at the significance level 0.05.
Alternative n T s(1) T s(2) T s(3) T s(4) T s(5) T s(6)

25 T s(6)
60 T s(7)

n;0 T s(7)
n;0.8 T s(8) T s(9) T s(10) T s(11)

Case 1(H0) 20 0.046 0.051 0.043 0.045 0.048 0.047 0.046 0.051 0.055 0.055 0.046 0.056 0.049
30 0.049 0.053 0.052 0.051 0.052 0.051 0.054 0.051 0.054 0.048 0.046 0.047 0.048
50 0.051 0.054 0.050 0.052 0.051 0.049 0.049 0.049 0.051 0.058 0.051 0.046 0.049
100 0.051 0.047 0.052 0.048 0.052 0.053 0.051 0.055 0.054 0.049 0.051 0.048 0.049

Case 2 20 0.052 0.057 0.051 0.051 0.054 0.054 0.053 0.057 0.062 0.046 0.058 0.070 0.097
30 0.052 0.051 0.055 0.056 0.061 0.053 0.055 0.051 0.063 0.058 0.062 0.061 0.130
50 0.055 0.056 0.052 0.060 0.070 0.062 0.066 0.058 0.062 0.053 0.075 0.068 0.201
100 0.054 0.051 0.055 0.071 0.091 0.057 0.062 0.053 0.066 0.065 0.106 0.084 0.324

Case 3 20 0.067 0.075 0.055 0.079 0.080 0.079 0.087 0.057 0.088 0.070 0.114 0.112 0.667
30 0.074 0.075 0.062 0.097 0.119 0.094 0.109 0.069 0.128 0.088 0.156 0.125 0.809
50 0.089 0.094 0.064 0.131 0.204 0.120 0.153 0.075 0.145 0.141 0.253 0.206 0.920
100 0.113 0.109 0.088 0.224 0.366 0.169 0.217 0.122 0.228 0.233 0.486 0.356 0.988

Case 4 20 0.090 0.103 0.061 0.106 0.118 0.122 0.142 0.072 0.138 0.087 0.187 0.177 0.038
30 0.114 0.122 0.070 0.149 0.219 0.166 0.199 0.100 0.229 0.142 0.287 0.243 0.071
50 0.143 0.154 0.085 0.209 0.428 0.234 0.301 0.144 0.303 0.314 0.499 0.443 0.160
100 0.216 0.209 0.127 0.385 0.757 0.406 0.522 0.333 0.572 0.595 0.818 0.750 0.567

Case 5 20 0.115 0.131 0.067 0.133 0.155 0.162 0.190 0.095 0.165 0.120 0.254 0.235 0.992
30 0.151 0.160 0.080 0.194 0.309 0.232 0.287 0.131 0.333 0.219 0.404 0.343 0.998
50 0.197 0.213 0.103 0.287 0.587 0.342 0.437 0.230 0.457 0.455 0.668 0.602 1.000
100 0.321 0.316 0.166 0.522 0.890 0.566 0.696 0.556 0.769 0.784 0.939 0.885 1.000

Case 6 20 0.200 0.234 0.072 0.160 0.256 0.346 0.396 0.136 0.267 0.191 0.420 0.468 0.454
30 0.303 0.330 0.095 0.231 0.606 0.558 0.671 0.256 0.649 0.469 0.653 0.715 0.610
50 0.497 0.524 0.122 0.364 0.950 0.825 0.920 0.642 0.908 0.914 0.894 0.972 0.742
100 0.782 0.782 0.198 0.633 1.000 0.989 0.998 0.995 1.000 1.000 0.994 1.000 1.000

Case 7 20 0.311 0.358 0.096 0.281 0.421 0.511 0.578 0.226 0.330 0.314 0.593 0.644 0.997
30 0.457 0.490 0.123 0.393 0.797 0.750 0.828 0.444 0.823 0.689 0.854 0.868 0.999
50 0.683 0.707 0.185 0.600 0.991 0.941 0.977 0.860 0.978 0.980 0.980 0.994 1.000
100 0.928 0.927 0.358 0.883 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Case 8 20 0.373 0.426 0.105 0.330 0.494 0.594 0.656 0.295 0.366 0.389 0.666 0.715 0.999
30 0.539 0.570 0.150 0.484 0.861 0.819 0.878 0.555 0.876 0.790 0.913 0.915 1.000
50 0.761 0.782 0.233 0.697 0.996 0.970 0.989 0.930 0.991 0.991 0.993 0.998 1.000
100 0.966 0.965 0.420 0.947 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Case 9 20 0.399 0.452 0.112 0.351 0.530 0.631 0.696 0.322 0.359 0.428 0.692 0.752 0.998
30 0.580 0.614 0.152 0.498 0.877 0.848 0.900 0.608 0.898 0.821 0.924 0.929 1.000
50 0.802 0.821 0.241 0.725 0.997 0.979 0.992 0.953 0.993 0.995 0.995 0.999 1.000
100 0.980 0.980 0.441 0.956 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

3.2. Real data set

To demonstrate our process, we take into consideration the data from Cobb [18]. The dataset below
includes observations of the Nile River’s yearly flow at Aswan between 1871 and 1970. Plots of the
data’s histogram and kernel density estimation are displayed in Figure 5, and the Q-Q plot is in Figure
6.

The numbers are 1120, 1160, 963, 1210, 1160, 1160, 813, 1230, 1370, 1140, 995, 935, 1110, 994,
1020, 960, 1180, 799, 958, 1140, 1100, 1210, 1150, 1250, 1260, 1220, 1030, 1100, 774, 840, 874,
694, 940, 833, 701, 916, 692, 1020, 1050, 969, 831, 726, 456, 824, 702, 1120, 1100, 832, 764, 821,
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768, 845, 864, 862, 698, 845, 744, 796, 1040, 759, 781, 865, 845, 944, 984, 897, 822, 1010, 771, 676,
649, 846, 812, 742, 801, 1040, 860, 874, 848, 890, 744, 749, 838, 1050, 918, 986, 797, 923, 975, 815,
1020, 906, 901, 1170, 912, 746, 919, 718, 714, 740.

Figure 5. The data set’s histogram and kernel density estimation.

Figure 6. Q-Q plot for the data.

With a kurtosis of 2.695093 and a skewness of 0.3223697, the data is roughly symmetric. The
symmetry hypothesis may be explored through our process. The values of the test statistic are |Ω̂2| =
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0.10484 at θ = 0.5, |Ω̂2| = 0.292881 at θ = 0.8, |Ω̂2| = 0.509922 at θ = 1, and |Ω̂2| = 1.56183 at θ = 1.5.
These correspond to p-values of 0.9165028, 0.7696131, 0.6101061, and 0.118328, respectively. As a
result, the symmetry hypothesis is confirmed.

4. Comparative analysis study

This study proposed a symmetry test statistic based on the fractional generalized entropy of order
statistics, where the spacing between the first and last-order statistics of the measure is proved to be
symmetric if it vanishes. After generating 50,000 samples, the plots of the PDFs of the proposed test
statistic with different sample sizes show that the PDF plot becomes more symmetric as n increases.
Under the generalized lambda distribution with nine different cases as alternative distributions, a
comparison research with eleven competitor tests was carried out, and the test statistic’s performance
was examined using the power values calculated by Monte Carlo simulation techniques. (noting
that the 11th test is the extropy test statistic). As expected, the powers of all the tests in Case 1 of
Tables 3 and 4 are close to 0.05, indicating a symmetric distribution. The corresponding distribution
is asymmetric in the other eight examples, with the exception of cases 2 and 3, which are almost
symmetric. Depending on the different values of θ in our test statistic, the power of the test varies. In
general, we find that when θ = 2, 4, which are even values, the test statistic gives the best results in
most cases. We can interpret the optimal performance of the test statistic at θ = 2, 4: the model or
test performs best when θ is positive, making negative values irrelevant for the analysis. Moreover,
the extropy and fractional generalized entropy tests (where θ is an even value) exhibit outstanding
power, and there are notable variations in power values between the suggested tests and the rival tests.
Therefore, we anticipate that the suggested test will outperform the competing tests in a wide range of
practical applications. Additionally, a real-world data set has been used to assess the test procedure’s
ability to detect symmetric nature.

5. Conclusions and future work

In this consideration, we have presented the fractional generalized model of the entropy measure.
Some stochastic comparisons and characterizations of the measure of order statistics and nth upper
r.v.’s have been discussed. Furthermore, monotonic characteristics, certain symmetric qualities, and
the circumstances in which the fractional generalized entropy of order statistics and r.v.’s may uniquely
indicate their parent distributions have been provided. Based on the fractional generalized entropy
measure of order statistics, we have examined the test of symmetry. One benefit of this test is that
it eliminates the need to determine the symmetry’s center. After conducting a thorough empirical
investigation, we have demonstrated that the test based on fractional generalized entropy can be
compared with other competing tests by changing the values of θ and that there are significant variations
in the test’s power values. All things considered, the simulation research indicates that our suggested
test, which is based on the fractional generalized entropy of order statistics, works well, particularly
when θ = 2, 4, which are even values. Therefore, we anticipate that the suggested test will outperform
the competing tests in a wide range of applications in real-world, which can be seen in the presented
real data example. In future work, we could extend the fractional generalized entropy to other tests of
hypothesis, such as the test of uniformity, as mentioned in [41]. Moreover, we could implement this
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model for the concomitants of ordered variables, as mentioned in [24, 31, 32]. In addition, we could
connect this work with Pythagorean fuzzy information, as mentioned in [50]. See also [1, 4, 5, 33].

Author contributions

M. S. Mohamed, M. A. Almuqrin: methodology, conceptualization, investigation, software,
resources, writing-original draft, writing-review and editing. All authors have read and approved the
final version of the manuscript for publication.

Use of Generative-AI tools declaration

This essay was written without the help of artificial intelligence (AI) techniques, according to the
authors.

Acknowledgments

The authors extend the appreciation to the Deanship of Postgraduate Studies and Scientific Research
at Majmaah University for funding this research work through the project number (R-2025-1519).

Conflict of interest

The authors declare no conflict of interest.

References

1. M. AbaOud, M. A. Almuqrin, The weighted inverse Weibull distribution: Heavy-tailed
characteristics, Monte Carlo simulation with medical application, Alex. Eng. J., 102 (2024), 99–
107. https://doi.org/10.1016/j.aej.2024.05.056

2. J. Ahmadi, Characterization results for symmetric continuous distributions based on
the properties of k-records and spacings, Stat. Probabil. Lett., 162 (2020), 108764.
https://doi.org/10.1016/j.spl.2020.108764

3. C. D. Aliprantis, O. Burkinshaw, Principles of real analysis, London: Edward Arnold, 1981.

4. M. A. Almuqrin, A new flexible distribution with applications to engineering data, Alex. Eng. J.,
69 (2023), 371–382. https://doi.org/10.1016/j.aej.2023.01.046

5. M. A. Almuqrin, Next-generation statistical methodology: Advances health science research, Alex.
Eng. J., 108 (2024), 459–475. https://doi.org/10.1016/j.aej.2024.07.097

6. G. Alomani, M. Kayid, Stochastic properties of fractional generalized cumulative residual entropy
and its extensions, Entropy, 24 (2022), 1041. https://doi.org/10.3390/e24081041

7. A. Baklizi, A conditional distribution runs test for symmetry, J. Nonparametr. Stat., 15 (2003),
713–718. https://doi.org/10.1080/10485250310001634737

8. A. Baklizi, Testing symmetry using a trimmed longest run statistic, Aust. N. Z. J. Stat., 49 (2007),
339–347. https://doi.org/10.1111/j.1467-842X.2007.00485.x

AIMS Mathematics Volume 10, Issue 1, 1116–1141.

https://dx.doi.org/https://doi.org/10.1016/j.aej.2024.05.056
https://dx.doi.org/https://doi.org/10.1016/j.spl.2020.108764
https://dx.doi.org/https://doi.org/10.1016/j.aej.2023.01.046
https://dx.doi.org/https://doi.org/10.1016/j.aej.2024.07.097
https://dx.doi.org/https://doi.org/10.3390/e24081041
https://dx.doi.org/https://doi.org/10.1080/10485250310001634737
https://dx.doi.org/https://doi.org/10.1111/j.1467-842X.2007.00485.x


1139

9. A. Baklizi, Improving the power of the hybrid test, Int. J. Contemp. Math. Sciences, 3 (2008),
497–499.

10. N. Balakrishnan, A. Selvitella, Symmetry of a distribution via symmetry of order statistics, Stat.
Probabil. Lett., 129 (2017), 367–372. https://doi.org/10.1016/j.spl.2017.06.023

11. F. Belzunce, R. E. Lillo, J. M. Ruiz, M. Shaked, Stochastic comparisons of
nonhomogeneous processes, Probab. Eng. Inform. Sc., 15 (2001), 199–224.
https://doi.org/10.1017/S0269964801152058

12. V. Bozin, B. Milosevic, Y. Y. Nikitin, M. Obradovic, New characterization-based symmetry tests,
Bull. Malays. Math. Sci. Soc., 43 (2020), 297–320. https://doi.org/10.1007/s40840-018-0680-3

13. W. H. Cheng, N. Balakrishnan, A modified sign test for symmetry, Commun. Stat.-Simul. C., 33
(2004), 703–709. https://doi.org/10.1081/SAC-200033302

14. J. Corzo, G. Babativa, A modified runs test for symmetry, J. Stat. Comput. Sim., 83 (2013), 984–
991. https://doi.org/10.1080/00949655.2011.647026

15. X. J. Dai, C. Z. Niu, X. Guo, Testing for central symmetry and inference of the unknown center,
Comput. Stat. Data An., 127 (2018), 15–31. https://doi.org/10.1016/j.csda.2018.05.007

16. A. Di Crescenzo, M. Longobardi, On cumulative entropies, J. Stat. Plan. Infer., 139 (2009), 4072–
4087. https://doi.org/10.1016/j.jspi.2009.05.038

17. A. Di Crescenzo, S. Kayal, A. Meoli, Fractional generalized cumulative
entropy and its dynamic version, Commun. Nonlinear Sci., 102 (2021), 105899.
https://doi.org/10.1016/j.cnsns.2021.105899

18. G. W. Cobb, The problem of the Nile: conditional solution to a change point problem, Biometrika,
65 (1978), 243–251. https://doi.org/10.1093/biomet/65.2.243

19. M. Fashandi, J. Ahmadi, Characterizations of symmetric distributions based on Renyi entropy, Stat.
Probabil. Lett., 82 (2012), 798–804. https://doi.org/10.1016/j.spl.2012.01.004

20. J. D. Gibbons, S. Chakraborti, Nonparametric statistical inference, New York: Dekker, 1992.

21. C. Goffman, G. R. Pedrick, First course in functional analysis, Englewood Cliffs: Prentice-Hall,
1965.

22. P. Crzegorzewski, R. Wieczorkowski, Entropy-based goodness-of-fit test for exponentiality,
Commun. Stat.-Theor. M., 28 (1999), 1183–1202. https://doi.org/10.1080/03610929908832351

23. N. Gupta, S. K. Chaudhary, Some characterizations of continuous symmetric distributions based
on extropy of record values, Stat. Papers, 65 (2024), 291–308. https://doi.org/10.1007/s00362-022-
01392-y

24. I. A. Husseiny, H. M. Barakat, M. Nagy, A. H. Mansi, Analyzing symmetric distributions by
utilizing extropy measures based on order statistics, J. Radiat. Res. Appl. Sc., 17 (2024), 101100.
https://doi.org/10.1016/j.jrras.2024.101100

25. J. Jose, E. I. A. Sathar, Symmetry being tested through simultaneous application of
upper and lower k-records in extropy, J. Stat. Comput. Sim., 92 (2022), 830–846.
https://doi.org/10.1080/00949655.2021.1975283

AIMS Mathematics Volume 10, Issue 1, 1116–1141.

https://dx.doi.org/https://doi.org/10.1016/j.spl.2017.06.023
https://dx.doi.org/https://doi.org/10.1017/S0269964801152058
https://dx.doi.org/https://doi.org/10.1007/s40840-018-0680-3
https://dx.doi.org/https://doi.org/10.1081/SAC-200033302
https://dx.doi.org/https://doi.org/10.1080/00949655.2011.647026
https://dx.doi.org/https://doi.org/10.1016/j.csda.2018.05.007
https://dx.doi.org/https://doi.org/10.1016/j.jspi.2009.05.038
https://dx.doi.org/https://doi.org/10.1016/j.cnsns.2021.105899
https://dx.doi.org/https://doi.org/10.1093/biomet/65.2.243
https://dx.doi.org/https://doi.org/10.1016/j.spl.2012.01.004
https://dx.doi.org/https://doi.org/10.1080/03610929908832351
https://dx.doi.org/https://doi.org/10.1007/s00362-022-01392-y
https://dx.doi.org/https://doi.org/10.1007/s00362-022-01392-y
https://dx.doi.org/https://doi.org/10.1016/j.jrras.2024.101100
https://dx.doi.org/https://doi.org/10.1080/00949655.2021.1975283


1140

26. J. Jozefczyk, Data driven score tests for univariate symmetry based on nonsmooth functions,
Probab. Math. Stat., 32 (2012), 301–322.

27. J. T. Machado, Fractional order generalized information, Entropy, 16 (2014), 2350–2361.
https://doi.org/10.3390/e16042350

28. M. Mahdizadeh, E. Zamanzade, Estimation of a symmetric distribution function in multistage
ranked set sampling, Stat. Papers, 61 (2020), 851–867. https://doi.org/10.1007/s00362-017-0965-
x

29. T. P. McWilliams, A distribution-free test for symmetry based on a runs statistic, J. Am. Stat. Assoc.,
85 (1990), 1130–1133. https://doi.org/10.2307/2289611

30. R. Modarres, J. L. Gastwirth, A modified runs test for symmetry, Stat. Probabil. Lett., 31 (1996),
107–112. https://doi.org/10.1016/S0167-7152(96)00020-X

31. M. S. Mohamed, On concomitants of ordered random variables under general forms of
Morgenstern family, Filomat, 33 (2019), 2771–2780. https://doi.org/10.2298/FIL1909771M

32. M. S. Mohamed, A measure of inaccuracy in concomitants of ordered random
variables under Farlie-Gumbel-Morgenstern family, Filomat, 33 (2019), 4931–4942.
https://doi.org/10.2298/FIL1915931M

33. M. S. Mohamed, On cumulative residual Tsallis entropy and its dynamic version of concomitants
of generalized order statistics, Comm. Statist. Theory Methods, 51 (2022), 2534–2551.
https://doi.org/10.1080/03610926.2020.1777306

34. J. Navarro, Y. del Aguila, M. Asadi, Some new results on the cumulative residual entropy, J. Stat.
Plan. Infer., 140 (2010), 310–322. https://doi.org/10.1016/j.jspi.2009.07.015

35. H. A. Noughabi, Tests of symmetry based on the sample entropy of order statistics and power
comparison, Sankhya B, 77 (2015), 240–255. https://doi.org/10.1007/s13571-015-0103-5

36. H. A. Noughabi, J. Jarrahiferiz, Extropy of order statistics applied to testing symmetry, Commun.
Stat.-Simul. C., 51 (2022), 3389–3399. https://doi.org/10.1080/03610918.2020.1714660

37. S. Park, A goodness-of-fit test for normality based on the sample entropy of order statistics, Stat.
Probabil. Lett., 44 (1999), 359–363. https://doi.org/10.1016/S0167-7152(99)00027-9

38. G. Psarrakos, J. Navarro, Generalized cumulative residual entropy and record values, Metrika, 76
(2013), 623–640. https://doi.org/10.1007/s00184-012-0408-6

39. G. Psarrakos, A. Toomaj, On the generalized cumulative residual entropy with
applications in actuarial science, J. Comput. Appl. Math., 309 (2017), 186–199.
https://doi.org/10.1016/j.cam.2016.06.037

40. M. Rao, Y. Chen, B. C. Vemuri, F. Wang, Cumulative residual entropy: a
new measure of information, IEEE T. Inform. Theory, 50 (2004), 1220–1228.
https://doi.org/10.1109/TIT.2004.828057

41. H. H. Sakr, M. S. Mohamed, Sharma-Taneja-Mittal entropy and its application of obesity in Saudi
Arabia, Mathematics, 12 (2024), 2639. https://doi.org/10.3390/math12172639

42. M. Shaked, J. G. Shanthikumar, Stochastic orders and their applications, San Diego: Academic
Press, 1994.

AIMS Mathematics Volume 10, Issue 1, 1116–1141.

https://dx.doi.org/https://doi.org/10.3390/e16042350
https://dx.doi.org/https://doi.org/10.1007/s00362-017-0965-x
https://dx.doi.org/https://doi.org/10.1007/s00362-017-0965-x
https://dx.doi.org/https://doi.org/10.2307/2289611
https://dx.doi.org/https://doi.org/10.1016/S0167-7152(96)00020-X
https://dx.doi.org/https://doi.org/10.2298/FIL1909771M
https://dx.doi.org/https://doi.org/10.2298/FIL1915931M
https://dx.doi.org/https://doi.org/10.1080/03610926.2020.1777306
https://dx.doi.org/https://doi.org/10.1016/j.jspi.2009.07.015
https://dx.doi.org/https://doi.org/10.1007/s13571-015-0103-5
https://dx.doi.org/https://doi.org/10.1080/03610918.2020.1714660
https://dx.doi.org/https://doi.org/10.1016/S0167-7152(99)00027-9
https://dx.doi.org/https://doi.org/10.1007/s00184-012-0408-6
https://dx.doi.org/https://doi.org/10.1016/j.cam.2016.06.037
https://dx.doi.org/https://doi.org/10.1109/TIT.2004.828057
https://dx.doi.org/https://doi.org/10.3390/math12172639


1141

43. C. E. Shannon, A mathematical theory of communication, Bell System Technical Journal, 27
(1948), 379–423. http://doi.org/10.1002/j.1538-7305.1948.tb01338.x

44. I. H. Tajuddin, Distribution-free test for symmetry based on the Wilcoxon two-sample test, J. Appl.
Stat., 21 (1994), 409–415. https://doi.org/10.1080/757584017

45. A. Toomaj, A. Di Crescenzo, Generalized entropies, variance and applications, Entropy, 22 (2020),
709. https://doi.org/10.3390/e22060709

46. M. R. Ubriaco, Entropies based on fractional calculus, Phys. Lett. A, 373 (2009), 2516–2519.
https://doi.org/10.1016/j.physleta.2009.05.026

47. O. Vasicek, A test for normality based on sample entropy, J. R. Stat. Soc. B, 38 (1976), 54–59.
https://doi.org/10.1111/j.2517-6161.1976.tb01566.x

48. H. Xiong, P. J. Shang, Y. L. Zhang, Fractional cumulative residual entropy, Commun. Nonlinear
Sci., 78 (2019), 104879. https://doi.org/10.1016/j.cnsns.2019.104879

49. P. H. Xiong, W. W. Zhuang, G. X. Qiu, Testing symmetry based on the extropy of record values, J.
Nonparametr. Stat., 33 (2021), 134–155. https://doi.org/10.1080/10485252.2021.1914338

50. S. Yin, Y. D. Zhao, A. Hussain, K. Ullah, Comprehensive evaluation of rural
regional integrated clean energy systems considering multi-subject interest coordination
with pythagorean fuzzy information, Eng. Appl. Artif. Intel., 138 (2024), 109342.
https://doi.org/10.1016/j.engappai.2024.109342

© 2025 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 10, Issue 1, 1116–1141.

https://dx.doi.org/http://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://dx.doi.org/https://doi.org/10.1080/757584017
https://dx.doi.org/https://doi.org/10.3390/e22060709
https://dx.doi.org/https://doi.org/10.1016/j.physleta.2009.05.026
https://dx.doi.org/https://doi.org/10.1111/j.2517-6161.1976.tb01566.x
https://dx.doi.org/https://doi.org/10.1016/j.cnsns.2019.104879
https://dx.doi.org/https://doi.org/10.1080/10485252.2021.1914338
https://dx.doi.org/https://doi.org/10.1016/j.engappai.2024.109342
https://creativecommons.org/licenses/by/4.0

	Introduction
	Fractional generalized entropy measure 
	Redesigned characterizations using ordered variables
	Redesigned characterizations using nth upper random variables

	Characteristics symmetric in the fractional generalized entropy 
	Test of symmetry via non-parametric estimation
	Real data set

	Comparative analysis study
	Conclusions and future work

