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Abstract: In this paper, we investigate the existence of a random uniform exponential attractor
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of some random variables and obtain the existence of a random uniform exponential attractor for the
considered system.

Keywords: random uniform exponential attractor; Boussinesq lattice equations; multiplicative white
noise; quasi-periodic forces
Mathematics Subject Classification: 37L55, 35B41, 35B40

1. Introduction

It is well known that attractors are an important part of describing the long-time asymptotic
behavior of infinite-dimensional dynamical systems, such as global attractors, pullback or uniform
attractors for deterministic autonomous and non-autonomous dynamical systems, see [1–6]. Random
attractor, random pullback or uniform attractors for autonomous and non-autonomous random
dynamical systems; see [7–19] and the references therein. However, the dimension of the attractor
may be infinite. This means that the asymptotic behavior of the dynamical systems may not be
described with finite independent parameters. Moreover, the rate at which the attractor attracts
trajectories may be very slow, so that the attractor may be unstable under some small perturbations,
this brings some difficulties to practical application and numerical simulations. For these reasons,
Eden et al. in [20] introduced the concept of the exponential attractor, which is a compact and positive
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invariant set with a finite fractal dimension attracts any trajectories exponentially for deterministic
autonomous dynamical systems. Since then, the concept of an exponential attractor extended to
deterministic non-autonomous dynamical systems, autonomous and non-autonomous random
dynamical systems (NRDS), such as exponential attractors, pullback or uniform exponential attractors
(see [21–27]), random exponential attractors and random pullback exponential attractors
(see [28–32]).

Recently, Han and Zhou in [33] defined the random uniform exponential attractor for NRDS and
established the existence criterion of the random uniform exponential attractor for a joint continuous
NRDS by introducing a skew-product cocycle on the extended space and applied it to the
non-autonomous stochastic first-order lattice system and FitzHugh-Nagumo lattice system with
quasi-periodic forces and multiplicative noise. Using this criterion, the random uniform exponential
attractor for the non-autonomous stochastic Schrödinger lattice system and discrete long wave-short
wave resonance system in [34, 35] is obtained, respectively.

In this paper, we consider the existence of a random uniform exponential attractor for the following
non-autonomous stochastic Boussinesq lattice system with quasi-periodic forces and multiplicative
white noise:{

ü j + δu̇ j + α(Au) j + β(Bu) j + λu j −
k
3 (D(D∗u)3) j = f j(σ̃(t)) + au j ◦ Ẇ,

u j(0) = u j,0, u̇ j(0) = u1 j,0,
t > 0, (1.1)

where u j = u j(t) ∈ R, j = ( j1, j2, · · · , jN) ∈ ZN , (R and Z are the sets of real and integer numbers);
α, δ, λ, k, a are positive constants, β ∈ R; Tm is the m- dimensional torus, σ̃(t) = (xt + σ)mod(Tm), σ ∈
Tm, t ∈ R, x = (x1, · · · , xm) ∈ Rm is a fixed vector, and x1, · · · , xm are rationally independent numbers;
f (σ̃) = ( f j(σ̃)) j∈ZN ∈ C(Tm, l2); W(t) is a two-sided real-valued Wiener process on a probability space
(Ω,F ,P), where Ω = {ω ∈ C(R,R) : ω(0) = 0},F is the Borel σ-algebra on Ω generated by the
compact open topology, and P is the Wiener measure on (Ω,F ). A, B,D, and D∗ are all linear coupled
operators; “◦” means the sense of Stratonovich in the stochastic term.

The Boussinesq equation is one of the mathematical models describing wave propagation, which is
widely used in the fields of ocean engineering, coastal protection, and marine resources development,
such as wave motion, swell, and tide, and is also used in physics and mechanics, such as nonlinear
elastic beam systems, thermomechanical phase transitions, and some Hamiltonian mechanics.

For the autonomous lattice dynamical system (1.1) without multiplicative white noise and quasi-
periodic forces ( j ∈ Z, f j(σ̃(t)) = f j ∈ R, a = 0), Abdallah in [1] obtained the existence and upper
semi-continuity of the global attractor, Zhao and Zhou in [25] proved the existence of the exponential
attractor, then, they in [26] obtained the existence of the pullback and uniform exponential attractor for
non-autonomous Boussinesq lattice system (1.1)

j ∈ Z, α = α j(t), β = β j(t), f j(σ̃(t)) = f j ∈ R, a = 0

and further proved the existence of the random attractor for the non-autonomous stochastic
Boussinesq lattice system in [17]. As we are aware, there are no results on the random uniform
exponential attractor for the non-autonomous stochastic Boussinesq lattice system with quasi-periodic
forces and multiplicative white noise. Motivated by [33–35], we will consider the existence of a
random uniform exponential attractor for the system (1.1). The time-dependent external force term of
the system (1.1) is f j(σ̃), where the time symbol σ̃(t) = (xt + σ)mod(Tm) ∈ Tm on the
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finite-dimensional torus Tm is taken as the parameter. Thus, the solutions of this system (1.1)
generates a NRDS, denoted {Φ(t, ω, σ)}t≥0,ω∈Ω,σ∈Tm , which can be regarded as a family of autonomous
random dynamical system with the parameter σ. We investigate that the random uniform exponential
attractor is a family of single-parameter random sets, which involve three properties: random
compactness, finite fractal dimensionality, and uniform exponential attraction.

This paper is organized as follows: In Section 2, we introduce some basic concepts and assumptions
of the coefficients and external force term of the system (1.1). In Section 3, we apply the existence
criterion of a random uniform exponential attractor in [33] to the considered system (1.1). In Section 4,
we make conclusions and discussion.

2. Preliminaries

In this section, we recall some concepts that can be obtained directly from [8,12,33–35], and make
some assumptions about a and f j(σ̃(t)).

Let l2 = {u = (u j) j∈ZN : j = ( j1, j2, · · · , jN) ∈ ZN , u j ∈ R,
∑

j∈ZN
u2

j < ∞} be a Hilbert space with the

inner product and norm are defined as:

(u, v) =
∑
j∈ZN

u jv j, ∥u∥2 = (u, u) =
∑
j∈ZN

|u j|
2, ∀u, v ∈ l2.

Define the linear operators A, B,D,D∗ : l2 → l2 as follows:

A = A1 + A2 + · · · + AN , B = B1 + B2 + · · · + BN ,

for all u = (u j) j∈ZN ∈ l2, j = ( j1, j2, · · · , jN) ∈ ZN , i = 1, 2, · · · ,N,

(Aiu) j = u( j1, j2,··· , ji−1, ji+2, ji+1,··· , jN ) − 4u( j1, j2,··· , ji−1, ji+1, ji+1,··· , jN )

+ 6u( j1, j2,··· , ji−1, ji, ji+1,··· , jN ) − 4u( j1, j2,··· , ji−1, ji−1, ji+1,··· , jN ) + u( j1, j2,··· , ji−1, ji−2, ji+1,··· , jN ),

(Biu) j = u( j1, j2,··· , ji−1, ji+1, ji+1,··· , jN ) − 2u( j1, j2,··· , ji−1, ji, ji+1,··· , jN ) + u( j1, j2,··· , ji−1, ji−1, ji+1,··· , jN ),

(Diu) j = u( j1, j2,··· , ji−1, ji+1, ji+1,··· , jN ) − u( j1, j2,··· , ji−1, ji, ji+1,··· , jN ),

(D∗i u) j = u( j1, j2,··· , ji−1, ji, ji+1,··· , jN ) − u( j1, j2,··· , ji−1, ji−1, ji+1,··· , jN ).

Then Ai = B2
i , Bi = DiD∗i = D∗i Di, where D∗i is the conjugate operator of Di, this is, for all u =

(u j) j∈ZN , v = (v j) j∈ZN ∈ l2, i = 1, 2, · · · ,N, then

(Diu, v) = −(u,D∗i v), (Biu, v) = −(Diu,Div), (Aiu, v) = (Biu, Biv).

Endowed with the inner products and norms on l2 as: for any u = (u j) j∈ZN , v = (v j) j∈ZN ∈ l2,

(u, v)λ = λ
∑
j∈ZN

u jv j, ∥u∥λ = (u, u)λ = (λ
∑
j∈ZN

u2
j)

1
2 .

Let l2
λ = (l2, (·, ·)λ, ∥ · ∥λ) and E = l2

λ × l2, it is obvious that the norm ∥ · ∥λ in l2
λ and the usual norm

∥ · ∥ in l2 are equivalent, and E is a Hilbert space with the inner product (·, ·)E and the norm ∥ · ∥E: for
φ(i) = (u(i), v(i)) = (u(i)

j , v
(i)
j ) j∈ZN ∈ E, i = 1, 2,

(φ(1), φ(2))E = (u(1), u(2))λ + (v(1), v(2)), ∥φ∥2E = (φ, φ)E = ∥u∥2λ + ∥v∥
2,
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and B(E) is the Borel σ−algebra of E.
Let Tm be the m–dimensional torus

Tm = {σ = (σ1, · · · , σm) : σl ∈ [−π, π],∀l = 1, · · · ,m},

where (σ1, · · · , σl−1,−π, σl+1, · · · , σm) ∼ (σ1, · · · , σl−1, π, σl+1, · · · , σm),∀l = 1, · · · ,m, and the norm
in Tm is given by

∥σ∥Tm = (
m∑

l=1

σ2
l )

1
2 , ∀σ = (σ1, · · · , σm) ∈ Tm.

Let x = (x1, · · · , xm) ∈ Rm be a fixed vector such that x1, · · · , xm are rationally independent. For
t ∈ R, define

ϑtσ = (xt + σ)mod(Tm), σ ∈ Tm,

then {ϑt}t∈R is a translation group on Tm with ϑtT
m = Tm and (t, σ) → ϑtσ is continuous for ∀t ∈ R,

B(Tm) denotes the Borel σ−algebra of Tm.
Define the extended space E = Tm × E with norm

∥Υ∥E = (∥σ∥2Tm + ∥φ∥2E)
1
2 , ∀Υ = {σ} × {φ} ∈ E, φ = (u, v) ∈ E,

and the Borel σ−algebra B(E). Norm ∥ · ∥E induces a metric.
Let (Ω,F ,P, {θtω}t∈R) be an ergodic metric dynamical system [8]. The two groups {θt}t∈R and {ϑt}t∈R

are said to be base flows [12]. Hereafter, for simplicity, we identify “a.e. ω ∈ Ω” as “ω ∈ Ω ”.

Definition 2.1. [33] A continuous NRDS on E with base flows {θt}t∈R on Ω and {ϑt}t∈R on Tm is defined
as a mapping φ(t, ω, σ, u) : R+ ×Ω × Tm × E → E satisfying
(i) φ is (B(R+) × F × B(Tm) × B(E),B(E)) measurable;
(ii) φ(0, ω, σ, ·) is the identity on E for each σ ∈ Tm and ω ∈ Ω;
(iii) ∀t, s ≥ 0, ω ∈ Ω, σ ∈ Tm, φ(t + s, ω, σ, ·) = Φ(t, θsω, ϑsσ, ·) ◦ φ(s, ω, σ, ·);
(iv) ∀t ∈ R+, ω ∈ Ω, σ ∈ Tm, φ(t, ω, σ, ·) is continuous.

A NRDS is said to be jointly continuous in Tm and E if the mapping φ(t, ω, ·, ·) is continuous for
each t ∈ R+ and ω ∈ Ω.

Definition 2.2. [8] A (autonomous) random set D = D(·) in E is a multi-valued map D : Ω →
2E\∅ such that for each u ∈ E, the map ω → distE(u,D(ω)) (distance in E between u and D(ω)) is
measurable. It is said that the (autonomous) random set is bounded (respectively, closed or compact)
if D(ω) is bounded (respectively, closed or compact) for ω ∈ Ω.

Given two random sets D1,D2, we write D1 ⊆ D2 if D1(ω) ⊆ D2(ω) for all ω ∈ Ω.

Definition 2.3. [8] A random set D(·) in E is called tempered with respect to {θt}t∈R, if for ω ∈ Ω, γ >
0, lim

t→+∞
e−γt∥D(θ−tω)∥E = 0, where ∥D(ω)∥E = sup

x∈D(ω)
∥x∥E.

LetD = D(E) be the collection of all tempered bounded random sets of E.
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Definition 2.4. [33] A random set {M(ω)}ω∈Ω in E is called a D(E)−random uniform exponential
attractor for the continuous NRDS {φ(t, ω, σ)}t≥0,ω∈Ω,σ∈Tm on E with base flows {θt}t∈R and {ϑt}t∈R if
there is a set of full measure Ω̃ ∈ F such that for every ω ∈ Ω̃, it holds that
(i)M(ω) is a compact set;
(ii) There exists a random variable ξω < ∞ such that dim fM(ω) ≤ ξω, where dim fM(ω) is the fractal
dimension ofM(ω);
(iii) There exists a constant b > 0 such that for any B ∈ D(E), there exist random variables tB(ω) ≥
0, Q(ω, ∥B∥E) > 0 satisfying sup

σ∈Tm
distE(φ(t, θ−tω, ϑ−tσ)B(θ−tω),M(ω)) ≤ Q(ω, ∥B∥E)e−bt, t ≥ tB(ω).

For the given jointly continuous NRDS φ, introduce a mapping π : R+ ×Ω × E→ E by

π(t, ω, {σ} × {E}) = {ϑtσ} × {φ(t, ω, σ, x)}.

Then the mapping π satisfying: (i) π is (B(R+)×F ×B(E),B(E))−measurable; (ii) π(0, ω,Υ) = Υ,∀ω ∈
Ω,Υ ∈ E; (iii) the cocycle property π(t + s, ω,Υ) = π(t, θsω, π(s, ω,Υ)),∀t, s ≥ 0, ω ∈ Ω,Υ ∈ E.

The π is called the skew-product cocycle on the extended space E. Note that π is continuous; that
is, the mapping Υ→ π(·, ·,Υ) is continuous in E if and only if φ is jointly continuous in Tm and E. Let
DE = {B : B = Tm × B = {Tm × B(ω)}ω∈Ω and B ∈ D(E)} be some class of random sets in E.

In order to study the existence of a uniform exponential attractor, we need to make the following
assumptions:

(H1) f (σ) = ( f j(σ)) j∈ZN ∈ C(Tm, l2), that is, for any f (σ) ∈ C(Tm, l2), ∥ f (σ)∥2C = max
σ∈Tm
∥ f (σ)∥2 < ∞,

and for any ϵ > 0, there exists I(ϵ) ∈ N such that max
σ∈Tm

∑
∥ j∥>I(ϵ)

f 2
j (σ) < ϵ, where ∥ j∥ = max{| ji|, i =

1, · · · ,N};
(H2) There exists d = (d j) j∈ZN ∈ l2 and d j > 0 such that

| f j(σ1) − f j(σ2)| ≤ d j∥σ1 − σ2∥Tm;

(H3) ε2 − ( 2a
√
πδ
+

12
√

2α+4β
√
λ
+ 2aε
√
λπδ
+ a2

2δ
√
λ
) > 0, where ε = λδ

2λ+δ2 >
48
√

2α+16|β|
√
λ

.

3. Random uniform exponential attractor for non-autonomous stochastic Boussinesq lattice
system

The system (1.1) can be rewritten in the following vector form:{
ü + δu̇ + αAu + βBu + λu − k

3 D(D∗u)3 = f (σ̃(t)) + au ◦ Ẇ(t),
u(0) = u0, u̇(0) = u1,0,

t > 0, (3.1)

where
u = (u j(t)) j∈ZN , Au = ((Au(t)) j) j∈ZN , Bu = ((Bu(t)) j) j∈ZN ,

D∗u = ((D∗u(t)) j) j∈ZN , f (σ̃(t)) = ( f j(σ̃(t))) j∈ZN .

Let z(θtω) = −δ
∫ 0

−∞
eδsθtω(s)ds, t ∈ R, ω ∈ Ω be the Ornstein–Uhlenbeck stationary processes,

and a stationary solution of Itô equation dz(θtω) + z(θtω)dt = dW(t), where W(t) = w(t). It follows
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from [8, 12] that z(θtω) is continuous in t and has the following properties:

lim
t→±∞

|z(θtω)|
t = lim

t→±∞

∫ t
0 z(θsω)ds

t = lim
t→±∞

e−ϵ|t||z(θtω)| = 0, ∀ϵ > 0,

lim
t→±∞

∫ t
0 |z(θsω)|rds

t = E[|z(ω)|r] = Γ(
1+r

2 )
√
πδr
, ∀r > 0,

E[eϵ
∫ τ+t
τ
|z(θsω)|ds] ≤ e

ϵ√
δ
t
, 0 < ϵ2 ≤ δ3, t ≥ 0,

E[eϵ
∫ τ+t
τ
|z(θsω)|2ds] ≤ e

ϵ
δ t, 0 < 2ϵ ≤ 1, t ≥ 0,

(3.2)

where Γ(·) is the Gamma function, “E” denotes the expection.
Let v = u̇ + εu − auz(θtω) and φ = (u, v)T , where u is the solution of the system (3.1). Then the

system (3.1) is equivalent to the following random system without the white noise term:{
φ̇ + Λφ = F(φ, θtω),
φ0 = (u0, v0)T = (u0, u1,0 + εu0 − au0z(ω))T ,

t > 0 (3.3)

where

Λφ =

(
εu − v

λu − ε(δ − ε)u + (δ − ε)v

)
, (3.4)

F(φ, θtω) =
(

az(θtω)u
−α(Au) − β(Bu) + 1

3k(D(D∗u)3) + (2aεz(θtω) − a2z2(θtω))u − az(θtω)v + f (σ̃(t))

)
.

(3.5)

3.1. A jointly continuous NRDs generated by system (3.3)

Lemma 3.1. Let (H1)–(H3) hold, then
(i) For all ω ∈ Ω, t ∈ [0,T ],T > 0, φ0(ω) ∈ E, the system (3.3) has a unique solution φ(·, ω, σ, φ0(ω)) ∈
C([0,+∞), E) and the solution φ is measurable in ω;
(ii) Let φ(i)(·, ω, σ, φ(i)

0 (ω)) be the solution of system (3.3) with σi ∈ T
m and φ(i)

0 (ω) ∈ E, i = 1, 2, T > 0
is fixed, then there exists a constant s(T, ω) > 0 such that for all t ∈ [0,T ],

∥φ(1)(t, ω, σ1, φ
(1)
0 (ω)) − φ(2)(t, ω, σ1, φ

(2)
0 (ω))∥2E ≤ es(T,ω)t(∥φ(1)

0 − φ
(2)
0 ∥

2
E + ∥σ1 − σ2∥

2
Tm).

Proof. It is easy to verify that for all ω ∈ Ω, F(φ, θtω) is continuous in t and φ. Let Q be a bounded
set in E; then there exists a positive constant L(Q) depending on Q, such that for all φ(i) = (u(i), v(i))T ∈

Q, i = 1, 2, ∥φ(i)∥E ≤ L(Q). For all ω ∈ Ω, t ∈ [0,T ], it follows that

∥F(φ(1), θtω) − F(φ(2), θtω)∥E

≤ a|z(θtω)|∥u(1) − u(2)∥λ + α∥A(u(1) − u(2))∥ + |β|∥B(u(1) − u(2))∥ +
k
3
∥D(D∗u(1))3 − D(D∗u(2))3∥

+ (2εa|z(θtω)|∥u(1) − u(2)∥ + a2z2(θtω)∥u(1) − u(2)∥ + a|z(θtω)|∥v(1) − v(2)∥

≤

amax
t∈[0,T ]
|z(θtω)| +

12
√

2α + 4|β| + 2εamax
t∈[0,T ]
|z(θtω)| + a2 max

t∈[0,T ]
z2(θtω)

√
λ

+
16k
√
λ3

L2(Q)

 ∥φ(1) − φ(2)∥E.

Thus, F satisfies the local Lipschiz condition in φ; by the standard theory of ordinary differential
equations, we obtain that there exists a Tmax ≤ +∞ such that the system (3.3) has a unique solution
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φ(t) ∈ C([0,Tmax), E) satisfying that lim sup
t→Tmax

∥φ∥E = +∞ if Tmax ≤ +∞. Next, we prove that this local

solution is a global one.
Let T ∈ [0,Tmax), taking the inner product of (3.3) with φ in E, we have

1
2

d
dt
∥φ∥2E + (Λφ, φ)E = (F(φ, θtω), φ)E, (3.6)

where
(Λφ, φ)E ≥

ε

2
∥φ∥2E +

δ

2
∥v∥2. (3.7)

(F(φ, θtω), φ)E = (az(θtω)u, u)λ − α(Au, v) − β(Bu, v) +
1
3

k(D(D∗u)3, v)

− az(θtω)(v − 2εu + az(θtω)u, v) + ( f (σ̃(t), v), (3.8)

where 

(az(θtω)u, u)λ ≤ a|z(θtω)|∥u∥2λ,
−α(Au, v) − β(Bu, v) ≤ 6

√
2α+2|β|
√
λ
∥φ∥2E,

1
3k(D(D∗u)3, v) = − k

12
d
dt∥(D

∗u)2∥2 −
k(ε−az(θtω))

3 ∥(D∗u)2∥2,

−az(θtω)(v − 2εu + az(θtω)u, v) ≤ a|z(θtω)|∥v∥2 + 2aε|z(θtω)|+a2z2(θtω)
2
√
λ

∥φ∥2E,

( f (σ̃(t), v) ≤ 1
2δ∥ f ∥

2
C +

δ
2∥v∥

2.

(3.9)

Combining (3.6)–(3.9), we obtain that

d
dt

(∥φ∥2E +
k
6
∥(D∗u)2∥2) ≤ (−ε + ρ(θtω))(∥φ∥2E +

k
6
∥(D∗u)2∥2) +

1
δ
∥ f ∥2C, (3.10)

where

ρ(θtω) = 2a|z(θtω)| +
12
√

2α + 4|β|
√
λ

+
2aε|z(θtω)| + a2z2(θtω)

√
λ

. (3.11)

Applying Gronwall’s inequality in (3.10) over [0, t](0 ≤ t < Tmax), we obtain

∥φ∥2E +
k
6
∥(D∗u)2∥2 ≤ e

∫ t
0 (−ε+ρ(θsω))ds(∥φ0∥

2
E +

k
6
∥(D∗u0)2∥2) +

∫ t

0
e
∫ t

l (−ε+ρ(θsω))ds 1
δ
∥ f ∥2Cdl. (3.12)

We further obtain that

∥φ∥2E ≤ e
∫ T

0 (−ε+ρ(θsω))ds(∥φ0∥
2
E +

k
6
∥(D∗u0)2∥2) +

1
δ
∥ f ∥2C

∫ T

0
e
∫ T

l (−ε+ρ(θsω))dsdl < +∞. (3.13)

Thus, the statement (i) holds.
(ii) Let φ(i)(t, ω) = (u(i), v(i))T = φ(t, ω, σi, φ

(i)
0 (ω)), i = 1, 2, φ̃ = (̃u, ṽ)T = φ(1)(t, ω) − φ(2)(t, ω), then{ ˙̃φ + Λφ̃ = F(φ(1), θtω) − F(φ(2), θtω),

φ̃0 = φ
(1)
0 − φ

(2)
0 ,

t > 0. (3.14)

Taking the inner product of (3.14) with φ̃ in E, we obtain

1
2

d
dt
∥φ̃∥2E + (Λφ̃, φ̃)E = (F(φ(1), θtω) − F(φ(2), θtω), φ̃)E, (3.15)
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where
(Λφ̃, φ̃)E ≥

ε

2
∥φ̃∥2E +

δ

2
∥̃v∥2. (3.16)

and

(F(φ(1), θtω) − F(φ(2), θtω), φ̃)E = (az(θtω)̃u, ũ)λ +
1
3

k(D((D∗u(1))3 − (D∗u(2))3), ṽ)

− α(Aũ, ṽ) − β(Bũ, ṽ) − az(θtω)(̃v − 2ε̃u + az(θtω)̃u, ṽ) + ( f (σ̃1(t)) − f (σ̃2(t)), ṽ). (3.17)

By (H2), we derive each term on the right-hand side of (3.17),

(az(θtω)̃u, ũ)λ ≤ a|z(θtω)|∥̃u∥2λ, (3.18)

1
3

k(D((D∗u(1))3 − (D∗u(2))3), ṽ) ≤
4Nk2

9δ
∥(D∗u(1))3 − (D∗u(2))3)∥2 +

δ

4
∥̃v∥2

≤
64N2k2

δ
(∥u(1)∥2 + ∥u(2)∥2)2∥u(1) − u(2)∥2 +

δ

4
∥̃v∥2

≤
256N2k2

λ3δ
L4(Q)∥φ̃∥2E +

δ

4
∥̃v∥2, (3.19)

−α(Aũ, ṽ) − β(Bũ, ṽ) ≤
6
√

2α + 2|β|
√
λ

∥φ̃∥2E, (3.20)

−az(θtω)(̃v − 2ε̃u + az(θtω)̃u, ṽ) ≤ a|z(θtω)|∥̃v∥2 +
2aε|z(θtω)| + a2z2(θtω)

2
√
λ

∥φ̃∥2E, (3.21)

( f (σ̃1(t)) − f (σ̃2(t)), ṽ) ≤
∥d∥2

δ
∥σ1 − σ2∥

2
Tm +

δ

4
∥̃v∥2. (3.22)

Summing up (3.18)–(3.22) and combining (3.15)–(3.17), we obtain

d
dt
∥φ̃∥2E ≤ (−ε + ρ(θtω) +

512N2k2

λ3δ
L4(Q))∥φ̃∥2E +

2∥d∥2

δ
∥σ1 − σ2∥

2
Tm ,

which implies

d
dt

(∥φ̃∥2E + ∥σ1 − σ2∥
2
Tm) ≤ (ε + ρ(θtω) +

512N2k2

λ3δ
L4(Q) +

2∥d∥2

δ
)(∥φ̃∥2E + ∥σ1 − σ2∥

2
Tm). (3.23)

Applying Gronwall’s inequality in (3.22) over [0, t](0 ≤ t < T ), then

∥φ̃∥2E ≤ e
∫ t

0 (ε+ρ(θsω)+ 512N2k2

λ3δ
L4(Q)+ 2∥d∥2

δ )ds(∥φ̃0∥
2
E + ∥σ1 − σ2∥

2
Tm).

Let s(T, ω,Q) = ε + max
0≤s≤T
ρ(θsω) + 512N2k2

λ3δ
L4(Q) + 2∥d∥2

δ
.

Thus, the statement (ii) holds. The proof is completed. □

From Lemma 3.1, we know that the solution φ(t, ω, σ, φ0(ω)) of the system (3.3) satisfies cocycle
definition. Thus, we can define a jointly continuous NRDS Φ : R+ ×Ω × Tm × E → E,

Φ(t, ω, σ, φ0) = Φ(t, ω, σ)φ0 = φ(t, ω, σ, φ0(ω)), t > 0.
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3.2. Uniformly absorbing set

Lemma 3.2. Assume that (H1)–(H3) hold. Then for all ω ∈ Ω and D ∈ D(E), there exist a TD(ω) ≥ 0
and a tempered random variable R0(ω), such that ∀t ≥ TD(ω),

∥φ(t, θ−tω,σ, φ0(θ−tω))∥2E +
ε

2

∫ t

0
e
∫ t

l (− ε2+ρ(θsω))ds(∥φ(l, θ−tω,σ, φ0(θ−tω))∥2E +
k
6
∥(D∗u)2∥2)dl ≤ R2

0(ω)

holds uniformly for σ ∈ Tm.

Proof. Similar to the derivation of (3.10), then

d
dt

(∥φ∥2E +
k
6
∥(D∗u)2∥2) +

ε

2
∥φ∥2E ≤ (−

ε

2
+ ρ(θtω))(∥φ∥2E +

k
6
∥(D∗u)2∥2) +

1
δ
∥ f ∥2C. (3.24)

Using Gronwall’s inequality in (3.24) over [0, t], we obtain

∥φ∥2E +
k
6
∥(D∗u)2∥2 +

ε

2

∫ t

0
e−

∫ t
l ( ε2−ρ(θsω))ds∥φ(l, ω, σ, φ0(ω)∥2Edl

≤ e−
∫ t

0 ( ε2−ρ(θsω))ds(∥φ0∥
2
E +

k
6
∥(D∗u0)2∥2) +

1
δ
∥ f ∥2C

∫ t

0
e−

∫ t
l ( ε2−ρ(θsω))dsdl.

For t ≥ 0, replacing ω by θ−tω, we have

∥φ(t, θ−tω,σ, φ0(θ−tω))∥2E +
ε

2

∫ t

0
e−

∫ t
l ( ε2−ρ(θs−tω))ds∥φ(l, θ−tω,σ, φ0(θ−tω))∥2Edl

≤ e−
∫ 0
−t(
ε
2−ρ(θsω))ds(∥φ0∥

2
E +

k
6
∥(D∗u0)2∥2) +

1
2

R2
0(ω), (3.25)

where

R2
0(ω) =

2
δ
∥ f ∥2C

∫ 0

−∞

e−
∫ 0

l ( ε2−ρ(θsω))dsdl. (3.26)

By (H3), we have

lim
t→+∞

e−
∫ 0
−t(
ε
2−ρ(θsω))ds(∥φ0∥

2
E +

k
6
∥(D∗u0)2∥2) = 0.

Since ρ(ω) is tempered with respect to {θt}t∈R, we know that R2
0(ω)(< ∞) is also tempered. The proof

is completed. □

According to Lemma 3.2, we can obtain that the random set

B0 = {B0(ω) = {φ ∈ E : ∥φ∥ ≤ R0(ω)}, ω ∈ Ω} ∈ D

is a uniformly (with respect to σ ∈ Tm) bounded closed absorbing set for Φ, then there exists a TB0(ω) ≥

0 such that Φ(t, θ−tω,σ, B0(θ−tω)) ⊆ B0(ω) for any t ≥ TB0(ω).
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3.3. Tail estimation of solutions

Choosing an increasing smooth function µ ∈ C′(R+, [0, 1]), such that
µ(s) = 0, 0 ≤ s ≤ 1,
0 ≤ µ(s) ≤ 1, 1 ≤ s ≤ 2,
µ(s) = 1, 2 ≤ s < +∞,

|µ′(s)| ≤ µ0, ∀s ∈ R+, µ0 > 0.

Lemma 3.3. Assume that (H1) and (H3) hold, and let φ(t, ω, σ, φ0(ω)) be the solution of (3.3) with
(σ, φ0(ω)) ∈ Tm × B0(ω). Then for every ω ∈ Ω, J ∈ N, and for any ν > 0, there exists Tν(ω) > 0 such
that ∑

j∈ZN

µ(
∥ j∥
J

)∥φ j(t, θ−tω,σ, φ0(θ−tω))∥2E ≤ ν + c2(
1
J
+ γ1,J)R2

0(ω), t > Tν(ω), (3.27)

where c2 and γ1,J are given in the proof below.

Proof. Taking the inner product of (3.3) with ϕ(t) = (x, y)T = (x j, y j)T
j∈ZN = (µ( ∥ j∥J )φ j(t)) j∈ZN in E, where

x j = µ(
∥ j∥
J )u j, y j = µ(

∥ j∥
J )v j, we have

1
2

d
dt

∑
j∈ZN

µ(
∥ j∥
J

)∥φ j∥
2
E +

∑
j∈ZN

µ(
∥ j∥
J

)(
ε

2
∥φ j∥

2
E +
δ

2
|v j|

2) ≤ (F(φ, θtω), ϕ)E, (3.28)

where

(F(φ, θtω), ϕ)E = (az(θtω)u, x)λ − α(Au, y) − β(Bu, y) +
1
3

k(D(D∗u)3, y)

− (az(θtω)v, y) + ((2aεz(θtω) − a2z2(θtω))u, y) + ( f (σ̃(t)), y). (3.29)

By calculation, we obtain the following estimates:

(az(θtω)u, x)λ − (az(θtω)v, y) ≤ a|z(θtω)|
∑
j∈ZN

µ(
∥ j∥
J

)∥φ j∥
2
E, (3.30)

−α(Au, y) − β(Bu, y) ≤
6
√

2α + 2|β|
√
λ

∑
j∈ZN

µ(
∥ j∥
J

)∥φ j∥
2
E +

8µ0NK

J
√
λ
∥φ∥2E, (3.31)

where K = max{α, |β|},

1
3

k(D(D∗u)3, y) = −
k
3

∑
j∈ZN

µ(
∥ j∥
J

)(
1
4

d
dt

(D∗u)4
j + (ε − az(θtω))(D∗u)4

j)

−
k
3

∑
j∈ZN

(D∗u)3
j(µ(
∥ j∥
J

) − µ(
∥ j − 1∥

J
))v j−1

≤ −
k
3

∑
j∈ZN

µ(
∥ j∥
J

)
(
1
4

d
dt

(D∗u)4
j + (ε − az(θtω))(D∗u)4

j

)
+

kµ0N

3J
√
λ3
∥φ∥4E, (3.32)

((2aεz(θtω) − a2z2(θtω))u, y) ≤
2aε|z(θtω)| + a2z2(θtω)

2
√
λ

∑
j∈ZN

µ(
∥ j∥
J

)∥φ j∥
2
E, (3.33)
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( f (σ̃(t), y) ≤
1
2δ

∑
j∈ZN

µ(
∥ j∥
J

) f 2
j (σ̃(t)) +

δ

2

∑
j∈ZN

µ(
∥ j∥
J

)|v j|
2. (3.34)

From (3.28)–(3.34), we obtain

d
dt

∑
j∈ZN

µ(
∥ j∥
J

)(∥φ j∥
2
E +

k
6

(D∗u)4
j) ≤ (−ε + ρ(θtω))

∑
j∈ZN

µ(
∥ j∥
J

)(∥φ j∥
2
E +

k
6

(D∗u)4
j)

+
1
δ

∑
j∈ZN

µ(
∥ j∥
J

) f 2
j (σ̃(t)) +

c1

J
∥φ∥2E, (3.35)

where
c1 =

16µ0NK
√
λ
+

2kµ0N

3
√
λ3

R2
0(ω).

By (3.25), we have ∫ t

0
e−

∫ t
l ( ε2−ρ(θs−tω))ds∥φ(l, θ−tω,σ, φ0(θ−tω)∥2Edl

≤
2
ε

e−
∫ 0
−t(
ε
2−ρ(θsω))ds(R2

0(θ−tω) +
8k
3
∥u0∥

4) +
1
ε

R2
0(ω). (3.36)

By applying Gronwall’s inequality in (3.35) over [0, t](t ≥ 0) and replacing ω by θ−tω, we obtain that
for any J ∈ N, ∑

j∈ZN

µ(
∥ j∥
J

)∥φ j(t, θ−tω,σ, φ0(θ−tω))∥2E

≤ e−
∫ 0
−t(
ε
2−ρ(θsω))ds(∥φ0(θ−tω)∥2E +

k
6
∥D∗u0∥

4) +
1
δ

sup
σ∈Tm

∑
∥ j∥≥J

f 2
j (σ)

+
c1

J

∫ t

0
e−

∫ t
l ( ε2−ρ(θs−tω))ds∥φ(l, θ−tω,σ, φ0(θ−tω))∥2Edl

∫ t

0
e−

∫ t
l ( ε2−ρ(θs−tω))dsdl

≤ (1 +
2c1

Jε
)e−

∫ 0
−t(
ε
2−ρ(θsω))ds(R2

0(θ−tω) +
8k
3
∥u0∥

4) +
c1

Jε
R2

0(ω)

+
1

2∥ f ∥2C
sup
σ∈Tm

∑
∥ j∥≥J

f 2
j (σ)R2

0(ω)

≤ (1 +
2c1

Jε
)e−

∫ 0
−t(
ε
2−ρ(θsω))ds(R2

0(θ−tω) +
8k
3
∥u0∥

4) + c2(
1
J
+ γ1,J)R2

0(ω), (3.37)

where c2 = max{ c1
ε
, 1

2∥ f ∥2C
}, γ1,J = sup

σ∈Tm

∑
∥ j∥≥J

f 2
j (σ).

By (H3), lim
t→+∞

(1 + 2c1
Jε )e−

∫ 0
−t(
ε
2−ρ(θsω))ds(R2

0(θ−tω) + 8k
3 ∥u0∥

4) = 0. Thus, for any ν > 0, ω ∈ Ω, there
exists Tν(ω) > 0 such that (3.27) holds. The proof is completed. □

3.4. Existence of a random uniform exponential Attractor

For every ω ∈ Ω, s ≥ 0, ν > 0, set T0(ω) = T (ω, B0) and

B(θ−sω) = ∪t≥max{T0(θ−sω),T0(ω),T0(θ−Tν(ω)ω)}+Tν(ω)π(t, θ−t−sω)Tm × B0(θ−t−sω), (3.38)
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where π is the skew-product cocycle generated by Φ and ϑ:

π(t, θ−t−sω)Tm × B0(θ−t−sω) = ∪σ∈Tm(ϑtσ) × φ(t, θ−t−sω,σ)B0(θ−t−sω).

It is easy to check from Lemma 3.2 and Lemma 3.3 that B has the following properties:

(A1) for every ω ∈ Ω,B(ω) ⊆ Tm × B0(ω), the diameter of B(ω) in Tm × E is bounded by (m(2π)2 +

4R2
0(ω))

1
2 , where R2

0(θtω) is continuous in t ∈ R;
(A2) B(ω) is positive invariant, i.e, for every ω ∈ Ω, t ≥ 0, π(t, θ−tω)B(θ−tω) ⊆ B(ω) and by PEB ⊆ B0,

where PE denotes the projection from Tm × E to E;
(A3) B is pullback absorbing in DE. Really, for all D ∈ DE, there exist t̃(D, ω) > 0 such that

π(t, θ−tω)D(θ−tω) ⊆ B(ω), t ≥ t̃(D, ω);
(A4) for all {σ} × {φ} ∈ B(ω), the following is true.∑

j∈ZN

µ(
∥ j∥
J

)∥φ j∥
2
E ≤ ν + c2(

1
J
+ γ1,J)R2

0(ω). (3.39)

For any r ≥ 0, t ≥ 0, ω ∈ Ω, {σi} × {φ
(i)
0 (ω)} ∈ B(ω), i = 1, 2, let φ(i)(r) = φ(i)(r, θ−tω,σi, φ

(i)
0 (θ−tω)) =

(u(i), v(i))T and φ̃(r) = φ(1)(r) − φ(2)(r) = (̃u, ṽ)T , then{ dφ̃
dr + Λφ̃ = F(φ(1), θr−tω) − F(φ(2), θr−tω),
φ̃0(θ−tω) = φ(1)

0 (θ−tω) − φ(2)
0 (θ−tω).

(3.40)

By (A2), we have
φ(i)(r) ∈ B0(θr−tω), ∥φ(i)(r)∥E ≤ R0(θr−tω), i = 1, 2. (3.41)

Lemma 3.4. Assume that (H1)–(H3) hold. Then for all r ≥ 0, t ≥ 0, ω ∈ Ω, J(≥ 1) ∈ N, {σi} ×

{φ(i)
0 (θ−tω)} ∈ B(θ−tω), i = 1, 2, there exist random variables C1(ω),C2(ω),C3(ω) ≥ 0, such that

∥π(t, θ−tω){σ1} × {φ
(1)
0 (θ−tω)} − π(t, θ−tω){σ2} × {φ

(2)
0 (θ−tω)}∥2E

≤ e2
∫ 0
−t C1(θsω)ds(∥σ1 − σ2∥

2
Tm + ∥φ

(1)
0 (θ−tω) − φ(2)

0 (θ−tω)∥2E), (3.42)

and∑
∥ j∥≥4J+1

∥φ̃ j(t)∥2E ≤ (e
∫ 0
−t(−

ε
2+C2(θsω)ds +

δJ

2
e
∫ 0
−t C3(θsω)ds)2(∥σ1 − σ2∥

2
Tm + ∥φ

(1)
0 (θ−tω) − φ(2)

0 (θ−tω)∥2E), (3.43)

where δJ is given in the proof below.

Proof. (i) Taking the inner product of (3.40) with φ̃(r) in E, we have

1
2

d
dr
∥φ̃(r)∥2E + (Λφ̃(r), φ̃(r))E =

(
F(φ(1)(r), θtω) − F(φ(2)(r), θtω), φ̃(r)

)
E
. (3.44)

Similar to (3.15)–(3.22) in Lemma 3.1, we obtain

d
dt

(∥φ̃(r)∥2E + ∥σ1 − σ2∥
2
Tm) ≤ 2C1(θr−tω)(∥φ̃(r)∥2E + ∥σ1 − σ2∥

2
Tm), (3.45)
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where

C1(θr−tω) =
ε

2
+
ρ(θtω)

2
+

256N2k2

λ3δ
R4

0(θr−tω) +
∥d∥2

δ
. (3.46)

Using Gronwall’s inequality in (3.45) over [0, t](t ≥ 0) and replacing ω by θ−tω, we obtain

∥φ(1)(t) − φ(2)(t)∥2E + ∥σ1 − σ2∥
2
Tm ≤ e

∫ 0
−t 2C1(θsω)ds(∥φ(1)

0 − φ
(2)
0 ∥

2
E + ∥σ1 − σ2∥

2
Tm). (3.47)

Thus, (3.42) holds.
(ii) Let I ∈ N, ϕ̃ j = (x̃ j, ỹ j)T = µ( ∥ j∥I )φ̃ j = (µ( ∥ j∥I )ũ j, µ(

∥ j∥
I )ṽ j)T , ϕ̃ = (x̃, ỹ)T = (ϕ̃ j) j∈ZN . Taking the inner

product of (3.40) with ϕ̃ in E, we have

1
2

d
dt

∑
j∈ZN

µ(
∥ j∥
I

)∥φ̃ j∥
2
E +

∑
j∈ZN

µ(
∥ j∥
I

)(
ε

2
∥φ̃ j∥

2
E +
δ

2
|ṽ j|

2) ≤ (F(φ(1), θr−tω) − F(φ(2), θr−tω), ϕ̃)E, (3.48)

where

(F(φ(1), θr−tω) − F(φ(2), θr−tω), ϕ̃)E = (az(θr−tω)̃u, x̃)λ − α(Aũ, ỹ) − β(Bũ, ỹ)

+
1
3

k
(
D((D∗u(1))3 − (D∗u(2))3), ỹ

)
+

(
(2aεz(θr−tω) − a2z2(θr−tω))̃u, ỹ

)
− (az(θr−tω)̃v, ỹ) + ( f (σ̃1(r)) − f (σ̃2(r)), ỹ). (3.49)

By (H2) and (3.39), we have that for ∥ j∥ ≥ 2J, J ∈ N,

(az(θr−tω)̃u, x̃)λ − (az(θr−tω)̃v, ỹ) ≤ a|z(θr−tω)|
∑

j∈ZN
µ( ∥ j∥I )∥φ̃ j∥

2
E,

−α(Aũ, ỹ) − β(Bũ, ỹ) ≤ 6
√

2α+2|β|
√
λ

∑
j∈ZN
µ( ∥ j∥I )∥φ̃ j∥

2
E +

8µ0NK
I
√
λ
∥φ̃∥2E,

1
3k(D((D∗u(1))3 − (D∗u(2))3), ỹ) = −1

3k((D∗u(1))3 − (D∗u(2))3,D∗ỹ)
≤ 2k
√
λ

∑
j∈ZN
µ( ∥ j∥I )(∥φ̃ j∥

2
E + ∥φ̃ j−1∥

2
E)(|u(1)

j |
2 + |u(2)

j |
2)

≤ 4kν
√
λ3

∑
j∈ZN
µ( ∥ j∥I )∥φ̃ j∥

2
E +

[
2kµ0

I
√
λ3

(ν + c2( 1
J + γ1,J)R2

0(θr−tω)) + 4kc2√
λ3

( 1
J + γ1,J)R2

0(θr−tω)
]
∥φ̃∥2E,(

(2aεz(θr−tω) − a2z2(θr−tω))̃u, ỹ
)
≤

2aε|z(θr−tω)|+a2z2(θr−tω)
2
√
λ

∑
j∈ZN
µ( ∥ j∥I )∥φ̃ j∥

2
E,

( f (σ̃1(r)) − f (σ̃2(r)), ỹ) ≤ 1
2δ

∑
j∈ZN
µ( ∥ j∥I )d2

j∥σ1 − σ2∥
2
Tm +

δ
2

∑
j∈ZN
µ( ∥ j∥I )|ṽ j|

2∥φ̃∥2E.

(3.50)

By (3.48)–(3.50), we obtain that for I ≥ 2J,

d
dt

∑
j∈ZN

µ(
∥ j∥
I

)∥φ̃ j∥
2
E ≤ (−ε + ρ(θr−tω) +

8kν
√
λ3

)
∑
j∈ZN

µ(
∥ j∥
I

)∥φ̃ j∥
2
E +

1
δ

∑
∥ j∥≥I

d2
j∥σ1 − σ2∥

2
Tm

+ [
16µ0NK

J
√
λ
+

4kµ0

J
√
λ3

(ν + c2(
1
J
+ γ1,J)R2

0(θr−tω)) +
8kc2
√
λ3

(
1
J
+ γ1,J)R2

0(θr−tω)]∥φ̃∥2E

≤ (−ε + 2C2(θr−t))
∑
j∈ZN

µ(
∥ j∥
I

)∥φ̃ j∥
2
E + c3δ̃J(1 + R2

0(θr−tω))∥φ̃∥2E, (3.51)

AIMS Mathematics Volume 10, Issue 1, 839–857.



852

where

δ̃J = γ2,J + (
1
J
+ 1)(

1
J
+ γ1,J), γ2,J =

∑
∥ j∥≥I

d2
j , c3 =

1
δ
+

16µ0NK

J
√
λ
+

4kµ0
√
λ3

(ν + c2) +
8kc2
√
λ3
,

C2(ω) =
ρ(ω)

2
+

4kν
√
λ3
. (3.52)

By (3.47) and applying Gronwall’s inequality in (3.51) over [0, t], we have that for I ≥ 2J,∑
j∈ZN

µ(
∥ j∥
I

)∥φ̃ j∥
2
E ≤ e

∫ 0
−t(−ε+2C2(θsω))ds(∥φ(1)

0 − φ
(2)
0 ∥

2 + ∥σ1 − σ2∥
2
Tm)

+ δ̃Je
∫ 0
−t(2C1(θsω)+2C2(θsω))ds(∥φ(1)

0 − φ
(2)
0 ∥

2 + ∥σ1 − σ2∥
2
Tm) ×

∫ 0

−t
c3eεl(1 + R2

0(θlω))dl. (3.53)

Since for all p ≥ 0,
√

p ≤ ep, it follows that∫ 0

−t
c3eεl(1 + R2

0(θlω))dl ≤ (
∫ 0

−t
e2εldl)

1
2 (
∫ 0

−t
c2

3(1 + R2
0(θlω))dl)

1
2

≤
1
√

2ε
e
∫ 0
−t 2c2

3(1+R4
0(θlω))2dl.

By (3.53), it follows that for I ≥ 2J,∑
∥ j∥≥4J

∥φ̃ j∥
2
E ≤

∑
j∈ZN

µ(
∥ j∥
I

)∥φ̃ j∥
2
E

≤

(
e
∫ 0
−t(−ε+2C2(θsω))ds +

δ2
J

4
e
∫ 0
−t 2C3(θsω)ds

)
(∥φ(1)

0 − φ
(2)
0 ∥

2 + ∥σ1 − σ2∥
2
Tm), (3.54)

where δ2
J =

4δ̃J√
2ε

and

C3(ω) = C1(ω) +C2(ω) + c2
3(1 + R4

0(ω)). (3.55)

Thus, (3.43) holds. The proof is completed. □

Lemma 3.5. Assume that the coefficient a and ν = ν0 > 0 satisfy

a < min

ε
√
δ

8
,

√
λδ

8
,

√
δελ

1
4

2

 , (3.56)

a
√
πδ
+

6
√

2α + 2|β|
√
λ

+
aε
√
πλδ
+

a2

4δ
√
λ
+

4kν0
√
λ3
<
ε

32
. (3.57)

Then
0 ≤ E(C2(ω)) ≤

ε

32
, 0 ≤ E(C2

3(ω)) < +∞.
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Proof. By (3.2), (3.11), (3.52), and (3.57), it is easy to have the following

E(C2(ω)) =
a
√
πδ
+

6
√

2α + 2|β|
√
λ

+
aε
√
πλδ
+

a2

4δ
√
λ
+

4kν0
√
λ3
<
ε

32
.

By (3.55), we have

E(C2
3(ω)) ≤ 4

(
E(C2

1(ω)) + E(C2
2(ω)) + c4

3 + c4
3E(R8

0(ω))
)
. (3.58)

By (3.46), we know that

C2
1(ω) ≤ ε2 + ρ2(ω) +

5122N4k4

λ6δ2 R8
0(ω) +

4∥d∥4

δ2 ,

C2
2(ω) =

(
ρ(ω)

2
+

4kν0
√
λ3

)2

≤
ρ2(ω)

2
+

32k2ν2
0

λ3 .

By (3.26), (3.56), and Hölder’s inequality, we have

E(R8
0(ω)) =

28

δ4 ∥ f ∥
8
CE

(∫ 0

−∞

e
ε
2 l+

∫ 0
l ρ(θsω)dsdl

)4

≤
28

δ4 ∥ f ∥
8
C(

∫ 0

−∞

e
ε
3 ldl)3E(

∫ 0

−∞

eεl+
∫ 0

l 4ρ(θsω)dsdl)

≤
28 · 33

δ4ε3 ∥ f ∥
8
C

 1
ε − 8a

√
δ

+
1

ε − 48
√

2α+16|β|
√
λ

+
1

ε − 8aε
√
δλ

+
1

ε − 4a2
√
λδ


< ∞. (3.59)

Thus,

0 ≤ E(R4
0(ω)) ≤

1
2

(1 + E[R8
0(ω)]) < ∞. (3.60)

E[ρ2(ω)] ≤ 4
4a2E[|z(ω)|2] +

(12
√

2α + 4|β|)2

λ
+

4a2ε2

λ
E[|z(ω)|2] +

a4

λ
E[|z(ω)|4]


=

8a2

δ
+ 4

(12
√

2α + 4|β|)2

λ
+

8a2ε2

λδ
+

3a4

λδ2 < ∞. (3.61)

By (3.58)–(3.61), we have E[C2
3(ω)] < ∞. The proof is completed. □

Theorem 3.1. Assume that (H1)–(H3), (3.56), and (3.57) hold. Then {Φ(t, ω, σ)}t≥0,ω∈Ω,σ∈Tm has aD−
random uniform exponential attractorA = {A(ω)}ω∈Ω with the following properties:
(i)A is a compact set of E and measurable in ω;

(ii) There exists J0 ∈ N such that dim fA(ω) ≤
2[m+2(8J0+1)] ln(

2
√

m+2(8J0+1)
δJ0

+1)

ln 4
3

< ∞,∀ω ∈ Ω;

(iii) For every ω ∈ Ω,D ∈ D, there exist T̃ (ω,D) ≥ 0 and a tempered random variable h̃(ω) > 0, such
that for any t ≥ T̃ (ω,D),

sup
σ∈Tm

distE(Φ(t, θ−tω, ϑ−tσ)D(θ−tω),A(ω)) ≤ h̃(ω)e−
ε ln 4

3
64 ln 2 t,

where D = D × Tm.
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Proof. From Lemma 3.5, taking t = t0 =
16ln2
ε

in (3.42) and (3.43), it follows that

0 < t2
0

(
2E[C2

3(ω)] +
ε

2
E[C3(ω)]

)
< +∞.

Let

κ = min
{

1
16
, e

− 2
ln 3

2
t20(2E[C2

3(ω)]+ ε2 E[C3(ω)])
}

be a finite positive constant. By (H1), when J → +∞, δJ → 0, thus, we choose a large enough positive
integer J = J0 such that δJ ≤ κ. Based on Theorem 2.1 in [33] and Theorem 2.6 in [35], it follows from
Lemmas 3.1–3.5 that the proof of Theorem 3.1 is completed. □

4. Conclusions and discussion

In this paper, based on the existence criterion of a random uniform exponential attractor for
non-autonomous random dynamical systems from Theorem 2.1 in [33] and Theorem 2.6 in [35], we
proved the existence of a random exponential attractor for the non-autonomous stochastic Boussinesq
lattice system with quasi-periodic forces and multiplicative white noise. The random uniform
exponential attractor with finite fractal dimension is more stable than the random attractor. Therefore,
the asymptotic behavior of the solution of the system (1.1) can be described by finite independent
parameters. Applying the same idea, we can also consider the existence of a random exponential
attractor for the non-autonomous stochastic Boussinesq lattice system with additive white noise.
However, we do not need to restrict the coefficient of the random term to small enough, because the
additive noise term is independent of the state variable. Inspired by [36, 37] and the references
therein, we will consider the long-time asymptotic behavior of the non-autonomous stochastic
Boussinesq lattice equation with nonlinear colored noise in future works.
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