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Abstract: In this paper, we investigate the existence of a random uniform exponential attractor
for the non-autonomous stochastic Boussinesq lattice equation with multiplicative white noise and
quasi-periodic forces. We first show the existence and uniqueness of the solution of the considered
Boussinesq system. Then, we consider the existence of a uniform absorbing random set for a jointly
continuous non-autonomous random dynamical system (NRDS) generated by the system, and make an
estimate on the tail of solutions. Third, we verify the Lipschitz continuity of the skew-product cocycle
defined on the phase space and the symbol space. Finally, we prove the boundedness of the expectation
of some random variables and obtain the existence of a random uniform exponential attractor for the
considered system.
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1. Introduction

It is well known that attractors are an important part of describing the long-time asymptotic
behavior of infinite-dimensional dynamical systems, such as global attractors, pullback or uniform
attractors for deterministic autonomous and non-autonomous dynamical systems, see [1-6]. Random
attractor, random pullback or uniform attractors for autonomous and non-autonomous random
dynamical systems; see [7-19] and the references therein. However, the dimension of the attractor
may be infinite. This means that the asymptotic behavior of the dynamical systems may not be
described with finite independent parameters. Moreover, the rate at which the attractor attracts
trajectories may be very slow, so that the attractor may be unstable under some small perturbations,
this brings some difficulties to practical application and numerical simulations. For these reasons,
Eden et al. in [20] introduced the concept of the exponential attractor, which is a compact and positive
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invariant set with a finite fractal dimension attracts any trajectories exponentially for deterministic
autonomous dynamical systems. Since then, the concept of an exponential attractor extended to
deterministic non-autonomous dynamical systems, autonomous and non-autonomous random
dynamical systems (NRDS), such as exponential attractors, pullback or uniform exponential attractors
(see [21-27]), random exponential attractors and random pullback exponential attractors
(see [28-32]).

Recently, Han and Zhou in [33] defined the random uniform exponential attractor for NRDS and
established the existence criterion of the random uniform exponential attractor for a joint continuous
NRDS by introducing a skew-product cocycle on the extended space and applied it to the
non-autonomous stochastic first-order lattice system and FitzHugh-Nagumo lattice system with
quasi-periodic forces and multiplicative noise. Using this criterion, the random uniform exponential
attractor for the non-autonomous stochastic Schrodinger lattice system and discrete long wave-short
wave resonance system in [34,35] is obtained, respectively.

In this paper, we consider the existence of a random uniform exponential attractor for the following
non-autonomous stochastic Boussinesq lattice system with quasi-periodic forces and multiplicative
white noise:

{ itj + outj + a(Au); + B(Bu); + Au; — %(D(D*u)3)j = fi(0(0)) + aujo W,

) t>0, 1.1
Mj(o) =Ujo, Mj(o) = Uy;0, (1.h

where u; = u;j(t) € R,j = (ji,j2," -+, jn) € ZN, (R and Z are the sets of real and integer numbers);
a, 8, A, k, a are positive constants, 8 € R; T is the m- dimensional torus, o(¢) = (xt + o)mod(T"), o €
T te R,x = (x1,---,x,) € R"is a fixed vector, and xy, - - - , x,,, are rationally independent numbers;
f(@) = (f(0))jezv € C(T™, I?); W(¢) is a two-sided real-valued Wiener process on a probability space
(Q,F,P), where Q = {w € C(R,R) : w(0) = 0},F is the Borel o-algebra on Q generated by the
compact open topology, and P is the Wiener measure on (€2, 7). A, B, D, and D* are all linear coupled
operators; “o” means the sense of Stratonovich in the stochastic term.

The Boussinesq equation is one of the mathematical models describing wave propagation, which is
widely used in the fields of ocean engineering, coastal protection, and marine resources development,
such as wave motion, swell, and tide, and is also used in physics and mechanics, such as nonlinear
elastic beam systems, thermomechanical phase transitions, and some Hamiltonian mechanics.

For the autonomous lattice dynamical system (1.1) without multiplicative white noise and quasi-
periodic forces (j € Z, fi(o(t)) = f; € R,a = 0), Abdallah in [1] obtained the existence and upper
semi-continuity of the global attractor, Zhao and Zhou in [25] proved the existence of the exponential
attractor, then, they in [26] obtained the existence of the pullback and uniform exponential attractor for
non-autonomous Boussinesq lattice system (1.1)

je€Za=a;it),.B =B, f(TD)=fieRa=0

and further proved the existence of the random attractor for the non-autonomous stochastic
Boussinesq lattice system in [17]. As we are aware, there are no results on the random uniform
exponential attractor for the non-autonomous stochastic Boussinesq lattice system with quasi-periodic
forces and multiplicative white noise. Motivated by [33-35], we will consider the existence of a
random uniform exponential attractor for the system (1.1). The time-dependent external force term of
the system (1.1) is fj(0), where the time symbol o(t) = (xt + o)mod(T") € T™ on the
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finite-dimensional torus T™ is taken as the parameter. Thus, the solutions of this system (1.1)
generates a NRDS, denoted {®(7, w, 0)};>0.weq.0en, Which can be regarded as a family of autonomous
random dynamical system with the parameter o~. We investigate that the random uniform exponential
attractor is a family of single-parameter random sets, which involve three properties: random
compactness, finite fractal dimensionality, and uniform exponential attraction.

This paper is organized as follows: In Section 2, we introduce some basic concepts and assumptions
of the coefficients and external force term of the system (1.1). In Section 3, we apply the existence
criterion of a random uniform exponential attractor in [33] to the considered system (1.1). In Section 4,
we make conclusions and discussion.

2. Preliminaries

In this section, we recall some concepts that can be obtained directly from [8,12,33-35], and make
some assumptions about a and f;(o(1)).

Let > ={u= ez : j=Ursjoo- i) €ZY, u; €R, Y u? < oo} be a Hilbert space with the
jezN
inner product and norm are defined as:

@vy= > uvj, Ml = @uy= Y luf, Vuvel,

jezN jezN
Define the linear operators A, B, D, D* : I* — [> as follows:
A=A+A,+---+Ay, B=B;+B,+---+ By,
forall u = (u;)ezv € B, j=,jo- o jy) €ZN, i=1,2,--- ,N,
(Ail) j = UGy oo it jit i) — AUGL oo it it L ist o )
F UG, jo.o it in) ™ AU o ictsji= Lt oin) T WG it fim 2ot i)
(Biu)j = UG joeictojit Ljiet ) zu(jl,jz,'" dictojisjistoin) T UG o sjictim it )
(Diu).i = UG o ictodit Ljietin) = WGiajor ictsdisiets v
(D;u)j = UGy, jassictdisdietsin) = WGitjae sietyji=Lijiet jn) -

Then A; = Bf, B; = D;D; = D:D;, where D? is the conjugate operator of D;, this is, for all u =
(U)jezv,v = (v))jezv € P, i=1,2,-- N, then

(Diu,v) = —=(u, D{v), (Biu,v) =—(Du,Dyv), (Au,v)= (Biu,Byv).

Endowed with the inner products and norms on [? as: for any u = (u Djezv, v = (v))jezy € 2,

()0 =) uv, Nl = (w0, = () )2

jezN jezN

Let 5 = (A, (-, )11l - ll) and E = 12 X [, it is obvious that the norm || - ||, in 3 and the usual norm
|| - || in /? are equivalent, and E is a Hilbert space with the inner product (-, )z and the norm || - ||g: for
oV = v = U V) v € E, i = 1,2,

n @ e @2 2 2 2
@, 0P = @, u®), + V), lellz = (e @)r = llull; + VP,
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and B(E) is the Borel o—algebra of E.
Let T™ be the m—dimensional torus

T ={oc=(0oy, - ,0p):0€[-m,n,¥I=1,--- ,m},

where (01, , 001, =7, 001, ,Om) ~ (01, 011, 0,041, ,0), ¥l =1,--- ,m, and the norm
in T™ is given by

m
2.1
el = (O oD, Vo= (0, o) € T,
=1

Letx = (x1,---,x,) € R" be a fixed vector such that xy,-- -, x,, are rationally independent. For
t € R, define

%o = (Xt + o)mod(T™), o € T",

then {1 },cr 1s a translation group on T with 4, T" = T™ and (¢,0) — 9,0 is continuous for V¢ € R,
B(T™) denotes the Borel o—algebra of T".
Define the extended space E = T X E with norm

17z = (lolBn + I¢l2)?, VY = (o} x {¢} €E, ¢ = (u,v) € E,

and the Borel o—algebra B(E). Norm || - ||z induces a metric.
Let (QQ, 7, P, {6,w},cr) be an ergodic metric dynamical system [8]. The two groups {6,},cr and {};},cr
are said to be base flows [12]. Hereafter, for simplicity, we identify “a.e. w € Q” as “w € Q.

Definition 2.1. [33] A continuous NRDS on E with base flows {6,},cr on Q and {9,},cg on T™ is defined
as a mapping ¢(t, w, o, u) : R* X Q X T" X E — E satisfying

(i)  is (BRY) X F x B(T™) x B(E), B(E)) measurable;

(ii) ¢(0, w, o, -) is the identity on E for each o € T™ and w € €;

(iii)Vt,s > 0,w € Q0 €T, ot + s,w, T,) = O, O;w, F0, ) o o(s, w, T, ),

(iv)VteRY,we Q,0 €T, ¢(t,w,o,-) is continuous.

A NRDS is said to be jointly continuous in T™ and E if the mapping ¢(t, w, -, -) is continuous for
eachr € R" and w € Q.

Definition 2.2. /8] A (autonomous) random set D = D(-) in E is a multi-valued map D : Q —
2E\Q such that for each u € E, the map w — distg(u, D(w)) (distance in E between u and D(w)) is
measurable. It is said that the (autonomous) random set is bounded (respectively, closed or compact)
if D(w) is bounded (respectively, closed or compact) for w € Q.

Given two random sets Dy, D,, we write D; C D, if D{(w) C D,(w) for all w € Q.
Definition 2.3. [8] A random set D(-) in E is called tempered with respect to {0,}cr, if for w € Q,y >

0, lim e™||D(0-,w)llz = 0, where |ID(w)llz = sup ||x]|g.
[—+00 xeD(w)

Let D = D(E) be the collection of all tempered bounded random sets of E.
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Definition 2.4. [33] A random set {M(w)}uecq in E is called a D(E)—random uniform exponential
attractor for the continuous NRDS {¢(t, w, 0)}150 weq.cerm on E with base flows {6,},er and {9 }er if
there is a set of full measure Q € F such that for every w € Q, it holds that

(i) M(w) is a compact set;

(ii) There exists a random variable &, < oo such that dimsM(w) < &,, where dims M(w) is the fractal
dimension of M(w);

(iii) There exists a constant b > 0 such that for any B € D(E), there exist random variables tp(w) >
0, O(w,1Bllg) > 0 satisfying supdistp(p(t, 0-,w, o) BO_w), M(w)) < Q(w, [|Bllp)e™, t > tp(w).

oeTm

For the given jointly continuous NRDS ¢, introduce a mapping 7 : R* X Q X E — E by
ﬂ-(t’ w, {0-} X {E}) = {1910-} X {QO(Z, w, o, X)}

Then the mapping 7 satisfying: (i) 7 is (B(R")XF X B(E), B(E))—measurable; (ii) 7(0, w, ) = T,YVw €
Q, T € E; (iii) the cocycle property n(t + s, w, T) = n(t, 0w, n(s, w, 1)), Vt,5s > 0,0 € Q,T € E.

The r is called the skew-product cocycle on the extended space E. Note that  is continuous; that
is, the mapping T — n(-,-, T) is continuous in E if and only if ¢ is jointly continuous in T and E. Let
Deg={B:B=T"XxB={T"X B(w)},cq and B € D(E)} be some class of random sets in E.

In order to study the existence of a uniform exponential attractor, we need to make the following
assumptions:

(H1) f(o) = (fi(o)jezv € C(T™, P), that s, for any f(o) € C(T", ), I f(o)llg. = 1(frréa><||f(0)||2 < oo,

TUI
and for any € > 0, there exists /() € N such that m%x > fX(o) < €, where ||j|| = max{|ji,i =
€™ jlI>1(e)
L---,N}

(H2) There exists d = (d;);ezv € I* and d; > 0 such that

[filo1) = filo)l < djlloy = omallpms

e _(2a , 12V2a+48 | 2ae a? _ 48 V2a+16/8|
(H3) § = (35 + =75 + 755 + 557) > 0, where £ = 525 > ===

3. Random uniform exponential attractor for non-autonomous stochastic Boussinesq lattice
system

The system (1.1) can be rewritten in the following vector form:

{ ii + 61t + @Au + BBu + Au — §D(D*u)* = f(0(t)) + au o W(7), s

u(0) = ug, i1(0) = g, 0, (3.1)

where
u = (uj())jezv, Au = ((Au(?));) jezv, Bu = ((Bu(1));) jezv,
D*u = (D*u(1));) jezn, f(0 (1)) = (fi(0(1))) jezn-

Let z(6,w) = —06 f_ (lo e*0,w(s)ds, t € R,w € Q be the Ornstein—Uhlenbeck stationary processes,
and a stationary solution of Ito equation dz(6,w) + z(6,w)dt = dW(t), where W(¢) = w(t). It follows
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from [8, 12] that z(6,w) is continuous in ¢ and has the following properties:

. . [ Oy o
lim 299l — fim M = lim e~|z(8,w)| = 0, Ye > 0,
ko0 t—+00 t—>il°°
. f Gl r = IG5

E[ecF HO0Ms) < o' 0 < & < 6%,1> 0,
E[eej:H Iz(05w)lzds] < e%’, 0<2<1,t20,

where I'(+) is the Gamma function, “E” denotes the expection.
Let v = &t + eu — auz(6,w) and ¢ = (u,v)", where u is the solution of the system (3.1). Then the
system (3.1) is equivalent to the following random system without the white noise term:

¢+ Ay = F(p, w),
{ @o = (uo, vo)" = (uo, uy 9 + gup — aupz(w))”, >0 (3.3)
where
EU — v
AQ":( At = 56 - £+ (6 - & ) (3.4)
F(p,8,w) = az(6,w)u
(90’ ,U)) - —CL’(AM) —ﬁ(Bl/l) + %k(D(D*l/lP) + (2(182(@(1)) _ 61222(91(1)))14 _ aZ(Ht(U)V n f(&(f)) .

3.5

3.1. A jointly continuous NRDs generated by system (3.3)

Lemma 3.1. Let (HI)—(H3) hold, then

(i) Forall w € Q,t € [0, T], T > 0, po(w) € E, the system (3.3) has a unique solution ¢(-, w, o, po(w)) €
C([0, +o0), E) and the solution ¢ is measurable in w,

(ii) Let (-, w, o, (pf)i)(a))) be the solution of system (3.3) with o; € T" and gog)(w) €E,i=1,2T>0
is fixed, then there exists a constant s(T, w) > 0 such that for all t € [0, T],

1 1 2 2 2 T, 1 2)112 2
eVt w, a1, ¢ () = ¢2(t, w, 071, G (IE < T (Il — @I + llory = oalon).

Proof. 1t is easy to verify that for all w € Q, F(p, 6,w) is continuous in ¢ and ¢. Let Q be a bounded
set in E; then there exists a positive constant L(Q) depending on Q, such that for all ¢ = (u?, v €
0,i=1,2, lo9z < L(Q). For all w € Q,t € [0, T], it follows that

IF (¢, 6,w) — F(6®, 6w)llk
k * *
< alz@)lu® — u®@|y + AW — u®)|| + |BIIBW - u®)|| + 31D uy — D(D*u@)?|

1 2 2.2 1 2 1 2
+ ealz Gw)lu? - u®|| + a*Z G’ — u®|| + alz(@w)|IVY - v

12V2a + 4[| + 2eamax |z(8,w)| + a* max 22(6,w)
1€[0.7] 1[0, 7] 16k , M _ @
< atrel[l(?;g]lz(e,w)l + + 3L D lle" =7l

Vi VT

Thus, F satisfies the local Lipschiz condition in ¢; by the standard theory of ordinary differential
equations, we obtain that there exists a T,,,, < +oco such that the system (3.3) has a unique solution
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©(t) € C([0, Tar), E) satistying that lim sup||¢||g = +o0 if T, < +00. Next, we prove that this local

- Tmax

solution is a global one.
Let T € [0, T)..x), taking the inner product of (3.3) with ¢ in E, we have

1d
Eallsollé + (A, ©)r = (F(g, 6,w), )k, (3.6)
where
Ap.@) = il + 2P (3.7)
(Ap, )E = S el + SV )
(F(p,0,w), )p = (az(G,w)u, u); — a(Au,v) — S(Bu,v) + %k(D(D*u)3, V)
— az(6,w)(v — 2eu + az(B,w)u, v) + (f(o(1),v), (3.8)
where

(az(B,w)u, 1), < alzB)lull,
—a(Au,v) - B(Bu, v) < D)2,

(DD uy’,v) = =& 4|[(D*u)?|]? — X2l Dy, (3.9)
—az(Ow)(v = 2eu + az(B,w)u,v) < alz(O)v|f + HECDLEZ0L) 2
(F(@(@®),v) < I + S|l
Combining (3.6)—(3.9), we obtain that
d 2 k % \2112 2 k £ \N2112 1 2
S UIlz + ZID"w?IP) < (=& + pEw)llz + ZlID"wI) + ZIIflle, (3.10)

where

12 V2a + 48] | 2a8lz0w)| + a7 (O,w)

Vi Vi
Applying Gronwall’s inequality in (3.10) over [0,7](0 < ¢ < T},,,.), we obtain

p(Ow) = 2alz(6w)| + (3.11)

k * ! —& w s k * ' ! —& w s 1
lllz + P uP|P < ehCoP GO (g2 4 P uo)|I*) +f el ere@ind gllfllﬁdl- (3.12)
0

We further obtain that

T —& w N k * 1 ! T —& w S
lglly, < eh o@D gy 2.+ 1D uoIP) + <IIflle f el ConOdsg) < oo (3.13)
0

Thus, the statement (i) holds. '
(i) Let ¢0(f, w) = (@, v = p(t, w, 01, (W), i = 1,2, § = @) = (1, w) - (1, ), then

~ _ W _ @ 0. (3.14)

{ ¢+ Ap=F(p".60) - F¢®.0w).
$Yo=¢%y, —¥y >

Taking the inner product of (3.14) with ¢ in E, we obtain
l1d _ —
Ed—tllsollé +(AG, P = (F(@'", 6w) - F(¢, 6,0), 9, (3.15)
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where
(NG 2)e = Sl + SIFP.
and
(F(¢",6,w) = F(¢?,6,0), Q) = (az(@w)it, ), + %k(D«D*u“)f - (D'u®)’),)
— a(Au,v) = B(Bu,v) — az(6,w)(v — 2eu + az(,w)u,v) + (f(@(1) — f(02(1), V).
By (H2), we derive each term on the right-hand side of (3.17),

(az(,w)u, w), < alz@w)[ull3,

* * 6
||(D uy! = (DU + 71wl

1 4ANK?
KO U = (D)) <

64N 0
< (|| DI+ 11 1P e = @) + ZIW]I2
256N2k2
JEF; ———LYQIPll; + —IW]IZ,

— (AT, V) — B(BT, V) < %\/;W'naué,

2aelz(0,w)| + A*72(6,w)

—az(6,w)(V - 2&u + az(6,w)u, v) < alz(Gw)lIMI* + Vi Il
ldIl” 2 0o
(f(T1(0) = flo2(1), V) < —|| o1 = 0ol + Zlfﬁll :
Summing up (3.18)—(3.22) and combining (3.15)—(3.17), we obtain
d _ 2N%k? — 2||d|?
SRR < (& + plO) + T LN + 2l — ol
which implies
d _, ) 512N%k* , 2||d||2 )
d—t(llsollg +lloy — oalln) < (& + p(Bw) + s L Q)+ )@l + lloy = oallgm).

Applying Gronwall’s inequality in (3.22) over [0,7](0 < ¢ < T), then

fO(E+P(9 w)+512N 242 L4(Q)+%)ds

—2 ~ 2 2
llelly < e (llgollg + llory = omallzm).

Let s(T,w, Q) = & + maxp(6,w) + SN 74(Q) 4 2l

Thus, the statement (ii) holds. The proof is completed.

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

O

From Lemma 3.1, we know that the solution ¢(¢, w, o, po(w)) of the system (3.3) satisfies cocycle

definition. Thus, we can define a jointly continuous NRDS @ : R* X QX T" X E — E,

O(t, w, o, ¢p) = O, w, )@y = @(t, w, T, po(w)), t>0
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3.2. Uniformly absorbing set

Lemma 3.2. Assume that (HI)—(H3) hold. Then for all w € Q and D € D(E), there exist a Tp(w) > 0

and a tempered random variable Ry(w), such that ¥Vt > Tp(w),

& ! e w)ds k %
llg(t, 0_w, &, o (O_w))II7 + 3 f eh CEPODE (101, 6_w, 0, o (O-w))% + 8||(D u)’IP)dl < Rj(w)

0

holds uniformly for o € T"™.

Proof. Similar to the derivation of (3.10), then

d k. . e e k. . 1
E(IIQDII% + 2o w)*lI) + 5II¢II§ <(-5 + p(B,w))(llellz + <o w)*|*) + gllfllé

Using Gronwall’s inequality in (3.24) over [0, ¢], we obtain

k * & ' - w))ds
gl + A w)?|* + 5[ e~ FECDDY o1 0, o, po(w) I3l
0

— [[(£=p(Bsw))ds k * 1 ' — ["(£=p(Bsw))ds
<e fo(z p(Osw)d (”900”]25 + g”(D M0)2||2)+ SHf”%?f e f,(z p(Osw))d dl.
0

For t > 0, replacing w by 6_,w, we have

!
€ -~ [ w))ds
ll(t, 6w, o, @o(0_,w))||% + 5 f e~ h GO (1 0, o, 0o (0_,w))||>dl
0

_ (Oe_ w))ds k * :
< e LOEODE gyl + LD uoPIP) + SR @),

where

2 200 [ — [*(&-pO,w)ds
Ro(w)=5||f||cf eI TN,

—00

By (H3), we have
e k
lim e~ LG -p0Nds(p012 4 3||<D*uo)2||2) = 0.

t—+00

(3.24)

(3.25)

(3.26)

Since p(w) is tempered with respect to {6;},cg, we know that R(Z)(a))(< o) is also tempered. The proof

is completed.

According to Lemma 3.2, we can obtain that the random set

By = {Bo(w) ={p € E: [l¢ll < Ro(w)}, w € Q} € D

O

is a uniformly (with respect to o~ € T"™) bounded closed absorbing set for @, then there exists a Tz, >

0 such that ®(¢, 6_,w, o, By(6_,w)) € Bo(w) for any t > Tp ).
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3.3. Tail estimation of solutions
Choosing an increasing smooth function u € C’'(R,, [0, 1]), such that
u(s) =0, 0<s<l,

O<u(s)<l1, 1<s<2, |’ (8)] < o, Vs € RT, g > 0.
u(s) =1, 2 <5< +o00,

Lemma 3.3. Assume that (HI) and (H3) hold, and let ¢(t, w, o, po(w)) be the solution of (3.3) with
(0, po(w)) € T" X Bo(w). Then for every w € Q, J € N, and for any v > 0, there exists T,(w) > 0 such
that

Su (M)Hgoj(t 01w, 0, o0 W) < v + Cz( +71.)R@). 1> Ty(w), (3.27)

jezN

where ¢, and vy, j are given in the proof below.
Proof Taking the inner product of (3.3) with ¢(¢) = (x,y)” = (x; i Yj ,ezN = (,u(@)go (D) jezv in E, where
= ,u(@)uj, yj= ,u(@)vj, we have

0
g+ ST o + 2w < (Fi, 601 0, (3.28)

jezZN jezN

where
1
(F(p, w), P)e = (az(Biw)u, x), — a(Au,y) — B(Bu,y) + gk(D(D*u)s,y)
— (az(Bw)v,y) + (Qaez(,w) — @ (Ow)u, y) + (f(T(1)), ). (3.29)

By calculation, we obtain the following estimates:

(@, x), ~ @b, ) < ai@a Y w1, (3:30)
jezN
—oAy) i y) < DTS My SN (3:31)
ﬁ ]GZN J\/Z

where K = max{a, |8]},

%k(D(D*uf,y) 3Zu(M)( (D"w)t + (& - az(0w)(D"u)?)

J 4dt
jezN
1
——Z(D )(u(M) u(”J L

jezN

——GZZ;V (M)(——(D )’ + (& — az(6,w)(D" u)) Y \/_ ! (3.32)
2

(Qaex(6w) — @26 y) < Z“S'Z(Qf“’)' AU e Y (3.33)

jezN
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1 1
(f@0).y) < zéjezz;ﬂ(—)f( 7)) + JEZZ:N,U( P (3.34)
From (3.28)—(3.34), we obtain
S i Mg + S0 < e+ p@on Y u il + S0t
jezN jezN
—Z (M)f( (o) + el (3.35)
jEZN

where
16/10NK n Zk/loN

Vi 3VE Rifw)

Cc1 =

By (3.25), we have
!
f o K G-POd5) 01 000, o, 0o(6)IBdl
0

< 2o LGt 120 ) + —||M0||4) ; R 2 (). (336)

By applying Gronwall’s inequality in (3.35) over [0, #]( > 0) and replacing w by 6_,w, we obtain that
forany J € N,

Do (Mm«p](z 0_0, 0, ¢o(0- I}

jezN

1
<o [NG PO (|l o0 (0|2 + —||D uol*) + 5P ijz(a)
T >

1 ) y
+ c_‘]l f e_j[‘ (%_p(lgA—tw))dsll()o(l’ 9—[(1), 0-9 (PO(Q_tw))ll%dl f e_ f/ (j—p(Qs_,a)))dsdl
0

<+ ﬁ)e_f( OO (RO w) + —IIuoll )+ —R o(w)

2
R?
T3 f”C(reT ”]%:Jf ()R (w)

<+ J—)e_f-of( PO (RO w) + —Iluoll )+ Cz( +y1.)R}(w), (3.37)
P>
. (reT'"IIJH>J
By (H3), lim (1 + %)e‘ﬁﬁ p(a“‘“))db(R(Z)(Q_,w) + 83—k||uo||4) = 0. Thus, for any v > 0,w € Q, there
t—+00
exists 7, (w) > 0 such that (3.27) holds. The proof is completed. O

3.4. Existence of a random uniform exponential Attractor

Forevery w e Q,5s > 0,v > 0, set Ty(w) = T(w, By) and

B(0-5w) = Usmax(To(-,0).To(@). To(O-1, @)+ Ty (@)T(E O——s) T X By(0_;—sw), (3.33)
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where 7 is the skew-product cocycle generated by @ and ¥
7T(Z, H—I—sw)Tm X BO(Q—t—sw) = UO'ET’"(ﬁto-) X (,D(t, H—I—Sw’ O-)BO(G—I—S(-U)-

It is easy to check from Lemma 3.2 and Lemma 3.3 that B has the following properties:

(A1) for every w € Q,B(w) C T" X By(w), the diameter of B(w) in T x E is bounded by (m(2r)> +
4R(2)(a)))%, where R3(6,w) is continuous in 7 € R;

(A2) B(w) is positive invariant, i.e, for every w € Q,t > 0, n(¢t, 0_,w)B(0_,w) € B(w) and by PgB C By,
where P denotes the projection from T X E to E;

(A3) B is pullback absorbing in Dg. Really, for all D € Dg, there exist #(D,w) > 0 such that
(1, 0-,w)D(0-,w) € B(w), t > 1D, w);

(A4) for all {0} X {¢} € B(w), the following is true.

Z (M)IIQOJIIE <v+ Cz( + Y1.)Ry(w). (3.39)

jezN

Forany r > 0,1 > 0,w € Q,{0}} X {¢) ()} € B(w),i = 1,2, let ¢O(r) = ¢(r, 6_,w, 071, 9 (0_,w)) =
@, vNT and @(r) = ¢V(r) — ¢@(r) = @, V)7, then

{ E + AT = P00 - F. 6.0, (340,
Go(0_w) = 9" (0_w) — P (O_w).
By (A2), we have

¢ O(r) € Bo(Br-w), Nl (M)llz < Ro(0,—w), i=1,2. (3.41)

Lemma 3.4. Assume that (HI)—(H3) hold. Then for all r > 0,t > O,w € Q,J(= 1) € N,{o;} X

{(’og)(e_lw)} € B(6_,w),i = 1,2, there exist random variables C(w), C,(w), C3(w) > 0, such that

(2, 0_w)ior1} X g\ (O_w)} — n(t, O_w)loa) X (o (O w))I%
< 2 L0000 — o2, 4 e (0 w) — ¢P O w)IR), (3.42)

and

—~ -£ w)ds 0 0 sw)ds
> G0N < (el o Lofic0obp o, - olR, + 11 0-0) - 6P O @I, (43)
[j11=4J+1

where §; is given in the proof below.
Proof. (i) Taking the inner product of (3.40) with ¢(r) in E, we have

1d
——||<)0(r)||2 + (A@(r), p(r)g = (F (@V(r), w) = F(g?(r), w), w(r)) : (3.44)

Similar to (3.15)—(3.22) in Lemma 3.1, we obtain
d — .0 2 —~ 12 2
E(IISO(F)IIE + [loy = oallpw) < 2C1 ()Nl + llor = oallpm), (3.45)
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where
p(@,w) 256N>k?

2 36
Using Gronwall’s inequality in (3.45) over [0, #](# > 0) and replacing w by 6_,w, we obtain

IIdII2

Ci(6,—w >—— R(6,-w) + — (3.46)

1600 = eI + llor = ol < L2 — PR 4l = ol (34T)

Thus, (3.42) holds.

(i) Let I € N, ¢; = (X, 7)" = p(i)g; = iz, p(H7)", ¢ = @' = (8))jez. Taking the inner
product of (3.40) with ¢ in E, we have

: dtz (""'>|| J||E+Zu<”’”>< IZIG + ST < F ™, 0, 0) = Fg, 6, B, (3:48)

jezN jezN

where

(F(p, 6r-1) = F(p?, 6,-0), D) = (a2(6,-,w), X), ~ (ATY) ~ B(BILY)
- %k(D((D*u“)f = (D'u®)),5) + (2ae2(6,-w) - a* 20, w))i. )
— (az(O,w)v,y) + (f(@1(r) = f(a2(r), ). (3.49)

By (H2) and (3.39), we have that for || j|| > 2J, J € N,

(az(0,— )L, ¥ — (az(6,,w)V,3) < alz(b,—w)| 3 ﬂ(”’”)ll%HE,

jezN

~a(ATL,5) - BBiL.5) < L2 5 DG + S g,

jezZN

lk(D((D* W) —(D*u (2))3) y) = —3k(D"u")’ = (D*u®)?, DY)

Ll 2 D, 1 @p
Je% HCOANGHE + @ ) + 1) (3.50)

Ao P HCDIGHE + [ 770+ o5 + R Ore)) + 32 G + V)R 0-10) | 181

((2asz(9r_zw) — a6, w)iLy) < Htlesten) 3 e,
jEZ

(f@1(r) = f@2(). D) < 55 T u(hdllory — ool + & X u(UD P11

jezN jEZ

By (3.48)—(3.50), we obtain that for 7 > 2J,

dthM)ngo,uE < (=& + p(0-w) + —)Zu(Mnm,uE =2 Ao = ol
jezN ]GZN ||J||>1
16ugNK 4k
J“‘)f .- \}ui(V"'Cz( VLR O,-0)) + \/—_< S MR O
< (—& +2C1(6,- »)Zu(”’”)n%n,; + 58,1 + RO, )7, (3.51)

jezN
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where
-— 1 1 1 16/,L0NK 4k,U() 8kC2
87 = yoy+ (= + (= +y1)), :Edz., =—+ + + —=,
J =2 (J )(J Y1) Y2 s j» €3 5 Vi \/_ C2) VB
p(w) 4kv
C =—+ —.
T E

By (3.47) and applying Gronwall’s inequality in (3.51) over [0, 7], we have that for > 2J,

Il 205 (0sw))d 1 2)(12 2
D HEIDIG I < eF 220 g — GO + oy - i)

jezN

0
+0 ej{)(ch(é)sw)+2C2(é)Sw))ds(”90(l) ‘)05)2)”2 + oy — 0_2”12?”) xf C3€81(1 + Ré(@[(l)))dl
-t

Since for all p > 0, +/p < e, it follows that

0 0 0
f e3¢ (1 + RAOw))dl < (| *dl( f A(1 + R(Qw))dl)?
- ~t ~t

t
1 0,2 4 2
< — ¢ [, 231+ Ry (Ow))*dl

- V2e
By (3.53), it follows that for 7 > 2J,

Sl < Y u g

Ill=4J Jje€ZN
[ (=e+2C20sw))ds 5 12 2¢30,0)ds D _ o2 4|0y = o2
< el 2Uy + Ze —t 3 (”(’0 (po || || 1 2||Tm)’
where 67 = 454 and

C3(w) = C1(w) + Ca(w) + c3(1 + Ri(w)).
Thus, (3.43) holds. The proof is completed.

Lemma 3.5. Assume that the coefficient a and v = vy > 0 satisfy

.{g\/('s Va6 \/Eai}
a < min )

8§ 7 8 2

a  6\2a+28 as a’ 4kvy &
+ + + + < —
Vré Va Vras  46Va o VB 32

Then
0 < E(Cy(w)) < 3% 0 < E(CX(w)) < +v.

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)
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Proof. By (3.2), (3.11), (3.52), and (3.57), it is easy to have the following

a 6 V2a + 216] as a’ 4kv &

E(C =
(Cr(w)) \/7r_6+ Ny + m16+45\/§+ @<32

By (3.55), we have

E(C}(w)) < 4 (E(CH()) + E(C3(w)) + ¢} + AERY(w))). (3.58)
By (3.46), we know that
512°N*k* 4\d|*
Cl(w) < & + p*(w) + WRS( w) + %,
2 (pw) 4\ pw) | 326
Cz(w)—( o+ \/F) <=+

By (3.26), (3.56), and Holder’s inequality, we have
0 & 0 4
E(Rj(w)) = —||f IEE ( f o3[ pOwds dl)

”f”c(f ldl)?:E(f sl+f 4p(9rw)dsdl)

< 28 ” ! 1 N 1 N 1 N 1
= 54el flie c— Sa 48V2a+l6lg) g — Bac 4a2

Vo €T g ol €T Vs
< o0, (3.59)
Thus,
0< E(R (w)) < (1 + E[R (w)]) < oo. (3.60)
12V2a + 4|8)*  4a?&? a*
E[p’(w)] < 4(4a2E[Iz(w)I2] + ( 1 ) + E[lz(w)l] + 7E[|z(w)|4])

12 V2a + 4|8))? 22

_ 82 ,A2V2a+ 4B 8a’e? 3a' 3.61)
0 A A0 16?2

By (3.58)—(3.61), we have E[C%(w)] < oo. The proof is completed. O

Theorem 3.1. Assume that (H1)—(H3), (3.56), and (3.57) hold. Then {®(t, w, 0)};>0 weq.cen has a D—
random uniform exponential attractor A = {A(w)},eq With the following properties:

(i) A is a compact set of E and measurable in w;
2Am+2(8Jo+1)] ln(72W+l)
(ii) There exists Jy € N such that dim;A(w) < 2 < oo, Yw € Q;

In %
(iii) For every w € Q, D € D, there exist T(w,D) > 0 and a tempered random variable h(w) > 0, such
that for any t > T(w, D),

aln—

supdistg(D(t, 0_,w,I_,0)D(0_,w), A(w)) < h(w)e 641n2t

oeTm

where D = D x T™.
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Proof. From Lemma 3.5, taking ¢ = fo = 192 in (3.42) and (3.43), it follows that
0<2 (2E[C§(w)] n gE[C3(w)]) < +o0.

Let
_étg(ZE[C_%(w)H ;E[c3(w)])}

1
K = min { I ©
be a finite positive constant. By (H1), when J — +o0, §; — 0, thus, we choose a large enough positive

integer J = Jy such that 6; < «. Based on Theorem 2.1 in [33] and Theorem 2.6 in [35], it follows from
Lemmas 3.1-3.5 that the proof of Theorem 3.1 is completed. O

4. Conclusions and discussion

In this paper, based on the existence criterion of a random uniform exponential attractor for
non-autonomous random dynamical systems from Theorem 2.1 in [33] and Theorem 2.6 in [35], we
proved the existence of a random exponential attractor for the non-autonomous stochastic Boussinesq
lattice system with quasi-periodic forces and multiplicative white noise. The random uniform
exponential attractor with finite fractal dimension is more stable than the random attractor. Therefore,
the asymptotic behavior of the solution of the system (1.1) can be described by finite independent
parameters. Applying the same idea, we can also consider the existence of a random exponential
attractor for the non-autonomous stochastic Boussinesq lattice system with additive white noise.
However, we do not need to restrict the coeflicient of the random term to small enough, because the
additive noise term is independent of the state variable. Inspired by [36, 37] and the references
therein, we will consider the long-time asymptotic behavior of the non-autonomous stochastic
Boussinesq lattice equation with nonlinear colored noise in future works.
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