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1. Introduction

Primal topological spaces were first introduced by Shirazi and Golestani [12] with the name
functional Alexandroff spaces, and subsequently by Echi [2] in the following way: Given a set X , ∅
and a map f : X → X, then the collection, τ f = {U ⊂ X : f −1(U) ⊂ U} is a topology for X,
which is called the primal topology induced by f , thus producing the so-called primal space (X, τ f ).
Many important issues of this space, especially compactness and connectedness, can be described in
terms of the dynamics of its points with respect to the function f . Some further developments came
later, especially with the work of Echi [2] and Echi and Turki [3]. The descriptions of the topological
properties of primal spaces have been used recently in applications to problems in linear algebra and
number theory, see Lazaar et al. [6], Lazaar and Sabri [7], Mejı́as et al. [8], Vielma and Guale [13],
and Vielma et al. [14].

In addition, topologies induced by semigroup actions in a set, which was studied in [4], have been
applied both in algebraic and topological contexts, as well as in some areas of computer science.
The applications in algebra are established via Green’s left quasi-order. In the field of topology, the
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main idea is to consider the relationship between Green’s left quasi-order and principal topologies;
see Richmond [9, 10]. Working similarly to those works, and to generalize, we consider the primary
topologies induced by group actions and investigate the continuity of maps defined on such primal
topological spaces, thereby obtaining some characterizations of homeomorphisms among spaces via
properties of the acting groups.

Thus, we begin with an action Φ of a group G on a set X, that is, a map Φ : G × X → X which
has some nice properties of compatibility with the group operation. Then, we consider the primal
topology induced on X by map the φa : X → X obtained when Φ is restricted to one specific a ∈ G; it
turns out that the continuity of maps among different primal spaces are determined by relations among
elements of the group. A very special situation is obtained when the group acts on itself with both a
left translation and a conjugation. In that case, we obtain a characterization of normal subgroups in
terms of the concepts from the topology.

Our presentation and contribution to the literature begins in Section 2, with an introduction to the
basic facts about primal topological spaces and some results and conventions related to the notation.
In Section 3, we set the context of the primal topologies induced by group actions with specific
characterizations of normal subgroups in terms of the primal topologies. This part is followed by a
quite long list of examples in Section 4, which illustrates a broad set of cases that are explained with
the results presented in Section 5, where we explore the continuity of maps defined among this type
of primal spaces and introduce some properties that are determined by commutation relations among
elements of the groups involved. In particular, some conclusions about continuity of maps are derived
when we sum the “quantum type” relation as ba = qab, which appears in interesting examples such as
the quaternion group and the Heisenberg group.

Note that the problem of applying the techniques of this paper to topologies induced by actions of
some richer algebraic structures as rings, modules, and algebras may be considered.

2. Primal topological spaces

In this section, we present the basic notions and standard notation related to primal topological
spaces and their most important properties. In particular, we present the characterization of both
minimal open and closed sets, as well as those of compact and connected sets.

The concept of a primal space was established by Shirazi and Golestani [12] in the following terms:
If X , ∅ and f : X → X is a map, then the collection

τ f = {U ⊂ X : f −1(U) ⊂ U}

is a topology for X, which is called the primal topology on X induced by f , and (X, τ f ) is said to
be a primal space. In the contexts where no confusion arises, we simply denote (X, τ f ) by X f . The
following two facts are straightforward.

Remark 2.1. The map f : X f → X f is continuous.

Remark 2.2. If the function f : X → X is a bijective function, then X f and X f −1 are homeomorphic.

Some general properties of primal topological spaces are determined by the dynamics of points
concerning the function f . Let N denote the set of positive integers and let N0 = N ∪ {0}. If r ∈ N0,
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then f r is considered as the r-fold composite f ◦ · · · ◦ f , where f 0 is the identity map, which is defined
by Γ f (p) the trajectory of p ∈ X, and given by the following:

Γ f (p) = {y ∈ X : y = f r(p) for r ∈ N0}.

Thus, it turns out that Γ f (p) = {p} (the closure of {p}). If f r(p) = p for some r > 0, then we say that
Γ f (p) is a periodic trajectory and p itself is referred to as a periodic point. If Γ f (p) contains just one
element, then p is said to be a fixed point.

The basic open sets in X f can also be described using trajectories. In fact, for any p ∈ X, it is known
that the smallest open set containing p, which we denote as P f (p), is given by the following:

P f (p) = {y ∈ X : p = f r(y) for r ∈ N0}.

Remark 2.3. In general, the primal space X f is compact if and only if there exists a finite
set {p1, p2, . . . , pn} ⊂ X such that for all x ∈ X, it turns out that x ∈ P f (pi) and some pi ∈ {p1, p2, . . . , pn}.
On the other hand, the space X f is connected if and only if for all x ∈ X, there exists a p ∈ X such that
x ∈ P f (p) ∪ Γ f (p).

Next, we exhibit a few examples that illustrate the geometric aspects of primal spaces. The first two
examples are well known, see Echi and Turki [3] and Shirazi and Golestani [12].

Example 2.4. If X , ∅ and q ∈ X, then consider the map f : X → X, such that f (x) = q for all
x ∈ X (constant). Then, for all x , q, we have that {x} ∈ τ f . Furthermore, the space (X, τ f ) satisfies the
axiom T0, but it is not a T1 space.

Example 2.5. For any X , ∅, the primal topology induced by the identity map id : X → X, id(x) = x,
is the discrete topology. In this case, each x ∈ X is a fixed point. This is the only case in which a primal
space is T1, because any set {x} is closed if and only if Γid(x) = {x}, which is true if and only if the map
that induces the topology is the identity.

Example 2.6. Let s : Z→ Z be the map defined by s(x) = 1+x. For all x ∈ Z, we have Ps(x) ⊂ Ps(x+1)
and the space (Z, τs) is connected, but it is not compact. This example is due to Dahane et al. [1].

Sometimes, in order to illustrate the properties of a topological primal space, we use a “diagram”,
where a→ b means that b is the image of a. Thus, we have the following:

· · · → −2→ −1→ 0→ 1→ 2→ · · · . (Z, τs)

Example 2.7. Let C : N→ N be the map defined by the following:

C(x) =

x/2, if x is even,
3x + 1, if x is odd.

The primal space (N, τC) has a unique periodic trajectory, namely ΓC(1) = {1, 2, 3}. This space
is closely related to the so-called “Collatz conjecture”. In fact, deciding whether or not (N, τC) is
connected is equivalent to solving the famous Collatz problem, see Vielma and Guale [13] and Vielma
et al. [14].
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Example 2.8. If A is a square matrix of the order n considered as a linear map A : Rn → Rn, then A
induces a primal topology τA on Rn. Some properties of the space (Rn, τA) are deduced from known
facts about the matrix A. For instance, the space (Rn, τA) is compact if and only if A is nilpotent.
Another interesting result is that A and B are similar; then, the respective primal spaces (Rn, τA) and
(Rn, τB) are homeomorphic, see Mejı́as et al. [8].

We conclude this section with three results about the relationship between the continuity of
functions among primal topological spaces induced on the same set and the trajectories of some
elements of its elements. One of the most important points about these results is that it motivates
some ideas for more general cases once one considers the set of maps on a set as a semigroup.

Lemma 2.9. Let X be a set and φ, ψ : X → X be two maps. Let τφ and τψ be the primal topologies
induced by φ and ψ, respectively. If λ : Xφ → Xψ is a function such that λ ◦ φ = ψ ◦ λ, then
λ(y) ∈ Γψ(λ(x)), for all x, y ∈ X with y ∈ Γφ(x).

Proof. Suppose that x ∈ X and y ∈ Γφ(x). Then, there exists a k ∈ N0 such that φk(x) = y. In this way,
we have the following:

λ(y) = λ ◦ φk(x) = ψk ◦ λ(x).

Therefore, λ(y) ∈ Γψ(λ(x)). �

The map λ is known as a morphism of flows of Xφ to Xψ. The next lemma is a particular case of
result presented by Haouati and Lazaar [5].

Lemma 2.10. Let Xφ, Xψ be primal spaces and λ : Xφ → Xψ be a homeomorphism. Then, λ(Γφ(x)) =

Γψ(λ(x)).

Proof. Note that {x} = Γφ(x) and {λ(x)} = Γψ(λ(x)). Then, since λ is a homeomorphism, the result is a
direct consequence of the fact that for any set A ⊂ Xφ, we have that λ(A) = λ(A). �

Corollary 2.11. Let Xφ, Xψ be primal spaces and let λ : Xφ → Xψ be a homeomorphism. If x, y ∈ X,
then x ∈ Γφ(y) is equivalent to λ(x) ∈ Γψ(λ(y)).

3. Primal topologies induced by group actions

The concept of a primal topology on a set X is based on a set-theoretical notion associated to a
function f : X → X, and the complexity of the topology depends on the properties of f .

Now, we turn our attention to the primal topologies induced by functions obtained by the action of
groups as a generalization of the results of Mejı́as et al. [8] and, somehow motivated by the works of
Richmond [9, 10], but working with groups rather than semigroups.

Thus, we consider the action of a group on a set and the primal topology induced by the function
obtained when we consider the restriction of the action to a particular element of the group. A
very special situation arises when the set is the group itself; in that case, we characterize the normal
subgroups in terms of the topology.

Our research deals with the primal topologies induced on sets by a very specific types of maps: The
actions of semigroups and, mainly, groups. In this section, we introduce some basic facts about those
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spaces. Recall that if X is a set and G is a semigroup, then an action of G on X is a map Φ : G×X → X,
such that for all a, b ∈ G and for all x ∈ X, it turns out that

Φ(a,Φ(b, x)) = Φ(ab, x).

Furthermore, if G is a monoid, then for an action of G on X, it is required that for all x ∈ X, it is verified
that Φ(ε, x) = x. In that case, for each a ∈ G, the map φa : X → X, which is defined by φa(x) = Φ(a, x),
satisfies the following:

φa(φb(x)) = φab(x) and φε(x) = x.

Thus, for each a ∈ G, we focus on the primal topology τφa induced by φa. As mentioned in Section 2,
we use both (X, τφa) and Xφa to denote the corresponding primal space. Let us note that if G is a group
and Φ is an action, then for all a ∈ G, φa is invertible and φa

−1 = φa−1 .
It is well known that the arbitrary intersection of topologies is another topology. In the context of

semigroup actions, such an intersection will be the trivial topology, if the action is transitive.

Theorem 3.1. Let X be a nonempty set and F is the collection of all maps φ : X → X. If G is a
semigroup and Φ : G × X → X is a transitive action, then⋂

φ∈F

τφ = {∅, X}.

Proof. Suppose that there exists a set U ∈ τφ for all φ ∈ F , U , ∅, and U , X. Given x ∈ U, let us
take y ∈ X \ U; then, there is a ∈ G such that Φ(a, y) = x, so y ∈ Pφa(x). Since Pφa(x) is the smallest
open set containing x, then y ∈ U, which is a contradiction. �

The following examples show some spaces of particular interest. They play an important role when
we consider some concrete cases, especially if G is a group, since we will use the notation given
in them.

Example 3.2. If G is a semigroup and a ∈ G, then the left translation by a, which is denoted by
La : G → G, is given by the following:

La(x) = ax for all x ∈ G,

which induces an action Φ : G ×G → G defined by the following:

Φ(a, x) = La(x).

When no confusion arises, we denote the topology by τa and the space GLa by Ga.

Example 3.3. Let G be a semigroup. For a ∈ G, a invertible, we define the conjugation Ka : G → G
which is given for the following:

Ka(x) = axa−1, x ∈ G.

In this special case, we denote the primal topology induced by Ka on G as κa, that is, κa = τKa . Note
that Ka−1 : G → G is the inverse map of Ka.

With the conjugation K, it is possible to characterize the normal subgroups of a given group.
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Theorem 3.4. Let G be a group and H be a subgroup of G. Then, H is a normal subgroup if and only
if H is a closed set in the space (G, κ), where

κ =
⋂
a∈G

κa.

Proof. By definition, H /G means that Ka(H) ⊂ H for all a ∈ G. Hence, H is closed in the space (G, κa)
for all a ∈ G. Therefore, H is closed in (G, κ).

Now, suppose that H is closed in the space (G, κ); then, H is closed in the space (G, κa) and Ka(H) ⊂
H for all a ∈ G . Therefore, H /G. �

In the following, we use the multiplicative notation for the semigroup operation and denote the unit
by ε. One of the most basic problems in this context is to determine the topological properties of the
trajectory of ε. We finish this section with three results about this issue.

Theorem 3.5. If G = (G, ·, ε) is a group and φ : G → G is a homomorphism, then Pφ(ε) is a subgroup
of G, which is a closed set in the space Gφ.

Proof. Clearly Pφ(ε) , ∅, because φ(ε) = ε. If a ∈ Pφ(ε), then there exists r ∈ N0 such that φr(a) = ε.
Thus,

φr(a−1) = ε · φr(a−1) = φr(a) · φr(a−1) = φr(aa−1) = ε.

Hence, a−1 ∈ Pφ(ε).
If a, b ∈ Pφ(ε), then there exist r, s ∈ N0 such that φr(a) = φs(b) = ε. Then,

φr+s(ab) = φr+s(a) · φr+s(b) = φs(φr(a)) · φr(φs(b)) = φs(ε) · φr(ε) = ε.

Thus, ab ∈ Pφ(ε). We conclude that Pφ(ε) is a nontrivial subgroup of G.
On the other hand, if a ∈ Pφ(ε) and φk(a) = ε for a k ∈ N0, then φk−1(φ(a)) = ε; thus φ(a) ∈ Pφ(ε).

Therefore, Pφ(ε) ⊆ φ−1(Pφ(ε)) and Pφ(ε) is a closed set. �

One may expect that whenever ε ∈ Pφa(b), we have that b−1 ∈ Pφa(ε), though such a claim has not
been proven. However, the following lemma shows a positive result concerning this matter.

Lemma 3.6. Let G be a group with a, b ∈ G, and Φ be an action of G on itself. If φa commutes with Lb

and φa(b) = ε, then φa(ε) = b−1.

Proof. Since φa commutes with Lb, it also commutes with Lb
−1. Therefore,

φa(ε) = φa(b−1b) = φa(Lb
−1(b)) = Lb

−1(φa(b)) = Lb
−1(ε) = Lb−1(ε).

Thus, φa(ε) = b−1. �

In the context of Lemma 3.6, note that we have (φa
r(ε))−1 = φa−1

r(ε) for all r ∈ N0. In this case,
the relationship between Pφa(ε) and Γφa(ε) is even deeper, thus revealing its algebraic structure as the
following proposition shows.

Lemma 3.7. Let G be a group and Φ be an action of G into itself. Let a, b ∈ G such that φa commutes
with Lb and φa(b) = ε. If Pφa(ε) is a subgroup of G, then Γφa(ε) is periodic.

Proof. Clearly, (φa(ε))−1 = φa
−1(ε). However, φa

−1(ε) ∈ Pφa(ε), which is a subgroup of G. Thus,
φa(ε) ∈ Pφa(ε), that is, for some r ∈ N0, it turns out that φr

a(ε) = ε. Therefore, Γφa(ε) is periodic. �

Example 2.6 shows that the hypothesis Pφa(ε) is a subgroup in Lemma 3.7, which cannot be dropped;
in that case, a = 1 and φa is the left translation.
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4. A gallery of examples

Next, we introduce some concrete examples of primal topologies induced by the group actions. In
each case, we describe some topological properties that can be proved directly; however, they can also
be derived as consequences of some of the results presented in Section 5.

Example 4.1. For n ∈ Z, let us consider the additive group (Zn,+, 0) acting on itself by the left
translation, that is, La(x) = a + x for all x ∈ Zn. If n is a prime number, then the primal topological
space (Zn, τLa) is connected, as illustrated in the following diagrams:

0 → 3 → 1
↖ ↓

2 ← 4
, (Z5, τL3)

0 → 4 → 3
↖ ↓

1 ← 2
. (Z5, τL4)

If n is not a prime number, then the space (Zn, τLa) may be not connected depending on whether or not
a is prime with n and a does not divide n. For example, for n = 6 and a = 4, we have that 4 does not
divide 6 but (Z6, τL4) is not connected. This situation is illustrated as follows:

0 → 2 1 → 3
↖ ↓ ↖ ↓

4 5
, (Z6, τL2)

0 � 3 1 � 4 2 � 5, (Z6, τL3)

0 → 5 → 4
↑ ↓

1 ← 2 ← 3
. (Z6, τL5)

Example 4.2. We consider the general linear group GL2(R) acting on R2 as indicated in Example 2.8,
that is, A ∈ GL2(R) is considered as a linear map A : R2 → R2. Then, A induces a primal topology τA

on Rn. For instance, let us note that if

A =

(
1 1
0 1

)
, and B =

(
1 0
1 1

)
,

then the subgroup H = 〈A〉 of GL2(R) generated by A is not closed in the primal space (GL2(R), κB),
because the trajectory of A is not contained in H. In fact,

KB(A) = BAB−1 =

(
0 1
−1 2

)
< H.

We may also consider the primal topology induced by A as an element of the additive group of
square matrices; however, that scenario is weaker than the other because of the commutativity of
addition of the matrices.

AIMS Mathematics Volume 10, Issue 1, 793–808.



800

Example 4.3. Let S3 be the symmetric group of order 3, that is, the permutation group of the
set {1, 2, 3}. Then,

S3 = {1, σ, σ2, ρ, σρ, σ2ρ},

with the following relations:
σ3 = 1, ρ2 = 1, ρσ = σ2ρ,

namely permutations σ = (1, 2, 3) and ρ = (1, 2).
Next, we consider the different primal spaces induced on S3 by the left translation. The following

diagrams illustrate that primal spaces (S3, τσ) and (S3, τσ2) are homeomorphic, which is a consequence
of the fact that σ−1 = σ2:

1 → σ ρ → σρ

↖ ↓ ↖ ↓

σ2 σ2ρ

, (S3, τσ)

1 → σ2 ρ → σ2ρ

↖ ↓ ↖ ↓

σ σρ

. (S3, τσ2)

On the other hand, it is easy to prove that the spaces (S3, τσ), (S3, τσρ), and (S3, τσ2ρ) are
homeomorphic:

1 � ρ σ � σ2ρ σ2 � σρ, (S3, τρ)

1 � σρ σ � ρ σ2 � σ2ρ, (S3, τσρ)

1 � σ2ρ σ � σ2ρ σ2 � ρ. (S3, τσ2ρ)

It is easy to verify that the left translation Lρ : (S3, τσ) → (S3, τσ) is continuous, since τσ =

{∅, Γσ(1), Γσ(ρ)},S3}, Lρ(Γσ(1)) = Γσ(ρ), and Lρ(Γσ(ρ)) = Γσ(1).
We may also consider S3 acting on itself by the conjugation Kg. Again, since σ−1 = σ2, we have

that the spaces (S3, κσ) and (S3, κσ2) are homeomorphic:

1 σ σ2 ρ → σ2ρ

↖ ↓

σρ

, (S3, κσ)

1 σ σ2 ρ → σρ

↖ ↓

σ2ρ

. (S3, τσ2)

In this case, we have that the spaces (S3, κσ), (S3, κσρ), and (S3, κσ2ρ) are homeomorphic, as
illustrated in the following diagram:

1 σ � σ2 ρ σρ � σ2ρ, (S3, κρ)
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1 σ � σ2 σρ ρ � σ2ρ, (S3, κσρ)

1 σ � σ2 σ2ρ ρ � σρ. (S3, κσ2ρ)

Example 4.4. Let S3 be the symmetric group of the set {1, 2, 3}, acting on R3, which is the same as
taking the action on R3 by the subgroup S 3(R) of the general linear group GL3(R) generated by the
following matrices: 

0 1 0
0 0 1
1 0 0

 and


0 1 0
1 0 0
0 0 1

 .
Let us note that for all M ∈ S 3(R), the primal space (R3, τM) is not compact.

Example 4.5. Let us consider the following quaternion group:

H = {±1,±i,±k,± j},

with the relations
i2 = j2 = k2 = i jk = −1.

We may easily prove, that for any a , b, a, b , ±1, the left translation Lb : (H, τa) → (H, τa) is
continuous. For example, τi = {∅, Γi(1), Γi( j),H}, L j(Γi(1)) = Γi( j), and L j(Γi( j)) = Γi(1) .

1 → i j → k
↑ ↓ ↑ ↓

−i ← −1 −k ← − j
, (H, τi)

1 → j k → i
↑ ↓ ↑ ↓

− j ← −1 −i ← −k
, (H, τ j)

1 → k i → j
↑ ↓ ↑ ↓

−k ← −1 − j ← −i
. (H, τk)

These diagrams suggest that all the primal spaces (H, τg) are homeomorphic for g , ±1. In fact, the
diagrams themselves indicate the respective homeomorphisms.

Again, let us consider the quaternion group H acting on itself, though now with a conjugation.
Similar arguments can be introduced to find homeomorphisms among the different spaces (H, κg), for
g , ±1. Let us note that Kg(x) = x, for x = ±1,±g, Thus, in this case, the situation looks as follows:

1 −1 i −i j � − j k � −k, (H, κi)

1 −1 j − j k � −k i � −i, (H, κ j)

1 −1 k −k i � −i j � − j. (H, κk)

Let us note that Kk : (H, κi) → (H, κ j) and Kk ◦ K j : (H, κi) → (H, κi) are continuous functions
and homeomorphisms. Additionally, let us note also that, in general, Ka does not commute with Lb,
a, b = i, j, k, a , b. For example, LiK j(i) = 1, though K jLi(i) = −1.
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The next example brings one important mathematical object to the context of a primal topology.
The n-th Heisenberg group Hn(R) is considered as the set Hn(R) = Rn × Rn × R with the operation ∗
defined for all a, b, a′, b′ ∈ Rn and c, c′ ∈ R as follows:

(a, b, c) ∗ (a′, b′, c′) = (a + a′, b + b′, c + c′ + a′ · b),

where · on the right hand side of the equation represents the standard inner product on Rn. A discrete
version of the Heisenberg group may be obtained by considering Z instead of R. Furthermore, in a
similar fashion, we can take any commutative ring R instead of R, see Semmes [11]. In particular, it
makes sense to consider Hn(Zp) for any p ∈ N. In this paper, it is enough to consider n = 1 and p = 2
for the point that we want to illustrate.

Example 4.6. Let H = H1(Z2) be the group the Heisenberg associated to Z2 = {0, 1}, that is, the set of
triplets (a, b, c) where a, b, c ∈ Z2, with the following operation:

(a, b, c) ∗ (a′, b′, c′) = (a + a′, b + b′, c + c′ + a′ · b),

where · on the right hand side represents the usual product in Z2. It is easy to verify that (H, ∗) is a
noncommutative group with the identity ε = (0, 0, 0) and (a, b, c)−1 = (−a,−b, a · b − c).

Let us note that H is generated by the elements α = (1, 0, 0), β = (0, 1, 0), and γ = (0, 0, 1), with the
following relations:

α2 = β2 = γ2 = ε, αγ = γα, βγ = γβ, βα = γαβ.

Thus, H = {ε, α, β, γ, αβ, βα, αγ, βγ}. It is clear that H is isomorphic to D8, which is the dihedral group
of order 8 (the group of symmetries of the square); however, in the context of this research, we prefer
to stick to the the name “Heisenberg group” in order to consider the possibility of more general results.

The following diagrams illustrate the different primal spaces Ha, a , ε, with H acting on itself by
the left translation La(x) = ax:

ε � α β � αβ γ � αγ βα � βγ, (Hα)

ε � β α � βα γ � βγ αβ � αγ, (Hβ)

ε � γ α � αγ β � βγ αβ � βα, (Hγ)

ε � αγ α � γ β � βγ αβ � βγ, (Hαγ)

ε � βγ α � αβ β � γ αγ � βα, (Hβγ)

ε → αβ α → βγ

↑ ↓ ↑ ↓

βα ← γ β ← αγ

. (Hαβ)

It is easy to verify that the primal spaces Ha with a < {ε, αβ, βα} are homeomorphic to each other.
On the other hand, Hαβ and Hβα are homeomorphic, because (αβ)−1 = βα. Additionally, let us note that
Lβ : Hα → Hα is not continuous, since Lβ(Pα(ε)) = {β, βα} is not connected.
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Now, consider the different primal spaces generated by the conjugation on the Heisenberg
group, (H, κa), for a = α, β, αβ. Note that (H, κγ) is homeomorphic to (H, κε) because γ commutes
with all the elements of H, and (H, καγ) y (H, κβγ) are homeomorphic to (H, κα), because Kαγ = Kα.

ε β γ βγ α � αγ αβ � βα, (H, κβ)

ε α γ αγ β � βγ αβ � βα, (H, κα)

ε γ αβ βα α � αγ β � βγ. (H, καβ)

Related to the remarks about Example 4.6, we consider the Heisenberg group associated to Z3. It is
a non-abelian group of order 27 generated by three elements.

Example 4.7. The Heisenberg group H1(Z3) is generated by the elements α = (1, 0, 0), β = (0, 1, 0),
and γ = (0, 0, 1) under the following relations:

α3 = β3 = γ3 = ε, αγ = γα, βγ = γβ, βα = γαβ.

The following diagram describes the primal space (H1(Z3), τα):

ε → α β → αβ γ → αγ

↖ ↓ ↖ ↓ ↖ ↓

α2 α2β α2γ

αβ2 → α2β2 αβ2γ → α2β2γ αβγ → α2βγ

↖ ↓ ↖ ↓ ↖ ↓

β2 β2γ βγ

αβ2γ2 → α2β2γ2 αγ → α2γ γ2 → αγ2

↖ ↓ ↖ ↓ ↖ ↓

β2γ2 γ α2γ2
.

Similarly, we can verify that the primal space (H1(Z3), τβ) contains nine connected components and
each of them is a cycle with three elements; therefore, the spaces are homeomorphic.

5. Commutative relations and continuity

Our main purposes in this work is to obtain links between properties of a group and the topological
properties of the primal spaces that it induces by actions. Thus, it seems to be natural to look for
characterizations of the primal spaces, which are determined by relations among some elements of the
group. In that sense, we begin by showing that if a and b belong to a group G such that a is in the
centralizer of b, then the spaces (X, τa) and (X, κa) are homeomorphic to (X, τb) and (X, κb), respectively.
Before considering that situation, we will establish some general facts.

Example 5.1. Let us consider the following “rotation matrix”:

Aθ =

(
cos θ − sin θ
sin θ cos θ

)
.
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For θ = π/2 and θ = π, the corresponding matrices, which are considered as linear maps, induce the
primal topologies τAπ/2 and τAπ on R2, respectively, see Example 2.8. Note that any nonempty set in
τAπ/2 other than {(0, 0)} has at least four elements. Thus, the function ι : (R2, τAπ/2) → (R2, τAπ), which
is defined by ι(x) = x for all x, is not continuous. In fact, if e1 = (1, 0), then e1 = (0, 1) ∈ R2 and
ΓAπ(e1) = {e1,−e1} < τAπ/2 .

Lemma 5.2. If G is a semigroup, then a, b ∈ G, and Rb : Ga → Ga is defined by the following:

Rb(x) = xb.

Then, Rb is continuous.

Proof. We consider V ∈ τa, that is, La
−1(V) ⊂ V . If x ∈ La

−1(Rb
−1(V)), then (ax)b = a(xb) ∈ V . In other

words, xb ∈ La
−1(V) ⊂ V . This implies that x ∈ Rb

−1(V), so we conclude that La
−1(Rb

−1(V)) ⊂ Rb
−1(V).

Therefore, Rb
−1(V) ∈ τa. �

It is important to know what sort of relations among the elements of a group G acting on set X may
allow us to decide whether or not two primal spaces are homeomorphic. In that order of ideas, Mejı́as
et al. [8] proved that if A and B are two similar matrices of order n, that is, A = PBP−1 for some P,
then they induce homeomorphic topologies in Rn. Besides this, as we saw in Example 4.3, the primal
spaces (S3, τσ), (S3, τσρ), and (S3, τσ2ρ) are homeomorphic. This conclusion may be obtained from
the following relations:

σρ = (σρ)ρ(σρ)−1, and σ2ρ = σρσ−1,

where σ and ρ are the generators of the symmetric group S3. Motivated by these examples, we have
derived the following general result.

Theorem 5.3. Let Φ : G × X → X be an action of a group G on a set X. Suppose that there exist
a, b, g ∈ G such that a = gbg−1. Then, the primal spaces Xa and Xb are homeomorphic.

Proof. We prove that the left translation Lg : Xb → Xa is a homeomorphism. If V ∈ τa, then a−1(V) ⊂ V
and

b−1(Lg
−1(V)) = b−1(g−1(V)) = (gb)−1(V) = (ag)−1(V) = g−1(a−1(V)).

Note that g−1(a−1(V)) ⊂ g−1(V) = Lg
−1(V). Thus, Lg

−1(V) ∈ τb.
Now, let F be a closed set in Xa, that is, a(F) ⊂ F. Then, we have the following:

b(Lg(F)) = (bg)(F) = (ga)(F) = g(a(F)) ⊂ g(F) = Lg(F).

Then, Lg is a closed map, which means that Lg
−1 : Xa → Xb is continuous; therefore, Lg is a

homeomorphism. �

By applying the same hypothesis of Theorem 5.3 to the conjugation by g, Kg, we obtain that the
topological primal spaces (X, κa) and (X, κb) are homeomorphic.

Theorem 5.4. Let Φ : G × X → X be an action of a group G on a set X. Suppose that there exist
a, b, g ∈ G such that a = gbg−1. Then, the conjugation by g, Kg : (X, κb)→ (X, κa) is a homeomorphism.
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Proof. Let us prove that the conjugation by g, Kg : (X, κb) → (X, κa) is an open map. If V ∈ κb and
x ∈ Ka

−1(Kg(V)) = Ka−1(Kg(V)), then g−1axa−1g ∈ V . However, a = gbg−1, so bg−1xgb−1 ∈ V , which
means that g−1xg ∈ K−1

b (V) ⊂ V because V ∈ κb. Hence, x ∈ Kg(V) and Ka
−1(Kg(V)) ⊂ Kg(V). In other

words, Kg(V) ∈ κa. The same kind of argument shows that Kg
−1 : (X, κa) → (X, κb) is open and, since

Kg is a bijection, we conclude that Kg is a homeomorphism. �

With respect to Example 4.3, we can use Theorem 5.4 to prove that the spaces (S3, κσ), (S3, κσρ),
and (S3, κσ2ρ) are homeomorphic.

Let us note that an argument similar to that in the proofs of Theorems 5.3 and 5.4 gives us a result
about the primal spaces Xφa and Xφb that involve an arbitrary action.

Theorem 5.5. Let G be a semigroup and Φ : G × X → X be an action. If a, b ∈ G with ab = ba, then
the maps φa : Xφb → Xφb and φb : Xφa → Xφa are both continuous.

Proof. Of course, it is enough to prove that φa : Xφb → Xφb is continuous.
Let V ∈ τφb and x ∈ φb

−1(φa
−1(V)); then, φa(φb(x)) ∈ V and

φb
−1(φa(φb(x))) ∈ φb

−1(V).

However, a and b commute, thus φaφb = φbφa and φa(x) ∈ φb
−1(V) ⊂ V . Therefore, x ∈ φa

−1(V), which
means that φa

−1(V) ∈ τφb . �

Corollary 5.6. If G is a group and a ∈ G, then the left translation La : Ga → Ga is a homeomorphism.

Proof. We know that La is continuous by Remark 2.1. Let us note that Theorem 5.5 implies that
La−1 = La

−1 : Ga → Ga is continuous. �

Corollary 5.7. If G is a group and a ∈ G, then the conjugation Ka : Ga → Ga is continuous.

Proof. We know that Ka = La ◦ Ra−1; therefore, we obtain the continuity of Ka by Theorem 5.5 and
Lemma 5.2 applied to b = a−1. �

It may seem that the hypothesis of the commutativity of a and b in Theorem 5.5 cannot be dropped.
For instance, if we consider A, B ∈ GL2(R), as in Example 2.8,

A =

(
1 1
0 1

)
and B =

(
1 0
1 1

)
,

then AB , BA and PB(0, 1) = {(0, 1)} ∈ τB, but A−1(PB(0, 1)) = {(−1, 1)} < τB because (−1, 2) ∈
PB(−1, 1).

However, as the next theorem shows, the hypothesis of commutativity can be replaced by a sort of
weaker condition.

Theorem 5.8. Let Φ : G × X → X be an action of a semigroup on a set X. If a, b, q ∈ G with ba = qab
and τa ⊂ τq, then φb : Xa → Xa is continuous.

Proof. Suppose that V ∈ τa = τφa , which means that φa
−1(V) ⊂ V . Then, if x ∈ φa

−1(φb
−1(V)), then

we have φb(φa(x)) = φba(x) = φqab(x) ∈ V . Thus, φab(x) ∈ φq
−1(V); from τa ⊂ τq, it turns out that

φab(x) ∈ V . Then, φb(x) ∈ φa
−1(V) ⊂ V , hence x ∈ φb

−1(V). Thus, φa
−1(φb

−1(V)) ⊂ φb
−1(V), meaning

that φb
−1(V) ∈ τa, so the map φb is continuous. �
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Let us note that the hypothesis τa ⊂ τq in Theorem 5.5 cannot be dropped. In fact, in the case of the
Heisenberg group (Example 4.6), we have βα = γαβ, though Lβ : Hα → Hα is not continuous.

Note that Theorem 5.5 is actually a particular case of Theorem 5.8 which takes q = ε. Between
these two results, we have the following corollary, which suits very nicely to the investigation of some
specific examples.

Corollary 5.9. Let Φ : G × X → X be an action of a semigroup on a set X. If a, b ∈ G with akb = ba
for a number k ∈ N, then φb : Xa → Xa is continuous.

As an application of Corollary 5.9, let us note that for the symmetric group S3 (Example 4.3) from
the relation ρσ = σ2ρ, we deduce that the left translation Lρ : (S3, τσ)→ (S3, τσ) is continuous.

Similarly, in Example 4.5, the equality a3b = ba whenever a , b, a, b , ±1 and Corollary 5.9 imply
that the left translation Lb : (H, τa)→ (H, τa) is continuous.

Next, we consider other relevant consequences of Theorem 5.8.

Corollary 5.10. Let Φ : G × X → X and Ψ : G × Y → Y be actions of the semi-group G on some
sets X and Y. Suppose that a, b, q ∈ G with ba = qab and τφa ⊂ τφq . If f : Xφa → Yψa is a continuous
function, then the composite f ◦ φb : Xφa → Yψa is continuous.

Corollary 5.11. Let Φ : G × X → X and Ψ : G × Y → Y be actions of the semi-group G on some
sets X and Y. Suppose that a, b, q ∈ G with ba = qab and τφa ⊂ τφq . If f : Xφa → Yψb is a continuous
function, then the composite f ◦ φb : Xφa → Yψb is continuous.

Corollary 5.11 allows us to prove that the functions Kk : (H, κi) → (H, κ j), K j : (H, κk) → (H, κi),
and Kk ◦ K j : (H, κi)→ (H, κ j) in Example 4.5 are homeomorphisms.

Lemma 5.12. Let Φ : G × X → X be an action of G on a set X. If a, b ∈ G with τφb ⊂ τφab−1 , then
τφb ⊂ τφa .

Proof. Let V ∈ τφb . Then, V ∈ τφab−1 , which means that (φaφb
−1)−1(V) ⊂ V . Therefore,

φa
−1(V) ⊂ φb

−1(V) ⊂ V,

because V ∈ τφb . In other words, V ∈ τφa . �

Corollary 5.13. Let Φ : G × X → X be an action of G on a set X. If a, b ∈ G with τφb ⊂ τφab−1 , then the
map ι : Xφa → Xφb is continuous.

Theorem 5.14. Let Φ : G × X → X be an action of G on a set X. Let G be a group and G × X → X be
an action. If a, b ∈ G commute and τφa , τφb ⊂ τφba−1 , then Xφa and Xφb are homeomorphic.

Proof. Let us consider the composite ϕ = φa ◦ ι : Xφa → Xφb:

Xφa

ι
−→ Xφb

φa
−→ Xφb .

Obviously, ϕ is bijective. By Corollary 5.13, we have that both ι and ι−1 are continuous. On the
other hand, by Theorem 5.5, we have that φa and φa

−1 are continuous. Thus, both ϕ and ϕ−1 are
continuous. �
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6. Conclusions

A primal space (X, τ) is a topological structure constructed from a set-theoretical basis, where the
topology τ is defined in terms of sets determined by a function f : X → X, namely

τ = {U ⊂ X : f −1(U) ⊂ U}.

Therefore, it seems to be a natural option to investigate the properties of the topology τ when the
function f has some associated structures other than the ones from the set theory. With that idea in
mind, we considered functions that were induced by actions of a group G on a set X. It turns out that
the algebraic structure has remarkable implications on the properties of τ and the other way around. In
particular, we proved the following results:

1. If H is a subgroup of a group G, then H is normal if and only if H is a closed set in the space
(G, κ), where

κ =
⋂
a∈G

κa.

2. If Φ : G × X → X is an action of a group G on a set X and if there are a, b, g ∈ G such that
a = gbg−1, then the conjugation by g, Kg : (X, κb)→ (X, κa) is a homeomorphism.

3. If Φ : G × X → X is an action of a group on a set X, a, b, q ∈ G with ba = qab and τa ⊂ τq, then
φb : Xa → Xa is continuous.

From these results, it makes sense to consider similar problems with some more complex algebraic
structures such as rings, algebras, etc., and their eventual applications.
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