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Abstract: This study systematically investigates the dynamics of the perturbed Schrödinger-Hirota
equation with cubic-quintic-septic nonlinearity under spatiotemporal dispersion, providing insights
into soliton propagation in dispersive media. We begin by examining the system’s phase portrait
and chaotic behavior, followed by the derivation of exact traveling wave solutions, including optical
solitons and periodic solutions, using an enhanced algebraic method. The findings are vividly
illustrated through three-dimensional and two-dimensional graphical simulations, which analyze the
impact of key parameters on the solutions. This study not only presents a variety of optical soliton
solutions, but also clarifies the underlying dynamics, offering theoretical guidance for fiber optic
communication systems and holding significant applied value for achieving more efficient and reliable
optical communications.
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1. Introduction

The application of nonlinear partial differential equations (NPDEs) in the field of optics originated
with the emergence of nonlinear fiber optics, where the nonlinear Schrödinger equation (NLSE) serves
as a key model for describing the evolution of optical pulses in fibers. This equation was introduced
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by Erwin Schrödinger in 1927. With the advancement of technology, the NLSE has transcended
its foundational role in quantum mechanics and has become a crucial model in the field of optics,
particularly in the realm of optical fiber communications. Since the seminal work by Hasegawa and
Tappert in 1973, the NLSE has been extensively studied, revealing the fascinating world of optical
solitons [1]. These solitary waves, capable of maintaining their shape over long distances, have become
the backbone of modern optical communication due to their potential for high-speed and high-capacity
data transmission. The NLSE serves as a fundamental framework for understanding the dynamics of
light pulses and soliton propagation in dispersive media, with applications spanning from information
transmission to the development of optical switches and ultra-short pulse lasers [2, 3].

Various mathematical models have been developed based on the nonlinear Schrödinger equation for
applications in nonlinear optics, plasma, ion-acoustic waves, and other fields. These models include the
Radhakrishnan-Kundu-Lakshmanan equation [4] which introduces additional nonlinear terms to study
nonlinear wave phenomena; the Chen-Lee-Liu equation for describing nonlinear soliton behavior in
optics [5]; the Lakshmanan-Porsezian-Daniel equation for investigating soliton behavior in nonlinear
optics [6]; the Fokas-Lenells equation for nonlinear wave phenomena [7]; the Schrödinger-Hirota
equation (SHE) for soliton behavior in nonlinear optics [8]; the Zabolotskaya-Khokhlov model [9] for
sound and ultrasound; the Biswas-Milovic equation with more complex nonlinear terms for studying
wave phenomena [10]; the Maxwell-Bloch equation for atomic interactions and photon behavior [11];
the Manakov model for nonlinear optical signal propagation in fibers [12]; the Sasa-Satsuma equation
for nonlinear wave phenomena in plasma [13]; the Rangwala-Rao equation for nonlinear optics in
specific scenarios [14]; the Gerdjikov-Ivanov equation for quantum propagation, nonlinear optics, and
weakly nonlinear water wave phenomena [15]; the Hirota-Maccari system for studying nonlinear wave
phenomena [16], as well as other models.

The SHE, for instance, is a notable derivative obtained through Lie transformation, offering
unique insights into the behavior of optical pulses in dispersive optical fibers. The incorporation
of varying self-phase modulation terms, such as cubic-quintic-septic laws, has further enriched our
comprehension of soliton dynamics. Constructing various soliton solutions of the NLSE not only
helps to explain the physical characteristics of light signals propagating in nonlinear media, but
also contributes to the updating or development of mathematical models. Therefore, an increasing
number of scholars are dedicated to developing effective analytical and numerical procedures to
generate various optical soliton solutions. These include the the enhanced Kudryashovs scheme [17],
F-expansion technique [18], complete discriminant system [19, 20], the extended trial function
method [21], Sardar sub-equation procedure [22], planar dynamic system method [23], tanh function
method [24–26], extended tanh function method [27, 28], and more. These methodologies have been
instrumental in deciphering the physical properties of soliton solutions and providing a theoretical
underpinning for soliton transmission in fiber optics.

The perturbed SHE, a particular variant of the NLSE that incorporates higher-order nonlinear
effects, has garnered attention for its ability to provide a more nuanced description of soliton
propagation in dispersive media. The SHE is an extension of the NLSE, incorporating higher-order
nonlinear terms to capture more complex dynamics. This evolution is a testament to the continuous
endeavor to model the intricate behavior of light in optical fibers. In 2004, Wazwaz made a significant
stride by introducing a third-order dispersion term into the NLSE, leading to an equation of the
form [29]
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iQt +
1
2

Qxx + |Q|2Q + iλQxxx = 0. (1.1)

This formulation marked a pivotal moment in the construction of optical solitons, providing a more
nuanced understanding of their propagation characteristics. Some authors have also introduced third-
order nonlinear terms into NLSE [30]. As researchers delved deeper into the study of weakly nonlinear,
dispersive, and hyperbolic systems in the context of nonlinear fiber optics, the SHE emerged as a crucial
model [31]. The equation

iQt +
1
2

Qxx + |Q|2Q + iλ
(
Qxxx + 6|U |2Qx

)
= 0 (1.2)

was proposed to encapsulate the essence of wave propagation in these systems, offering a more
comprehensive framework for analysis and modeling. In many fields of science and technology,
such as adaptive optical systems, tunable optical filters, and optical communication systems, there
is often a requirement for dispersive devices to be time-dependent, leading to the need for systems
with spatiotemporal dispersion. As a result, the spatiotemporal dispersive model SHE [32], given by

iQt + aQxx + bQxt + c1|Q|2U + i
(
λQxxx + d1|Q|2Qx

)
= 0 (1.3)

introduced a new dimension to the study, accounting for the effects of both space and time on wave
propagation. Some authors have studied the wave propagation of SHE with Kerr or power law
nonlinearity [33–35], some have constructed optical solitons with both spatiotemporal dispersion
SHE [36–38], and some researchers have studied the dynamic behavior of random SHE with
noise [39, 40].

Furthermore, scenarios such as ultrafast optics, strong field effects in nonlinear media, photonic
integrated circuits, and extreme physical conditions often lead to the presence of higher-order
nonlinearities in signal propagation. In order to study the propagation laws of waves under more
general conditions, various higher-order nonlinearity terms have been introduced into SHE, also known
as the perturbed Schrödinger-Hilliotta equation (PSHE). Researchers have employed a variety of
effective methods to address SHE equations with different nonlinear terms. For instance, the extended
auxiliary equation method has been applied to PSHE with cubic-quintic-septic law nonlinearity [41],
the Kudryashov scheme to PHSE with anti-cubic law in the presence of spatiotemporal dispersion [42],
the Hirota bilinear method to PSHE with quadratic-cubic nonlinearity and inter-model dispersion [43],
the (1/G′)-expansion method to those with cubic-quintic nonlinearity [44], modified auxiliary
equation method [45, 46], complete discriminant system to SHE with Kerr law nonlinearity [47–49],
modified simple equation integration approach to PSHE with spatio-temporal dispersion and Kerr law
nonlinear [50, 51], and so forth [52, 53].

Despite extensive research, there remain gaps in our understanding of the perturbed SHE,
particularly in the context of chaotic behavior and optical solitons. Future work should aim to bridge
these gaps, exploring the interplay between higher-order nonlinearities, dispersion, and the dynamics of
solitons. Additionally, the impact of external perturbations on the stability and propagation of solitons
remains an area ripe for investigation.

However, the complexity of real optical systems, characterized by spatiotemporal dispersion, self-
phase modulation, and other higher-order effects, poses significant challenges for deriving exact
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solutions from the Schrödinger equation. These optical systems, which simultaneously contain
spatiotemporal dispersion and high-order nonlinear terms, are capable of adapting to more complex
environments, yet have received relatively little theoretical research attention. While there is a
significant amount of work in this field, typically relying on approximations or numerical simulations,
it is still necessary to fully capture the rich dynamics of solitons in optical fibers. Building on this
motivation, this has motivated our exploration of the PSHE with cubic-quintic-septic law incorporating
spatiotemporal dispersion. The governing model, given by [53] as

iQt + αQxx + βQxt +
(
λ1|Q|2 + λ2|Q|4 + λ3|Q|6

)
Q + i

(
η1Qxxx + η2|Q|2Qx

)
=i

(
µ1Qx + µ2

(
|Q|2Q

)
x

+ µ3

(
|Q|2

)
x

Q
)
,

(1.4)

serves as the focal point of our investigation, where Q(x, t) represents the complex soliton profile, and
the coefficients α, β, η1, and η2 capture the effects of group velocity dispersion, and spatiotemporal
dispersion, and λ1, λ2, and λ3 are the nonlinearities of varying orders, respectively. The coefficients
of µ1, µ2 and µ3 are the inter-modal dispersion, self-steepening, and the nonlinear dispersions.
Equation (1.4) contains higher-order nonlinear terms and serves as a generalization of other nonlinear
SHE. When λ3 = 0, µ1 = µ2 = µ3 = 0, Eq (1.4) reduces to the dispersive SHE [41].

By revisiting the evolution and research history of the SHE, this study identifies the gaps and
limitations in the current understanding of the model, particularly concerning the higher-order
nonlinearity and dispersion effects. Although several authors have employed the previously mentioned
methods to study the PSHE, the types and quantities of solutions constructed remain limited. Recent
literature, including references [42, 53], reports the construction of only a very few exact solutions,
which is insufficient for a comprehensive understanding of the equation. To further advance our
research, we will employ an enhanced algebraic method. The findings of this research are expected to
contribute to the theoretical framework of soliton dynamics and offer insights for the practical design
of advanced fiber optic communication systems.

This manuscript is meticulously organized to present our findings in a coherent and methodical
manner. The structure of this paper is as follows: Section 2 initiates with a pertinent transformation
of the focal model, simplifying the complex nonlinear ordinary differential equation derived from our
analysis. Section 3 delves into the characteristics of the phase portrait, employing the theory of planar
dynamical systems, to elucidate the chaotic behavior inherent in the perturbed system. Section 4
harnesses the integration theory of dynamical systems to meticulously construct exact traveling wave
solutions, which encapsulate a spectrum of optical solitons and periodic solutions. The penultimate
sections amalgamate our findings with existing literature, engaging in a comprehensive discussion and
summarization of the results, and charting a course for future research endeavors. The concluding
section synthesizes the principal findings, underscores their implications for nonlinear optics and fiber
optic communication systems, and suggests directions for subsequent scholarly pursuits.

2. The enhanced algebraic method

Let the traveling wave transformation φ (x, t) = φ (ξ) , ξ = kx + ωt reduce the nonlinear partial
differential equation

N (φ, φt, φx, φxx, · · ·) = 0 (2.1)
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to a nonlinear ordinary differential equation:

Q
(
φ, φ′, φ′′, · · ·

)
= 0. (2.2)

Step 1: Assume that Eq (2.2) has a solution of the form:

φ =

n∑
i=−n

aiui, (2.3)

satisfying the constraint:

u′2 =

4∑
i=0

τiui. (2.4)

where u = u(ξ), ai, τ j, i = −n,−n + 1, · · · , n, j = 0, · · · , 4, τ4 , 0, are constants to be determined. With
the assistance of the software MAPLE, the solution of Eq (2.4) can be obtained as shown below:

Set 1:

u1(ξ) =

√
−
τ2

τ4
sech

[√
τ2 (ξ − ξ0)

]
, τ0 = τ1 = τ3 = 0, τ2 > 0, τ4 < 0, (2.5)

u2(ξ) =

√
τ2

τ4
csch

[√
τ2 (ξ − ξ0)

]
, τ0 = τ1 = τ3 = 0, τ2 > 0, τ4 > 0, (2.6)

where ξ0 is the constant of integration.
Set 2:

u3(ξ) =

√
−
τ2

2τ4
tanh

[√
−
τ2

2
(ξ − ξ0)

]
, τ0 =

τ2
2

4τ4
, τ1 = τ3 = 0, τ2 < 0, τ4 > 0, (2.7)

u4(ξ) =

√
−
τ2

2τ4
coth

[√
−
τ2

2
(ξ − ξ0)

]
, τ0 =

τ2
2

4τ4
, τ1 = τ3 = 0, τ2 < 0, τ4 > 0. (2.8)

Set 3: τ1 = τ3 = 0, σ = τ0τ4
τ22 , τ4 > 0,

u5(ξ) = ±

√
τ2

2τ4

√
1 +

m2 + m
√

8 + m2

4
cs


√
τ2
√

2

√
1 +

m2 + m
√

8 + m2

4
(ξ − ξ0) ,m

 ,
τ2 > 0, 0 < σ <

1
4
,m =

√
2
√

1 − 4σ√
1 +
√

1 − σ
. (2.9)

u6(ξ) =

√
τ2
τ4

√
1−m2

2m2−1

cn
(√

τ2
2m2−1 (ξ − ξ0) ,m

) , τ2 > 0, σ < 0,m =

√
√

1 − 4σ + 1√
2
√

1 − 4σ
.

u7(ξ) =
a sn

( √
τ4

p (ξ − ξ0) ,m
)

+ b cn
( √

τ4

p (ξ − ξ0) ,m
)

c sn
( √

τ4

p (ξ − ξ0) ,m
)

+ d cn
( √

τ4

p (ξ − ξ0) ,m
) , σ >

1
4
, τ2 > 0, (2.10)
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where a = −s
√

l2 + s2, b =
√

l2 + s2
(
l +
√

l2 + s2
)
,c = s, d = l+

√
l2+s2

s , l =√
2
√
σ

∣∣∣∣ τ2
τ4

∣∣∣∣ − τ2
τ4

, s = 1
2

√
2
√
σ

∣∣∣∣ τ2
τ4

∣∣∣∣ + τ2
τ4

, p = −

√
l2+s2

(
l
√

l2+s2+l2+s2
)

s3

√
(l2+s2)

(
2(l2+s2)

3
2 l+6

√
l2+s2 l3+2l

√
l2+s2 s2+8l4+8l2 s2+s4

) , m2 =

4l
√

l2+s2
(
2l2+s2+2l

√
l2+s2

)
s4+8l2(l2+s2)+4l(2l2+s2)

√
l2+s2

.

Set 4: τ1 = τ3 = 0, τ4 < 0,

u8(ξ) =

√
τ2

|τ4|m2 dn
(√

τ2

m2
(ξ − ξ0) ,m

)
, τ2 > 0, 0 < σ <

1
4
,m =

√
2

√
1 − 4σ + 1

, (2.11)

u9(ξ) =

√
m2

2m2 − 1
τ2

2

τ4
cn


√

τ2
2

2m2 − 1
(ξ − ξ0) ,m

 , τ2 > 0, σ < 0,m =

√
√

1 − 4σ + 1√
2
√

1 − 4σ
,(2.12)

u10(ξ) =

√
τ2

τ4

m2

1 − 2m2 cn
 √1 − 2m2

√
−τ2

(ξ − ξ0) ,m
 , τ2 < 0, σ < 0,m =

√
√

1 − 4σ − 1√
2
√

1 − 4σ
. (2.13)

Set 5: τ1 = τ3 = 0,

u11(ξ) =
3℘′ (ξ − ξ0; g2, g3)

√
τ4 (6℘ (ξ − ξ0; g2, g3) + τ2)

, τ4 > 0, (2.14)

u12(ξ) =

√
τ0 (6℘ (ξ − ξ0; g2, g3) + τ2)

3℘′ (ξ − ξ0; g2, g3)
, τ0 > 0, (2.15)

where ℘ (ξ − ξ0; g2, g3) is the Weierstrass elliptic function.
Set 6: τ0 = τ1 = 0, τ2 > 0

u13(ξ) =
−τ2sech2

[
1
2
√
τ2 (ξ − ξ0)

]
±2
√
τ2τ4 tanh

[
1
2
√
τ2 (ξ − ξ0)

]
+ τ3

, τ4 > 0, (2.16)

u14(ξ) =
τ2csch2

[
1
2
√
τ2 (ξ − ξ0)

]
±2
√
τ2τ4 coth

[
1
2
√
τ2 (ξ − ξ0)

]
+ τ3

, τ4 > 0, (2.17)

u15(ξ) = −
τ2τ3sech2

[ √
τ2

2 (ξ − ξ0)
]

τ2
3 − τ2τ4

(
1 − tanh

[ √
τ2

2 (ξ − ξ0)
])2 , τ3 , 0, (2.18)

u16(ξ) =
τ2τ3csch2

[ √
τ2

2 (ξ − ξ0)
]

τ2
3 − τ2τ4

(
1 − coth

[ √
2

2 (ξ − ξ0)
])2 , τ3 , 0. (2.19)

Step 2: Determine n according to the balance principle, such that the highest derivative term and the
highest power term in Eq (2.2) have equal degrees.
Step 3: Substitute Eqs (2.3) and (2.4) together into Eq (2.2) to obtain the coefficients ai, τ j, i = −n,−n+

1, · · · , n, j = 0, · · · , 4.
Step 4: Combining the conclusions from Step 1 to Step 3, the solution to Eq (2.1) can be derived based
on Eq (2.3) and the solutions of Eq (2.4).
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3. Mathematical analysis

To solve Eq (1.4), we can utilize the following transformation:

Q(x, t) = P(ξ)ei(−κx+ωt+ϕ0), ξ = x − vt, (3.1)

where κ is the wave number, ω is the angular frequency, ϕ0 is phase constant, and v is the velocity.
Substituting transformation (3.1) into Eq (1.4) and separating the real and imaginary parts yields

η1P′′′ −
(
(3µ2 + 2µ3 − η2)P2 + (2α − βv)κ + 3κ2η1 − βω + v + µ1

)
P′ = 0, (3.2)

(α − βv + 3η1κ)P′′ −
(
η1κ

3 + ακ2 + (µ1 − βω)κ + ω
)

P

− ((a − η2)κ − λ1) P3 + λ2P5 + λ3P7 = 0. (3.3)

If Eq (3.2) is integrated and the integration constant is assumed as zero, then we obtain

3η1P′′ + (η2 − 3µ2 − 2µ3)P3 + 3
(
−3η1κ

2 + (βv − 2α)κ + βω − µ1 − v
)

P = 0. (3.4)

Equation (3.4) gives the following constraints:

η1 = 0, η2 = 3µ2 + 2µ3, ν =
2ακ − βω + µ1

βκ − 1
. (3.5)

The balance of Eq (3.3) will give a fraction 1
3 , so we will use the substitution

P(ξ) = φ1/3(ξ),

to induce a transformation in which Eq (3.3) is converted to

9 (λ1 + 2κ(µ2 + µ3)) φ
8
3 + 9λ2φ

10
3 + 3 (α − βv) φφ′′

+2 (βv − α)
(
φ′

)2
+ 9λ3φ

4 + 9
(
−ακ2 + ω(βκ − 1) − κµ1

)
φ2 = 0.

(3.6)

For the integrability of Eq (3.6), we set

λ1 = −2κ(µ2 + µ3), λ2 = 0. (3.7)

Then,

φφ′′ =
2
3

(
φ′

)2
+ C1φ

2 + C2φ
4, (3.8)

where C1 = −
3(βκ−1)(ακ2−ω(βκ−1)+κµ1)

α(βκ+1)−β2ω+βµ1
, C2 =

3λ3(βκ−1)
α(βκ+1)−β2ω+βµ1

.

4. Bifurcation and chaotic analysis

4.1. Phase portraits

To analyze the dynamical behavior of Eq (3.8) using the planar dynamical systems method [20,23],
we convert it into the following two-dimensional system:
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
dφ
dξ

= y,

dy
dξ

=
1
φ

(
2
3

y2 + C1φ
2 + C2φ

4
)
.

(4.1)

Let dξ = φdη. Then, system (4.1) has the equivalent topology structure to the following regular
systems: 

dφ
dη

= yφ,

dy
dη

=
2
3

y2 + C1φ
2 + C2φ

4,

(4.2)

except for the straight line φ = 0.
Then, the first integration of system (4.2) is

H(φ, y) = φ−
4
3 y2 − 3C1φ

2
3 −

3
4

C2φ
8
3 = h, h ∈ R. (4.3)

If C1C2 ≥ 0, then system (4.2) has a unique equilibrium point P0(0, 0). If C1C2 < 0, then

system (4.2) has three equilibrium points P0(0, 0), P1(−
√
−

C1
C2
, 0), and P2(

√
−

C1
C2
, 0). Without loss

of generality, let C2
1 + C2

2 , 0.
In order to study the dynamic behavior of system (4.2), the Jacobian matrix is introduced

J(φ, y) =

(
y φ

2C1φ + 4C2φ
3 4

3y

)
. (4.4)

According to the theory of planar dynamical systems, when the trace tr(J) < 0, P is the saddle
point, and when the determinant det(J) > 0 and tr(J) = 0, P is the center. Therefore, the equilibrium
points can be classified by the parameters C1 and C2 as follows:

• If C1C2 ≥ 0, then system (4.2) has a unique degenerate equilibrium point P0.
• If C1 > 0 and C2 < 0, then system (4.2) has three equilibrium points, where P0 is the degenerate

equilibrium point, and P1 and P2 are centers.
• If C1 < 0 and C2 > 0, then system (4.2) has three equilibrium points, where P0 is the degenerate

equilibrium point, and P1 and P2 are saddle points.

We use the phase portraits to demonstrate the dynamic behavior of the system near the equilibrium
point, as shown in Figures 1 and 2.
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(a) C1 > 0, C2 > 0. (b) C1 < 0, C2 < 0. (c) C1 = 0, C2 > 0.

(d) C1 = 0, C2 < 0. (e) C1 > 0, C2 = 0. (f) C1 < 0, C2 = 0.

Figure 1. The phase portraits of (4.2) for C1C2 ≥ 0.

(a) C1 > 0, C2 < 0. (b) C1 < 0, C2 > 0.

Figure 2. The phase portraits of (4.2) for C1C2 < 0.

4.2. Sensitivity analysis and chaotic analysis

Following our comprehensive analysis of the phase portrait of the system (4.2), we now turn to the
fascinating phenomenon of chaos that emerges when the system is subjected to periodic perturbations.
The introduction of such perturbations can significantly alter the dynamics of the system, leading
to behaviors that are not only complex, but also highly sensitive to initial conditions. The periodic
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perturbations of Eq (4.2) are shown below:


dφ
dη

= yφ,

dy
dη

=
2
3

y2 + C1φ
2 + C2φ

4 + f0 cos(ωη),
(4.5)

where f0 and ω represent the amplitude and frequency of the external force perturbation, respectively.

Our methodology commences with a numerical simulation of the perturbed system, meticulously
tracking the trajectories of the system’s state variables over time. This simulation serves as a foundation
for identifying the onset of chaotic behavior, characterized by aperiodic and unpredictable trajectories
that diverge exponentially from nearby initial states.

Subsequently, the phase space of the perturbed system is analyzed through a series of two-
dimensional phase diagrams. These diagrams reveal the intricate interplay between periodic orbits
and chaotic regions, offering a visual representation of the system’s dynamical complexity.

The temporal evolution of the system is also scrutinized through time series analysis, which provides
insights into the temporal patterns that govern the system’s behavior. Significant differences in the
time series resulting from different initial values are beneficial in identifying the chaotic behavior of
the system.

Finally, the Poincaré section, a method involving the intersection of the phase space trajectory with a
specific plane, offers a snapshot of the system’s state at discrete intervals. This technique is invaluable
for identifying periodic orbits, quasiperiodic motions, and the intricate structures that characterize
chaotic attractors.

The sensitivity of the perturbed system (4.5) to initial conditions is a hallmark of chaotic dynamics.
To elucidate this property, we present comparative simulations in Figures 3 and 4, showcasing the
system’s behavior under two distinct sets of parameters.

In Figure 3, the parameters are set to f0 = 2.05, ω = 2.891, c1 = 0, and c2 = −1. The 3D
trajectory plot, 2D phase portraits, time series plot, and Poincaré section of Eq (4.5) are depicted,
each illustrating the profound impact of initial conditions on the system’s trajectory. The red solid line
represents the system’s evolution from the initial condition x0 = 0.05, y0 = 0.07, while the blue dashed
line corresponds to x0 = 0.08, y0 = 0.10. The stark divergence between these trajectories, evident in
the figure, underscores the system’s inherent complexity and the unpredictable nature of its evolution.

Moving to Figure 4, the parameters remain consistent with those in Figure 3. Here, the red solid
line traces the system’s path originating from x0 = 1

4 , y0 = 0, whereas the blue dashed line is initiated at
x0 = 1

3 , y0 = 0. Similar to the observations in Figure 3, even minute variations in initial conditions give
rise to dramatically different trajectories, reinforcing the notion that the system’s behavior is intricate
and highly contingent on its starting point.

The juxtaposition of these figures not only highlights the system’s sensitivity to initial conditions,
but also serves as a testament to the rich and varied dynamical repertoire that emerges from the interplay
of deterministic equations and periodic perturbations. Such visual evidence of chaos is instrumental in
advancing our understanding of the system’s behavior.
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(a) 3D trajectory. (b) 2D phase portraits.

(c) Times series. (d) Poincaré sections.

Figure 3. Chaotic behavior of the system (4.5) at φ(0) = 0.05, y(0) = 0.07 (the red curves)
and φ(0) = 0.08, y(0) = 0.10 (the blue curves) when C1 = 0, C2 = −1, f0 = 2.05 and
ω = 2.891, respectively.
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(a) 3D trajectory. (b) 2D phase portraits.

(c) Times series. (d) Poincaré sections.

Figure 4. Chaotic behavior of the system (4.5) at φ(0) = 1/4, y(0) = 0 (the red curves) and
φ(0) = 1/3, y(0) = 0 (the blue curves) when C1 = 1, C2 = −16, f0 = 2.05 and ω = 2.891,
respectively.

5. Soliton solutions for Eq (1.4)

According to the homogeneous balance principle, it is known that n = 1, thus Eq (2.2) can be
expressed as:

φ(ξ) = a1u(ξ) +
a−1

u(ξ)
+ a0. (5.1)

Substituting Eq (5.1), Eq (2.4) into (3.8) , and setting the coefficients of the common powers of to
zero, we solve the system to derive the solutions for Eq (1.4).

Ultimately, the solutions obtained are shown below:
Set 1: The bell shaped soliton solution and the singular soliton solution.

If τ0 = τ1 = τ3 = 0, τ2 = 3C1, a−1 = 0, a0 = 0, a1 = ±

√
4
3τ4C2, the respective solutions are

Q1,1 = ±
{
2
√
−C1C2 sech

[ √
3C1 (x − vt − ξ0)

]} 1
3 ei(−κx+ωt+ϕ0), C1 > 0,C2 < 0, (5.2)

Q1,2 = ±
{
2
√

C1C2 csch
[ √

3C1 (x − vt − ξ0)
]} 1

3 ei(−κx+ωt+ϕ0), C1 > 0,C2 > 0. (5.3)
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Here and in the rest of this article, Qi, j = Qi, j (x, t) .
Set 2: The combo dark-sigular soliton solution.
If τ0 = τ2

2

4τ4
, τ1 = τ3 = 0, the corresponding solutions are

Result 1: a−1 = ± τ2√
3C2

3τ4

, a0 = 0, a1 = ∓

√
4
3C2τ4, τ2 = −3

2C1, C1 > 0, C2 > 0.

Q2,1 =

±
√

C1

C2
3 coth

(√
−
τ2

2
(x − vt − ξ0)

)
−

√
C1C2 tanh


√

3
4

C1 (kx + ωt − ξ0)




1
3

(5.4)

×ei(−κx+ωt+ϕ0),

Q2,2 =

±
√

C1

C2
3 tanh

(√
−
τ2

2
(x − vt − ξ0)

)
−

√
C1C2 coth


√

3
4

C1 (x − vt − ξ0)




1
3

(5.5)

×ei(−κx+ωt+ϕ0).

Result 2: a0 = ±
√
−

τ2
24C2

, a1 = 0, τ2 = 12
7 C1,C1 < 0,C2 > 0.

Q2,3 =

a−1

√
−

6C1

7τ4
tanh


√
−

6
7

C1 (x − vt − ξ0)

 ± √
−

C1

14C2


1
3

ei(−κx+ωt+ϕ0), (5.6)

Q2,4 =

a−1

√
−

6C1

7τ4
coth


√
−

6
7

C1 (x − vt − ξ0)

 ± √
−

C1

14C2


1
3

ei(−κx+ωt+ϕ0). (5.7)

Set 3: The Jacobi elliptic function solutions.
If τ1 = τ3 = 0, σ = τ0τ4

τ22 , τ4 > 0, the respective solutions are

(1) a−1 = ±
√

τ0
2C2
, a0 = ±

√
−C1
12C2

, τ2 = 2C1,

Q3,1 =

±
2
√

τ0τ4
2C1C2√

m2 + m
√

8 + m2 + 4
sc

√C1

√
1 +

m2 + m
√

8 + m2

4
(x − vt − ξ0) ,m

 ±
√
−C1

12C2


1
3

×ei(−κx+ωt+ϕ0), (5.8)

where τ2 > 0, 0 < σ < 1
4 , m =

√
2
√

1−4σ√
1+
√

1−4σ
, C1 > 0, C2 < 0.

(2) a−1 = ±
√

τ0
2C2
, a0 = ±

√
−C1
12C2

, a1 = 0, τ2 = 2C1, τ0 < 0, τ4 > 0.

Q3,2(ξ) =

±
√
τ0τ4

(
2m2 − 1

)
4C1C2

(
1 − m2) cn

√ 2C1

2m2 − 1
(x − vt − ξ0) ,m

 ± √
−C1

12C2


1
3

ei(−κx+ωt+ϕ0), (5.9)

where σ < 0,C2 < 0,m =

√√
1−4σ+1

√
2
√

1−4σ
.
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(3) a−1 = ±
√

τ0
2C2
, a0 = 0, a1 = ±

√
τ4

2C2
, τ0 > 0, τ4 > 0.

Q3,3(ξ) =

{
±

√
τ0

2C2

1
Φ
±

√
τ4

2C2
Φ

} 1
3

ei(−κx+ωt+ϕ0), σ >
1
4
, τ2 > 0, (5.10)

where Φ =
a sn

( √
τ4
p (x−vt−ξ0),m

)
+b cn

( √
τ4
p (x−vt−ξ0),m

)
c sn

( √
τ4
p (x−vt−ξ0),m

)
+d sn

( √
τ4
p (x−vt−ξ0),m

) , C2 > 0, a = −s
√

l2 + s2, b =
√

l2 + s2
(
l +
√

l2 + s2
)
,

c = s, d = l+
√

l2+s2

s , p =
−
√

l2+s2
(
l
√

l2+s2+l2+s2
)

s3

√
(l2+s2)

(
2(l2+s2)

3
2 l+6

√
l2+s2 l3+2l

√
l2+s2 s2+8l4+8l2 s2+s4

) , m2 =
4l
√

l2+s2
(
2l2+s2+2l

√
l2+s2

)
s4+8l2(l2+s2)+4l(2l2+s2)

√
l2+s2

.

Set 4: The Jacobi elliptic function solutions.
If τ1 = τ3 = 0, σ = τ0τ4

τ22 , τ4 < 0, the corresponding solutions are

(1) a−1 = ±
√

τ0
2C2
, a0 = 0, a1 = ±

√
τ2

24C2
, τ2 > 0, τ0 < 0,

Q4,1 =

±
√

τ2
2

24C2 |τ4|m2 dn
(√

τ2

m2
(x − vt − ξ0) ,m

)
±

√
τ0 |τ4 |

2C2τ2m2

dn
(√

τ2
m2 (x − vt − ξ0) ,m

)
 , (5.11)

where C2 < 0, 0 < σ < 1
4 , m =

√
2

√
1−4k+1

.

Set 5: Weierstrass elliptic function solution.
τ1 = τ3 = 0.
Result 1: a−1 = 0, a0 =

√
−

τ2
24C2

, a1 =
√

τ4
2C2
, τ2 = 12

7 C1.

Q5,1 =

{ √
τ4

2C2

3℘′ (x − vt − ξ0; g2, g3)
6℘ (x − vt − ξ0; g2, g3) + τ2

+

√
−

τ2

24C2

} 1
3

ei(−κx+ωt+ϕ0), τ4 > 0,C2 > 0. (5.12)

Result 2: a−1 =

√
4τ0
3C2
, a0 = 0, a1 = ±

√
4τ4
3C2
.

Q5,2 =


√

4τ0τ4

3C2

6℘ (x − vt − ξ0; g2, g3) + τ2

3℘′ (x − vt − ξ0; g2, g3)
+

√
12
C2

℘′ (x − vt − ξ0; g2, g3)
6℘ (x − vt − ξ0; g2, g3) + τ2


1
3

ei(−κx+ωt+ϕ0),

(5.13)
where τ0 > 0,C2 > 0.

Set 6: Hyperbolic solutions.
τ0 = τ1 = 0.
Result 1: a0 = τ3

2τ2
a−1, a1 = 0, τ2 = τ3

2

4τ4
, τ3 > 0,C1 = 3τ3

2

4τ4
,C2 = 0.

Q6,1 =

±a−1

2
√
τ2τ4 tanh

(
τ3

4
√
τ4

(x − vt − ξ0)
)

+ τ3

τ2sech2
(

τ3
4
√
τ4

(x − vt − ξ0)
) +

2τ4

τ3
a−1


1
3

ei(−κx+ωt+ϕ0), (5.14)

Q6,2 =

±a−1

2
√
τ2τ4 coth

(
τ3

4
√
τ4

(x − vt − ξ0)
)

+ τ3

τ2csch2
(

τ3
4
√
τ4

(x − vt − ξ0)
) +

2τ4

τ3
a−1


1
3

ei(−κx+ωt+ϕ0). (5.15)
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The solutions Q6,1 and Q6,2 are unbounded function solutions.

Result 2: a−1 = 0, a0 = ±

√
−

C1
C2
, a1 = ±

√
4τ4
3C2
, τ2 = −2C1, C1 < 0,C2 > 0.

Q6,3 =

±
√

τ4

3C2

4C1 sech2
( √
−2C1
2 (x − vt − ξ0)

)
2
√
−2C1τ4 tanh

( √
−2C1
2 (x − vt − ξ0)

)
+ τ3

±

√
−

C1

C2


1
3

ei(−κx+ωt+ϕ0). (5.16)

Q6,4 =

±
√

τ4

3C2

4C1 csch2
( √
−2C1
2 (x − vt − ξ0)

)
2
√
−2C1τ4 coth

( √
−2C1
2 (x − vt − ξ0)

)
+ τ3

±

√
−

C1

C2


1
3

ei(−κx+ωt+ϕ0). (5.17)

The solutions Q6,3 is the bright solution, and Q6,4 is the dark solutions respectively.

6. Results and discussion

6.1. Graphical simulation

The graphical simulations of the soliton, kink soliton, and periodic solutions are presented to
provide an intuitive understanding of their spatial and temporal evolution. The 3D and 2D plots
illustrate the distinctive wave patterns and dynamic behaviors, showcasing the versatility of the
solutions derived from the PSHE. Figures 5(a)–8(a) depict the three-dimensional shapes of modes
Q1,1, Q2,3, Q3,2 and Q6,3 respectively. The two-dimensional waveforms of these solutions at t = 0, 1,
and 2 are shown in Figures 5(b)–8(b). To enhance the explanation of the solutions, the real parts of
these solutions are also illustrated in Figures 5(c)–8(c). It is worth noting that the solutions obtained in
this study are numerous, and the above four solutions are representative.

(a) 3D plot for
∣∣∣Q1,1

∣∣∣. (b) 2D plot for
∣∣∣Q1,1

∣∣∣. (c) 3D plot for Real part of Q1,1.

Figure 5. Graphical representation of the soliton solution Q1,1 with α = 1, β = −1, κ = 1, ω =

1, µ1 = −2, λ3 = 1, τ2 = 18, v = 1, and ξ0 = ϕ0 = 0.
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(a) 3D plot for
∣∣∣Q2,3

∣∣∣. (b) 2D plot for
∣∣∣Q2,3

∣∣∣. (c) 3D plot for Real part of Q2,3.

Figure 6. Graphical representation of the kink soliton solution Q2,3 with α = 1, β = 2, κ =

2, ω = 1, µ1 = −2, λ3 = 1, τ2 = −108/7, τ4 = 3, a0 =
√

42/14, a1 = 1, v = 1, and
ξ0 = ϕ0 = 0.

(a) 3D plot for
∣∣∣Q3,2

∣∣∣. (b) 2D plot for
∣∣∣Q3,2

∣∣∣. (c) 3D plot for Real part of Q3,2.

Figure 7. Graphical representation of the periodic solution Q3,2 with α = 1, β = −1, κ =

1, ω = 1, µ1 = −2, λ3 = 1, τ0 = −1, τ2 = 12, τ4 = 6, m = 0.8, a0 =
√

42/14, a1 = 1, v = 1,
and ξ0 = ϕ0 = 0.

(a) 3D plot for
∣∣∣Q6,3

∣∣∣. (b) 2D plot for
∣∣∣Q6,3

∣∣∣. (c) 3D plot for Real part of Q6,3.

Figure 8. Graphical representation of the periodic solution Q3,2 with α = 1, β = 2, κ =

2, ω = 1, µ1 = −2, λ3 = −1, τ0 = 0, τ1 = 0, τ2 = 18, τ4 = 1, m = 0.8, a−1 = 0, a1 = 1,p and
ξ0 = ϕ0 = 0.
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6.2. Parameter influence

As a key feature, this study investigates the dynamic behavior and analytical solutions of PSHE
with both the temporal dispersion coefficient β and the seventh-order nonlinear coefficient λ3.

Understanding the sensitivity of the obtained solutions to these parameters is crucial for
comprehending the stability and adaptability of optical solitons under different environmental
conditions. The influence of the dispersion coefficient β on Q1,1 and Q2,3 is shown in Figures 9(a)
and 10(a), while the impact of the nonlinear coefficient λ3 on the real parts of Q1,1 and Q2,3 is illustrated
in Figures 9(b) and 10(b). Analysis of Figures 9 and 10 reveals a clear relationship between the
magnitude of |β| and the amplitude of the optical soliton, indicating that an increase in |β| results in
a larger soliton amplitude. In contrast, the influence of the nonlinearity parameter λ3 shows a more
complex behavior: As λ3 increases, the amplitude of the optical soliton also increases; conversely, a
decrease in λ3 leads to a reduction in the soliton amplitude. These observations underscore the critical
role of these parameters in nonlinear optics, providing valuable insights for guiding both practical
applications and further research in the field.

(a) (b)

Figure 9. The influence of the spatiotemporal dispersion (a) and the septic nonlinearity (b)
on Q1,1 with α = 1, κ = 1, ω = 1, µ1 = −2, τ2 = 18, v = 1, and ξ0 = ϕ0 = 0.
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(a) (b)

Figure 10. The influence of the spatiotemporal dispersion (a) and the septic nonlinearity (b)
on Q2,3 with α = 1, κ = 2, ω = 1, µ1 = −2, a1 = 1, v = 1, and ξ0 = ϕ0 = 0.

6.3. Literature comparison

Now, let us compare the conclusions obtained in this paper with those obtained in the comparable
literature.

The Perturbed Schrödinger-Hirota Equation (PSHE) has garnered significant attention from
scholars in the field of nonlinear dynamics and partial differential equations. In this paper, we juxtapose
our latest findings with those presented here to underscore the innovative aspects of our research.

Recent literature, specifically reference [53], employed SAE method to derive an exact solution
expressed in terms of exponential functions. Similarly, reference [42] utilized NKS approach to study
SHE with cubic nonlinearity, yielding three exact solutions represented by exponential functions.

In contrast to these studies, our work employs a phase portrait analysis to elucidate the underlying
chaotic behavior associated with the PSHE. Furthermore, we have adopted the Exp-function Method
(EAM) to obtain a comprehensive set of 16 solutions, which are expressed using hyperbolic functions,
Jacobi elliptic functions, and Weierstrass elliptic functions. This approach has yielded a more profound
understanding of the PSHE, as evidenced by the diversity and quantity of solutions obtained. The
richness of the solution types and the sheer number of solutions presented in this paper not only advance
the current body of knowledge, but also provide a more nuanced perspective on the dynamics of the
PSHE. Our findings contribute significantly to the existing literature by offering a broader spectrum of
exact solutions, thereby enhancing our ability to analyze and predict the behavior of complex nonlinear
systems described by the PSHE.

7. Conclusions

This study investigates a theoretical model capable of adapting to complex environments with both
spatiotemporal dispersion and high-order nonlinearities. The conclusions drawn from this research
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hold promising implications for future developments in the field. The main findings of this study are
poised to exert a positive impact on the realms of nonlinear optics and fiber optic communication
systems. The bifurcation analysis and the diverse soliton solutions presented in this paper have
deepened our comprehension of soliton dynamics within complex media. The sensitivity analysis
and investigation of chaotic behavior have shed light on the stability of solitons under perturbations, a
factor critical for the practical application of optical communication technologies. The future research
directions outlined in this paper, which include exploring higher-order nonlinear effects and developing
more sophisticated models to capture the intricate dynamics of light in optical fibers, are conducive to
enhancing the design and optimization of fiber optic systems. These endeavors will not only advance
our theoretical understanding but also contribute to the practical advancements in the field of fiber
optics. By providing a comprehensive analysis and a spectrum of solutions, this study has laid a solid
foundation for further research and development in nonlinear optics, paving the way for innovative
applications in fiber optic communication systems. The insights gained from this work are expected
to inspire continued exploration and innovation, ultimately leading to more efficient and robust optical
communication technologies.
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