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Abstract: In this paper, we present a novel approach to improve the robustness of region-based
active contour models for image segmentation, particularly in the presence of noise. Traditional active
contour methods often struggle with noise sensitivity and intensity variations within the image. To
overcome these limitations, we propose an enhanced segmentation model that integrates the average
convolution with entropy-based mean gray level values. Our method leverages the local statistical
information by introducing a local similarity factor and local region relative entropy to build a robust
energy functional. This energy functional balances the intensity differences between neighboring
pixels and regions within the local window, while reducing the impact of noise. By incorporating
convolution and entropy into the energy formulation, our model distinguishes between the interior and
exterior regions of an image more effectively, thus leading to more accurate segmentation results. We
demonstrate the numerical implementation of the proposed model, along with its convexity properties,
to ensure stability and reliability. The experimental results show that our method significantly
improves the segmentation performance, even in challenging scenarios with varying noise levels. This
advancement has the potential to improve image analyses in fields such as medical imaging, object
detection, and texture classification.
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1. Introduction

Image segmentation is a fundamental task in computer vision and applied mathematics, involving
the division of an image into distinct, meaningful regions that correspond to objects or surfaces in
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the scene [1–4]. Accurate segmentation is essential for various downstream tasks, such as object
recognition and scene understanding. Over the years, a wide range of methods have been proposed
for image partitioning, thus reflecting the importance of this task in areas such as medical imaging,
remote sensing, and autonomous driving [5–8]. Among these, active contour models (ACMs) within
the level-set framework have emerged as a prominent approach, thereby offering a balance between
simplicity and robustness. These models can be broadly classified into two main types: edge-based
segmentation models [9–13] and region-based segmentation models [14–18].

Edge-based active contours are driven by gradient information, thereby guiding the contour towards
object boundaries. While effective in well-structured images, they are highly sensitive to noise and
often struggle with weak or poorly defined boundaries. In contrast, region-based ACMs leverage the
statistical information of regions rather than relying on gradients. This makes them more resilient in
complex scenarios, where noise or weak boundaries pose significant challenges. By using information
from larger regions of the image, region-based methods can often achieve more reliable and accurate
segmentation, making them a preferred choice in many applications.

Among region-based methods, the level-set variational technique introduced by Chan and Vese (C-
V) [15] has garnered widespread attention due to its simplicity and effectiveness, particularly in the
segmentation of images into two homogeneous regions. Despite its strength in handling homogeneity,
the C-V model struggles in the presence of noise or when an intensity inhomogeneity exists across
regions. As a result, segmentation in such challenging environments becomes more difficult, as the
model cannot fully adapt to variations in the image intensity, thus often leading to suboptimal results.

To overcome these limitations, numerous extensions and improvements have been proposed. The
C-V model was expanded into a multi-phase model to handle more complex images with multiple
regions [16]. However, while useful, this multi-phase approach still inherits the difficulties of noise
sensitivity and intensity inhomogeneity. An important development in this area was the Local Binary
Fitting (LBF) model proposed by Li et al. [19]. The LBF model enhances the C-V approach by
incorporating a kernel function that better handles the intensity variations and noise, thus significantly
improving the segmentation performance in more challenging scenarios.

Other advancements include the method by Ali et al. [20], which utilizes signed pressure generalized
averages to segment inhomogeneous images with multiple objects. While effective, this approach has
limitations, particularly when topological changes, such as contour merging or splitting, occur in the
presence of noise. More recently, Ibrar et al. [21] developed a robust region-based model that integrates
local similarity factors and local denoising constraints thus allowing it to handle noise and intensity
variations. Despite its robustness, this method can encounter local minima due to the non-convexity of
its functional, which increases the computational complexity.

Furthermore, the Adaptive Parameter Level Set Method (APLSM) proposed by Haiping et al. [22]
offers an innovative approach to segmentation in highly inhomogeneous images. However, it faces
challenges in scenarios where the images exhibit high levels of similarity among pixels, often getting
stuck in local solutions due to a non-locality within the domain.

In this paper, we propose a novel convex region-based segmentation framework that addresses
these challenges by introducing a comprehensive set of techniques for robust global segmentation
(see Figure 1). Our model builds upon previous methods [19, 21] by incorporating a convolutional
framework that averages the mean gray level entropy with image differences, local similarity factors,
and spatial intensity differences. This results in a more precise level set function capable of capturing
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intricate object boundaries, even in noisy and highly variable images. The combination of these
elements significantly enhances the segmentation accuracy and reduces the computational complexity,
thus offering an efficient and effective solution to the problem of image segmentation in complex
scenarios.

Start Image Segmentation

Input Image with Noise and Intensity Variations

Localization in the Domian of the Image

Noise Present? Applying Average Divergence

Handle Inhomogeneous Regions (fidelity terms)

Refinement with Local Similarity Factor.

Proposed Convex Region-based Segmentation

Final Segmented Image

Yes

No

Figure 1. Flowchart for the segmentation process in proposed model.

To demonstrate the effectiveness of our model, we compared it with existing state-of-the-art
methods on various datasets, including synthetic, outdoor, and medical images. Our experimental
results show that our model provides superior accuracy and better segmentation outcomes compared to
other approaches. The symbols and their corresponding meanings used throughout the text to facilitate
understanding are summarized in Table 1.
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Table 1. Symbols are used in the text to enable the reader to comprehend the discussion.

Symbol Meaning Symbol Meaning
µ parameter of length-term ϕ Level set
σ scaled parameter δ Delta-function
g Averaging filter ∇ Gradient
Ω Bounded open-subset ζ energy functional parameter
z0 Given image ε Diffusion term

This paper is structured as follows: Section 2 provides a review of related works in the field;
Section 3 introduces the proposed segmentation model, including a detailed derivation of the Euler-
Lagrange equation and its discretization; in Section 4, we present the experimental results using various
datasets and compare the accuracy of our method with existing state-of-the-art approaches; and finally,
Section 5 offers the concluding remarks on our work.

2. Previous work

2.1. Region based robust active contour technique

Let z0 : D→ R be a given image, where D is the image domain; the energy functional of the region
based robust active contour technique model [21] is defined as follows:

F(ϕ(κ1)) = µ

∫
κ2∈Nbhx

δε(ϕ(κ1))|∇ϕ(κ1)|dκ

+ (1 − ζ)
( ∫

κ2∈Nbhx

∣∣∣z0(κ1) − gc1

∣∣∣2
d(κ1, κ2)

Hε(ϕ(κ1))
)
dκ

+ (1 − ζ)
( ∫

κ2∈Nbhx

∣∣∣z0(κ1) − gc2

∣∣∣2
d(κ1, κ2)

(1 − Hε(ϕ(κ1)))
)
dκ

+ ζ

∫
κ2∈Nbhx

(
log z(κ1) +

z0(κ1)
z(κ1)

)
dκ. (2.1)

In this context, Nbhx represents a local window that defines the neighborhood of pixels around a
given pixel κ1. The term d(κ1, κ2) denotes the spatial Euclidean metric of any two pixels, κ1 and
κ2. Additionally, gc1, gc2 refer to the average intensities of the pixels inside and outside the contour,
respectively.

The limitations of this method include the computational complexity, especially for large images,
and the sensitivity to parameter tuning, which requires a careful adjustment for optimal performance.
While the model handles high noise, it may still struggle with extremely noisy images or complex
intensity inhomogeneity. Additionally, its performance may be limited for images with low contrast
or weak edges. The local similarity factor improves the segmentation but may not perform well in
cases where a global context is more important. Finally, the model risks overfitting, particularly when
trained on specific datasets, and lacks consideration of the entropy concept, which could provide a
further robustness in handling uncertainty and variations in image characteristics.

AIMS Mathematics Volume 10, Issue 1, 654–671.



658

2.2. Bias correction based segmentation

The bias correction based segmentation (BC) model [23] processes an image by collecting localized
information from regions with varying intensities (inhomogeneous areas). It leverages an energy-based
approach, specifically an image-fitting energy function, to accurately capture the details within the
image. Instead of processing each pixel independently, the model simultaneously computes the values
of all pixels, thus ensuring a cohesive and detailed analysis of the entire image. This simultaneous
calculation allows the model to efficiently handle noise and intensity variations, thus improving the
segmentation accuracy in complex images. The mathematical framework of this model is given by the
following:

EL(x, y) =

∣∣∣∣∣∣∣Q(x, y) −
1
M

M∑
i=1

Q(yi, xi)

∣∣∣∣∣∣∣
2

, (2.2)

where M represents the number of neighboring pixels considered for the local mean intensity
computation.

2.2.1. Gradient term

The pixel-level gradient term assesses variations in the image gradients within a small
neighborhood, helping to detect edges in the image. It is defined as follows:

Egrad(x, y) = |∇I(x, y)|2. (2.3)

2.2.2. Global intensity term

To account for the broader image context, the global intensity term captures the dissimilarity
between the pixel intensity I(x, y) and the global mean intensity. It is given by the following:

Eglobal(x, y) =

∣∣∣∣∣∣∣Q(x, y) −
1
M

M∑
j=1

I(x j, y j)

∣∣∣∣∣∣∣
2

. (2.4)

2.2.3. Regularization term

A regularization term is incorporated to promote contour smoothness during evolution. It penalizes
fluctuations in the level set function φ(x, y) as follows:

Ereg(x, y) = |∇φ(x, y)|2. (2.5)

2.2.4. Hybrid energy function

The hybrid energy function combines both local and global information, with their contributions
weighted by wlocal and wglobal, respectively:

Ehybrid(x, y) = wlocal · (EL(x, y) + Egrad(x, y)) + wglobal · (Eglobal(x, y) + Ereg(x, y)). (2.6)

The hybrid energy function combines both local and global intensity information, thereby
facilitating a comprehensive analysis of the image that ensures accurate segmentation.
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This model is vulnerable to robust noise, where significant noise in the image makes it difficult
for the algorithm to distinguish between the actual object boundaries and noise artifacts. Since the
model depends on the local intensity information, excessive noise can disrupt the accurate evolution of
the active contour, leading to either premature or incorrect convergence, which ultimately affects the
segmentation quality.

3. Proposed model

In this section, we propose a new approach to image segmentation that leverages an entropy-based
technique combined with an averaging operator. Our method aims to effectively segment images,
whether they contain noise or not, while preserving the detailed local information and fine features of
the image. We benefit from the average local similarity factor, which is utilized in the local sense. In
this way, our model will be able to tackle noisy and intensity inhomogeneity images. The proposed
model can locally analyze the noise patterns in given image.

3.1. Introducing the average convolution with entropy mean gray level value

In an image analysis, pixels in a given image often have intensities similar to their neighboring
pixels. Active contour models use local statistical information to segment the image, where each pixel’s
contribution is weighted by its distance from the center of a local window. To ensure that the local
window size is appropriate, it should not exceed the size of the local region being examined. To address
the limitations of traditional active contour methods, particularly their sensitivity to various types of
noise, we propose incorporating the average convolution with entropy-based mean gray level values.
This approach helps balance the intensity differences between neighboring pixels and the average
intensity within the local interior and exterior regions. By using this method, we aim to improve
the robustness of segmentation against different types and strengths of noise, which is a common
shortcoming in existing region-based ACMs. In the average convolution with entropy mean gray level
value, we used the average difference operator with a local similarity factor to build the region-based
energy functional, which is defined pixel-by-pixel within the image z0(κ1, κ2). Let C(κ1, κ2) denote the
average gray-level value of neighboring pixels around the pixel (κ1, κ2) in the image z0(κ1, κ2), where
κ1 = 1, 2, 3, . . . ,m and κ2 = 1, 2, 3, . . . , n. The local-region relative entropy of the pixel (κ1, κ2) is
measured in a m × n neighborhood (Nbhd) as follows:

I(κ1, κ2) =

m−1
2∑

i, j= −m+1
2

z0(κ1, κ2)(κ1 + i, κ2 + j) ×
|log(z0(κ1, κ2)(κ1 + i, κ2 + j))|

C(κ1, κ2)
, (3.1)

where C(κ1, κ2) represents the average gray-level value of neighboring pixels around a particular pixel.
This value is calculated as follows:

C(κ1, κ2) =

m−1
2∑

(i, j)= −m+1
2

z0(κ1, κ2)(κ1 + j, κ2 + k).
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Therefore, the average convolution with entropy mean gray level value function is given by the
following:

ACE(x, c) =

∫
(y∈Nbhx),x

1
M

(∣∣∣∣∣∣g ∗ I(κ1, κ2) − I(κ1, κ2) − c
∣∣∣∣∣∣2)Hε(x)dx, (3.2)

where Nbhx is a local-window, defined as a neighborhood of pixels in the given area pixel κ1, g denotes
the averaging factor, and c represents the average intensity within the local region. Hε(x) represents a
regularized Heaviside function. The variable M denotes the number of adjacent pixels used to calculate
the local mean intensity.

3.2. Functional of proposed model

For an image z0 : Ω→ R, where Ω is the domain of z0 , the functional of the proposed algorithm is
followed by:

F(ϕ, c1, c2) =ζ1

( ∫
(κ2∈Nbhx)

1
M

(∣∣∣g ∗ I(κ1, κ2) − I(κ1, κ2) − c1

∣∣∣2)Hε(ϕ(κ1))dκ

+

∫
(κ2∈Nbhx)

1
M

(∣∣∣g ∗ I(κ1, κ2) − I(κ1, κ2) − c2

∣∣∣2)(1 − Hε(ϕ(κ1)))dκ
)

+ ζ2

( ∫
(κ2∈Nbhx)

|I(κ1, κ2) − d1|
2Hε(ϕ(κ1))dκ

+

∫
(κ2∈Nbhx)

|I(κ1, κ2) − d2|
2(1 − Hε(ϕ(κ1))dκ

)
+ µ

∫
(κ2∈Nbhx)

δε(ϕ(κ1))|∇ϕ(κ1)|dκ.

(3.3)

In this context, g is the averaging factor applied through convolution with the filtered image I(κ1, κ2).
The term c1, d1 represents the average intensities within the contour, while c2, d2 denotes the average
intensities outside the contour. 

c1 =

∫
(κ2∈Nbhx),x I(κ1,κ2)Hε (ϕ(κ1))dκ∫

(κ2∈Nbhx),x Hε (ϕ(κ1))dκ
,

c2 =

∫
(κ2∈Nbhx),x I(κ1,κ2)(1−Hε (ϕ(κ1)))dκ∫

(κ2∈Nbhx),x(1−Hε (ϕ(κ1)))dκ
,

(3.4)


d1 =

∫
(κ2∈Nbhx),x I(κ1,κ2)(g−1)Hε (ϕ(κ1))dκ∫

(κ2∈Nbhx),x Hε (ϕ(κ1))dκ
,

d2 =

∫
(κ2∈Nbhx),x I(κ1,κ2)(g−1)(1−Hε (ϕ(κ1)))dκ∫

(κ2∈Nbhx),x(1−Hε (ϕ(κ1)))dκ
.

(3.5)

By minimizing Eq (3.3), the following variational formulation can be obtained:

∂ϕ

∂t
= δε(ϕ(κ1))

[
µ∇ ·

∇ϕ(κ1)
|∇ϕ(κ1)|

+ ζ1

(
g ∗ I(κ1, κ2) − I(κ1, κ2) − d2

)2

M

− ζ1

(
g ∗ I(κ1, κ2) − I(κ1, κ2) − d1

)2

M
+ ζ2

(
(I(κ1, κ2) − c1)2 − (I(κ1, κ2) − c2)2)].
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This is denoted by the following:

γ1 =

(
g ∗ I(κ1, κ2) − I(κ1, κ2) − d2

)2

M
,

γ2 =

(
g ∗ I(κ1, κ2) − I(κ1, κ2) − d1

)2

M
,

γ3 =
(
(I(κ1, κ2) − c1)2 − (I(κ1, κ2) − c2)2).

(3.6)

The above equation can be written as follows:

∂ϕ

∂t
= δε(ϕ(κ1))

[
µ∇ ·

∇ϕ(κ1)
|∇ϕ(κ1)|

+ ζ1γ1 − ζ1γ2 + ζ2γ3

]
. (3.7)

3.3. Numerical scheme

The above parabolic equation can be solved by using the central-finite differences for discretization,
which is given as follows:

ϕn+1
i, j − ϕ

n
i, j

∆t
= δε(ϕn

i, j)
[
µκϕ + ζ1γ1 − ζ1γ2 + ζ2γ3

]
,

or

ϕn+1
i, j = ϕn

i, j + ∆tδε(ϕn
i, j)

[
µκϕ + ζ1γ1 − ζ1γ2 + ζ2γ3

]
. (3.8)

With κϕ, the curvature is calculated according to the given formula:

κϕ = div(
∇ϕ

|∇ϕ|
) =

ϕxxϕ
2
y − 2ϕxyϕxϕy + ϕyyϕ

2
x

(ϕ2
x + ϕ2

y)3/2 , (3.9)

where ϕx, ϕy, ϕxx, ϕyy, and ϕxy are computed as follows:

ϕx =
1

2p
(ϕi+1, j − ϕi−1, j), ϕy =

1
2p

(ϕi, j+1 − ϕi, j−1),

ϕxx =
1
p2 (ϕi+1, j + ϕi−1, j − 2ϕi, j), ϕyy =

1
p2 (ϕi, j+1 + ϕi, j−1 − 2ϕi, j),

ϕxy =
1
p2 (ϕi+1, j+1 − ϕi−1, j+1 − ϕi+1, j−1 + ϕi−1, j−1). (3.10)

Here, p refers to the grid size. The steps for the proposed method are outlined in Algorithm 1.

Algorithm 1. The proposed algorithm: (ϕn+1(κ1)))←
(
ϕ(n), z0, ζ1, ζ2, ζ3, µ , maxit,tol ).

1. Initialize the level-set function ϕ(κ) with ϕ0(κ).

2. c1, c2 and d1, d2 are updated via (3.4) and (3.5).

3. Compute ϕn+1(κ) using Eq (3.8).

4. Check weather the solution is stationary,
∣∣∣ϕn+1

i, j − ϕ
n
i, j

∣∣∣ ≥ tol. If not, repeat step 2.
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3.4. Convexity of proposed model

To check the convexity of the proposed model, we differentiate the energy functional twice using
the following convexity theorem:

Theorem 3.1. A Function is convex on interval I if and only if its second derivative f
′′

is non-negative
for every x in I.

To prove the energy functional is convex, we consider

F =

∣∣∣I(κ1, κ2)
(
g − 1

)
− c1

∣∣∣2
M

Hε(ϕ(κ1)) +

∣∣∣I(κ1, κ2)
(
g − 1

)
− c2

∣∣∣2
M

(1 − Hε(ϕ(κ1)))

+ |I(κ1, κ2) − d1|
2Hε(ϕ(κ1)) + |I(κ1, κ2) − d2|

2(1 − Hε(ϕ(κ1)) + δε(ϕ(κ1))|∇ϕ(κ1)|,

such that E =
∫

Ω
Fdxdy. Suppose that s1 = (t1,w1), s2 = (t2,w2); for any t ∈ [0, 1], we have the

following:

ts1 + (1 − t)s2 = t(t1,w1) + (1 − t)(t2,w2)
= t(t1 − t2) + t2, t(w1 − w2) + v2.

(3.11)

Since t1, t2 ∈ S , t1− t2 ∈ S and t ∈ [0, 1]; this implies that, t(t1− t2)+ t2 ∈ S and w1−w2 ∈ S . Therefore,
t(w1 − w2) + w2 ∈ S , and hence ts1 + (1 − t)s2 ∈ Ω; thus, the domain Ω is convex. Now, to check the
convexity of E, we partially differentiate F with respect to I(κ1, κ2):

∂F
∂I(κ1, κ2)

=
2
(
I(κ1, κ2)(g − 1) − c1

)
M

Hε(ϕ(κ1))(g − 1)

+
2
(
I(κ1, κ2)(g − 1) − c2

)
M

(1 − Hε(ϕ(κ1)))(g − 1)

+ 2(I(κ1, κ2) − d1)Hε(ϕ(κ1)) + 2(I(κ1, κ2) − d2)(1 − Hε(ϕ(κ1)).

Again, differentiate with respect to I(κ1, κ2):

∂F2

∂I2
0

=
2Hε(ϕ(κ1))(g − 1)(g − 1)

M
+

2(1 − Hε(ϕ(κ1)))(g − 1)(g − 1)
M

+ 2Hε(ϕ(κ1)) + 2(1 − Hε(ϕ(κ1)),
(3.12)

∂F2

∂I2
0

=
2Hε(ϕ(κ1))(g − 1)2 + 2(1 − Hε(ϕ(κ1)))(g − 1)2

M

+ 2Hε(ϕ(κ1)) + 2(1 − Hε(ϕ(κ1)),

∂F2

∂I2
0

=
2(g − 1)2(Hε(ϕ(κ1)) + 1 − Hε(ϕ(κ1))

)
M

+ 2Hε(ϕ(κ1)) + 2 − 2Hε(ϕ(κ1)),

∂F2

∂I2
0

=
2(g − 1)2

M
+ 2,

∂F2

∂I2
0

=
2(g − 1)2

M
+ 2 ≥ 0.

∂F2

∂I2
0

≥ 0.

(3.13)

Hence proved. The energy functional is convex.
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4. Experimental results

This section presents the experimental results for our proposed model, tested on both real and
synthetic images to assess its performance. We compared our method with other approaches,
specifically the APLSM model [22], BC model [23], and the method by Ibrar et al. [21], using images
affected by noise and intensity inhomogeneity. To ensure a fair comparison, we used the parameters
listed in Table 2, with a local window size of 5 × 5 and an image size of 110 × 110 pixels. The
parameters for the proposed model were selected to optimize the performance across various noise
conditions. The values of ζ1 = 0.99 and ζ2 = 0.60 were chosen to balance the noise suppression
and boundary preservation, thus ensuring a robustness in images with high intensity variations. The
smoothing parameter µ = 0.004 was set to maintain the contour stability while adapting to noise,
with smaller values enhancing the detail sensitivity. The parameter ε = 0.08 was adjusted to prevent
a numerical instability and to improve the convergence in noisy conditions. Unlike the BC model,
the proposed approach does not heavily rely on the time step δt, as the entropy-based smoothing
reduces a dependence on iterative updates. For Ibrar et al.’s model, the neighborhood size parameter
r = 10 was selected to optimize the local region-based calculations for inhomogeneous regions.
These parameters were empirically tested and adjusted based on the image characteristics, such as
the noise type and intensity, thus ensuring the proposed model’s adaptability and effectiveness. To
validate the effectiveness of the proposed model, extensive statistical experiments were conducted.
Statistical metrics, including Accuracy, Precision, Recall, F1-Score, Intersection over Union (IoU),
Dice Coefficient, Matthews Correlation Coefficient (MCC), Peak Signal-to-Noise Ratio (PSNR), and
Structural Similarity Index Measure (SSIM), were utilized to quantify the enhancements. The results
indicated that the proposed model achieved an average improvement over the baseline models in high-
noise scenarios.

Table 2. Parameters utilized for BC, Ibrar et al., and the proposed model.
BC Parameters Ibrar et al. parameters Proposed model Parameters
ζ 0.4 ζ 0.98 ζ1 0.99

ζ2 0.60
µ 4 µ 0.001 µ 0.004
ε 0.5 ε 0.04 ε 0.08
δ t 0.2 r 10

All experiments were conducted on a 1.00 GHz Intel Core m PC with 4GB of RAM running
Windows 10. The algorithm was implemented in Matlab 7.9.0. For research purposes, the code for our
method can be provided upon request via email.

First, the proposed model used the average convolution to entropy mean gray level value with
image difference technique to smooth the image and displayed the noise clear in the given image.
Figures 2 and 3 are the adequately explained machine results of propose model. We further evaluate
our proposed model by comparing its segmentation accuracy with that of other models, as illustrated
in Figure 4. In this figure, the segmented images are shown row by row from left to right. The second
and third columns feature the BC model and the method by Ibrar et al., respectively. These models
effectively detect the object boundaries; however, in the first row, which shows different layers of the
sky background, these methods struggle with segmentation, due to non-convexity and high intensity
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inhomogeneity and noise, thus failing to accurately segment the image. In the second row, both the BC
and Ibrar et al. models encounter difficulties and get stuck to segment the image, thus impacting their
performance. The proposed model segments Figure 4 locally by utilizing the average convolution to
entropy mean gray level value with image difference technique.

We assessed the performance of the proposed method under various noise conditions and compared
its effectiveness with other models, including the APLSM model, the BC model, and the method
by Ibrar et al. For the evaluation, we used specific parameters for the proposed model, as detailed
ζ1 = 0.99, ζ2 = 0.6. To make a precise comparison between the proposed model and other models,
we introduced artificial speckle noise with parameters δ=(0.03, 0.03) to the images using the imnoise
function in Matlab. Additionally, we used the same initial contour for all models in the comparison.
We utilize advantages from the relative entropy in the proposed model shown in Figure 5, where the
proposed model has best segmentation accuracy as compared to the APLSM [22].

In addition, our proposed model is convex, which shows better results as compare to the
APLSM model and the ibrar et al. [21] model in Figures 4 and 5, respectively. Additionally,
Figure 6 demonstrates that using different initial contours yields the same segmentation results.
This consistency indicates that the energy functional we designed is convex. Table 3 provides a
comprehensive comparison of the segmentation performance metrics across different models, including
Accuracy, Precision, Recall, F1-Score, IoU, Dice Coefficient, and MCC. The proposed model
consistently outperformed APLSM, Ibrar et al., and the BC model across all metrics. Specifically,
the proposed model achieved the highest Accuracy (94.0%), Precision (94.5%), Recall (92.8%), and
F1-Score (93.6%), thus demonstrating its superior classification capabilities. Additionally, it recorded
an IoU of 89.4% and a Dice Coefficient of 94.3%, which indicate excellent segmentation overlaps
and similarities with the ground truth data. The MCC of 90.8% further highlights the proposed
model’s robustness and reliability, especially in handling imbalanced datasets. These results validate
the effectiveness of the proposed model in achieving accurate and reliable segmentation compared to
existing methods, as displayed in Figure 7.

The proposed method not only provides a high accuracy, but also operates faster than existing
methods. Table 4 compares the speed of the competing models with the proposed model, thus
highlighting the efficiency of our approach in terms of time and the number of iterations required.

Table 5 highlights the performance of the proposed model compared to APLSM, BC, and Ibrar
et al.’s methods under Gaussian noise conditions. The proposed model consistently outperformed
other approaches, thereby achieving the highest PSNR and SSIM values.

Under Gaussian noise with σ = 0.1, the proposed model achieved a PSNR of 30.91 dB and an
SSIM of 0.910, which corresponds to a 21.5% improvement in PSNR and a 5.0% increase in SSIM
compared to Ibrar et al.’s method. Similarly, compared to the BC model, the proposed model exhibited
a 9.0% improvement in PSNR and a 5.0% increase in SSIM. These results demonstrate the robustness
of the proposed model in effectively handling Gaussian noise.
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Figure 2. Image smoothing process using average convolution in the propose model.

Figure 3. Image having same pixel values applying entropy technique and segmentation
result of proposed model.

Figure 4. Segmentation results of BC, Ibrar et al. and the proposed model.
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Figure 5. The given image, and results of APLSM and the new proposed model in second
and third coloumn respectively.

Figure 6. Identical results obtained from various initial contours indicate the convexity of
the designed functional.
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Figure 7. Comprehensive evaluation metrics for segmentation performance of the competing
models and propose model, using Table 3.
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Table 3. Comprehensive evaluation metrics for segmentation performance.

Model Accuracy Precision Recall F1-Score IoU Dice MCC
APLSM 87.4 90.1 83.2 86.5 80.3 89.1 78.5

Ibrar 88.5 91.2 85.7 88.3 82.4 90.3 80.2
BC 92.3 93.1 90.4 91.7 87.6 92.5 85.7
Our 94.0 94.5 92.8 93.6 89.4 94.3 90.8

Table 4. Proficiency comparison of the APLSM [22], BC [23], Ibrar et al. [21], and proposed
model.

APLSM Ibrar et al. model BC model Proposed model
Iteration CPU Iteration CPU Iteration CPU Iteration CPU

150 38.91 100 28.91 60 20.45
150 39.75 100 33.75 60 22.07

200 62.31 80 26.07
300 74.54 60 22.42

Table 5. Performance comparison of PSNR and SSIM for various models.

Model Noise type PSNR (dB) SSIM
APLSM Gaussian (σ = 0.1) 25.43 0.812
Ibrar et al. Gaussian (σ = 0.1) 27.21 0.846
BC Gaussian (σ = 0.1) 28.54 0.867
Proposed model Gaussian (σ = 0.1) 30.91 0.910

5. Conclusions

In image segmentation, our proposed model was shown to effectively handle images with Speckle
noise and intensity inhomogeneity during iterative processing, thereby outperforming many other
variational segmentation models that struggle with severe noise. Additionally, the high accuracy of
our algorithm resulted in an improved computational efficiency. This model has potential applications
in real-world scenarios such as medical image segmentation, including tumor detection and identifying
affected areas in cancer diagnoses. We are happy to provide the code for research purposes upon request
via email.

However, the proposed model has some limitations: (a) It encounters difficulties with multi-
phase segmentation; and (b) its reliance on entropy can overlook similar pixels, thus leading to
over-segmentation, where an image is divided into too many regions. This occurs because the
method might detect small changes in entropy as significant boundaries, thus leading to excessive
segmentation. Addressing these limitations could offer valuable avenues for future research in
computational mathematics and image processing.
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