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Abstract: This paper studies the exponential stability of the Aw-Rascle-Zhang (ARZ) traffic flow
model. Given that the steady state may be non-uniform, we obtain a 2 × 2 hyperbolic system with
variable coefficients. Then, by combining ramp metering and variable speed limit control, we deduce
a kind of proportional boundary feedback controller. The well-posedness of the closed-loop system is
proved by using the theory of semigroups of operators. Moreover, a novel Lyapunov function, whose
weighted function is constructed by the solution of a first-order ordinary differential equation, can
be used for the stability analysis. The analysis gives a sufficient stability condition for the feedback
parameters, which is easy to verify. Finally, the effectiveness of boundary control and the feasibility of
the feedback parameters are obtained by numerical simulation.
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1. Introduction

Freeway traffic modeling and management have been intensively investigated in recent decades.
It is of great importance to reduce stop-and-go oscillations in traffic control. The traffic flow can
be represented by the typical Aw-Rascle-Zhang(ARZ) model [1, 2], consisting of a set of nonlinear
hyperbolic PDEs that describe the evolution of traffic density and velocity evolution.

In 1984, in the framework of the C1 solution, the stability of homogeneous nonlinear 2 × 2 systems
was obtained using the characteristic method in [3]. In 1999, another method was introduced: the
quadratic Lyapunov function. This function was first used to analyze the exponential stability of linear
hyperbolic equations in [4]. Then, it was extended to the stability analysis of a nonlinear hyperbolic
system under the C1 norms in [5], and sufficient conditions for system stability had been obtained.
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Prieur et al. studied a class of hyperbolic balance law systems and proved its well-posedness under
boundary feedback control; then a sufficient exponential stability condition was derived using operator
theory in [6].

Also, for the hyperbolic balance law system, Wang et al. constructed a suitable Lyapunov function
in [7], which led to the exponential stability of the equilibrium of the H2 solution. This method was
applied to the ARZ traffic flow equation in [8]. In [9], asymptotic spectral analysis was conducted on
a 1-D 2 × 2 constant-coefficients linear hyperbolic equation with proportional feedback control, the
spectrum determined the growth condition held, and then the exponential stability of the system was
established. For the case of variable coefficients, the exponential stability of the system under the H2

norm was obtained by constructing the weighted Lyapunov function in [10]. Hayat et al. proposed
proportional-integral (PI) control and used the Lyapunov method to study the exponential stability and
output regulation of closed-loop systems in [11]. In [12], the input delay compensation design of the
ARZ traffic flow model based on first-order 2 × 2 nonlinear hyperbolic systems was studied, and the
exponential stability of the closed-loop system under the L2 norm was proved.

The most basic control objective of freeway traffic is to maintain the stability of traffic volume,
speed, and density at a steady value and to suppress the oscillation as much as possible. A multi-value
cellular automata model under Lagrange coordinates was proposed, and the traffic flow was simulated
on the basis of the evolution equation of the model. And it is concluded that the lower the density, the
more lanes there are, and the greater the traffic flow in [13].

The common control measures include on-ramp metering, which means that the vehicles
entering the expressway are regulated by the traffic lights on the on-ramp, and the variable speed
limits (VSL), that is, through variable message sign (VMS), which controls the speed limit of passing
vehicles [14–16]. In [17], the influence of ramp metering control strategy on single-segment road
traffic flow was analyzed. Based on the backstepping method, the results showed that this method
reduces the stop-and-go waves in congested traffic and shortens the adjustment time. Then, in [18]
and [19], the ramp metering strategy was used to design the output feedback controller to ensure that
the traffic flow on the two connected roads was stable simultaneously to suppress traffic oscillations.
In [20], the variable speed limit control strategy was used to design the controller combined with the
backstepping transformation, and the exponential stability of the traffic flow of a single section is
achieved using the Lyapunov function. For the problem of traffic congestion on a one-way, two-lane
freeway, two different VSLs were applied at the exit boundary, and finally converged to the
equilibrium point in finite time [21]. To the authors’ knowledge, the latest research progress on the
ARZ model indicates that the current control strategies for ARZ traffic flow remain ramp
metering [22], variable speed limits [23], or a combination of both [24]. Zhang et al. studied a system
of linear hyperbolic equations with constant coefficients, which was derived from the ARZ traffic flow
model, with ramp metering and variable speed control as boundary conditions. The proportional
control and PI control are designed in [24] and [25], respectively. Based on the Lyapunov function,
sufficient conditions for exponential stability under the L2 norm and sufficient conditions for
parameters are obtained.

However, to the authors’ knowledge, there has been limited research on the exponential stability
of variable-coefficient hyperbolic systems under varying steady states concerning the spatial domain
x when linearizing the ARZ model, with ramp metering and variable speed limit control serving as
boundary conditions. In this paper, the exponential stability of the ARZ traffic flow model based on
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a 2 × 2 variable-coefficient hyperbolic system under proportional control is studied.
The contribution is as follows: first, considering that the steady-state values of state quantity density

and speed in ARZ traffic flow are variables related to position x, combining ramp metering and variable
speed limit as boundary control, a variable-coefficient one-dimensional 2 × 2 hyperbolic system is
obtained. Second, a new Lyapunov function is chosen, where the coefficients of the Lyapunov function
are constructed from the solution of a partial differential equation. It is derived that when the feedback
parameters satisfy the constraint conditions, the system achieves exponential stability. Third, through
numerical simulations, we concluded that the velocity value v(L, t) on the right-hand side of the system
converges to the steady-state value v∗(L).

The outline is as follows: In Section 2, the linearized ARZ model and boundary conditions are
introduced. First, the Riemann coordinate transformation is defined, and after considering that the
system steady-state is variable concerning position x, we obtain a hyperbolic system of equations with
variable coefficients in the free/congestion region. For congestion, a proportional feedback controller
combining on-ramp metering and variable speed limits is proposed, which is rewritten as an abstract
evolution equation. In Section 3, the well-posedness of the closed-loop system is proved using the
operator semigroup theory and Sobolev embedding theorem. In Section 4, a strict Lyapunov function
is constructed to prove the exponential stability of the system in the L2 norm, and the stability region for
the feedback gain value is given. Finally, the numerical simulation is given to illustrate the effectiveness
of the developed boundary feedback control.

2. Modeling and controller design

2.1. Modeling of macroscopic traffic flow

The macroscopic traffic flow dynamics of the freeway is generally described by the ARZ model:∂tρ + ∂x(ρv) = 0,

∂tv + (v − ρp′(ρ))∂xv =
V(ρ) − v
τ0

,
(2.1)

where the state variable ρ(x, t) is the density of the traffic, and v(x, t) is the speed of the traffic; (x, t) ∈
[0, L] × [0,∞), x and t represent the position and time, respectively, and τ0 is the relaxation time
related to driving behavior. The variable p(ρ) is defined as the traffic pressure, an increasing function
of density,

p(ρ) = v f (
ρ

ρm
)
γ

, (2.2)

and V(ρ) represents the equilibrium speed curve and satisfies

V(ρ) = v f − p(ρ) = v f (1 − (
ρ

ρm
)γ), (2.3)

where v f is the free flow velocity, ρm is the maximum density, and γ > 0 is generally a constant of
about 1 (see [2] and its references for a detailed description of the model).
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2.2. Riemann transformation and linearization

We define new variables (w, z) in Riemann coordinates, letw = v + v f (
ρ

ρm
)γ,

z = v.
(2.4)

Then the ARZ model (2.1) can be described under the Riemann coordinate as
∂tw + z∂xw =

v f − w
τ0
,

∂tz + [(1 + γ)z − γw]∂xz =
v f − w
τ0
.

(2.5)

To obtain the linearized ARZ model, assume (ρ∗(x), v∗(x)) and (w∗(x), z∗(x)) are respectively steady

states of system (2.1) and system (2.4), and satisfy z∗(x) = v∗(x), w∗(x) = v∗(x) + v f (
ρ∗(x)
ρm

)γ.

Furthermore, (w∗(x), z∗(x)) satisfy the system (2.5) such that we have
z∗(x)∂xw∗(x) =

v f − w∗(x)
τ0

,

[(1 + γ)z∗(x) − γw∗(x)]∂xz∗(x) =
v f − w∗(x)
τ0

.
(2.6)

Define the deviations of the state (w, z) with respect to the steady state (w∗(x), z∗(x)) as:w̃ = w − w∗(x),
z̃ = z − z∗(x),

(2.7)

therefore, the linearized ARZ model can be obtained from a 2 × 2 hyperbolic system with variable
coefficients: ∂tw̃ + λ1(x)∂xw̃ + δw̃ = 0,

∂tz̃ − λ2(x)∂xz̃ + δw̃ = 0,
(2.8)

where
λ1(x) = z∗(x) = v∗(x) > 0, λ2(x) = −(1 + γ)z∗(x) + γw∗(x), δ =

1
τ0
> 0. (2.9)

Moreover, by (2.4) and (2.9), it has

λ2(x) = −(1 + γ)z∗(x) + γw∗(x) = −v∗(x) + γv f (
ρ∗(x)
ρm

)γ. (2.10)

It is obvious that λ2(x) can be positive or negative. Therefore, the speed-density relationship diagram
can be divided into two parts:

Free-flow regime: λ2(x) < 0, that is, v∗(x) > γv f (
ρ∗(x)
ρm

)γ. The speed information of the linearized
ARZ model of (2.8) is transmitted from the left boundary x = 0 to the right boundary x = L.

Congested regime: λ2(x) > 0, that is, v∗(x) < γv f (
ρ∗(x)
ρm

)γ. The speed information of the linearized
ARZ model of (2.8) is transmitted from the right boundary x = L to the left boundary x = 0. So, the
hetero-directional propagations of traffic flow might lead to the shock waves of stop-and-go traffic.

In this paper, we focus on the controller design for the congested regime.
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2.3. Design of proportional feedback controller

To regulate freeway traffic, we designed the on-ramp metering controller r(t) and the variable speed
limit controller v(L, t), based on the regimes in which traffic lies, as shown in Figure 1.

Figure 1. Boundary control strategies of freeway traffic flow under congestion.

On-ramp metering: we should regulate the upstream on-ramp flow rate r(t) based on the
measurements collected from the downstream boundary x = L:

r(t) = r∗ + kρ(ρ(L, t) − ρ∗(L)). (2.11)

Variable speed limit: As the traffic lies in the congestion regime, the characteristic velocity of speed
propagating is from downstream to upstream, we should regulate the downstream speed v(L, t) based
on the measurement v(0, t) at the upstream boundary, i.e.,

v(L, t) = v∗(L) + kv(v(0, t) − v∗(0)), (2.12)

where kρ, kv are the feedback gains, and r∗ is the normal regulation rate of the on-ramp.
Let ρ̃ = ρ − ρ∗(x), ṽ = v − v∗(x); then (2.11) and (2.12) becomer(t) = r∗ + kρρ̃(L, t),

ṽ(L, t) = kvṽ(0, t).
(2.13)

Assume that the conservation conditions satisfied by the traffic flow at the upstream entrance
boundary and the conservation conditions at the steady state of the traffic flow are, respectively,

pin + r(t) = ρ(0, t)v(0, t), (2.14)

pin + r∗ = ρ∗(0)v∗(0), (2.15)

where pin is the traffic demand of the mainline.
Combining (2.13)–(2.15), we have

kρρ̃(L, t) = ρ(0, t)v(0, t) − ρ∗(0)v∗(0),

and linearizing by the first-order Taylor formula of a binary function, we have the following linearized
boundary condition:

kρρ̃(L, t) = v∗(0)ρ̃(0, t) + ρ∗(0)ṽ(0, t). (2.16)

AIMS Mathematics Volume 10, Issue 1, 584–597.



589

Furthermore, assume that γ = 1 and let α = v f

ρm
; we could rewrite the boundary conditions for

system (2.8) in the Riemann coordinates as:

w̃(0, t) =ṽ(0, t) + αρ̃(0, t)

=(1 −
αρ∗(0)
v∗(0)

)ṽ(0, t) +
αkρ

v∗(0)
ρ̃(L, t)

=
kρ

v∗(0)
w̃(L, t) + (1 −

αρ∗(0)
v∗(0)

−
kρkv

v∗(0)
)z̃(0, t)

=k1w̃(L, t) + k2z̃(0, t),

(2.17)

and
z̃(L, t) = k3z̃(0, t), (2.18)

where

k1 =
kρ

v∗(0)
, k2 = 1 −

αρ∗(0)
v∗(0)

−
kρkv

v∗(0)
, k3 = kv. (2.19)

Therefore, we have a PDE system under a proportional controller
∂tw̃ + λ1(x)∂xw̃ + δw̃ = 0,
∂tz̃ − λ2(x)∂xz̃ + δw̃ = 0,
w̃(0, t) = k1w̃(L, t) + k2z̃(0, t),
z̃(L, t) = k3z̃(0, t).

(2.20)

Without loss of generality, let L = 1 for convenience. Assume that the Hilbert state space

H = L2(0, 1) × L2(0, 1), (2.21)

equipped with the following inner product

⟨X1, X2⟩ =

∫ 1

0

[
f1(x) f2(x) + g1(x)g2(x)

]
dx, (2.22)

where Xi = ( fi, gi) ∈ H(i = 1, 2), and f̄ is the conjugate of f . Moreover, the norm of Xi is induced by
the inner product

∥ Xi ∥
2=

∫ 1

0

[
| fi(x)|2 + |gi(x)|2

]
dx, i = 1, 2. (2.23)

Define linear operatorA : D(A) ⊆ H → H by

AX =
(
−λ1(x) ∂

∂x − δ 0
−δ λ2(x) ∂

∂x

) (
f
g

)
, (2.24)

D(A) =
{
( f , g) ∈ (H1(0, 1))2 | f (0) = k1 f (1) + k2g(0), g(1) = k3g(0)

}
. (2.25)

Then system (2.20) can be written as an abstract evolution equation inHẊ(t) = AX(t), t > 0,
X(0) = X0,

(2.26)

where X(t) = (w(·, t), z(·, t)).
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3. Well-posedness of system (2.20)

Theorem 3.1. Let A be given by (2.24) and (2.25). Then A−1 exists and is compact, if the feedback
parameters k1, k2, and k3 satisfy

(k3 − 1)(1 − k1e−
∫ 1

0
δ
λ1(s) ds) − k2

∫ 1

0

δ

λ2(s)
e−

∫ s
0

δ
λ1(σ) dσds , 0.

Hence, σ(A), the spectrum ofA, consists of isolated eigenvalues of finite algebraic multiplicity only.

Proof. For X1 = ( f1, g1) ∈ H , solve

AX = X1, X = ( f , g) ∈ D(A), (3.1)

we can obtain

A

(
f
g

)
=

(
−λ1(x) f ′ − δ f
λ2(x)g′ − δ f

)
=

(
f1

g1

)
, (3.2)

i.e., 
λ1(x) f ′ + δ f + f1 = 0,
λ2(x)g′ − δ f − g1 = 0,
f (0) = k1 f (1) + k2g(0),
g(1) = k3g(0).

(3.3)

Solving the first differential equation of (3.3), we have

f (x) = e−
∫ x

0
δ
λ1(s) ds

[
−

∫ x

0

f1(s)
λ1(s)

e
∫ s

0
δ
λ1(σ) dσds + f (0)

]
. (3.4)

Let F(x) = −e−
∫ x

0
δ
λ1(s) ds ∫ x

0
f1(s)
λ1(s)e

∫ s
0

δ
λ1(σ) dσds, we can get

f (x) = F(x) + e−
∫ x

0
δ
λ1(s) ds f (0). (3.5)

Combining with the second equation of (3.3), we have

g′(x) =
δ

λ2(x)
f (x) +

g1(x)
λ2(x)

. (3.6)

Integrating both sides of (3.6) yields the following

g(x) = g(0) +
∫ x

0

δ

λ2(s)
f (s)ds +

∫ x

0

g1(s)
λ2(s)

ds

= g(0) +
∫ x

0

δ

λ2(s)
[F(s) + e−

∫ s
0

δ
λ1(σ) dσ f (0)]ds +

∫ x

0

g1(s)
λ2(s)

ds

= g(0) +
∫ x

0

δ

λ2(s)
F(s)ds + f (0)

∫ x

0

δ

λ2(s)
e−

∫ s
0

δ
λ1(σ) dσds +

∫ x

0

g1(s)
λ2(s)

ds.

(3.7)
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According to the third equation of (3.3), (3.5), and (3.7), we have

(1 − k1e−
∫ 1

0
δ
λ1(s) ds) f (0) = k2g(0) + k1F(1). (3.8)

Similarly, according to the fourth equation of (3.3), (3.5), and (3.7), we have∫ 1

0

δ

λ2(s)
e−

∫ s
0

δ
λ1(σ) dσds f (0) = (k3 − 1)g(0) −

∫ 1

0

δ

λ2(s)
F(s)ds −

∫ 1

0

g1(s)
λ2(s)

ds. (3.9)

Combining (3.8) and (3.9), we obtain

(
(k3 − 1)(1 − k1e−

∫ 1
0

δ
λ1(s) ds) − k2

∫ 1

0

δ

λ2(s)
e−

∫ s
0

δ
λ1(σ) dσds

)
f (0)

= k1(k3 − 1)F(1) + k2[
∫ 1

0

δ

λ2(s)
F(s)ds +

∫ 1

0

g1(s)
λ2(s)

ds].
(3.10)

Let M1 = k1(k3 − 1)F(1) + k2[
∫ 1

0
δ
λ2(s) F(s)ds +

∫ 1

0
g1(s)
λ2(s)ds],

M2 = (k3 − 1)(1 − k1e−
∫ 1

0
δ
λ1(s) ds) − k2

∫ 1

0
δ
λ2(s)e

−
∫ s

0
δ
λ1(σ) dσds,

(3.11)

where M2 , 0. We can obtain f (0) = M1
M2
, g(0) = 1

k2

M1
M2
−

k1
k2

f (1). So, we have the expressions of f (x)
and g(x):  f (x) = −e−

∫ x
0

δ
λ1(s) ds ∫ x

0
f1(s)
λ1(s)e

∫ s
0

δ
λ1(σ) dσds + M1

M2
e−

∫ x
0

δ
λ1(s) ds
,

g(x) = 1
k2

M1
M2
−

k1
k2

f (1) +
∫ x

0
δ
λ2(s) f (s)ds +

∫ x

0
g1(s)
λ2(s)ds.

(3.12)

Hence, A−1 exists and is compact by the Sobolev embedding theorem. Therefore, σ(A) consists only
of isolated eigenvalues of finite algebraic multiplicity. □

4. Exponential stability of system (2.20)

In this section, we focus on constructing an appropriate Lyapunov function to analyze the
exponential stability of system (2.20).

Definition 4.1. The closed-loop system (2.20) is exponentially stable (in L2 norm) if there exist ϑ > 0
and C > 0 such that, for every initial condition (w̃0(x), z̃0(x)) ∈ L2((0, L);R2), the system solution to
the Cauchy problem (2.20) satisfies

∥w̃(·, t), z̃(·, t)∥L2((0,L);R2) ≤ Ce−ϑt∥w̃0, z̃0∥L2((0,L);R2).

Lemma 4.2. The function η(x) defined by

η(x) =
1

−
∫ x

0
δ
λ2(s)ds + 1 +

∫ 1

0
δ
λ2(s)ds

(4.1)

is a solution of the differential equation

η′(x) =
δ

λ2(x)
η2(x), (4.2)

where λ2(x), δ are given by (2.9), respectively.
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Remark 1. It is obvious that the function η(x) satisfies η(x) > 0, η′(x) > 0, ∀ x ∈ [0, 1], and η(x) is
bounded on [0, 1].

Theorem 4.3. The nonlinear ARZ systems (2.1), (2.11), and (2.12) are exponentially stable for the
L2-norm provided that the boundary conditions satisfy

k2
1 ≤

1
2b
, 2k2

2b + k2
3 ≤

1
b
, (4.3)

where k1, k2, and k3 are feedback parameters,

b = 1 +
∫ 1

0

δ

λ2(s)
ds. (4.4)

Proof. We construct the following candidate Lyapunov function:

V(t) =
∫ 1

0

[
p1(x)w̃2(x, t) + p2(x)z̃2(x, t)

]
dx, (4.5)

where functions p1(x) ∈ C1([0, L]; (0,+∞)) and p2(x) ∈ C1([0, L]; (0,+∞)) are to be determined.
Along the solution of (2.20), combining the integral formula of the distribution, the derivative of time
of V(t) can be obtained:

V̇(t) =2
∫ 1

0

[
p1(x)w̃∂tw̃ + p2(x)z̃∂tz̃]dx

=2
∫ 1

0

[
p1(x)(−λ1(x)∂xw̃ − δw̃)w̃ + p2(x)(λ2(x)∂xz̃ − δw̃)z̃

]
dx

=2
∫ 1

0

[
− p1(x)λ1(x)w̃∂xw̃ + p2(x)λ2(x)z̃∂xz̃]dx − 2

∫ 1

0
[δp1(x)w̃2 + δp2(x)w̃z̃]dx

= −

∫ 1

0
p1(x)λ1(x)dw̃2 +

∫ 1

0
p2(x)λ2(x)dz̃2 − 2

∫ 1

0
[δp1(x)w̃2 + δp2(x)w̃z̃]dx

= − p1(1)λ1(1)w̃2(1, t) + p2(1)λ2(1)z̃2(1, t) + p1(0)λ1(0)w̃2(0, t) − p2(0)λ2(0)z̃2(0, t)

+

∫ 1

0
(p1(x)λ1(x))xw̃2dx −

∫ 1

0
(p2(x)λ2(x))xz̃2dx − 2

∫ 1

0
[δp1(x)w̃2 + δp2(x)w̃z̃]dx

� − V1 − V2,

(4.6)

where

V1 =

∫ 1

0
(w̃, z̃)Λ

(
w̃
z̃

)
dx, Λ =

(
−(p1(x)λ1(x))x + 2δp1(x) δp2(x)

δp2(x) p2(x)λ2(x)

)
, (4.7)

V2 = p1(1)λ1(1)w̃2(1, t) − p2(1)λ2(1)z̃2(1, t) − p1(0)λ1(0)w̃2(0, t) + p2(0)λ2(0)z̃2(0, t). (4.8)

It is obvious that the exponential stability is guaranteed if V1 and V2 are positive definite quadratic
forms.
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For ∀x ∈ [0, 1], we assume

p1(x) =
1

λ1(x)η(x)
, p2(x) =

η(x)
λ2(x)

. (4.9)

It is easy to verify that

− (p1(x)λ1(x))x + 2δp1(x) =
η′(x)
η2(x)

+
2δ

λ1(x)η(x)
> 0, (p2(x)λ2(x))x = η

′(x) > 0,

[−(p1(x)λ1(x))x + 2δp1(x)](p2(x)λ2(x))x − δ
2 p2

2(x) = 2δ
η′(x)
λ1(x)η(x)

> 0.
(4.10)

Then in this case, by continuity, V1 is positive.
Next, we consider the boundary term V2. Substituting the boundary conditions w̃(0, t) = k1w̃(1, t) +

k2z̃(0, t), z̃(1, t) = k3z̃(0, t) into V2, we have

V2 =
(
p1(1)λ1(1) − 2k2

1 p1(0)λ1(0)
)
w̃2(1, t)

+
(
p2(0)λ2(0) − k2

3 p2(1)λ2(1) − 2k2
2 p1(0)λ1(0)

)
z̃2(0, t)

=
( 1
η(1)
− 2k2

1
1
η(0)

)
w̃2(1, t) +

(
η(0) − k2

3η(1) − 2k2
2

1
η(0)

)
z̃2(0, t)

=
(
1 − 2(1 +

∫ 1

0

δ

λ2(s)
ds)k2

1

)
w̃2(1, t) +

( 1

1 +
∫ 1

0
δ
λ2(s)ds

− k2
3 − 2(1 +

∫ 1

0

δ

λ2(s)
ds)k2

2

)
z̃2(0, t)

=(1 − 2bk2
1)w̃2(1, t) + (

1
b
− k2

3 − 2bk2
2)z̃2(0, t),

(4.11)

where b is defined in (4.4). If the system parameters satisfy condition (4.3), we have V2 > 0.
Therefore, there must exist a positive constant c such that V̇(t) < −cV(t). □

Remark 2. Combining Eq (2.19), it can be concluded that when the feedback gains kρ and kv in
controllers (2.11) and (2.12) satisfy the following conditions, the nonlinear ARZ systems (2.1), (2.11),
and (2.12) are exponentially stable for the L2-norm

k2
ρ ≤

v∗2(0)
2b
, 2(β −

kρkv

v∗(0)
)2b + k2

v ≤
1
b
, (4.12)

where b is defined in (4.4), β = 1 − αρ
∗(0)

v∗(0) .

5. Simulation

In this section, we illustrate Theorem 4.3 using MATLAB numerical simulations. Without loss of
generality and for computational convenience. The road parameters are shown in Table 1.

Table 1. Road traffic parameters.

Road length Relaxation time Maximum density Free flow velocity
L = 1km τ0 =

1
20h ρm = 150Vehicle/km v f = 150km/h
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The steady-state is chosen with initial conditions prescribed as v∗(0) = 60km/h,
ρ∗(0) = 90Vehicle/km, and the non-uniform steady-state is v∗(x) = 60 + 5x, ρ∗(x) = 90 − 10x. Based
on Table 1, the initial steady-state and the constraint condition (4.3) of Theorem 4.3, we can obtain
the values of the control parameters as follows: k1 = −0.5, k2 = 0.3, k3 = 0.4. Combined with
equation (4.11), we take the feedback gain kρ = −30, kv = 0.4.

In Figure 2, Figures 2(a) and 2(b) respectively represent the changes of disturbance state variables
w̃ and z̃ over time and space, where the initial conditions are w̃(x, 0) = cos(2πx) + 2 sin(2πx) and
z̃(x, 0) = 5 cos(2πx) + sin(2πx) − 3x. It is evident from Figure 2(a) that the state variable w̃ exhibits
significant fluctuations above and below zero at the initial moment but eventually converges to zero.
Similarly, Figure 2(b) shows that the state variable z̃ also initially exhibits significant fluctuations above
and below zero but similarly converges to zero. Figure 3 shows that the velocity value v(L, t) at the
right boundary (represented by the red line) experiences large fluctuations at the initial moment but
ultimately converges to its steady-state value v∗(L) (represented by the blue line).

(a) Convergence of the state w̃(x, t) (b) Convergence of the state z̃(x, t)

Figure 2. The evolution process of the state w̃(x, t), z̃(x, t) of the system (2.20) with respect
to time and space.

Figure 3. Convergence of v(L, t) at x = L to the value v∗(L).
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6. Conclusions

This paper considers the stability of the linearized variable-coefficient ARZ equation with
boundary control. The proportional boundary feedback controller that combined ramp metering and
variable speed limits was designed to regulate stop-and-go traffic flow oscillations caused by
congestion. Constructing a suitable Lyapunov function, it has been proven that the system is
exponentially stable when the feedback parameters satisfy certain constraints. Numerical simulations
demonstrate the effectiveness of the proposed boundary control and the feasibility of the selected
parameters. In future work, we attempt to study the eigenvalue problem AX = µX and obtain the
distribution of eigenvalues. The spectrum-determined growth condition and Riesz basis property are
also of interest.
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4. J. M. Coron, B. d’Andréa-Novel, G. Bastia, A Lyapunov approach to control irrigation canals
modeled by Saint-Venant equations, In: 1999 European Control Conference, 1999, 3178–3183.
https://doi.org/10.23919/ECC.1999.7099816

AIMS Mathematics Volume 10, Issue 1, 584–597.

https://dx.doi.org/https://doi.org/10.1137/S0036139997332099
https://dx.doi.org/https://doi.org/10.1016/S0191-2615(00)00050-3
https://dx.doi.org/https://doi.org/10.1016/0022-0396(84)90135-9
https://dx.doi.org/https://doi.org/10.23919/ECC.1999.7099816


596

5. H. Zhao, J. Zhan, L. Zhang, Saturated boundary feedback stabilization for LWR traffic flow model,
Syst. Control Lett., 173 (2023), 105465. https://doi.org/10.1016/j.sysconle.2023.105465

6. C. Prieur, J. J. Winkin, Boundary feedback control of linear hyperbolic systems:
Application to the Saint-Venant-Exner equations, Automatica, 89 (2018), 44–51.
https://doi.org/10.1016/j.automatica.2017.11.028

7. K. Wang, Z. Wang, W. Yao, Boundary feedback stabilization of quasilinear hyperbolic
systems with partially dissipative structure, Syst. Control Lett., 146 (2020), 104815.
https://doi.org/10.1016/j.sysconle.2020.104815

8. L. Zhang, C. Prieur, J. Qiao, Local proportional-integral boundary feedback stabilization for
quasilinear hyperbolic systems of balance laws, SIAM J. Control Optim., 58 (2020), 2143–2170.
https://doi.org/10.1137/18M1214883

9. D. Zhao, D. Fan, Y. Guo, The spectral analysis and exponential stability of a 1-d 2 × 2 Hyperbolic
system with proportional feedback control, Int. J. Control, Autom. Syst., 20 (2022), 2633–2640.
http://dx.doi.org/10.1007/s12555-021-0507-0

10. A. Hayat, P. Shang, A quadratic Lyapunov function for Saint-Venant equations
with arbitrary friction and space varying slope, Automatica, 100 (2019), 52–60.
https://doi.org/10.1016/j.automatica.2018.10.035

11. A. Hayat, Y. Hu, P. Shang, PI control for the cascade channels modeled by general
Saint-Venant equations, IEEE Trans. Automat. Control, 69 (2024), 4974–4987.
https://doi.org/10.1109/TAC.2023.3341767

12. J. Qi, S. Mo, M. Krstic, Delay-compensated distributed PDE control of traffic with
connected/automated vehicles, IEEE Trans. Automat. Control, 68 (2023), 2229–2244.
https://doi.org/10.1109/TAC.2022.3174032

13. J. Zeng, Y. Qian, F. Yin, L. Zhu, D. Xu, A multi-value cellular automata model for multi-
lane traffic flow under lagrange coordinate, Comput. Math. Organ. Theory, 28 (2022), 178–192.
https://doi.org/10.1007/s10588-021-09345-w

14. Z. Li, C. Xu, D. Li, W. Wang, Comparing the effects of ramp metering and variable speed limit on
reducing travel time and crash risk at bottlenecks, IET Intell. Transp. Syst., 12 (2018), 120–126.
https://doi.org/10.1049/iet-its.2017.0064

15. J. R. D. Frejo, B. De Schutter, Logic-based traffic flow control for ramp metering and variable
speed limits-Part 1: Controller, IEEE Trans. Intell. Transp. Syst., 22 (2021), 2647–2657.
https://doi.org/10.1109/TITS.2020.2973717

16. Z. He, L. Wang, Z. Su, W. Ma, Integrating variable speed limit and ramp metering to enhance
vehicle group safety and efficiency in a mixed traffic environment, Phys. A, 641 (2024), 129754.
https://doi.org/10.1016/j.physa.2024.129754

17. H. Yu, M. Krstic, Traffic congestion control for Aw-Rascle-Zhang model, Automatica, 100 (2019),
38–51. https://doi.org/10.1016/j.automatica.2018.10.040

18. H. Yu, J. Auriol, M. Krstic, Simultaneous downstream and upstream output-
feedback stabilization of cascaded freeway traffic, Automatica, 136 (2022), 110044.
https://doi.org/10.1016/j.automatica.2021.110044

AIMS Mathematics Volume 10, Issue 1, 584–597.

https://dx.doi.org/https://doi.org/10.1016/j.sysconle.2023.105465
https://dx.doi.org/https://doi.org/10.1016/j.automatica.2017.11.028
https://dx.doi.org/https://doi.org/10.1016/j.sysconle.2020.104815
https://dx.doi.org/https://doi.org/10.1137/18M1214883
https://dx.doi.org/http://dx.doi.org/10.1007/s12555-021-0507-0
https://dx.doi.org/https://doi.org/10.1016/j.automatica.2018.10.035
https://dx.doi.org/https://doi.org/10.1109/TAC.2023.3341767
https://dx.doi.org/https://doi.org/10.1109/TAC.2022.3174032
https://dx.doi.org/https://doi.org/10.1007/s10588-021-09345-w
https://dx.doi.org/ https://doi.org/10.1049/iet-its.2017.0064
https://dx.doi.org/ https://doi.org/10.1049/iet-its.2017.0064
https://dx.doi.org/https://doi.org/10.1109/TITS.2020.2973717
https://dx.doi.org/https://doi.org/10.1016/j.physa.2024.129754
https://dx.doi.org/https://doi.org/10.1016/j.automatica.2018.10.040
https://dx.doi.org/https://doi.org/10.1016/j.automatica.2021.110044


597

19. N. Espitia, J. Auriol, H. Yu, M. Krstic, Traffic flow control on cascaded roads by event-triggered
output feedback, Int. J. Robust Nonlin., 32 (2022), 5919–5949. https://doi.org/10.1002/rnc.6122

20. N. Espitia, H. Yu, M. Krstic, Event-triggered varying speed limit control of stop-and-go traffic,
IFAC-PapersOnLine, 53 (2020), 7509–7514. https://doi.org/10.1016/j.ifacol.2020.12.1343

21. H. Yu, M. Krstic, Output feedback control of two-lane traffic congestion, Automatica, 125 (2021),
109379. https://doi.org/10.1016/j.automatica.2020.109379

22. S. C. Vishnoi, S. A. Nugroho, A. F. Taha, C. G. Claudel, Traffic state estimation for connected
vehicles using the second-order aw-rascle-zhang traffic model, IEEE T. Intell. Transp., 25 (2024),
16719–16733. https://doi.org/10.1109/TITS.2024.3420438

23. P. Zhang, B. Rathnayake, M. Diagne, M. Krstic, Performance-barrier-based event-triggered
boundary control of congested ARZ traffic PDEs, IFAC-PapersOnLine, 58 (2024), 182–187.
https://doi.org/10.1016/j.ifacol.2024.07.337

24. L. Zhang, H. Luan, Y. Lu, C. Prieur, Boundary feedback stabilization of freeway traffic
networks: ISS control and experiments, IEEE Trans. Control Syst. Technol., 30 (2022), 997–1008.
https://doi.org/10.1109/TCST.2021.3088093

25. L. Zhang, C. Prieur, J. Qiao, PI boundary control of linear hyperbolic balance laws
with stabilization of ARZ traffic flow models, Syst. Control Lett., 123 (2019), 85–91.
https://doi.org/10.1016/j.sysconle.2018.11.005

© 2025 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 10, Issue 1, 584–597.

https://dx.doi.org/https://doi.org/10.1002/rnc.6122
https://dx.doi.org/https://doi.org/10.1016/j.ifacol.2020.12.1343
https://dx.doi.org/https://doi.org/10.1016/j.automatica.2020.109379
https://dx.doi.org/https://doi.org/10.1109/TITS.2024.3420438
https://dx.doi.org/https://doi.org/10.1016/j.ifacol.2024.07.337
https://dx.doi.org/https://doi.org/10.1109/TCST.2021.3088093
https://dx.doi.org/https://doi.org/10.1016/j.sysconle.2018.11.005
https://creativecommons.org/licenses/by/4.0

	Introduction
	Modeling and controller design
	Modeling of macroscopic traffic flow
	Riemann transformation and linearization
	Design of proportional feedback controller

	Well-posedness of system (2.20)
	Exponential stability of system (2.20)
	Simulation
	Conclusions

