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1. Introduction and main results

The purpose of this paper is to study the existence and blow-up behavior of positive solutions for
the following fractional Kirchhoff equation:

(
a + b

∫
RN |(−∆)

s
2 u|2dx

)
(−∆)su + V(x)u + ωu = f (u), x ∈ RN ,

u ∈ H s(RN),
(A)

having prescribed mass ∫
RN
|u|2dx = c, (1.1)

where a, b, c are positive constants, 1 6 N < 4s, s ∈ (0, 1), V ∈ C(RN ,R), f ∈ C(R,R), ω ∈ R is a
Lagrange multiplier, and (−∆)s denotes the fractional Laplacian operator defined as

(−∆)su = F −1(|ξ|2sF (u)), ∀ξ ∈ RN ,
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where F denotes the Fourier transform on RN . It is well-known that it can also be computed by

(−∆)sv(x) = CN,sP.V.
∫
RN

v(x) − v(y)
|x − y|N+2s dy,

if v is smooth enough, where CN,s is the normalization constant, and P.V. denotes a Cauchy principle
value, see [13, 15, 18].

When s = 1, f (u) = |u|p−2u, V(x) = 0, (A) reduces to the following case, i.e.,−
(
a + b

∫
RN |∇u|2dx

)
∆u + ωu = |u|p−2u, x ∈ RN ,

u ∈ H1(RN).
(1.2)

The sharp existence and the concentration behavior of the normalized solution of (1.2) in the mass
subcritical, supercritical and critical cases were established in [7, 14, 22]. In fact, the author obtained
the solutions by looking for critical points of the following functional:

I(u) =
a
2

∫
RN
|∇u|2dx +

b
4

(∫
RN
|∇u|2dx

)2

−
1
p

∫
RN
|u|pdx

constrained on the L1 sphere in H1(RN),

S c =
{
u ∈ H1(RN) : ‖u‖L2(RN ) = c > 0

}
.

In [22], Ye showed that the constrained minimization problem

Ic2 := inf
S c

I(u) (1.3)

admits a minimizer if, and only if, c > c∗p with p ∈ (0, 2 + 4
N ] or c > c∗p with p ∈ (2 + 4

N , 2 + 8
N ),

and there is no minimizer of (1.3) if p ∈ [2 + 8
N ,+∞). In [23], Ye studied (1.3) with p = 2 + 8

N and
obtained that there exists a mountain pass critical point of I(u) on S c if c > c∗. In the mass subcritical
case, a complete classification with respect to the exponent p for its L2 normalized critical points can
be deduced from some simple energy estimates in [24]. To be precise, they gained existence and the
uniqueness of the mountain pass type minimum for (1.3) with p ∈ (2 + 8

N , 2
∗) or p = 2 + 8

N and c > c∗.
Moreover, if f (u) satisfies some suitable conditions, the authors of [8] studied the blow-up behavior of
minimizers (1.3).

To the best of our knowledge, if b ≡ 0, then Eq (A) with a prescribed mass has been studied
in [16, 17, 21]. Frank-Lenzmann-Silvestre [4] established the uniqueness result of the positive ground
state solution of the equation

(−∆)su + u = |u|
4s
N u,

which is an important foundation for blow-up analysis. In [2], Du et al. explored the existence,
nonexistence and mass concentration of L2-normalized solutions for nonlinear fractional Schrödinger
equations with nonnegative potentials

(−∆)su + V(x)u = µu + β f (u),

under the following assumptions:
( f1): f ∈ C(R,R), | f (t)| 6 c1(|t| + |t|p−1) for some c1 > 0 and 2 < p < 2 + 4s

N .
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( f2): f ∈ C(R,R), | f (t)| 6 c1(|t| + |t|p−1) for some c1 > 0 and 2 + 4s
N < p < 2∗s = 2N

N−2s .
( f3): there exist ν > 2 + 4s

N and r0 > 0 such that

0 < νF(t) 6 t f (t), for all |t| > r0.

For the case of power function f (t) = tp−2t with 2 < p < 2∗s, Du et al. conducted a complete
classification of the existence and nonexistence of minimizers, except that p = 2+4s/N. Very recently,
Bao-Lv-Ou [1] investigated the following fractional Schrödinger equation with prescribed mass:

(−∆)su = µu + a(x)|u|p−2u,

where s ∈ (0, 1), 2+ 4s
N < p < 2∗s. The existence of the bounded state normalized solution under various

conditions on a(x) was demonstrated in [1]. For more recent works about the fractional Schrödinger or
Kirchhoff equation, see [10, 12, 20] and the references therein.

It is worth pointing out that p = 2 + 4s/N is the mass critical exponent related to (A). However,
Eq (A) involving the general potential and nonlinearities has not yet been resolved. An interesting
question now is whether the same existence or nonexistence results occurs for the nonhomogeneous
nonlinearities and mass supercritical case of (A). On the other hand, there have been no previous
articles studying the asymptotic behavior of solutions to (A). Therefore, our goal is to fill the gaps in
these areas. More precisely, in the first part of the paper, we prove the existence of solutions for (A)
with V(x) , 0.

Before describing more details, let’s introduce the following fractional Gagliardo-Nirenberg-
Sobolev inequality in [2] and Hardy inequality in [5].

Lemma 1.1. [2] For u ∈ H s(RN) and q ∈ (0, 2∗s − 2), the fractional Gagliardo-Nirenberg-Sobolev
inequality ∫

RN
|u|q+2dx 6 Copt

(∫
RN
|(−∆)

s
2 u|2dx

) Nq
4s

(∫
RN
|u|2dx

) q+2
2 −

Nq
4s

(1.4)

is attained at a function φq(x) with the following properties:
(i) φq(x) is radial, positive, and strictly decreasing in |x|.
(ii) φq(x) belongs to H2s+1(RN) ∩C∞(RN) and satisfies

C1

1 + |x|2s+N ≤ φq(x) ≤
C2

1 + |x|2s+N , x ∈ RN ,

where Ci(i = 1, 2) are positive constants.
(iii) φq(x) is the unique solution of the fractional Schrödinger equationNq

4s (−∆)su +
[
1 +

q
4

(
2 − N

s

)]
u − uq+1 = 0,

u ∈ H s(RN), q ∈ (0, 2∗s − 2).

(iv) Copt =
q+2

2‖φq‖
q
2
.

Lemma 1.2. [5] Let s ∈ (0, 1) and N > 2s. Then, for all u ∈ Ds,2(RN),∫
RN

|u(x)|2

|x|2s dx 6 HN,s‖u‖2Ds,2(RN ), (1.5)
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where

HN,s = 2π
N
2
Γ2( N+2s

4 )

Γ2( N−2s
4 )

Γ2( N+2s
2 )

|Γ(−s)|
.

Lemma 1.3. [13] Let s ∈ (0, 1) and N > 2s. Then, there exists a constant S > 0 such that for any
u ∈ Ds,2(RN),

‖u‖2
L2∗s (RN )

6 S −1‖u‖2Ds,2(RN ).

In this paper, we will require f (x) to satisfy the following conditions:
(H1) f ∈ C(R,R) and odd.
(H2) There exist some λ, γ ∈ R+ × R+ with2 + 8s

N < λ 6 γ < 2∗s := 2N
N−2s , if N , 2s,

2 + 8s
N < λ 6 γ < 2∗s := +∞, if N = 2s,

such that

0 < λF(t) 6 f (t)t 6 γF(t), for t , 0, where F(t) =

∫ t

0
f (τ)dτ.

(H3) The function F̃(t) := 1
2 f (t)t − F(t) is of class C1 and

F̃′(t)t > λF̃(t), ∀t ∈ R,

where λ is given in (H2).
We assume that V(x) is a radial function and satisfies the following assumptions:

(V1) V(x) ∈ C1(RN) ∩ Lp(RN), p ∈ ( N
2 ,∞), lim|x|→∞ V(x) = 0, infx∈RN V(x) = 0.

(V2) There exists κ1 ∈ [0, s) such that one of the following two conditions holds
(i)∇V(x) · x 6 2aκ1

HN,s |x|2s , for any x ∈ RN \ {0}, where HN,s is given in Lemma 1.2;
(ii)‖max{∇V(x) · x, 0}‖

L
N
2s (RN )

6 2aκ1S , where S is given in Lemma 1.3.

(V3) There exists κ2 ∈
(
0, N(λ−2)−4s

4

)
such that

∇V(x) · x > −
aκ2

2HN,s|x|2s ,

for any x ∈ RN \ {0}.
Let us introduce the space of radial functions in H s(RN) defined by

H s
rad(RN) =

{
u ∈ H s(RN) : u(x) = u(|x|)

}
.

It is standard to see that critical points of the energy functional

J(u) :=
a
2

∫
RN
|(−∆)

s
2 u|2dx +

b
4

(∫
RN
|(−∆)

s
2 u|2dx

)2

+
1
2

∫
RN

V(x)u2dx −
∫
RN

F(u)dx

restricted to the (mass) constraint

Sc :=
{

u ∈ H s(RN) :
∫
RN
|u|2dx = c

}
AIMS Mathematics Volume 10, Issue 1, 499–533.
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are normalized solutions of (A).
From (H1) and (H2), there exist C1,C2 > 0 such that for each t ∈ R,

C1 min{|t|λ, |t|γ} 6 F(t) 6 C2 max{|t|λ, |t|γ} 6 C2(|t|λ + |t|γ), (1.6)(
λ

2
− 1

)
F(t) 6 F̃(t) 6

(
γ

2
− 1

)
F(t), (1.7)

where C2 = F(1). It follows from (1.4) that there exists C3 > 0, for any u ∈ H s(RN),

‖u‖λLλ(RN ) 6 C3‖u‖λ
′

Ds,2(RN )‖u‖
λ−λ′

L2(RN ), ‖u‖γLγ(RN ) 6 C3‖u‖
γ′

Ds,2(RN )‖u‖
γ−γ′

L2(RN ), (1.8)

where λ′ =
(λ−2)N

2s ∈ (2, λ), γ′ =
(γ−2)N

2s ∈ (2, γ). Let

L :=
sa − κ1a

N(γ2 − 1)C2C3
, (1.9)

% := min


(

L2/2
cλ−λ′ + cγ−γ′

) 1
λ′−2

, 1

 , (1.10)

K :=
2N − (N − 2s)γ

(γ − 2)c

[(
1
2
−

2s
(λ − 2)N

−
2κ2

(λ − 2)N

)
a% +

(
1
4
−

2s
(λ − 2)N

)
b%2

]
. (1.11)

(V4) supx∈RN

(
V(x) + 1

2s∇V(x) · x
)
< K.

Our first result is as follows.

Theorem 1. Let s ∈ (0, 1) and N > 2s. Assume that (V1)–(V4) and (H1)–(H3) hold. Then, Eq (A)
admits at least a radial solution.

The second purpose of this article is to establish the existence results of ground state solutions for
(A) wih V(x) = 0.

Theorem 2. Let 1 6 N < 4s, s ∈ (0, 1), V(x) = 0, and suppose that f satisfies (H1)–(H3). Then, for all
c > 0 fixed, Eq (A) admits a ground state normalized solution (ωc, uc) with ωc > 0 and uc ∈ H s

rad(RN).

Remark 1. Theorems 1 and 2 extend and complement the previous results on the fractional Kirchhoff
equation with a mass super critical general nonlinearities. Particularly, unlike [8], in which V(x) = 0,
we apply a new deformation argument for the constrained functional on Sc.

Remark 2. We now point out some difficulties faced in Theorems 1 and 2.
(i) When V(x) > 0 and the nonlinearity f is general mass supercritical, it prevents us from obtaining

the compactness. We will apply a new deformation argument for the constraint functional with a new
type of Palais-Smale condition denoted by (PS P)m.

(ii) The simplest case of the function f satisfying the assumptions (H1)–(H3) is f (t) = |t|p−2t
with 2+8s/N < p < 2∗s. Naturally, the class of general nonlinearities satisfying these assumptions
is much more difficult than this homogeneous case.

(iii) Due to the appearance of the Kirchhoff nonlocal term∫
RN
|(−∆)

s
2 u|2dx(−∆)su,

AIMS Mathematics Volume 10, Issue 1, 499–533.
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Eq (A) is no longer point by point identity. Compared with [8], it is worth noting that (A) is a double
nonlocal equation, and the decay estimates of test function near infinity are different from those in the
case of the classical local problem; we thus borrow ideas of [3] for nonlocal operators to establish
the decay estimates. This phenomenon has caused some mathematical difficulties, making research on
such problems particularly interesting.

Our other aim is to study the behavior of the normalized solution uc given in Theorem 2 as c → 0
and c→ +∞. In this direction, we need to assume that
(H4) limt→0+

f (t)
tλ−1 = µ1 > 0.

(H5) limt→+∞
f (t)
tγ−1 = µ2 > 0.

The following results demonstrate the asymptotic behavior of uc in the sense of C2,α
loc (RN) as well as

H s(RN).

Theorem 3. Let 1 6 N < 4s, s ∈ ( 1
2 , 1), V(x) = 0, and suppose that f satisfies (H1)–(H5). For c > 0,

let (ωc, uc) be given by Theorem 2, then

vc(x) := ω
1

2−λ
c uc

 x

ω
1
2s
c

→ Q(x) in C2,α
loc (RN), as c→ +∞,

where Q is the unique radial positive solution ofa(−∆)sQ + Q = µ1Qλ−1, in RN ,

lim|x|→+∞ Q(x) = 0.

Theorem 4. Let 1 6 N < 4s, s ∈ ( 1
2 , 1), V(x) = 0, and suppose that f satisfies (H1)–(H5). For c > 0,

let vc and Q be given by Theorem 3, then

vc(x)→ Q(x) in H s(RN), as c→ +∞.

Theorem 5. Let 1 6 N < 4s, s ∈ ( 1
2 , 1), V(x) = 0, and suppose that f satisfies (H1)–(H5). For c > 0,

let (ωc, uc) be given by Theorem 2, then

v̄c(x) := ω
1

2−λ
c uc

‖uc‖
1
s

Ds,2(RN )

ω
1
2s
c

x

→ U(x) in C2,α
loc (RN), as c→ 0+,

where U is the unique radial positive solution ofb(−∆)sU + U = µ2Uγ−1, in RN ,

lim|x|→+∞U(x) = 0.

Theorem 6. Let 1 6 N < 4s, s ∈ ( 1
2 , 1), V(x) = 0, and suppose that f satisfies (H1)–(H5). For c > 0,

let ṽc and U be given by Theorem 5, then

v̄c(x)→ U(x) in H s(RN), as c→ 0+.

Throughout the paper, we use the following notations:

AIMS Mathematics Volume 10, Issue 1, 499–533.
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• Lq(RN) denotes the Lebesgue space with the norm

‖u‖Lq(RN ) =

(∫
RN
|u|qdx

)1/q

.

• For any x ∈ RN and R > 0, BR(x) := {y ∈ RN : |y − x| < R}.
• C indicates positive numbers that may be different in different lines.

The rest of this paper is organized as follows. Section 2 is dedicated to some preliminary notations
and lemmas. In Section 3, we obtain the radial solutions for Eq (A) with V(x) , 0 and Theorem 1 will
be proved there. In Section 4, we derive the existence of ground state normalized solution for problem
(A) and give the proof of Theorems 2. In Section 5, we deal with asymptotic property of minimizers
to problem (A) by proving Theorems 3–6.

2. Preliminaries

In this section, we provide some lemmas that will be frequently used in the rest of this article.
We claim that the condition (V2) yields that for any u ∈ H s(RN),∫

RN
∇V(x) · xu2dx 6 2aκ1‖u‖2Ds,2(RN ). (2.1)

Indeed, if (i) of (V2) holds, from Lemma 1.2, we deduce that∫
RN
∇V(x) · xu2dx 6

2aκ1

HN,s

∫
RN

u2

|x|2
dx 6 2aκ1‖u‖2Ds,2(RN ).

If (ii) of (V2) holds, by the Sobolev embedding inequality, we observe that∫
RN
∇V(x) · xu2dx 6

(∫
RN
|max{∇V(x) · x, 0}|

N
2s dx

) 2s
N
(∫
RN
|u|

2N
N−2s dx

) N−2s
N

6S −1‖max{∇V(x) · x, 0}‖
L

N
2s (RN )

‖u‖2Ds,2(RN ) 6 2aκ1‖u‖2Ds,2(RN ).

Define

P(u) := sa‖u‖2Ds,2(RN ) + sb‖u‖4Ds,2(RN ) − N
∫
RN

F̃(u)dx −
1
2

∫
RN

(∇V(x) · x)u2dx, (2.2)

and
Mc := {u ∈ Sc : P(u) < 0}.

Then
∂Mc := {u ∈ Sc : P(u) = 0}.

Set
mc := inf

∂Mc
J(u).
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Lemma 2.1. Let s ∈ (0, 1) and N > 2s. Assume that (H1)–(H3) and (V1)–(V4) hold, then there exists
m̄ > 0 such that mc > m̄ > 0. Moreover,

m̄ >
(
1
2
−

2s
(λ − 2)N

−
2κ2

(λ − 2)N

)
a% +

(
1
4
−

2s
(λ − 2)N

)
b%2, (2.3)

where % is given in (1.10).

Proof. For any u ∈ ∂Mc, applying (1.7), (1.8), (2.1), and (2.2), we obtain that

0 =sa‖u‖2Ds,2(RN ) + sb‖u‖4Ds,2(RN ) − N
∫
RN

F̃(u)dx −
1
2

∫
RN

(∇V(x) · x)u2dx

>sa‖u‖2Ds,2(RN ) − N
(
γ

2
− 1

) ∫
RN

F(u)dx − aκ1‖u‖2Ds,2(RN )

>(s − κ1)a‖u‖2Ds,2(RN ) − N
(
γ

2
− 1

)
C2

(
‖u‖λLλ(RN ) + ‖u‖γLγ(RN )

)
>(s − κ1)a‖u‖2Ds,2(RN ) − N

(
γ

2
− 1

)
C2C3

(
‖u‖λ

′

Ds,2(RN )c
λ−λ′

2 + ‖u‖γ
′

Ds,2(RN )c
γ−γ′

2

)
.

(2.4)

Set
M1 = N

(
γ

2
− 1

)
C2C3c

λ−λ′

2 , M2 = N
(
γ

2
− 1

)
C2C3c

γ−γ′

2 , (2.5)

g(t) = (s − κ1)a − M1tλ
′−2 − M2tγ

′−2.

Since g(t) is decreasing on [0,+∞), there exists a unique t0 > 0 such that

(s − κ1)a − M1tλ
′−2

0 − M2tγ
′−2

0 = 0, (2.6)

and t0 is dependent on κ1, λ, γ,C2,C3, c. It follows from (2.4) that g(‖u‖Ds,2(RN )) 6 0. Therefore, for any
u ∈ ∂Mc, we observe that ‖u‖Ds,2(RN ) > t0 and

J(u) =
a
2

∫
RN
|(−∆)

s
2 u|2dx +

b
4

(∫
RN
|(−∆)

s
2 u|2dx

)2

+
1
2

∫
RN

V(x)u2dx −
∫
RN

F(u)dx

>
a
2

∫
RN
|(−∆)

s
2 u|2dx +

b
4

(∫
RN
|(−∆)

s
2 u|2dx

)2

−
2

λ − 2

∫
RN

F̃(u)dx

=

(
1
2
−

2s
(λ − 2)N

)
a‖u‖2Ds,2(RN ) +

(
1
4
−

2s
(λ − 2)N

)
b‖u‖4Ds,2(RN ) +

1
λ − 2

∫
RN

(∇V(x) · x)u2dx

>

(
1
2
−

2s
(λ − 2)N

−
2κ2

λ − 2

)
a‖u‖2Ds,2(RN ) +

(
1
4
−

2s
(λ − 2)N

)
b‖u‖4Ds,2(RN ),

due to (1.7), (2.2), (V3), and Lemma 1.2. Let

m̄ :=
(
1
2
−

2s
(λ − 2)N

−
2κ2

λ − 2

)
at2

0 +

(
1
4
−

2s
(λ − 2)N

)
bt4

0,

then, mc > m̄ > 0. From (1.9), (2.5), and (2.6), we conclude that

L = c
λ−λ′

2 tλ
′−2

0 + c
γ−γ′

2 tγ
′−2

0 6
(
cλ−λ

′

+ cγ−γ
′
) 1

2
(
t2(λ′−2)
0 + t2(γ′−2)

0

) 1
2
,
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which yields that

t2(λ′−2)
0 + t2(γ′−2)

0 >
L2

cλ−λ′ + cγ−γ′
.

If L < c
γ−γ′

2 + c
λ−λ′

2 , thus g(1) < 0, and we conclude that 0 < t0 < 1 and

t2(λ′−2)
0 >

1
2

(
t2(λ′−2)
0 + t2(γ′−2)

0

)
>

L2/2
cλ−λ′ + cγ−γ′

,

that is, t0 >
(

L2/2
cλ−λ′+cγ−γ′

) 1
2(λ′−2) . If L > c

γ−γ′

2 + c
λ−λ′

2 , thus g(1) > 0, and t0 > 1. Therefore, t2
0 > % and (2.3)

holds. �

3. Nontrivial solutions for (A) with V(x) , 0

As in [9], we define
mΓ = inf

γ∈Γ
max
t∈[0,1]

J(γ(t)),

where

Γ =

{
γ ∈ C([0, 1],Sc)) : γ(0) ∈ Mc, γ(1) ∈ Sc \Mc, J(γ(0)) <

1
2

mc, J(γ(1)) <
1
2

mc

}
.

We will show that mΓ is well-defined.

Lemma 3.1. Let s ∈ (0, 1) and N > 2s. Assume that (H1)–(H3) and (V1)–(V4) hold, then Γ , ∅.

Proof. For any u ∈ Sc, define
uτ(x) := τ

N
2 u(τx), τ > 0.

It’s not difficult to see uτ(x) ∈ Sc. From (1.6), for any τ > 1,∫
RN

F(uτ)dx > C1 min{‖u‖λLλ(RN ), ‖u‖
γ

Lγ(RN )}τ
λ−2

2 N , (3.1)

and for any 0 < τ < 1,

C1 min{‖u‖λLλ(RN ), ‖u‖
γ

Lγ(RN )}τ
γ−2

2 N 6

∫
RN

F(uτ)dx 6 C2

(
‖u‖λLλ(RN )τ

λ−2
2 N + ‖u‖γLγ(RN )τ

γ−2
2 N

)
. (3.2)

According to (3.1) and

0 6
∫
RN

V
( x
τ

)
u2dx 6 ‖V‖L∞(RN )c,

we observe that

J(uτ) =
aτ2s

2
‖u‖2Ds,2(RN ) +

bτ4s

4
‖u‖4Ds,2(RN ) +

1
2

∫
RN

V
( x
τ

)
u2dx −

∫
RN

F(uτ)dx

6
aτ2s

2
‖u‖2Ds,2(RN ) +

bτ4s

4
‖u‖4Ds,2(RN ) +

1
2
‖V‖L∞(RN )c −C1 min{‖u‖λLλ(RN ), ‖u‖

γ

Lγ(RN )}τ
λ−2

2 N ,
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which yields that J(uτ)→ −∞, as τ→ +∞. On the other side, from (3.2), we conclude that

J(uτ) =
aτ2s

2
‖u‖2Ds,2(RN ) +

bτ4s

4
‖u‖4Ds,2(RN ) +

1
2

∫
RN

V
( x
τ

)
u2dx −

∫
RN

F(uτ)dx

>
aτ2s

2
‖u‖2Ds,2(RN ) +

bτ4s

4
‖u‖4Ds,2(RN ) −C2

(
‖u‖λLλ(RN )τ

λ−2
2 N + ‖u‖γLγ(RN )τ

γ−2
2 N

)
,

and

J(uτ) 6
aτ2s

2
‖u‖2Ds,2(RN ) +

bτ4s

4
‖u‖4Ds,2(RN ) +

1
2

∫
RN

V
( x
τ

)
u2dx −C1 min{‖u‖λLλ(RN ), ‖u‖

γ

Lγ(RN )}τ
γ−2

2 N ,

which leads to J(uτ) → 0+, as τ → 0+, recalling lim|x|→∞ V(x) = 0. From (V2), (V3), and (1.5), we see
that

−2κ2τ
2s‖u‖2Ds,2(RN ) 6

∫
RN

(∇V(x) · x)u2
τ(x)dx 6 2κ1τ

2s‖u‖2Ds,2(RN ).

Combining with (1.7), (2.2), and (3.1), we deduce that

P(uτ) =asτ2s‖u‖2Ds,2(RN ) + bsτ4s‖u‖4Ds,2(RN ) − N
∫
RN

F̃(uτ)dx −
1
2

∫
RN

(∇V(x) · x)u2
τdx

6(s + κ2)aτ2s‖u‖2Ds,2(RN ) + bsτ4s‖u‖4Ds,2(RN ) − N
(
λ

2
− 1

)
C1 min{‖u‖λLλ(RN ), ‖u‖

γ

Lγ(RN )}τ
λ−2

2 N ,

and

P(uτ) > (s − κ1)aτ2s‖u‖2Ds,2(RN ) + bsτ4s‖u‖4Ds,2(RN ) − N
(
γ

2
− 1

)
C2

(
‖u‖λLλ(RN )τ

λ−2
2 N + ‖u‖γLγ(RN )τ

γ−2
2 N

)
,

which yields that P(uτ) → −∞ as τ → +∞, and P(uτ) → 0+ as τ → 0+. Therefore, for any given
u ∈ Sc, we can take τ0 > 0 large enough, and τ1 ∈ (0, 1) small enough such that

J(uτ1) <
mc

2
, P(uτ1) > 0, J(uτ0) < 0, P(uτ0) < 0.

Thus, taking γ0(t) := uτ0(1−t)+τ1t, we see that γ0(t) ∈ Γ. �

Lemma 3.2. Let s ∈ (0, 1) and N > 2s. Assume that (H1)–(H3) and (V1)–(V4) hold, then mΓ > mc > m̄.

Proof. For any γ ∈ Γ, there exists tγ ∈ [0, 1] such that γ(tγ) ∈ ∂Mc. Therefore,

max
t∈[0,1]

J(γ(t)) > J(γ(tγ)) > inf
∂Mc

J(u) = mc.

Together with Lemma 2.1, the conclusion holds. �

Now in view of Lemma 3.1, we can apply a new deformation argument for the constraint functional
on Sc with a new type of Palais-Smale condition denoted by (PS P)m. The functional J satisfies the
(PS P)m condition on Sc, if, and only if, any (PS P)m sequence {un} ⊂ Sc satisfying

J(un)→ m, ‖J′(un)‖T ∗unSc → 0, P(un)→ 0, (3.3)

has a strongly convergent subsequence.

AIMS Mathematics Volume 10, Issue 1, 499–533.



509

Lemma 3.3. Let s ∈ (0, 1) and N > 2s. Assume that (H1)–(H3) and (V1)–(V4) hold. If {un} ⊂ Sc is a
(PS P)m sequence satisfying (3.3) with m > m̄, then

(i) {un} is bounded in H s(RN).
(ii) there exists ω > 0 such that the sequence of Lagrange multipliers ωn satisfying(

a + b
∫
RN
|(−∆)

s
2 un|

2dx
)

(−∆)sun + V(x)un + ωnun = f (un) + on(1)

converges to ω in the sense of subsequence.

Proof. (i) For every m ∈ R, let {un} ⊂ Sc be a (PS P)m sequence satisfying (3.3). From (3.3), (V1), (V3)
and (1.7), we conclude that

m + on(1) = J(un) −
2

N(λ − 2)
P(un)

=

(
1
2
−

2s
N(λ − 2)

)
a‖un‖

2
Ds,2(RN ) +

(
1
4
−

2s
N(λ − 2)

)
b‖un‖

4
Ds,2(RN ) +

1
2

∫
RN

V(x)u2
ndx

+
2

λ − 2

∫
RN

F̃(un)dx −
∫
RN

F(un)dx +
1

N(λ − 2)

∫
RN

(∇V(x) · x)u2
ndx

>

(
1
2
−

2s
N(λ − 2)

−
2κ2

N(λ − 2)

)
a‖un‖

2
Ds,2(RN ) +

(
1
4
−

2s
N(λ − 2)

)
b‖un‖

4
Ds,2(RN ),

which implies that {un} is bounded in H s(RN), recalling that κ2 ∈
(
0, N(λ−2)−4s

4

)
and λ > 2 + 8s

N . Then, up
to a subsequence, un ⇀ u weakly in H s(RN). From (3.3), there exists {ωn} ⊂ R such that(

a + b
∫
RN
|(−∆)

s
2 un|

2dx
)

(−∆)sun + V(x)un + ωnun = f (un) + on(1) in H−s(RN).

(ii) By (3.3), we see that

m + on(1) = J(un) −
1
2s
P(un)

= −
b
4
‖un‖

4
Ds,2(RN ) +

1
2

∫
RN

V(x)u2
ndx +

N
2s

∫
RN

F̃(un)dx −
∫
RN

F(un)dx +
1
4s

∫
RN

(∇V(x) · x)u2
ndx.

Combining with (1.7), we observe that

2
[ N
2s

(
γ

2
− 1

)
− 1

] ∫
RN

F(un)dx +

∫
RN

[
V +

1
2s

(∇V(x) · x)
]

u2
ndx > 2m + on(1).

Set

yn :=
∫
RN

F(un)dx, zn :=
∫
RN

[
V +

1
2s

(∇V(x) · x)
]

u2
ndx,

λ̄ := 2
[ N
2s

(
λ

2
− 1

)
− 1

]
, γ̄ := 2

[ N
2s

(
γ

2
− 1

)
− 1

]
, ᾱ :=

2N − (N − 2s)γ
2s

.

Obviously, yn > 0, γ̄, ᾱ > 0, and
γ̄yn + zn > 2m + on(1). (3.4)
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Applying (V4), (1.11), and Lemma 2.1, there exists δ > 0 such that

sup
x∈RN

(
V +

1
2s

(∇V(x) · x)
)
<

2sᾱm̄
(γ̄ + ᾱ)c

− δ.

Noting that m > m̄, we obtain

V +
1
2s

(∇V(x) · x) 6 sup
x∈RN

(
V +

1
2s

(∇V(x) · x)
)
<

2sᾱm
(γ̄ + ᾱ)c

− δ. (3.5)

Let
zc,m :=

2sᾱm
(γ̄ + ᾱ)

−
δc
2
< 2m,

and from (3.5), we deduce that

zn 6
2sᾱm

(γ̄ + ᾱ)
− δc < zc,m. (3.6)

Using (3.4)–(3.6), we deduce that
zn < ᾱyn − m̂ + o(1), (3.7)

where m̂ = ᾱȳ − z̄, and (ȳ, z̄) satisfies γ̄ȳ + z̄ = 2m,

z̄ = zc,m.

Therefore,

m̂ =
2ᾱ
γ̄

m −
ᾱ + γ̄

γ̄
zc,m =

ᾱ + γ̄

2γ̄
δc > 0. (3.8)

Gathering (1.7), (2.2), (3.7), and (3.8), we conclude that

ωnc =ωc‖un‖
2
L2(RN )

= − a‖un‖
2
Ds,2(RN ) − b‖un‖

4
Ds,2(RN ) −

∫
RN

V(x)u2
ndx +

∫
RN

f (un)undx + on(1)

= −
N
s

∫
RN

F̃(un)dx −
1
2s

∫
RN

(∇V(x) · x)u2
ndx −

∫
RN

V(x)u2
ndx +

∫
RN

f (un)undx + on(1)

=

∫
RN

(
−

N − 2s
2s

f (un)un +
N
s

F(un)
)

dx −
∫
RN

(
V +

1
2s
∇V(x) · x

)
u2

ndx + on(1)

>ᾱyn − zn + on(1)
>m̂ + on(1).

(3.9)

Meanwhile, from (3.9), (H2), (V1), (V3), and Lemmas 1.1 and 1.2, we infer that

ωnc =

∫
RN

(
−

N − 2s
2s

f (un)un +
N
s

F(un)
)

dx −
∫
RN

(
V +

1
2s
∇V(x) · x

)
u2

ndx + on(1)

6

(
−

(N − 2s)λ
2s

+
N
s

) ∫
RN

F(un)dx +
aκ2

4s
‖un‖

2
Ds,2(RN ) + on(1)

6C + on(1).

(3.10)

(3.9) and (3.10) imply that ωn → ω > 0. �
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In what follows, we consider that V(x) is radial, and then we can choose H s
rad(RN) as the workspace.

We take Srad
c := Sc ∩ H s

rad(RN).

Lemma 3.4. Assume that (V1)–(V4) and (H1)–(H3) hold. Then, J(u) satisfies the (PS P)m condition on
Srad

c for m > m̄.

Proof. Let {un} ⊂ S
rad
c be a (PS P)m sequence satisfying (3.3) with m > m̄. Due to Lemma 3.3, there

exist u ∈ H s
rad(RN) and ω > 0 such that, up to a subsequence, un ⇀ u weakly in H s

rad(RN) and(
a + b

∫
RN
|(−∆)

s
2 u|2dx

)
(−∆)su + V(x)u + ωu = f (u). (3.11)

Then, using the compact embedding H s
rad(RN) ↪→↪→ Lq(RN) for all q ∈ (2, 2∗s), we deduce that un → u

strongly in Lq(RN) and ∫
RN

f (un)undx→
∫
RN

f (u)udx. (3.12)

Due to (V1), for p ∈ ( N
2s ,+∞), ‖un − u‖L2p′ (RN ) → 0 as n → ∞, where p

′

=
p

p−1 . Hence, by un ⇀ u
weakly in H s

rad(RN), we observe that∫
RN

V(x)u2
ndx−

∫
RN

V(x)u2dx =

∫
RN

V(x)(u−un)2dx+on(1) 6 ‖V‖Lp(RN )‖un−u‖L2p′ (RN ) = on(1). (3.13)

Therefroe, by (3.11)–(3.13), we see that

a(‖un‖
2
Ds,2(RN ) − ‖u‖

2
Ds,2(RN )) + b(‖un‖

4
Ds,2(RN ) − ‖u‖

4
Ds,2(RN )) + ω(‖un‖

2
L2(RN ) − ‖u‖

2
L2(RN )) = on(1),

which implies that un → u strongly in H s
rad(RN). �

To prove the existence of nontrivial solutions, we use the following deformation result given by [9].
Define

Km := {u ∈ Sc : J(u) = m, dJ|Sc = 0,P(u) = 0}.

Lemma 3.5. ( [9, Proposition 4.5]) Assume that J satisfies the (PS P)m condition on Sc. For any
neighborhood D of Km (if Km = ∅, D = ∅ ) and any ε̃ > 0, there exists ε ∈ (0, ε̃) and η ∈ C([0, 1] ×
Sc,Sc) such that

(i) η(0, u) = u, for u ∈ Sc;
(ii) η(t, u) = u, for t ∈ [0, 1] if u ∈ [J 6 m − ε̃]Sc;
(iii) t 7−→ J(η(t, u)) is nonincreasing for u ∈ Sc;
(iv) η(1, [J 6 m − ε]Sc \ D) ⊂ [J 6 m − ε]Sc , η(1, [J 6 m + ε]Sc) ⊂ [J 6 m − ε]Sc ∪ D.

Proof of Theorem 1. Let

KmΓ
:= {u ∈ Sc : J(u) = mΓ, dJ|Srad

c
= 0,P(u) = 0} = ∅,

then U = ∅. It follows from Lemmas 3.2 and 3.4 that J satisfies the (PS P)mΓ
condition. Due to

mΓ > mc > 0, taking ε̃ = mΓ −
mc
2 , and using Lemma 3.5, we obtain that there exist ε ∈ (0, ε̃), η ∈

C([0, 1] × Srad
c ,Srad

c ) satisfying

η(t, u) = u, ∀t ∈ [0, 1], u ∈ [J 6 mΓ − ε̃]Srad
c
, (3.14)
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η(1, [J 6 mΓ + ε]Srad
c
\ U) ⊂ [J 6 mΓ − ε]Srad

c
, (3.15)

According to the definition of mΓ and Lemma 3.1, there exists γ ∈ Γ such that

max
t∈[0,1]

J(γ(t)) < mΓ + ε.

Let us define γ̃ := η(1, γ(t)), and claim that γ̃ ∈ Γ. Indeed, J(γ(0)) < 1
2mc = mΓ − ε̃, which implies

that γ(0) ∈ [J 6 mΓ − ε̃]Srad
c

. By (3.14), we observe that γ̃(0) = η(1, γ(0)) = γ(0) and γ̃(1) = γ(1)
analogously. By (3.15), we conclude that

J(η(1, γ(t))) 6 mΓ − ε.

Therefore, J(γ̃(t)) 6 mΓ − ε for any t ∈ [0, 1]. We have

mΓ = inf
γ∈Γ

max
t∈[0,1]

J(γ(t)) 6 max
t∈[0,1]

J(γ̃(t)) 6 mΓ − ε,

which yields a contradiction. Hence, KmΓ
, ∅. Thie implies that (A) admits a radial solution. �

4. Ground satate solution for (A) with V(x) = 0

In this section, we consider the existence of ground state solutions for (A) with V(x) = 0. From
now on, in this article, we always assume that (H1)–(H3) hold and will not further mention it.

Lemma 4.1. Let 1 6 N < 4s, s ∈ (0, 1), and suppose that f satisfies (H1)–(H3). If u ∈ H s(RN) is a
nontrivial solution of Eq (A), then u ∈ M, where

M := {u ∈ H s(RN) : P(u) = 0},

and

P(u) := sa‖u‖2Ds,2(RN ) + sb‖u‖4Ds,2(RN ) − N
∫
RN

F̃(u)dx.

Proof. Let u be a solution to Eq (A), and we derive that

a‖u‖2Ds,2(RN ) + b‖u‖4Ds,2(RN ) + ω‖u‖2L2(RN ) =

∫
RN

f (u)udx. (4.1)

Meanwhile, u satisfies the following Pohožaev identity:

(N − 2s)
(
a‖u‖2Ds,2(RN ) + b‖u‖4Ds,2(RN )

)
+ Nω‖u‖2L2(RN ) = 2N

∫
RN

F(u)dx. (4.2)

Combining (4.1) and (4.2), we conclude that

sa‖u‖2Ds,2(RN ) + sb‖u‖4Ds,2(RN ) = N
∫
RN

F̃(u)dx. (4.3)

�
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Define
Ju(τ) := J(uτ), τ > 0,

where uτ(x) := τ
N
2 u(τx), τ > 0. We observe that

P(uτ) = τ(Ju)
′

(τ), τ > 0. (4.4)

Particularly, it holds that P(u) = (Ju)
′

(1). By exploiting it, we can deduce the following result.

Lemma 4.2. Let u ∈ Sc. Then, τ > 0 is a critical point of Ju(τ) if, and only if, uτ ∈ Mc, where

Mc :=M∩Sc.

Lemma 4.3. For each critical point of J|Mc , if (Ju)
′′

(1) , 0, then there exists a ω ∈ R such that

J′(u) + ωu = 0.

Proof. Let u be a critical point of J(u) constrained onMc, then there exist ω, ν ∈ R such that

J′(u) + ωu + νP′(u) = 0. (4.5)

Therefore, we need to show that ν = 0. Let

Φ(u) := J(u) +
ω

2
‖u‖2L2(RN ) + νP(u),

and it is the corresponding energy functional of (4.5). Thanks to (4.5), one sees that u satisfies the
corresponding Pohozaev identity

(Φu)′(1) :=
d
dτ

Φ(uτ)|τ=1 = 0. (4.6)

By (4.4), we observe that

Φu(τ) = Φ(uτ) = J(uτ) +
ω

2
‖u‖2L2(RN ) + νP(uτ) = J(uτ) +

ω

2
‖u‖2L2(RN ) + ντ(Ju)

′

(τ),

which yields
(Φu)

′

(τ) = (1 + ν)(Ju)
′

(τ) + ντ(Ju)
′′

(τ).

Together with (4.6), one gets

0 = (Φu)′(1) = (1 + ν)(Ju)
′

(1) + ν(Ju)
′′

(1) = (1 + ν)P(u) + ν(Ju)
′′

(1) = ν(Ju)
′′

(1).

According to (Ju)
′′

(1) , 0, we derive that ν = 0. �

Lemma 4.4. Let 1 6 N < 4s, s ∈ (0, 1), and suppose that f satisfies (H1)–(H3). Then if ω 6 0, Eq (A)
has no nontrivial solution.
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Proof. Assume by contradiction that u ∈ H s(RN) is a nontrivial solution of Eq (A) with ω 6 0. It
follows from (4.1) and (4.2), ω 6 0, and (H2) that

0 > sω‖u‖2L2(RN ) =

∫
RN

[
NF(u) −

N − 2s
2

f (u)u
]

dx > 0.

Therefore, we derive that ω = 0 and∫
RN

F(u)dx =

∫
RN

f (u)udx =

∫
RN

F̃(u)dx = 0.

For ω = 0, by Lemma 4.1, we deduce that u ∈ M, that is, (4.3) holds. This yields

‖u‖Ds,2(RN ) = 0,

which contradicts u . 0 in H s(RN). �

Lemma 4.5. Let 1 6 N < 4s, s ∈ (0, 1), and suppose that f satisfies (H1)–(H3). Then, for any c > 0
fixed, there exists a σc > 0 such that

inf{τ > 0 : ∃u ∈ Sc with ‖u‖Ds,2(RN ) = 1 such that uτ ∈ Mc} > σc,

i.e.,
inf{‖u‖Ds,2(RN ) : u ∈ Mc} > σc.

Proof. Since uτ ∈ Mc, we obtain that P(uτ) = 0. According to (4.3), we derive that

sa‖u‖2Ds,2(RN ) + sbτ2s‖u‖4Ds,2(RN ) = Nτ−N−2s
∫
RN

F̃(τ
N
2 u(x))dx.

Together with (H2), for ‖u‖Ds,2(RN ) = 1, we get that

sa < sa + sbτ2s 6 N
(
1
2
−

1
γ

)
τ−N−2s

∫
RN

f (τ
N
2 u(x))τ

N
2 u(x)dx. (4.7)

From (H2), there exists some C > 0 such that

f (t)t 6 C(|t|λ + |t|γ), ∀t ∈ R.

Note that for u ∈ Mc with ‖u‖Ds,2(RN ) = 1, by Lemma 1.1, there exists C > 0 such that

‖u‖λLλ(RN ) ≤ C, ‖u‖γLγ(RN ) ≤ C. (4.8)

Combining (4.7) and (4.8), we deduce that

sa < CN
(
1
2
−

1
γ

) (
τ

Nλ
2 −N−2s + τ

Nγ
2 −N−2s

)
,

which implies that σc > 0. �
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Lemma 4.6. Let 1 6 N < 4s, s ∈ (0, 1), and suppose that f satisfies (H1)–(H3). Then, (Ju)
′′

(1) < 0,
for each u ∈ Mc, andMc is a natural constraint of J|Sc .

Proof. From (4.4), by a direct caculation, we derive that

(Ju)
′′

(τ) =as(2s − 1)τ2s−2‖u‖2Ds,2(RN ) + bs(4s − 1)τ4s−2‖u‖4Ds,2(RN )

+ N(N + 1)τ−N−2
∫
RN

F̃(τ
N
2 u(x))dx −

N2

2
τ−

N
2 −2

∫
RN

F̃
′

(τ
N
2 u(x))u(x)dx.

Then,

(Ju)
′′

(1) = as(2s − 1)‖u‖2Ds,2(RN ) + bs(4s − 1)‖u‖4Ds,2(RN ) + N(N + 1)
∫
RN

F̃(u)dx −
N2

2

∫
RN

F̃
′

(u)udx.

Together with (H3) and P(u) = 0, we conclude that

(Ju)
′′

(1) 6as(2s − 1)‖u‖2Ds,2(RN ) + bs(4s − 1)‖u‖4Ds,2(RN ) + N(N + 1)
∫
RN

F̃(u)dx −
N2λ

2

∫
RN

F̃(u)dx

=as(2s − 1)‖u‖2Ds,2(RN ) + bs(4s − 1)‖u‖4Ds,2(RN ) +

(
N + 1 −

Nλ
2

) (
sa‖u‖2Ds,2(RN ) + sb‖u‖4Ds,2(RN )

)
=

(
N + 2s −

Nλ
2

)
sa‖u‖2Ds,2(RN ) +

(
N + 4s −

Nλ
2

)
sb‖u‖4Ds,2(RN ).

According to λ > 2 + 8s
N and Lemma 4.5, one can see that

(Ju)
′′

(1) 6
(
N + 2s −

Nλ
2

)
saσ2

c +

(
N + 4s −

Nλ
2

)
sbσ4

c < 0.

Recalling Lemma 4.3, we conclude thatMc is a natrual contraint of J|Sc . �

Corollary 4.1. Let 1 6 N < 4s, s ∈ (0, 1), and suppose that f satisfies (H1)–(H3). Then, for each
u ∈ H s(RN) \ {0}, there exists a unique τu > 0 such that uτu ∈ M. Moreover,

J(uτu) = max
τ>0

J(uτ).

Proof. Set c := ‖u‖2L2(RN ). From (H1) and (H2), we observe that for each τ > 0 and t ∈ R,τγF(t) 6 F(τt) 6 τλF(t), if τ 6 1,
τλF(t) 6 F(τt) 6 τγF(t), if τ > 1.

(4.9)

Hence, we obtain
λ − 2
γ − 2

min{τλ, τγ}F̃(t) 6 F̃(τt) 6
γ − 2
λ − 2

max{τλ, τγ}F̃(t), (4.10)

which implies that

τ−N
∫
RN

F̃(τ
N
2 u)dx = o(τ4s) as τ→ 0+,
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noting that λ > 2 + 8s
N . Recalling that

P(uτ) = saτ2s‖u‖2Ds,2(RN ) + sbτ4s‖u‖4Ds,2(RN ) − Nτ−N
∫
RN

F̃(τ
N
2 u(x))dx,

we can deduce that P(uτ) > 0 for τ > 0 small enough. Meanwhile, according to (4.4), one can see
that (Ju)

′

(τ) > 0 for τ > 0 small enough. Then, there exists a τ0 > 0 such that Ju(τ) is increasing in
τ ∈ (0, τ0).

On the other hand, from
∫
RN F(u)dx > 0, (4.9), and λ > 2 + 8s

N , we derive that

τ−N−4s
∫
RN

F(τ
N
2 u)dx > τ

λN
2 −N−4s

∫
RN

F(u)dx→ +∞, as τ→ +∞,

which yields that

lim
τ→+∞

Ju(τ) = lim
τ→+∞

τ4s

(
aτ−2s

2
‖u‖2Ds,2(RN ) +

b
4
‖u‖4Ds,2(RN ) − τ

−N−4s
∫
RN

F(τ
N
2 u)dx

)
= −∞.

Hence, there exist some τ1 > τ0 such that

Ju(τ1) = max
τ>0

J(uτ),

and (Ju)
′

(τ1) = 0. Then, by Lemma 4.2, we conclude that uτ1 ∈ M. Next, we will prove that τ1 is
unique. Assume by contradiction that there exists τ2 > 0 such that uτ2 ∈ M. From Lemma 4.6, we
know that τ1 and τ2 are strict local maximum points of Ju(τ). Without loss of generality, we suppose
that τ1 < τ2. Thus, there exist some τ3 ∈ (τ1, τ2) such that

Ju(τ3) = min
τ∈[τ1,τ2]

J(uτ),

which indicates that τ3 is a local minimum point of Ju(τ). Then, (Ju)
′

(τ1) = 0 and uτ3 ∈ M with
(Juτ3

)
′′

(1) = (Ju)
′′

(τ3) > 0, which contradicts Lemma 4.6. �

Corollary 4.2. Let 1 6 N < 4s, s ∈ (0, 1), and suppose that f satisfies (H1)–(H3). For each u ∈
H s(RN) \ {0}, let τu be given in Corollary 4.1. Then,

τu = 1⇔ (Ju)′(1) = 0⇔ P(u) = 0,
τu > 1⇔ (Ju)′(1) > 0⇔ P(u) > 0,
τu < 1⇔ (Ju)′(1) < 0⇔ P(u) < 0.

Proof. By Corollary 4.1, we obtain that

Ju(τu) = max
τ>0

Ju(τ).

Moreover,
(Ju)

′

(τ) > 0, for 0 < τ < τu, and (Ju)
′

(τ) < 0, for τ > τu.

The conclusion follows from (4.4). �
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Lemma 4.7. Let 1 6 N < 4s, s ∈ (0, 1), and suppose that f satisfies (H1)–(H3). Then J|Mc is coercive.

Proof. For u ∈ Mc, from (H2), we observe that

sa‖u‖2Ds,2(RN ) + sb‖u‖4Ds,2(RN ) = N
∫
RN

F̃(u)dx >
N(λ − 2)

2

∫
RN

F(u)dx. (4.11)

Therefore,

J(u) =
a
2
‖u‖2Ds,2(RN ) +

b
4
‖u‖4Ds,2(RN ) −

∫
RN

F(u)dx

>
a
2
‖u‖2Ds,2(RN ) +

b
4
‖u‖4Ds,2(RN ) −

2s
N(λ − 2)

(
a‖u‖2Ds,2(RN ) + b‖u‖4Ds,2(RN )

)
=

N(λ − 2) − 4s
2N(λ − 2)

a‖u‖2Ds,2(RN ) +
N(λ − 2) − 8s

4N(λ − 2)
b‖u‖4Ds,2(RN ).

(4.12)

Thanks to λ > 2 + 8s
N , we complete the proof. �

For given c > 0, let us define

mc := inf
u∈Mc

J(u) = inf
u∈Sc

max
τ>0

J(uτ).

Since u is a solution to (A) satisfying (1.1), u must belong toMc. If u attains mc, we can assert that
u is the least energy solution, i.e., ground state solution. It follows from (4.12) and Lemma 4.5 that
mc > 0 for each c > 0.

For each u ∈ H s(RN), let u∗ be the symmetric radial decreasing rearrangement of u. By (H1),
without loss of generality, we assume that u is nonnegative. Then, we can obtain that∫

RN
F(u)dx =

∫
RN

(∫ u(x)

0
f (t)dt

)
dx =

∫ ∞

0
f (t)|{x : u(x) > t}|dt

=

∫ ∞

0
f (t)|{x : u∗(x) > t}|dt =

∫
RN

F(u∗)dx.

From [11, Lemma 2.3], one can see that"
R2N

|u∗(x) − u∗(y)|2

|x − y|N+2s dxdy 6
"
R2N

|u(x) − u(y)|2

|x − y|N+2s dxdy.

Thus, we derive that
J(u∗) 6 J(u). (4.13)

Set
Srad

c := Sc ∩ H s
rad(RN), Mrad :=M∩ H s

rad(RN), Prad
c := Pc ∩ H s

rad(RN).

Define
mrad

c := inf
u∈Srad

c

max
τ>0

J(uτ),

and we can obtain that
mrad

c = inf
u∈Mrad

c

J(u).

Moreover, we find the following.
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Lemma 4.8. Let 1 6 N < 4s, s ∈ (0, 1), and suppose that f satisfies (H1)–(H3). Then,

mrad
c = mc.

Proof. Since Srad
c ⊂ Sc, it is clear that mrad

c > mc. On the other side, for each t > 0,

|{x : u∗τ(x) > t}| = |{x : τ
N
2 u∗(τx) > t}| = |{y : τ

N
2 u∗(y) > t}|τ−N

=τ−N |{y : u∗(y) > τ−
N
2 t}| = τ−N |{y : u(y) > τ−

N
2 t}| = τ−N |{y : τ

N
2 u(y) > t}|

=|{x : τ
N
2 u(τx) > t}| = |{x : uτ(x) > t}| = |{x : (uτ(x))∗ > t}|.

Hence, it holds true that
u∗τ = (uτ)∗, ∀τ ∈ R+.

As a consequence of (4.13), for each u ∈ Mc, we obtain that

J(u∗τ) = J((uτ)∗) 6 J(uτ) 6 max
t>0

J(ut) = J(u), ∀τ ∈ R+,

which yields that mrad
c 6 mc, by the arbitrary of u ∈ Mc, and this ends the proof. �

Proof of Theorem 2. Thanks to Lemma 4.8, let {un} ⊂ M
rad
c be such that J(un) → mc > 0. From

Lemma 4.7, we obtain that {un} is bounded in H s(RN). We may suppose that up to a subsequence,
un ⇀ u in H s(RN). Then, for N = 2, 3, using the compact embedding H s

rad(RN) ↪→↪→ Lq(RN) for all
q ∈ (2, 2∗s), we deduce that ∫

RN
F(un)dx→

∫
RN

F(u)dx. (4.14)

For N = 1, we may suppose that un = u∗n,∀n ∈ N. Then, (4.14) also holds true.
Now, we claim that u , 0. Suppose by contradiction that u = 0. Then,

∫
RN F̃(un)dx = on(1), and

taking into account of {un} ⊂ M
rad
c , we obtain that

sa‖un‖
2
Ds,2(RN ) + sb‖un‖

4
Ds,2(RN ) = on(1),

which contradicts Lemma 4.5.
Since {un} is bounded in H s(RN), it is obvious that

ωn := −
1
c
〈J′(un), un〉

is a bounded sequence. Particularly, applying (4.3), the definition of F̃, and (H2), we derive that

ωnc =ωn‖un‖
2
L2(RN ) = − 〈J′(un), un〉

=

∫
RN

f (un)undx − a‖un‖
2
Ds,2(RN ) − b‖un‖

4
Ds,2(RN )

=

∫
RN

f (un)undx −
N
s

∫
RN

F̃(un)dx

=
N
s

∫
RN

F(un)dx −
N − 2s

2s

∫
RN

f (un)undx

>

[
N
s
−

(N − 2s)γ
2s

] ∫
RN

F(un)dx.

(4.15)
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On the other hand, from (H2), it follows that

sa‖un‖
2
Ds,2(RN ) + sb‖un‖

4
Ds,2(RN ) = N

∫
RN

F̃(un)dx 6
(γ − 2)N

2

∫
RN

F(un)dx. (4.16)

Due to γ > 2 + 8s
N , by Lemma 4.5, there exist some δc > 0 such that for any n ∈ N,∫

RN
F(un)dx > δc.

Therefore, together with (4.15), there exist some ηc > 0 such that for any n ∈ N,

ωn > ηc.

Hence, we can assume that ωn → ωc > 0. Up to a subsequence, if necessary, we can assume that
‖un‖

2
Ds,2(RN ) → A > 0. It is easily seen that uc ∈ H s

rad(RN) is a solution of

(a + bA) (−∆)su + ωcu = f (u), x ∈ RN . (4.17)

Then, uc ∈ M
rad and

sa‖uc‖
2
Ds,2(RN ) + sbA‖uc‖

2
Ds,2(RN ) = N

∫
RN

F̃(uc)dx

=N lim
n→∞

∫
RN

F̃(un)dx = lim
n→∞

(
sa‖un‖

2
Ds,2(RN ) + sb‖un‖

4
Ds,2(RN )

)
=saA + sbA2.

Hence, s(a + bA)(A − ‖uc‖
2
Ds,2(RN )) = 0. By s > 0, a, b > 0, we get ‖uc‖

2
Ds,2(RN ) = A, which yields that

un → uc in Ds,2
0 (RN). So, (4.17) gives that uc is a solution of(

a + b
∫
RN
|(−∆)

s
2 u|2dx

)
(−∆)su + ωcu = f (u), x ∈ RN .

As a consequence, we get that

a‖uc‖
2
Ds,2(RN ) + b‖uc‖

4
Ds,2(RN ) + ωc‖uc‖

2
L2(RN ) =

∫
RN

f (uc)ucdx =

∫
RN

f (un)undx + on(1)

=a‖un‖
2
Ds,2(RN ) + b‖un‖

4
Ds,2(RN ) + ωn‖un‖

2
L2(RN ) + on(1),

which yields that
ωc(c − ‖uc‖

2
L2(RN )) = 0.

So, uc ∈ Sc, and then uc ∈ Mc. Therefore,

mc 6 J(uc) = lim
n→∞

J(un) = mc,

that is, (ωc, uc) is a ground state normalized solution to Eq (A). Recalling Lemma 4.4, we complete
the proof. �
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5. Proofs of Theorems 3–6

The aim of this section is to consider the continuity and the limit behavior of mc and ωc as c → 0+

as well as c→ +∞.
For c > 0, let (ωc, uc) be the solution to (A), which is given by Theorem 2. We remark that ωc > 0

and uc ∈ S
rad
c satisfy (

a + b
∫
RN
|(−∆)

s
2 uc|

2dx
)

(−∆)suc + ωcuc = f (uc), x ∈ RN ,

and
J(uc) =

a
2
‖uc‖

2
Ds,2(RN ) +

b
4
‖uc‖

4
Ds,2(RN ) −

∫
RN

F(uc)dx = mc. (5.1)

5.1. Preliminary results on mc and ωc

Lemma 5.1. Let 1 6 N < 4s, s ∈ (0, 1), and suppose that f satisfies (H1)–(H3). Then, mc is continuous
with respect to c ∈ (0,+∞).

Proof. Thanks to Theorem 2, we note that mc is attained by a symmetric decreasing function uc ∈

H s
rad(RN). Let c > 0 be fixed, and for each {cn} ⊂ R

+ with cn → c as n → +∞, for the sake of
simplicity, we denote (ωcn , ucn) by (ωn, un). Without loss of generality, we may suppose that for any
n ∈ N, c

2 < cn < 2c. Taking into account of (4.11), (4.16), and (5.1), we deduce that[
1
2
−

2s
(γ − 2)N

]
a‖un‖

2
Ds,2(RN ) +

[
1
4
−

2s
(γ − 2)N

]
b‖un‖

4
Ds,2(RN )

6mcn = J(un) 6
[
1
2
−

2s
(λ − 2)N

]
a‖un‖

2
Ds,2(RN ) +

[
1
4
−

2s
(λ − 2)N

]
b‖un‖

4
Ds,2(RN ).

(5.2)

Let uc/2 attain mc/2. For θ ∈ (1, 4), θuc/2 ∈ Sθ2c/2. From Corollary 4.1, there exists a unique τθ > 0 such
that (θuc/2)τθ ∈ Mθ2c/2 and

saτ2s
θ ‖θuc/2‖

2
Ds,2(RN ) + sbτ4s

θ ‖θuc/2‖
4
Ds,2(RN ) = N

∫
RN

F̃((θuc/2)τθ)dx.

From (4.10), we conclude that

saτ−2s
θ ‖θuc/2‖

2
Ds,2(RN ) + sb‖θuc/2‖

4
Ds,2(RN ) = Nτ−4s

θ

∫
RN

F̃((θuc/2)τθ)dx

=Nτ−4s
θ

∫
RN

F̃
(
τ

N
2
θ θuc/2(τθx)

)
dx

>Cτ−4s
θ min

{(
τ

N
2
θ θ

)λ
,
(
τ

N
2
θ θ

)γ}∫
RN

F̃(uc/2(τθx))dx

=Cτ−4s−N
θ min

{(
τ

N
2
θ θ

)λ
,
(
τ

N
2
θ θ

)γ}∫
RN

F̃(uc/2(y))dy,

which leads to that τθ is bounded due to Nλ
2 − 4s − N > Nγ

2 − 4s − N > 0. It easily follows from
mθ2c/2 6 J((θuc/2)τθ) that {mθ2c/2 : θ ∈ (1, 4)} is bounded. Together with (5.2), we conclude that {un} is
bounded in H s(RN).
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Similar as the proof of Theorem 2, we can suppose that ωn → ωc > 0 and un ⇀ uc in H s(RN),
where uc ∈ Sc is a solution of(

a + b
∫
RN
|(−∆)

s
2 u|2dx

)
(−∆)su + ωcu = f (u), x ∈ RN .

Therefore,
lim
n→∞

mcn = lim
n→∞

J(un) = J(uc) > mc.

If J(uc) , mc, there exist some δ > 0 such that for n large enough,

mcn > mc + δ. (5.3)

Recall that
√
ρuc ∈ Sρc, and let τρ > 0 be the unique number such that (

√
ρuc)τρ =

√
ρ(uc)τρ ∈ Mρc,

that is,

saρτ2s
ρ ‖uc‖

2
Ds,2(RN ) + sbρ2τ4s

ρ ‖uc‖
4
Ds,2(RN ) − N

∫
RN

F̃(
√
ρ(uc)τρ)dx = 0.

By Lemma 4.5, we can derive that τρ is bounded away from 0 as ρ approaches to 1. Thus, the
uniqueness indicates that τρ → 1 as ρ→ 1. Therefore, for ρ close to 1 enough, we conclude that

mρc 6 J(
√
ρ(uc)τρ)→ J(uc) = mc.

Hence, there exists N0 ∈ N such that for n > N0,

mcn 6 mc +
δ

2
,

which contradicts (5.3). Consequently, we obtain that J(uc) = mc and

lim
n→∞

mcn = mc.

�

Lemma 5.2. Let 1 6 N < 4s, s ∈ (0, 1), and suppose that f satisfies (H1)–(H3). Then,

lim
c→0+

mc = +∞ and lim
c→+∞

mc = 0.

Proof. Using (H2) and Lemma 1.1, there exists C > 0 such that

sa‖uc‖
2
Ds,2(RN ) + sb‖uc‖

4
Ds,2(RN ) = N

∫
RN

F̃(uc)dx 6
(γ − 2)N

2

∫
RN

F(uc)dx

6C(‖u‖λLλ(RN ) + ‖u‖γLγ(RN )) 6 C
(
‖u‖

N(λ−2)
2s

Ds,2(RN )c
λ
2−

N(λ−2)
4s + ‖u‖

N(γ−2)
2s

Ds,2(RN )c
γ
2−

N(γ−2)
4s

)
.

Therefore,
sa < sa + sb‖uc‖

2
Ds,2(RN ) 6 C

(
‖u‖

N(λ−2)−4s
2s

Ds,2(RN ) c
λ
2−

N(λ−2)
4s + ‖u‖

N(γ−2)−4s
2s

Ds,2(RN ) c
γ
2−

N(γ−2)
4s

)
,

which yields that
‖u‖Ds,2(RN ) → +∞,
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as c→ 0+, since N(λ−2)−4s
2s , λ2 −

N(λ−2)
4s , N(γ−2)−4s

2s , γ2 −
N(γ−2)

4s > 0. Together with (4.12), we observe that

lim
c→0+

mc = +∞.

For the case c → +∞, we choose a positive v ∈ H s(RN) with ‖v‖L2(RN ) = 1. For c > 0, it is easy to
check that u =

√
cv ∈ Sc. From Corollary 4.1, there exists a unique τc > 0 such that uτc ∈ Mc. We

observe that cτ2s
c → 0 as c → +∞. If not, there exists a sequence {cn} with cn → +∞ as n → +∞ and

cnτ
2s
cn
> δ > 0, for all n ∈ N. Applying (4.9), we obtain that

c−2
n τ
−4s
cn

∫
RN

F̃(
√

cnvτcn
)dx = c−2

n τ
−4s−N
cn

∫
RN

F̃
(
√

cnτ
N
2
cnv(y)

)
dy

>c−2
n τ
−4s−N
cn

λ − 2
γ − 2

min
{(
√

cnτ
N
2
cn

)λ
,
(
√

cnτ
N
2
cn

)γ}∫
RN

F̃(v(y))dy.

According to

c−2
n τ
−4s−N
cn

(
√

cnτ
N
2
cn

)λ
=

(
cnτ

2s
cn

)−2− N
2s + Nλ

4s c
2N−(N−2s)λ

4s
n > δ−2− N

2s + Nλ
4s c

2N−(N−2s)λ
4s

n → +∞, as n→ +∞,

and
c−2

n τ
−4s−N
cn

(
√

cnτ
N
2
cn

)γ
→ +∞ as n→ +∞,

we conclude that
c−2

n τ
−4s
cn

∫
RN

F̃(
√

cnvτcn
)dx→ +∞, as n→ +∞.

Therefore,

0 =P(uτcn
) = saτ2s

cn
‖u‖2Ds,2(RN ) + sbτ4s

cn
‖u‖4Ds,2(RN ) − N

∫
RN

F̃(uτcn
)dx

=sacnτ
2s
cn
‖v‖2Ds,2(RN ) + sbc2

nτ
4s
cn
‖v‖4Ds,2(RN ) − N

∫
RN

F̃(
√

cnvτcn
)dx

=c2
nτ

4s
cn

(
sac−1

n τ
−2s
cn
‖v‖2Ds,2(RN ) + sb‖v‖4Ds,2(RN ) − Nc−2

n τ
−4s
cn

∫
RN

F̃(
√

cnvτcn
)dx

)
<0,

for n large enough, which is a contradiction. Hence, our claim cτ2s
c → 0 as c → +∞ holds true.

Consequently, combining with w := uτc =
√

cvτc ∈ Mc, we deduce that

mc 6 J(w) =
a
2
‖w‖2Ds,2(RN ) +

b
4
‖w‖4Ds,2(RN ) −

∫
RN

F(w)dx

6
a
2
‖w‖2Ds,2(RN ) +

b
4
‖w‖4Ds,2(RN ) −

2
γ − 2

∫
RN

F̃(w)dx

=
a
2
‖w‖2Ds,2(RN ) +

b
4
‖w‖4Ds,2(RN ) −

2
(γ − 2)N

(
sa‖w‖2Ds,2(RN ) + sb‖w‖4Ds,2(RN )

)
=

(
1
2
−

2s
(γ − 2)N

)
a‖w‖2Ds,2(RN ) +

(
1
4
−

2s
(γ − 2)N

)
b‖w‖4Ds,2(RN )

=

(
1
2
−

2s
(γ − 2)N

)
acτ2s

c ‖v‖
2
Ds,2(RN ) +

(
1
4
−

2s
(γ − 2)N

)
b(cτ2s

c )2‖v‖4Ds,2(RN )

→0, as c→ +∞.
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On the other hand, it follows from (4.12) and Lemma 4.5 that mc > 0 for each c > 0. This completes
the proof. �

Lemma 5.3. Let 1 6 N < 4s, s ∈ (0, 1), and suppose that f satisfies (H1)–(H3). Then,

lim
c→0+

ωcc = +∞ and lim
c→+∞

ωcc = 0.

Proof. Combining (5.2) and Lemma 5.2, we derive that

lim
c→0+
‖uc‖Ds,2(RN ) = +∞, and lim

c→+∞
‖uc‖Ds,2(RN ) = 0. (5.4)

Moreover, from P(uc) = 0, we conclude that∫
RN

F̃(uc)dx =
1
N

(
as‖uc‖

2
Ds,2(RN ) + bs‖uc‖

4
Ds,2(RN )

)
.

Together with (5.4), we see that

lim
c→0+

∫
RN

F̃(uc)dx = +∞, and lim
c→+∞

∫
RN

F̃(uc)dx = 0. (5.5)

Similar as (4.15), we derive that

ωcc = ωc‖uc‖
2
L2(RN ) =

N
s

∫
RN

F(uc)dx −
N − 2s

2s

∫
RN

f (uc)ucdx.

By (H2), there exist C1,C2 > 0 such that

C1

∫
RN

F̃(uc)dx 6 ωcc 6 C2

∫
RN

F̃(uc)dx,

which clearly means
lim
c→0+

ωcc = +∞ and lim
c→+∞

ωcc = 0,

recalling (5.5). �

Remark 3. For the two quantities ζ(c), ϕ(c), if there exist C1,C2 > 0 independent of c such that

C1ζ(c) 6 ϕ(c) 6 C2ζ(c),

we say ζ(c) and ϕ(c) are comparable. Thus, by the proofs above in Section 5, it is easy to see that any
two elements in the set{

mc, ωcc, ‖uc‖
2
Ds,2(RN ) + ‖uc‖

4
Ds,2(RN )

∫
RN

F(uc)dx,
∫
RN

F̃(uc)dx,
∫
RN

f (uc)ucdx
}
,

are comparable.
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5.2. The case of c→ +∞

Let cn → +∞. By Lemma 5.3, we know that ωcn → 0. For convenience, we denote (ωcn , ucn) as
(ωn, cn). Set

en := ‖un‖
2
Ds,2(RN ).

From (5.4), one sees that en → 0 as n→ +∞.

Lemma 5.4. Let 1 6 N < 4s, s ∈ ( 1
2 , 1), and suppose that f satisfies (H1)–(H5). Let (ωc, uc) be the

solution given by Theorem 2. Then,
lim sup

c→+∞

uc(0) < +∞.

Proof. Let us argue by contradiction. Assume that there exists a sequence {cn} → +∞ such that

mn := un(0) = max
x∈RN

un(x)→ +∞.

Take x = y/m
γ−2
2s

n and define

Qn(y) =

un

(
y/m

γ−2
2s

n

)
mn

, y ∈ RN .

Thus, maxy∈RN Qn(y) = 1 and

(−∆)sQn(y) =
1

a + ben

[
f (mnQn(y))

mγ−1
n

−
ωn

mγ−2
n

Qn(y)
]
. (5.6)

It follows from (H1) and (H2) that there exists a C > 0 such that

f (t) 6 C(tγ−1 + tλ−1).

Therefore, we note that

1
a + ben

[
f (mnQn(y))

mγ−1
n

−
ωn

mγ−2
n

Qn(y)
]
∈ L∞(RN).

Then, applying a similar argument to the proof of [19, Proposition 4.4], and passing to a subsequence
if necessary, Qn → Q in C2,α

loc (RN), for some α ∈ (0, 1). It is easy to see that Q satisfies, in weak sense,

(−∆)sQ =
µ2

a
Qγ−1, in RN .

According to [6, Theorem 1.5], we derive that Q = 0, which contradicts Q(0) = 1. �

Define

ũn(x) :=
1

un(0)
un

 x

ω
1
2s
n

 .
By direct calculation, we see that ũn(0) = ‖ũn‖L∞(RN ) = 1 and

(a + ben)(−∆)sũn(x) + ũn(x) =
1

ωnun(0)
f (un(0)ũn(x)). (5.7)
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Lemma 5.5. Let 1 6 N < 4s, s ∈ ( 1
2 , 1), and suppose that f satisfies (H1)–(H5). Let (ωc, uc) be the

solution given by Theorem 2. Then,

lim inf
c→+∞

[uc(0)]λ−2

ωc
> 0.

Proof. We assume by contradiction that there exists a sequence cn → +∞ such that

[un(0)]λ−2 = on(ωn).

Letting x = 0 in (5.7), one sees that

1 =ũn(0) 6 (a + ben)(−∆)sũn(0) + ũn(0) =
1

ωnun(0)
f (un(0)ũ(0))

6
C

ωnun(0)

(
[un(0)]λ−1 + [un(0)]γ−1

)
6

C[un(0)]λ−2

ωn
= on(1),

which is a contradiction. �

Lemma 5.6. Let 1 6 N < 4s, s ∈ ( 1
2 , 1), and suppose that f satisfies (H1)–(H5). Let (ωc, uc) be the

solution given by Theorem 2. Then, uc(0) = ‖uc‖L∞(RN ) → 0, as c→ +∞.

Proof. Recalling that ωc → 0+ and ‖un‖Ds,2(RN ) → 0 as c → +∞, assume by contradiction that
lim infn→+∞ un(0) > 0. According to f (un) − ωnun ∈ L∞(RN), applying a similar argument to the
proof of [19, Proposition 4.4], and passing to a subsequence if necessary, we assume that un → uc in
C2,α

loc (RN), for some α ∈ (0, 1) with uc(0) = maxx∈RN uc(x) > 0, and uc is a nonnegative bounded radial
solution of

(−∆)su =
1
a

f (u) > 0 in RN .

Then, by [6, Theorem 1.1], we derive that uc ≡ 0, which contradicts uc(0) > 0. �

Lemma 5.7. Let 1 6 N < 4s, s ∈ ( 1
2 , 1), and suppose that f satisfies (H1)–(H5). Let (ωc, uc) be the

solution given by Theorem 2. Then,

lim sup
c→+∞

[uc(0)]λ−2

ωc
< +∞.

Proof. Assume by contradiction that there exists a sequence cn → +∞ such that

[un(0)]λ−2

ωn
→ +∞.

Thus,
lim

n→+∞

ωn

[un(0)]λ−2 = 0. (5.8)

Set

ûn(x) :=
1

un(0)
un

(
x

[un(0)]
λ−2
2s

)
.
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A direct calculation shows that ûn(0) = ‖ûn‖L∞(RN ) = 1 and

(a + ben)(−∆)sûn =
f (un(0)û)
[un(0)]λ−1 −

ωn

[un(0)]λ−2 ûn. (5.9)

From (H2), Lemma 5.4 and (5.8), we derive that the right side of (5.9) is of L∞(RN). Therefore,
applying a similar argument to the proof of [19, Proposition 4.4] and passing to a subsequence if
necessary, we assume that ûn → ûc in C2,α

loc (RN), for some α ∈ (0, 1). Combining Lemma 5.6 and (H4),
noting that en → 0, we deduce that ûc is a nonnegative bounded radial solution of

(−∆)sûc =
µ1

a
ûλ−1

c , in RN .

Thanks to [6, Theorem 1.5], we derive that ûc = 0, which contradicts ûc(0) = 1. �

Lemma 5.8. Let 1 6 N < 4s, s ∈ ( 1
2 , 1), and suppose that f satisfies (H1)–(H5). Let (ωc, uc) be the

solution given by Theorem 2. Then, ũn → 0 as |x| → +∞ uniformly for large n ∈ N.

Proof. (5.7) can be rewritten as
(−∆)sũn + ũn = gn(x) ∈ RN ,

where gn(x) = −
ũn(x)

(a+ben) +
f (un(0)ũn(x))

ωnun(0)(a+ben) . By Lemma 5.4, it is clear that gn ∈ L∞(RN). Moreover, it is
uniformly bounded for sufficiently large n. Due to the fact {un} converges strongly in H s(RN), the
interpolation inequality yields that there exists g ∈ Lr(RN) such that gn → g in Lr(RN) for r ∈ [2,+∞).
Thus, by [3], we observe that

ũn(x) =

∫
RN

K(x − y)gn(y)dy,

where K is a Bessel potential and it satisfies the following properties:
(D1) K is positive, radially symmetric, and smooth in RN \ {0}.
(D2) There exists C > 0 such that K(x) ≤ C

|x|N+2s for x ∈ RN \ {0}.
(D3) K ∈ Lr(RN) for r ∈ [1, 1

1−s ). For any σ > 0, we see that

0 6 ũn(x) 6
∫
RN

K(x − y)|gn(y)|dy =

∫
{|x−y|> 1

σ }

K(x − y)|gn(y)|dy +

∫
{|x−y|< 1

σ }

K(x − y)|gn(y)|dy.

It follows from (D2) that∫
{|x−y|> 1

σ }

K(x − y)|gn(y)|dy 6 C‖gn‖∞

∫
{|x−y|> 1

σ }

1
|x − y|N+2s dy 6 Cσ2s. (5.10)

By Hölder’s inequality and (D3), we obtain∫
{|x−y|< 1

σ }

K(x − y)|gn(y)|dy

6

∫
{|x−y|< 1

σ }

K(x − y)|gn(y) − g|dy +

∫
{|x−y|< 1

σ }

K(x − y)|g(y)|dy

6

(∫
RN
|K|2dy

) 1
2
(∫
RN
|gn − g|2dy

) 1
2

+

(∫
RN
|K|2dy

) 1
2
∫
{|x−y|< 1

σ }

|g|2dy
 1

2

.
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This yields that there exists R1 > 0 independent of σ > 0 such that∫
|x−y|< 1

σ

K(x − y)|gn(y)|dy 6 σ uniformly for large n and |x| ≥ R1. (5.11)

Here, we use the fact 2 < 1
1−s and

(∫
{|x−y|< 1

σ }
|g|2dy

) 1
2
→ 0 as |x| → +∞. Combining (5.10) and (5.11),

we obtain
0 ≤ ũn(x) 6 C(σ2s + σs), as |x| ≥ R1 uniformly for large n,

and, thus, ũn(x)→ 0 as |x| → +∞ uniformly for large n. �

Proof of Theorem 3. For each sequence {cn} → +∞, we define

vn(x) := ω
1

2−λ
n un

 x

ω
1
2s
n

 =
un(0)

ω1/(λ−2)
n

ũn.

According to Lemma 5.7, we observe that

lim sup
n→+∞

sup
x∈RN

vn(x) = lim sup
n→+∞

ω
1

2−λ
n un(0) < +∞. (5.12)

Together with Lemmas 5.5, 5.7, and 5.8, we deserve that lim|x|→+∞ vn(x) = 0 uniformly for large n.
Moreover, vn is the solution of

(a + ben)(−∆)svn(x) + vn(x) =
f (ω

1
λ−2
n vn)

ω
λ−1
λ−2
n

. (5.13)

Hence, a similar argument to the proof of [19, Proposition 4.4] implies that vn → Q in C2,α
loc (RN) for

some α ∈ (0, 1). Recalling that ωn → 0+ and ‖un‖Ds,2(RN ) → 0 as n→ +∞, from (H4), we obtain that Q
is nontrivial nonnegative solution ofa(−∆)sQ + Q = µ1Qλ−1, in RN ,

lim|x|→+∞ Q(x) = 0.

From [4], we know that Q is a radial, positive, and strictly decreasing in x. �

Proof of Theorem 4. From (5.13), we have

(−∆)svn(x) +
1

a + b‖un‖
2
Ds,2(RN )

1 − f (ω
1
λ−2
n vn)

ω
λ−1
λ−2
n vn

 vn = 0. (5.14)

Since (5.12) and ωn → 0+, by (H4), we observe that

f (ω
1
λ−2
n vn) = (µ1 + on(1))ω

λ−1
λ−2
n [vn(x)]λ−1,

as n→ +∞. Together with ‖un‖Ds,2(RN ) → 0 as n→ +∞, it follows from (5.14) that

(−∆)svn(x) +

(
1
a

+ on(1)
) [

1 − (µ1 + on(1))[vn(x)]λ−2
]

vn = 0. (5.15)
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Noting that lim|x|→+∞ vn(x) = 0 uniformly in n ∈ N, there exist R > 0 large enough and N0 ∈ N such
that (

1
a

+ on(1)
) [

1 − (µ1 + on(1))[vn(x)]λ−2
]
>

1
2a
,

for |x| > R and n > N0. Therefore,

(−∆)svn(x) +
1

2a
vn(x) 6 0, for |x| > R, n > N0.

Arguing as in the proof of [19, Lemma 5.6], we see that

vn(x) 6
C

1 + |x|N+2s , for |x| > R, n > N0.

Thus, vn → Q in L2(RN). By direct calculation, we see that

‖vn‖
2
L2(RN ) = ω

N(λ−2)−4s
2s(λ−2)

n cn, and ‖vn‖
2
Ds,2(RN ) = ω

N(λ−2)−4s
2s(λ−2)

n en/ωn.

Combining with Remark 3 and recalling that ωn → 0, we deduce that ‖vn‖
2
L2(RN ) and ‖vn‖

2
Ds,2(RN ) are

comparable. According to the fact vn → Q in L2(RN), there exist C3,C4 > 0 such that

C3 6 ‖vn‖
2
L2(RN ) 6 C4,

for all n ∈ N. Therefore, there exist C5,C6 > 0 such that

C5 6 ‖vn‖
2
Ds,2(RN ) 6 C6.

Hence, {vn} is a bounded sequence in H s(RN). Up to a subsequence, vn ⇀ v in H s(RN). Moreover, from
Lemma 1.1 and the fact vn → Q in L2(RN), one gets that vn → Q in Lq(RN), q ∈ [2, 2∗s). Applying (5.15),
we observe that ‖vn‖

2
Ds,2(RN ) → ‖Q‖

2
Ds,2(RN ), which yields vn → Q in H s(RN). �

5.3. The case of c→ 0+

Let cn → 0+. From Lemma 5.3 and (5.4), we obtain that ωn → +∞ and en → +∞ as n→ +∞.

Lemma 5.9. Let 1 6 N < 4s, s ∈ ( 1
2 , 1), and suppose that f satisfies (H1)–(H5). Let (ωc, uc) be the

solution given by Theorem 2. Then,
lim inf

c→0+
uc(0) = +∞,

and

lim inf
c→0+

[uc(0)]γ−2

ωc
> 0.

Proof. For each sequence {cn} → 0+, set

ṽn(x) :=
1

un(0)
un

 e
1
2s
n

ω
1
2s
n

x

 .
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A direct calculation shows that ṽn(0) = ‖ṽn‖L∞(RN ) = 1 and(
a
en

+ b
)

(−∆)sṽn + ṽn =
1

ωnun(0)
f (un(0)ṽn). (5.16)

Letting x = 0 in (5.16), and applying (H2), there exists C > 0 such that

1 6
(

a
en

+ b
)

(−∆)sṽn(0) + ṽn(0) =
1

ωnun(0)
f (un(0)ṽn(0))

6
C

ωnun(0)

(
uλ−1

n (0) + uγ−1
n (0)

)
=

C
ωn

(
uλ−2

n (0) + uγ−2
n (0)

)
,

which yields that un(0)→ +∞, since ωn → +∞, γ > λ > 2. Moreover, by λ 6 γ, we deserve that

lim inf
n→+∞

[un(0)]γ−2

ωn
>

1
2C

> 0.

By the arbitrary of cn, we complete the proof. �

Lemma 5.10. Let 1 6 N < 4s, s ∈ (1
2 , 1), and suppose that f satisfies (H1)–(H5). Let (ωc, uc) be the

solution given by Theorem 2. Then,

lim sup
c→0+

[uc(0)]γ−2

ωc
< +∞.

Proof. We assume by contradiction that there exists a sequence cn → 0+ such that

[un(0)]γ−2

ωn
→ +∞,

which implies that ωn = o([un(0)]γ−2). Set

v̂n(x) :=
1

un(0)
un

 e
1
2s
n

u
γ−2
2s

n (0)
x

 .
Then, v̂n(0) = ‖v̂n‖L∞(RN ) = 1 and(

a
en

+ b
)

(−∆)sv̂n +
ωn

uγ−2
n (0)

v̂n =
1

uγ−1
n (0)

f (un(0)v̂n). (5.17)

Note that

1

uγ−1
n (0)

f (un(0)v̂n) 6
C

uγ−1
n (0)

(
uγ−1

n (0)v̂γ−1
n + uλ−1

n (0)v̂λ−1
n

)
= C

(
v̂γ−1

n + uλ−γn (0)v̂λ−1
n

)
.

Together with un(0)→ +∞ and λ 6 γ, we conclude that

1

uγ−1
n (0)

f (un(0)v̂n) 6 C
(
v̂γ−1

n + v̂λ−1
n

)
.
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This indicates that 1
uγ−1

n (0)
f (un(0)v̂n) is of L∞(RN). Therefore, applying a similar argument to the proof

of [19, Proposition 4.4], and passing to a subsequence if necessary, we assume that v̂n → v̂ in C2,α
loc (RN),

for some α ∈ (0, 1). Combining Lemma 5.6 and (H4), noting that en → +∞, we deduce that v̂ is a
nonnegative bounded radial solution of

(−∆)sv̂ =
µ2

a
v̂γ−1, in RN .

Thanks to [6, Theorem 1.5], we derive that v̂ = 0, which contradicts v̂(0) = 1. �

Proof of Theorem 5. For each sequence {cn} → 0+, set

v̄n(x) := ω
1

2−λ
n un

‖un‖
1
s

Ds,2(RN )

ω
1
2s
n

x

 .
Furthermore, v̄n is the solution of

(ae−1
n + b)(−∆)sv̄n(x) + v̄n(x) =

f (ω
1
γ−2
n v̄n)

ω
γ−1
γ−2
n

. (5.18)

From (H2), we obtain that

f (ω
1
γ−2
n v̄n)

ω
γ−1
γ−2
n

6
C

ω
γ−1
γ−2
n

(
ω

γ−1
γ−2
n v̄γ−1

n + ω
λ−1
γ−2
n v̄λ−1

n

)
= C

(
v̄γ−1

n + ω
λ−γ
γ−2
n v̄λ−1

n

)
.

Combining ωn → +∞ and λ 6 γ, we deduce that f (ω
1
γ−2
n v̄n)

ω

γ−1
γ−2
n

∈ L∞(RN). Hence, a similar discussion to the

proof of Lemma 5.8 and Theorem 3 implies that v̄n → U in C2,α
loc (RN), for some α ∈ (0, 1). Recalling

that ωn → +∞ and en → +∞ as n → +∞, from (H4), we obtain that U is nontrivial nonnegative
solution of b(−∆)sU + U = µ2Uγ−1, in RN ,

lim|x|→+∞U(x) = 0.

From [4], we know that U is radial, positive, and strictly decreasing in x. �

Proof of Theorem 6. Letting cn → 0+ and recalling (5.18), we derive that

(−∆)sv̄n(x) +
1

(ae−1
n + b)

1 − f (ω
1
γ−2
n v̄n)

ω
γ−1
γ−2
n v̄n(x)

 v̄n(x) = 0. (5.19)

By the proof of Theorem 5, we also obtain that lim|x|→+∞ v̄n(x) = 0 uniformly in n ∈ N. It follows from
(H2) and ωn → +∞ as n→ +∞ that

f (ω
1
γ−2
n v̄n)

ω
γ−1
γ−2
n v̄n(x)

6 C
(
v̄γ−2

n + v̄λ−2
n

)
→ 0,
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as |x| → +∞ uniformly in n ∈ N. Hence, there exist R > 0 large enough and N1 ∈ N such that

1
(ae−1

n + b)

1 − f (ω
1
γ−2
n v̄n)

ω
γ−1
γ−2
n v̄n(x)

 > 1
2b
,

for |x| > R and n > N1. Arguing similarly as in the proof of Theorem 4, we can show that v̄n → U in
L2(RN). By direct calculation, we see that

‖v̄n‖
2
L2(RN ) = ω

N
2s−

2
γ−2

n e−
N
2s

n cn, and ‖v̄n‖
2
Ds,2(RN ) = ω

N
2s−

2
γ−2

n e−
N
2s

n
en

ωn
.

Combining with Remark 3 and recalling that en → +∞, we deduce that ‖v̄n‖
2
L2(RN ) and ‖v̄n‖

2
Ds,2(RN ) are

comparable. Similar as the proof of Theorem 4, we observe that v̄n → U in H s(RN). �
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