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Abstract: Integrating fuzzy concepts into statistical estimation offers considerable advantages by
enhancing both the accuracy and reliability of parameter estimations, irrespective of the sample size
and technique used. This study specifically examined the improvement of parameter estimation
accuracy when dealing with fuzzy data, with a focus on the gamma distribution. We explored and
evaluated a variety of estimation techniques for determining the scale parameter η and shape parameter
ρ of the gamma distribution, employing both maximum likelihood (ML) and Bayesian methods. In
the case of ML estimates, the expectation-maximization (EM) algorithm and the Newton-Raphson
(NR) method were applied, with confidence intervals constructed using the Fisher information matrix.
Additionally, the highest posterior density (HPD) intervals were derived through Gibbs sampling. For
Bayesian estimates, the Tierney and Kadane (TK) approximation and Gibbs sampling were used
to enhance the estimation process. A thorough performance comparison was undertaken using a
simulated fuzzy dataset of the lifetimes of rechargeable batteries to assess the effectiveness of these
methods. The methods were evaluated by comparing the estimated parameters to their true values
using mean squared error (MSE) as a metric. Our findings demonstrate that the Bayesian approach,
particularly when combined with the TK method, consistently produces more accurate and reliable
parameter estimates compared to traditional methods. These results underscore the potential of
Bayesian techniques in addressing fuzzy data and enhancing precision in statistical analyses.
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1. Introduction

An uncertain type of data that contains imprecision in the form of lack of clarity or incomplete
information is referred to as fuzzy data. Irrespective of its limitations, fuzzy sets hold an important
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place in the field of research. This is mainly because most data in life cannot be expressed with a
specific number, and therefore lessens the possibility of applying the vague theory. Various methods
have been proposed regarding soft estimation. However, the effects of related estimates on time is
an area that is still in nascent stages in the literature. Referred to as fuzzy data, the reliability of data
sources is closely knitted with the fact that fuzzy logic effectively cuts across the uncertainties that may
arise in the reliability analysis. It bases parameters such as failure coefficients on fuzzy numbers which
help in modeling imprecision and incorporating expert opinion. The manner in which fuzzy reliability
assists decision-making, especially in complicated systems, is by vague data and aiding in the diagnosis
of faults. Such an approach tends to be more robust in the sense that it provides an opportunity to have
better and clearer reliability assessments in cases of uncertainty or incomplete information.

The gamma distribution can provide a suitable model for reliability testing as it broadly covers data
that possesses a positive skew, such as life spans or the length of time spent waiting for an event to
take place. It provides a shape that incorporates fuzzy data and therefore addresses uncertainties faced
in system parameter values, thus providing more realism and applicability in practice. This approach
encompasses a wide range of activities including maintenance windows, risk analysis, quality control,
and predicting conditions, which ultimately allow competing forces in an uncertain environment to be
well-handled. The use of fuzzy data theoretically together with the gamma distribution presents an
excellent model of practical variability as it encompasses multiple reliability situations and enhances
the models used for decision-making. It renders probabilistic interpretations with limited precision
points in fuzzy sets, which makes it useful for complicated systems when there are no exact inputs
available.

The two-parameter gamma distribution is a widely used and adaptable probability distribution.
The gamma distribution finds applications across various fields, including engineering, finance,
hydrology, Bayesian statistics, queuing theory, survival analysis, and reliability testing. Research by
Engelhardt and Bain [1], as well as Glaser [2], highlights its extensive use in life testing, reliability,
and climate analysis. For further exploration of its applications in areas like hydrology, lifetime
studies, meteorology, and medicine, consider reviewing the works of Aksoy [3], Mosino and
Garcia [4], Gupta and Kundu [5], and Nadarajah and Gupta [6]. This distribution is particularly
valuable for data analysis when working with known populations and has been extensively studied by
numerous experts in recent years. The authors primarily developed moment estimators (MMEs) and
maximum likelihood estimators (MLEs) for the parameters. Some researchers have also considered
using Bayesian methods for parameter estimation. However, deriving closed-form solutions for these
estimators is notably challenging. After calculating the ML estimates for the shape and scale
parameters, Choi and Wette [7] quantitatively analyzed the bias in these estimates. Gilchrist [8] used
the maximal invariant approach to evaluate the MLE of both parameters, while Son and Oh [9]
applied the Gibbs sampling technique to derive the Bayes estimates for the gamma distribution
parameters. Their numerical analysis, which incorporated adaptive rejection sampling with Gibbs
sampling, demonstrated that Bayesian estimation outperformed both moment- and MLE-based
estimators, as well as other Bayesian methods. Pradhan and Kundu [10] also explored Bayesian
estimation of shape and scale parameters using the Gibbs sampling approach. A new sampling
method based on ranked set sampling (RSS) was proposed in [11], called moving extremes RSS
(MERSS), which is appropriate for estimating the location parameter of location families. The
research derives the greatest likelihood estimator (MLE) associated with MERSS, establishes its
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equivariance property under location invariance, and evaluates its asymptotic efficiency with simple
random sampling (SRS) for several distributions. Results show that, for the case of MERSS, the MLE
estimator is a good alternative to the SRS-based MLE. As a way to overcome issues brought on by
extreme weather conditions, [12] explored an improved methodology for reliability assessment of the
offshore support structures of wind turbines. It enhances the accuracy and conservatism by integrating
hybrid uncertainty analysis and an intelligent optimization-oriented support vector regression (SVR)
modeling approach. Using a case study, the study demonstrated the usefulness of the framework and
emphasized that the predicted fatigue reliability in such complex engineering systems could be
improved.

Historically, discussions on the gamma distribution have not addressed fuzzy data, where
uncertainty plays a role. Instead, research has focused on well-defined and precise data. In this study,
we consider data that is not only random but also ambiguous in many real-world scenarios. While
randomness pertains to uncertainty about experimental outcomes, vagueness involves uncertainty in
interpreting the data itself. The probability density function (p.d.f.) of the gamma distribution is given
by

f (x; ρ, η) =
1

Γ(ρ)ηρ
xρ−1e−

x
η , x > 0, ρ > 0, η > 0 (1.1)

where its shape is governed by the parameter ρ. Distributions with lower ρ values are more skewed,
while those with higher ρ values tend to be more symmetric and bell-shaped. The scale parameter η
influences the spread of the distribution, with larger η values leading to greater variance and a wider
spread. In practical settings, the lifespan of a unit may not be precisely measured due to human error,
mechanical issues, or unforeseen circumstances. For instance, lifetime observations may be recorded
as fuzzy in such cases, with the imprecise nature of lifespan data represented using fuzzy sets. In
recent years, applying fuzzy sets to estimation theory has attracted the interest of numerous scholars.
A novel technique for figuring out the reliability function and membership function of multiparameter
lifespan distributions was put forward by Huang [13]. In 1991, Coppi et al. [14] introduced a few uses
of fuzzy approaches in statistical analysis. Denoeux [15] examined the use of the EM method for ML
estimates based on fuzzy data. A number of experiments were carried out by Pak et al. [16] in 2014 to
create inferential methods for lifespan distributions based on fuzzy data, and a series of investigations
were developed by him [16, 17] to draw the inferential algorithms for the lifespan distributions based
on fuzzy data. When the lifetime observations are imprecise, Khoolenjani et al. [18] computed the
mean parameter of the exponential distribution under the Type-II censoring strategy. In 2017, Kula
and Dalkilic [19] introduced Type-II fuzzy logic and parameter estimation for the Pareto distribution.
Fuzzy logic was first used to estimate the parameters of a combination of normal distributions using
fuzzy clustering techniques; these methods were covered by Yang et al. in 1994 [20] and Gath and
Geva [21]. Eventually, in 2019, Basharat et al. [22] demonstrated how to estimate the parameters of
a linear combination of two exponentially distributed random variables using fuzzy data. This paper’s
major goal is to verify various inferential algorithms for the two-parameter gamma distribution where
fuzzy numbers represent the available data. We shall talk about the core definitions and notations of
fuzzy set theory.

Fuzzy set theory offers a robust framework for dealing with uncertainty and vagueness across
different disciplines, making it useful for modeling complex systems and phenomena with more
accuracy. Consider an experiment that can be described by a probability space S = (X,BX, Pθ), where
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(X,BX) is a measurable space and Pθ is a probability measure corresponding to a specific family
defined on (X,BX).

An indicator function IA : X → [0, 1] is defined as:

IA(x) =

1 if x ∈ A,

0 if x < A,

which describes a standard (crisp) subset A within X. By contrast, a fuzzy subset Ã of X is defined by
a membership function µÃ(x), which assigns a degree of membership µÃ(x) ∈ [0, 1] to each point x in
X. As per Zadeh’s 1968 framework, the probability of a fuzzy event Ã can be written as:

P(Ã) =
∫

µÃ(x) dP.

The conditional probability density function for X, given that fuzzy observations X̃ occur, is
expressed as:

f (x | X ∈ Ã) =
µÃ(x) f (x)∫
µÃ(x) f (x) dx

In Section 2, we explain how to compute the maximum likelihood estimates (MLEs) of the
parameters using both the expectation-maximization (EM) algorithm and Newton-Raphson (NR)
methods. Section 3 focuses on deriving the Bayes estimates of the unknown parameters using TK and
Gibbs sampling methods, with the assumption of gamma priors. Finally, Section 4 offers a numerical
study of Monte Carlo simulation analysis, where all the estimation methods are compared and
assessed.

Figure 1 under consideration describes parameter estimation methods for a fuzzy gamma
distribution with data emphasis. It differentiates the two types of estimates: point estimation which
may include maximum likelihood estimation or Bayesian approaches, Tierney Kadane’s or Gibbs
methods, and interval estimation utilizing HPD intervals and confidence intervals. It highlights
simulation studies as well as real data analysis for operational use.

Figure 1. Framework for fuzzy gamma-based parameter estimation and analysis.
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2. Maximum likelihood estimation

Consider the scenario where X = (X1, X2, . . . , Xn) represents an independent random sample of size
n drawn from the distribution G(ρ, η), with the probability density function given in equation (1.1).
The complete data likelihood function for this sample is:

L(x; ρ, η) =
n∏

i=1

f (xi; ρ, η).

Taking into account the scenario where the information that is currently accessible regarding x is
fuzzy data rather than clear data, that is, X̃ = x̃1, x̃2, . . . , x̃n denotes its observations, where x̃i is the
fuzzy observed number for the random variable xi, the likelihood function based on fuzzy observations
X̃ is defined as the following, with the membership function µx̃i(x) as a function of θ:

L(θ | X̃) = L(ρ, η; x̃) =
n∏

i=1

∫ ∞

0
fθ(x)µx̃i(x) dx,

L(ρ, η; x̃) =
n∏

i=1

∫ ∞

0

1
Γ(ρ)ηρ

xρ−1e−
x
ηµx̃i(x) dx,

L∗(ρ, η; x̃) = log L(ρ, η; x̃) = −nρ log η − n logΓ(ρ) +
n∑

i=1

log
∫ ∞

0
xρ−1e−

x
ηµx̃i(x) dx. (2.1)

The concept of maximum likelihood parameter estimation is to identify the parameters that
maximize the probability (or likelihood) of the observed sample data. Maximum likelihood methods
are highly adaptable and can be applied to a wide range of models and various types of data. The
maximum likelihood estimate of the parameters is derived from the observed maximizing of the
log-likelihood function L∗(θ) that is (2.1). By setting the partial derivatives of the log-likelihood with
respect to the parameters ρ and η to zero, two resulting equations can be obtained for solving the
parameters.

∂

∂ρ
L∗(ρ, η; x̃) = −n log η − nψ(ρ) +

n∑
i=1

∫ ∞
0

xρ−1 log x e−
x
ηµx̃i(x) dx∫ ∞

0
xρ−1e−

x
ηµx̃i(x) dx

(2.2)

∂

∂η
L∗(ρ, η; x̃) = −

nρ
η
−

n∑
i=1

∫ ∞
0

xρ−1e−
x
η

(
x
η2

)
µx̃i(x) dx∫ ∞

0
xρ−1e−

x
ηµx̃i(x) dx

(2.3)

where ψ(ρ) = Γ
′(ρ)
Γ(ρ) .

To obtain the estimation using the ML method, we find that it is tough to figure out the above
nonlinear Eqs (2.2) and (2.3). In this case, iterative numerical methods called the
expectation-maximization (EM) algorithm and Newton-Raphson method are used to obtain the
MLEs.
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2.1. Expectation-maximization algorithm

The EM algorithm repeatedly addresses the issue of maximizing the observed data log-likelihood
function by utilizing the complete data log-likelihood function. Each iteration of the method consists
of two stages: the expectation (E-step) and the maximization (M-step). The E-step includes iteratively
calculating the expectation of the observed data log-likelihood function with the complete data log-
likelihood function. The complete data log-likelihood function is expressed as follows:

log L(x; ρ, η) = −nρ log η − n logΓ(ρ) + (ρ − 1)
n∑

i=1

log xi −
1
η

n∑
i=1

xi. (2.4)

By differentiating the above Eq (2.4) with respect to ρ and simplifying, we get

ψ(ρ) =
1
n

n∑
i=1

log xi + log η.

By differentiating the Eq (2.4) with respect to η and simplifying, we get

η =

∑n
i=1 xi

nρ
.

The iterative process of the EM algorithm is as follows:

(1) Give initial values (calculated by the sample mean and variance) of ρ = ρ(0) = x̄2

s2 and η = η(0) =
x̄
ρ(0) , and set h = 0.

(2) In the (h + 1)th iterative process, the EM approach aims to maximize the log-likelihood function
L∗(θ) of the observed data by repeatedly processing the log-likelihood function of the entire data.

(3) E-step: The E-step requires the computation of conditional expectations utilizing the expression:

E1i = Eρ(h),η(h)[log(xi) | X̃i] =

∫
xρ

(h)−1e−
x

η(h) log xµx̃i(x)dx∫
xρ(h)−1e−

x
η(h) µx̃i(x)dx

E2i = Eρ(h),η(h)[xi | X̃i] =

∫
xρ

(h)
e−

x
η(h) µx̃i(x)dx∫

xρ(h)−1e−
x

η(h) µx̃i(x)dx
and the likelihood equations become:

ψ(ρ) =
1
n

n∑
i=1

E1i + log η

η =

∑n
i=1 E2i

nρ
.

(4) M-step: The M-step requires calculating the above equations and acquiring the next values
ρ(h+1), η(h+1) of ρ and η as:

ψ(ρ(h+1)) =
1
n

n∑
i=1

E1i + log η(h+1) (2.5)

η(h+1) =

∑n
i=1 E2i

nρ(h+1) . (2.6)

(5) Convergence: If convergence is achieved, the current values of ρ(h+1), η(h+1) are the maximum
likelihood estimators (MLEs) of ρ and η. Otherwise, repeat steps 2 and 3.

AIMS Mathematics Volume 10, Issue 1, 438–459.



444

2.2. Newton-Raphson method

The Newton-Raphson method is a dominant and popular iterative methodology for progressively
improving approximations to the roots of a real-valued function. Dedicated to the memory of Joseph
Raphson and Isaac Newton, this approach excels in resolving non-linear equations. Finding the relevant
parameters in a likelihood function may be done directly using the NR method. An iterative process is
used in this approach to get the solution of the likelihood equation.

Let θ = (ρ, η)T denote the parameter vector. At step (h + 1) of the iterative process, we acquire the
parameters in the following manner,

θ(h+1) = θ(h) −

[
∂2L∗(ρ, η; x̃)
∂θ∂θT

∣∣∣∣∣
θ=θ(h)

]−1

·

[
∂L∗(ρ, η; x̃)

∂θ

∣∣∣∣∣
θ=θ(h)

]
where

∂L∗(ρ, η; x̃)
∂θ

=

∂L∗(ρ,η;x̃)
∂ρ

∂L∗(ρ,η;x̃)
∂η


∂2L∗(ρ, η; x̃)
∂θ∂θT =

∂2L∗(ρ,η;x̃)
∂ρ2

∂2L∗(ρ,η;x̃)
∂ρ∂η

∂2L∗(ρ,η;x̃)
∂ρ∂η

∂2L∗(ρ,η;x̃)
∂η2

 . (2.7)

Here, the individual derivatives are given by:

∂2L∗(ρ, η; x̃)
∂ρ2 = −nψ′(ρ) +

n∑
i=1

∫ ∞
0

xρ−1(log x)2e−
x
ηµx̃i(x)dx∫ ∞

0
xρ−1e−

x
ηµx̃i(x)dx

−

n∑
i=1


∫ ∞

0
xρ−1 log xe−

x
ηµx̃i(x)dx∫ ∞

0
xρ−1e−

x
ηµx̃i(x)dx


2

,

∂2L∗(ρ, η; x̃)
∂η2 =

nρ
η2 −

n∑
i=1

∫ ∞
0

(
x−2η
η4

)
xρe−

x
ηµx̃i(x)dx∫ ∞

0
xρ−1e−

x
ηµx̃i(x)dx

−

n∑
i=1


∫ ∞

0
xρ−1e−

x
η

(
x
η2

)
µx̃i(x)dx∫ ∞

0
xρ−1e−

x
ηµx̃i(x)dx


2

,

∂2

∂ρ∂η
L∗(ρ, η; x̃) =

−n
η
+

∫ ∞
0

(
xρ
η2

)
log xe−

x
ηµx̃i(x)dx∫ ∞

0
xρ−1e−

x
ηµx̃i(x)dx

−

∫ ∞
0

(
xρ
η2

)
e−

x
ηµx̃i(x)dx .

∫ ∞
0

xρ−1logxe−
x
ηµx̃i(x)dx(∫ ∞

0
xρ−1e−

x
ηµx̃i(x)dx

)2 .

The iteration process will continue until convergence is achieved, which is defined as θ(h+1)−θ(h) < ϵ,
where ϵ is a predetermined positive value. In this study, the ML estimate of (ρ, η) obtained using the
Newton-Raphson (NR) technique is denoted as (ρ̂NR, η̂NR). Once we have calculated the maximum
likelihood estimate (MLE) of ρ and η, we can use the asymptotic normality of the MLEs to approximate
the confidence interval for the parameters with a level of 100(1 − α)%. The inverse of the Fisher
information matrix is calculated as follows:

ρi j =

Dn ρ

η2 + DIηη Dn
η
− DIρη

Dn
η
− DIρη DIρρ − Dnψ′(ρ)

 .
Here,

D = −
1

(Iρρ − nψ′(ρ))(nρη2 + Iηη) − (Iηρ − n1
η
)2
,
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I =
n∑

i=1

log
∫ ∞

0
xρ−1e−

x
ηµx̃i(x)dx

where the terms Iηη, Iρη, and Iρρ are derived and presented in the Appendix. With this information, we
can readily calculate the asymptotic 95% confidence intervals for the parameters ρ and η. The 95%
confidence interval for θ j is obtained as

θ j ± 1.96
√

(I(θ) j j)−1.

The 95% confidence intervals for α and η are estimated, respectively, as

ρ̂ML ± 1.96

√
Dnρ
η2 + DIηη

η̂ML ± 1.96
√

DIρρ − Dnψ′(ρ).

3. Bayesian estimation

The Bayesian viewpoint has garnered much attention for statistical inference in recent decades as
a strong and legitimate substitute for conventional statistical viewpoints. The Bayesian estimation
is discussed in this part with the suppositions that ρ and η have independent gamma priors with the
following probability density functions:

π1(ρ) =
dc

Γ(c)
ρc−1 exp(−ρd), ρ > 0

π2(η) =
ba

Γ(a)
ηa−1 exp(−ηb), η > 0

with the parameters ρ ∼ Γ(c, d) and η ∼ Γ(a, b). Based on the above priors, the joint posterior density
function of ρ and η given the data can be written as follows:

π(ρ, η | x̃) =
π1(ρ)π2(η)ℓ(ρ, η; x̃)∫ ∞

0

∫ ∞
0
π1(ρ)π2(η)ℓ(ρ, η; x̃)dρdη

where

ℓ(ρ, η; x̃) = ρn+c−1ηn+a−1 exp(−ρd) exp(−ηb)
n∏

i=1

∫
xρ−1e−

x
ηµx̃i(x)dx

is the likelihood function based on the fuzzy sample x̃. Then, under a squared error loss function, the
Bayes estimate of any function of ρ and η, say g(ρ, η), is

E(g(ρ, η) | x̃) =

∫ ∞
0

∫ ∞
0

g(ρ, η)π1(ρ)π2(η)ℓ(ρ, η; x̃)dρdη∫ ∞
0

∫ ∞
0
π1(ρ)π2(η)ℓ(ρ, η; x̃)dρdη

=

∫ ∞
0

∫ ∞
0

g(ρ, η)Q(ρ, η)dρdη∫ ∞
0

∫ ∞
0

Q(ρ, η)dρdη
(3.1)
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where Q(ρ, η) = ln[π1(ρ)π2(η)]+ ln ℓ(ρ, η) ≡ H(ρ, η)+L(ρ, η). It is not easy to solve the above Eq (3.1),
and so we use Tierney and Kadane’s approximation for calculating the Bayes estimates. By replacing
H(ρ, η) = Q(ρ, η)/n and H∗(ρ, η) = [ln g(ρ, η) + Q(ρ, η)]/n, the above expression (3.1) becomes

E(g(ρ, η) | x̃) ≈

∫ ∞
0

∫ ∞
0

enH∗(ρ,η)dρdη∫ ∞
0

∫ ∞
0

enH(ρ,η)dρdη
. (3.2)

Following Tierney and Kadane [23], the above Eq (3.2) can be approximated as follows.

ĝBT (ρ, η) =
[
detΣ∗

detΣ

]1/2
exp{n[H∗(ρ̃, η̃) − H(ρ̂, η̂)]} (3.3)

where (ρ̃, η̃) and (ρ̂, η̂) maximize H∗(ρ, η) and H(ρ, η), respectively, and Σ∗ and Σ are the negatives of
the inverse Hessians of H∗(ρ, η) and H(ρ, η) at (ρ̃, η̃) and (ρ̂, η̂), respectively.

In our case, we have

H(ρ, η) =
1
n
{
k + (n + c − 1) log ρ + (n + a − 1) log η − ρd

}
−

1
n

−ηb +
n∑

i=1

log
∫

xρ−1e−
x
ηµx̃i(x)dx


where k is a constant and (ρ̂, η̂) can be obtained by solving the following two equations.

∂

∂ρ
H(ρ, η) =

1
n

n + c − 1
ρ

− d +
n∑

i=1

∫ ∞
0

xρ−1 log xe−
x
ηµx̃i(x)dx∫ ∞

0
xρ−1e−

x
ηµx̃i(x)dx

 ,
∂

∂η
H(ρ, η) =

1
n

n + a − 1
η

− b −
n∑

i=1

∫ ∞
0

xρ−1e−
x
η

(
x
η2

)
µx̃i(x)dx∫ ∞

0
xρ−1e−

x
ηµx̃i(x)dx

 .
From the second derivatives of H(ρ, η), the determinant of the negative of the inverse Hessian of H(ρ, η)
at (ρ̂, η̂) is given by

detΣ =
(
H11H22 − H2

12

)−1

where

H11 =
1
n

−n + c − 1
ρ2 +

n∑
i=1

∫ ∞
0

xρ−1(log x)2e−
x
ηµx̃i(x)dx∫ ∞

0
xρ−1e−

x
ηµx̃i(x)dx

 − 1
n

n∑
i=1


∫ ∞

0
xρ−1 log xe−

x
ηµx̃i(x)dx∫ ∞

0
xρ−1e−

x
ηµx̃i(x)dx


2

,

H22 =
1
n

−n + a − 1
η2 −

n∑
i=1

∫ ∞
0

(
x−2η
η4

)
xρe−

x
ηµx̃i(x)dx∫ ∞

0
xρ−1e−

x
ηµx̃i(x)dx

 − 1
n

n∑
i=1


∫ ∞

0
xρ−1e−

x
η

(
x
η2

)
µx̃i(x)dx∫ ∞

0
xρ−1e−

x
ηµx̃i(x)dx


2

,

H12 =

∫ ∞
0

xρ
η2 log xe−

x
ηµx̃i(x)dx∫ ∞

0
xρ−1e−

x
ηµx̃i(x)dx

−

∫ ∞
0

xρe−
x
ηµx̃i(x)dx

∫ ∞
0

xρ−1 log xe−
x
ηµx̃i(x)dx(∫ ∞

0
xρ−1e−

x
ηµx̃i(x)dx

)2 .

Following the same arguments with g(ρ, η) = ρ and η, respectively, in H∗(ρ, η), ρ̂BT and η̂BT in
Eq (3.3) can then be obtained in a straightforward manner.
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In this section, we explore the Bayesian estimation of the model parameters, applying the squared
error loss function. We also introduce highest posterior density (HPD) credible intervals for the
parameters, utilizing the approach outlined by Devroye [24], as well as samples drawn from the
posterior distribution to form the HPD intervals.

The Bayes estimator for g(ρ, η), under the squared error loss function, corresponds to the posterior
mean and is expressed as follows:

ĝ(ρ, η) = E[g(ρ, η) | x, y]

In this section, we present an estimation of the shape parameter ρ and scale parameter η using
approximate Bayes methods based on the assumptions of the priors:

ρ ∼ Γ(l1,m1),

η ∼ Γ(l2,m2).

The log-likelihood function for the observed data, which is based on the fuzzy data, is expressed as
follows:

L∗(θ) = L∗(ρ, η; x̃) = −nρ log η − n logΓ(ρ) +
n∑

i=1

log
∫ ∞

0
xρ−1e−

x
ηµx̃i(x)dx.

The conditional posterior distributions for ρ and η are obtained as

π(ρ | η, X) ∝ L∗(ρ | η, X)π(ρ), (3.4)

π(η | ρ, X) ∝ L∗(ρ | η, X)π(η). (3.5)

We can estimate the parameters ρ and η iteratively by using the conditional posterior distributions
above with the following procedure:

(1) Start with initial values for the parameters ρ0 and η0.
(2) For each iteration i = 1, 2, 3, . . . , h, sample ρ(i) and η(i) from their conditional posterior

distributions π(ρ | η(i), X), π(η | ρ(i), X), respectively.
(3) Using their individual posterior distributions, each parameter’s sequence of samples is produced

iteratively.
(4) Keep up the repeated sampling procedure until the Markov chain converges. Analyzing

convergence may be done with diagnostic tools like trace plots.
(5) Draw conclusions about the parameters ρ and η based on the samples. The uncertainty in the

parameter estimations can be summarized by computing summary statistics like the posterior
mean and median.

(6) The parameters of the gamma distribution ρ and η may be estimated Bayesianly using the Gibbs
sampling process described above. It gives the estimation theory a framework for integrating past
knowledge and revising beliefs based on fuzzy evidence, which leads to more reliable parameter
estimation.
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4. Numerical study

In this section, various simulation results are recorded primarily to show the performance of Bayes
estimation by Gibbs sampling, MLEs by the Newton-Raphson method, and the EM algorithm for
different sample sizes, including an example to illustrate the methods of inference developed in this
study. The estimation of the unknown parameters is obtained through the use of the three strategies
described in the preceding sections. The calculations are performed using an open-source statistical
computing and graphics software tool called R (version 4.3.2).

First, for a number of combinations of parameter values, (ρ, η) = (1, 1), (2, 1), (2, 2), (2, 3), (3, 3),
with different sample sizes n, namely n = 10, 20, 25, 50, 75, 100, 200, for each n, we drawn an
independent and identically distributed (i.i.d.) random sample from the gamma distribution. Fuzzy
membership functions were used to fuzzify each instance of x.

µx̃1(x) =


1 if x ≤ 0.05,
0.25−x

0.2 if 0.05 ≤ x ≤ 0.25,
0 otherwise.

µx̃2(x) =


x−0.05

0.2 if 0.05 ≤ x ≤ 0.25,
0.5−x
0.25 if 0.25 ≤ x ≤ 0.5,

0 otherwise.

µx̃3(x) =


x−0.25

0.25 if 0.25 ≤ x ≤ 0.5,
0.75−x

0.25 if 0.5 ≤ x ≤ 0.75,
0 otherwise.

µx̃4(x) =


x−0.5
0.25 if 0.55 ≤ x ≤ 0.75,

1−x
0.25 if 0.75 ≤ x ≤ 1,
0 otherwise.

µx̃5(x) =


x−0.75

0.25 if 0.75 ≤ x ≤ 1,
1.5−x

0.5 if 1 ≤ x ≤ 1.5,
0 otherwise.

µx̃6(x) =


x−1
0.5 if 1 ≤ x ≤ 1.5,
2−x
0.5 if 1.5 ≤ x ≤ 2,
0 otherwise.

µx̃7(x) =


x−1.5

0.5 if 1.5 ≤ x ≤ 2,
3 − x if 2 ≤ x ≤ 3,
0 otherwise.

µx̃8(x) =


x − 2 if 2 ≤ x ≤ 3,
1 if x ≥ 3,
0 otherwise.
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• The simulation data shows that as the sample size increased, the mean squared error (MSE) of
each estimator decreased (Figures 2–5).
• Larger sample sizes typically yielded more accurate parameter estimates with lower MSE,

whereas smaller sample sizes led to higher variability and larger MSE in the MLE estimates.
• All parameter estimates fell within their respective confidence intervals, with the interval lengths

shrinking as the sample size grew.

Figure 2. MSE of parameter ρ at various sample sizes.

Figure 3. MSE of parameter ρ at various sample sizes.

Figure 4. MSE of parameter η at various sample sizes.
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Figure 5. MSE of parameter η at various sample sizes.

• The width of the confidence intervals was influenced by both the sample size and the confidence
level. As the sample size increased, the intervals became narrower, reflecting greater precision in
the parameter estimates.
• Consistency can be seen in the parameter estimates produced by NR, EM, TK, and Gibbs

sampling approaches when greater sample sizes converge to constant values.
• The efficacy of the strategy in striking a balance between computing practicality and estimate

accuracy is demonstrated by the performance of Bayes estimators under the symmetric loss
function. When compared to ML estimates and Bayes estimates using Gibbs sampling, the TK
approximation Bayes estimators perform rather well.
• By analyzing density plots (Figure 6) and trace plots (Figure 7) , which display stable and well-

mixed chains for the parameters, the convergence of Gibbs sampling was verified.
• The density plots (Figure 6) displays the predicted posterior distribution, which indicates

convergence when the shape is unimodal, stable, and stays mostly the same throughout the
iterations.
• The trace plots (Figure 7) iteratively display parameter values, suggesting convergence when it

varies erratically without any discernible pattern and effectively explores the parameter space.
• In terms of bias and MSE for the parameters ρ and η, Gibbs estimates perform better than other

methods for small sample sizes.

Figure 6. Illustration of the density plots of the parameters.
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Figure 7. Illustration of the trace plots of the parameters.

• Gibbs sampling-derived highest posterior density (HPD) intervals are often more accurate than
conventional asymptotic confidence intervals.

The distribution of the samples for each parameter is shown in the density plots. Based on the
samples produced by the Gibbs sampler, these charts help visualize the estimated probability density
function of the parameter. Density charts can provide insights into parameters, convergence, and
distribution shape. The sampled values of each parameter are shown as a function of the iteration
number in trace plots. You can see the sample’s trajectory across the parameter space over time with
the aid of these charts. Trace plots can show sample convergence, mixing, and autocorrelation.

Table 1. For various sample sizes, we compare estimates and mean squared errors of the
parameters at ρ = 1 and η = 1 using EM, NR, Bayes (GIBBS), and Bayes (TK).

n θ EM NR Bayes (GIBBS) Bayes (TK)
Estimate MSE Estimate MSE Estimate MSE Estimate MSE

10 ρ 1.1205 0.4504 1.0922 0.4206 0.9803 0.1507 1.0453 0.1804
η 0.9352 0.3103 0.9501 0.2766 0.9152 0.1423 1.0543 0.1608

20 ρ 1.0845 0.1579 1.0793 0.1667 0.9504 0.1265 1.0309 0.1453
η 0.9752 0.135 0.9684 0.1283 0.9604 0.1123 1.0129 0.1302

25 ρ 1.0645 0.1211 1.0589 0.1352 0.9702 0.0903 1.0241 0.1223
η 0.9799 0.1186 0.9857 0.1152 0.9704 0.1027 1.0103 0.1104

50 ρ 1.0551 0.0416 1.0429 0.042 0.9909 0.0382 1.0151 0.0539
η 0.9896 0.0454 0.9912 0.0434 0.9855 0.0528 1.0088 0.0487

75 ρ 1.0298 0.025 1.0317 0.0268 0.9955 0.0241 1.0107 0.0366
η 0.9921 0.0301 0.9954 0.0282 0.9902 0.0342 1.0045 0.0357

100 ρ 1.0199 0.0189 1.0215 0.0194 0.9984 0.0155 1.0073 0.0281
η 0.9957 0.0254 0.9972 0.0264 0.9959 0.0226 1.0036 0.0292

200 ρ 1.0097 0.0067 1.0106 0.0068 0.9994 0.0024 1.0024 0.0111
η 0.9973 0.0119 0.9981 0.0123 0.9979 0.0027 1.0019 0.0157
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Table 2. For various sample sizes, we compare estimates and mean squared errors of the
parameters at ρ = 2 and η = 2 using EM, NR, Bayes (GIBBS), and Bayes (TK).

n θ EM NR Bayes (GIBBS) Bayes (TK)
Estimate MSE Estimate MSE Estimate MSE Estimate MSE

10 ρ 2.3205 2.0254 2.2876 1.8258 1.9604 0.1045 2.0452 0.1804
η 1.9252 0.8304 1.9408 0.7806 1.9522 0.1128 2.0842 0.1024

20 ρ 2.1854 0.8422 2.1502 0.8047 1.9753 0.0917 2.0643 0.1627
η 1.9604 0.5654 1.9715 0.5223 1.9647 0.0872 2.0418 0.0927

25 ρ 2.1197 0.5126 2.1254 0.4928 1.9802 0.0724 2.0354 0.1403
η 1.9682 0.3923 1.9768 0.3652 1.9741 0.0712 2.0237 0.0834

50 ρ 2.0788 0.2032 2.0852 0.1987 1.9924 0.0602 2.0204 0.0751
η 1.9751 0.1721 1.9883 0.1648 1.9847 0.0547 2.0157 0.0672

75 ρ 2.0471 0.1022 2.0557 0.0967 1.9958 0.0452 2.0123 0.0581
η 1.9907 0.1212 1.9942 0.1184 1.9891 0.0401 2.0102 0.0408

100 ρ 2.0354 0.0798 2.0412 0.0742 1.9984 0.0325 2.0083 0.0452
η 1.9805 0.0987 1.9969 0.0943 1.9942 0.0328 2.0068 0.0254

200 ρ 2.0124 0.0246 2.0153 0.0297 1.9998 0.0103 2.0028 0.0141
η 2.0047 0.0284 2.0032 0.0257 1.9988 0.0092 2.0023 0.0062

Table 3. For various sample sizes, we compare estimates and mean squared errors of the
parameters at ρ = 2 and η = 2 using EM, NR, Bayes (GIBBS), and Bayes (TK).

n θ EM NR Bayes (GIBBS) Bayes (TK)
Estimate MSE Estimate MSE Estimate MSE Estimate MSE

10 ρ 2.9952 5.694 3.0676 5.8585 1.8524 0.1654 2.3778 0.2928
η 1.7441 0.9879 1.7358 0.9267 1.8442 0.1398 2.1463 0.1324

20 ρ 2.3797 1.2802 2.4857 1.7924 1.8736 0.1427 2.3985 0.2814
η 1.8827 0.6464 1.8677 0.6036 1.8563 0.1256 2.1284 0.1236

25 ρ 2.267 0.6316 2.3209 0.5831 1.885 0.1234 2.4078 0.2708
η 1.9352 0.4171 1.8945 0.4111 1.8681 0.1152 2.1045 0.1174

50 ρ 2.1619 0.2543 2.1531 0.2504 1.8965 0.1089 2.2875 0.1025
η 1.9347 0.2252 1.9449 0.2208 1.8794 0.0998 2.0847 0.0987

75 ρ 2.1213 0.1522 2.0967 0.1582 1.9172 0.0906 2.2105 0.0849
η 1.9705 0.1635 1.9679 0.1615 1.8901 0.0846 2.0451 0.0479

100 ρ 2.0755 0.1169 2.0808 0.1224 1.9183 0.0754 2.1548 0.0685
η 1.9889 0.1297 1.9827 0.1297 1.9035 0.0681 2.0247 0.0215

200 ρ 2.0246 0.0472 2.0309 0.0593 1.9294 0.0598 2.0956 0.0401
η 2.0044 0.0593 1.9975 0.0531 1.9152 0.0467 2.0042 0.0021
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Table 4. For various sample sizes, we compare estimates and mean squared errors of the
parameters at ρ = 2 and η = 3 using EM, NR, Bayes (GIBBS), and Bayes (TK).

n θ EM NR Bayes (GIBBS) Bayes (TK)
Estimate MSE Estimate MSE Estimate MSE Estimate MSE

10 ρ 2.8457 4.8521 2.7126 4.1023 2.1154 0.0648 1.7309 0.1239
η 2.7683 2.6124 2.8924 2.1752 3.0841 0.0147 2.8411 0.1967

20 ρ 2.4896 1.2392 2.3421 0.9624 2.0894 0.0524 1.7824 0.1197
η 2.9235 1.1456 2.7921 1.0345 3.0451 0.0113 2.8624 0.1783

25 ρ 2.3952 0.9123 2.2548 0.7216 2.0351 0.0478 1.7594 1.1108
η 2.9317 0.9845 2.8236 0.8873 3.0289 0.0097 2.8848 0.1654

50 ρ 2.2218 0.2912 2.1352 0.2518 2.0168 0.0375 1.8159 1.0893
η 2.9846 0.4821 2.8973 0.4621 3.0102 0.0081 2.9282 0.1257

75 ρ 2.1825 0.1987 2.1012 0.1724 2.0113 0.0294 1.8839 0.9872
η 2.9654 0.3543 2.8951 0.3256 3.0078 0.0045 2.9512 0.0865

100 ρ 2.0872 0.1083 2.0526 0.0994 2.0043 0.0147 1.9458 0.2455
η 2.9927 0.2876 2.9674 0.2541 3.0059 0.0015 2.9813 0.0432

200 ρ 2.0368 0.0532 2.0123 0.0394 2.0027 0.0066 1.99015 0.0587
η 3.0212 0.1492 3.0067 0.1145 3.0015 0.0012 2.9921 0.0044

Table 5. For various sample sizes, we compare estimates and mean squared errors of the
parameters at ρ = 3 and η = 3 using EM, NR, Bayes (GIBBS), and Bayes (TK).

n θ EM NR Bayes (GIBBS) Bayes (TK)
Estimate MSE Estimate MSE Estimate MSE Estimate MSE

10 ρ 4.8142 12.8476 4.5231 10.3842 2.9652 0.1123 3.1457 0.2982
η 2.4236 2.7189 2.6521 2.3451 2.9375 0.0298 2.8013 0.2035

20 ρ 3.7784 2.5438 3.5317 2.1825 2.9821 0.0954 3.2149 0.2657
η 2.8345 1.0984 2.9128 1.0564 2.9743 0.0281 2.8432 0.1721

25 ρ 3.6547 1.8124 3.3986 1.5873 2.9152 0.0879 3.1316 0.1954
η 2.8473 0.9742 2.9147 0.9041 2.9854 0.0243 2.8921 0.1564

50 ρ 3.3124 0.6275 3.1985 0.5821 2.9367 0.0743 3.1543 0.1589
η 2.9217 0.4521 2.9482 0.4224 2.9897 0.0189 2.9452 0.1276

75 ρ 3.1782 0.3318 3.1125 0.2982 2.9548 0.0598 3.0912 0.1457
η 2.9683 0.2845 2.9423 0.2981 2.9951 0.0157 2.9678 0.0982

100 ρ 3.1347 0.2118 3.1024 0.1983 2.9728 0.0475 3.0541 0.1148
η 2.9821 0.2254 2.9634 0.2348 2.9984 0.0134 2.9872 0.0457

200 ρ 3.0764 0.1213 3.0432 0.1078 2.9912 0.0243 3.0251 0.0723
η 2.9956 0.1012 2.9843 0.0943 2.9998 0.0081 2.9952 0.0089
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Table 6. HPD by Gibbs and asymptotic confidence intervals of the parameters at ρ = 1 and
η = 1.

n θ 95% Confidence Intervals HPD by Gibbs

10 ρ [0.3784, 3.6273] [0.5291, 3.3653]
η [0.1494, 2.4216] [0.2126, 1.9875]

20 ρ [0.5156, 2.1169] [0.6199, 2.1847]
η [0.2531, 1.9123] [0.3889, 1.7245]

25 ρ [0.5954, 2.0548] [0.6451, 1.9852]
η [0.3865, 1.8284] [0.3914, 1.6871]

50 ρ [0.6989, 1.6429] [0.7089, 1.5045]
η [0.5612, 1.6324] [0.5145, 1.5028]

75 ρ [0.7107, 1.4855] [0.7393, 1.4184]
η [0.5836, 1.4809] [0.6099, 1.4108]

100 ρ [0.7654, 1.3787] [0.7830, 1.3447]
η [0.6269, 1.3745] [0.6598, 1.3378]

200 ρ [0.8140, 1.2793] [0.8375, 1.2213]
η [0.7439, 1.2847] [0.7482, 1.2450]

Table 7. HPD by Gibbs and asymptotic confidence intervals of the parameters at ρ = 2 and
η = 3.

n θ 95% Confidence Intervals HPD by Gibbs

10 ρ [0.7356, 8.7145] [1.0432, 6.2321]
η [0.6216, 6.1453] [0.6817, 5.4648]

20 ρ [1.0084, 4.7084] [1.1559, 4.1879]
η [1.0533, 4.7615] [1.2123, 4.8684]

25 ρ [1.0742, 4.4532] [1.2914, 3.9314]
η [0.9401, 5.1564] [1.4147, 4.7208]

50 ρ [1.3604, 3.4585] [1.3722, 3.0745]
η [1.6812, 4.4782] [1.6059, 4.2970]

75 ρ [1.4516, 3.1594] [1.4628, 2.8832]
η [1.8302, 4.2518] [1.8699, 4.1254]

100 ρ [1.4763, 2.7345] [1.5637, 2.6944]
η [2.0017, 4.1256] [2.1124, 3.9542]

200 ρ [1.6504, 2.4987] [1.6578, 2.4827]
η [2.3393, 3.7546] [2.3415, 3.6919]
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Table 8. HPD by Gibbs and asymptotic confidence intervals of the parameters at ρ = 3 and
η = 1.

n θ 95% Confidence Intervals HPD by Gibbs
10 ρ [1.6139, 11.4124] [1.7524, 8.6352]

η [0.1527, 2.1745] [0.2145, 1.7425]
20 ρ [1.3722, 7.1245] [1.7548, 6.7183]

η [0.2983, 1.8254] [0.3742, 1.7564]
25 ρ [1.6623, 6.5423] [1.7854, 5.6245]

η [0.4122, 1.7520] [0.4152, 1.5487]
50 ρ [2.0759, 4.9475] [2.0784, 4.9421]

η [0.5716, 1.4884] [0.5976, 1.4824]
75 ρ [2.1537, 4.5625] [2.2145, 4.3682]

η [0.6298, 1.3987] [0.6354, 1.3756]
100 ρ [2.3261, 4.3416] [2.3134, 4.1325]

η [0.6897, 1.3647] [0.6734, 1.3149]
200 ρ [2.4579, 3.7854] [2.4564, 3.6578]

η [0.7545, 1.2568] [0.7827, 1.2147]

Estimating the lifetime in hours for a rechargeable battery output from the manufacturing process
is scant. In fact it must be noted that a particular battery has a lifetime accrued for it even if it has been
manufactured, which is subject to rough measurement and, hence, will allow only fuzzy triangular
numbers as the representation in the records. All such lifetime estimations for different batches and
instances of rechargeable batteries as produced in the plant look to be subjected to gamma distribution.
Let us put aside all the assumptions in measuring the lifetime of the batteries. A sample of size 30 is
taken from fictitious production batches. The average lifetime of the batteries is some fuzzy triangular
number.

(120, 150, 180), (80, 110, 140), (50, 90, 120), (200, 250, 300), (150, 180, 210),
(75, 100, 130), (60, 90, 120), (110, 150, 200), (95, 130, 160), (100, 130, 160),
(120, 160, 200), (90, 120, 150), (85, 120, 155), (130, 170, 210), (100, 140, 180),
(175, 210, 245), (150, 190, 230), (125, 160, 195), (70, 100, 140), (90, 120, 160),
(110, 150, 190), (180, 230, 280), (75, 110, 150), (160, 200, 240), (50, 90, 130),
(210, 260, 310), (95, 130, 165), (80, 110, 150), (200, 240, 280), (50, 80, 120).

A battery’s lifespan is represented by each triplet, which is a fuzzy triangular number. We estimate
the shape ρ and scale η of the gamma distribution since battery lifetimes follow a gamma distribution.
The estimation of ρ and η, however, becomes a fuzzy estimation procedure because each observation
is a fuzzy number. The reliability function becomes a fuzzy reliability function since ρ and η are
estimated from fuzzy lifetime data. To do this, we establish fuzzy bounds for R(t) using the triangular
fuzzy estimates of ρ and η.

The reliability function R(t), also known as the survival function, is the complement of the
cumulative distribution function (CDF). For a gamma distribution with the shape parameter ρ and
scale parameter η, the reliability function is expressed as: R(t) = 1 − F(t), where F(t) is the

AIMS Mathematics Volume 10, Issue 1, 438–459.



456

cumulative distribution function of the gamma distribution. Specifically:

R̃(t) = 1 −
∫ t

0

1
ηρΓ(ρ)

xρ−1e−
x
η dx.

Here, Γ(ρ) is the gamma function and t > 0.
After the creation of the randomized fuzzy values t̃i of the CDF function according to the size of the

given samples and the default values of initial parameters according to the formula (R̃(ti)), the values
of ti and the initial parameters were computed according to the functions of µt̃i(t) for each fuzzy unit t̃i.
Then, we extract for each R̃(ti) and find the expectation of R̃(ti) as follows:

R̃(t) = E(R̃(ti)/x̃i) =
1
K

K∑
h=1

R(h)(t) (4.1)

The MSE is obtained by the following formula:

MSE(R̃) =
1
K

K∑
i=1

(R̃ − R)2. (4.2)

Table 9. Comparing biases and MSE of several estimation methods at ρ = 3 and η = 2 for
the dataset.

EM NR Bayes (Gibbs) Bayes (TK)
n θ Estimate MSE Estimate MSE Estimate MSE Estimate MSE

30 ρ 3.2859 1.6759 2.8874 0.8397 2.9705 0.1263 2.9883 0.1045
η 1.8768 0.3258 1.7091 0.3879 2.0834 0.1684 2.0653 0.1387
R̃ 0.6593 0.0018 0.6473 0.0021 0.6747 0.0012 0.6984 0.0001

In comparison to the EM and NR approaches, the Bayes (Gibbs) and Bayes (TK) methods have
the lowest mean squared error (MSE) values, suggesting more accurate estimations for the considered
data. The fuzzy reliability of the dataset is reported as 0.6984 with TK approximation. Overall, Bayes
methods, especially TK, perform well for both the parameters.

5. Conclusions

The literature uses a variety of estimating techniques to determine the parameters of the gamma
distribution, including complete and censored data. However, it is noted that previous research was
limited to crisp and precise data. In spite of that, certain data may be imprecise or unclear in real-
world scenarios and represented as fuzzy information. Unfortunately, there was no discussion of how
to handle such types of imprecise data when it follows the gamma distribution. In this study, we
investigated several approaches for parameter estimation of the gamma distribution when the relevant
data are given as fuzzy information. The ML method makes use of the EM and NR algorithms, whereas
the Bayesian strategy makes use of TK’s approximation and Gibbs sampling. The effectiveness of these
estimating techniques was then investigated using a simulated study. The outcomes of the simulation
research clearly show that, although the EM approach has a slower processing speed, the ML estimates
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derived from the NR and EM methods behave very similarly. From the simulation findings, we can
state that the Bayesian procedure with informative priors using the TK method gives smaller biases
and MSEs when compared to other estimation methods discussed in the study.
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Appendix

The detailed explanation of the notations used in Section 2 are given below.
The observed log-likelihood function is 2.1 is

L∗(θ) = L∗(ρ, η; x̃) = −nρ log η − n logΓρ +
n∑

i=1

log
∫ ∞

0
xρ−1e−

x
ηµx̃i(x)dx
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and the first- and second-order derivatives with respect to ρ are as follows:

∂

∂ρ
L∗(ρ, η; x̃) = −n log η − nψ(ρ) +

n∑
i=1

∫ ∞
0

xρ−1 log x e−
x
ηµx̃i(x)dx∫ ∞

0
xρ−1 e−

x
ηµx̃i(x)dx

,

∂2

∂ρ2 L∗(ρ, η; x̃) = −nψ′(ρ) +
n∑

i=1

∫ ∞
0

xρ−1(log x)2 e−
x
ηµx̃i(x)dx∫ ∞

0
xρ−1 e−

x
ηµx̃i(x)dx

−

n∑
i=1


∫ ∞

0
xρ−1 log x e−

x
ηµx̃i(x)dx∫ ∞

0
xρ−1 e−

x
ηµx̃i(x)dx


2

= −nψ′(ρ) + Iρρ.

The first- and second-order derivatives with respect to η are as follows:

∂

∂η
L∗(ρ, η; x̃) = −

nρ
η
−

n∑
i=1

∫ ∞
0

xρ−1e−
x
η

(
x
η2

)
µx̃i(x) dx∫ ∞

0
xρ−1e−

x
ηµx̃i(x) dx

∂2

∂η2 L∗(ρ, η; x̃) =
nρ
η2 −

n∑
i=1

∫ ∞
0

(
x−2η
η4

)
xρe−

x
ηµx̃i(x) dx∫ ∞

0
xρ−1e−

x
ηµx̃i(x) dx

−

n∑
i=1


∫ ∞

0
xρη−2e−

x
ηµx̃i(x) dx∫ ∞

0
xρ−1e−

x
ηµx̃i(x) dx


2

=
nρ
η2 − Iηη

and the second-order mixed derivative with respect to η and ρ is:

∂2

∂η∂ρ
L∗(ρ, η; x̃) = −n

1
η
+

∫ ∞
0

xρη−2 log x e−
x
ηµx̃i(x)dx∫ ∞

0
xρ−1e−

x
ηµx̃i(x)dx

−

∫ ∞
0

xρe−
x
ηµx̃i(x)dx

∫ ∞
0

xρ−1 log x e−
x
ηµx̃i(x)dx(∫ ∞

0
xρ−1e−

x
ηµx̃i(x)dx

)2
= −n

1
η
+ Iρη.

Here the terms Iρρ, Iηη, and Iρη are denoted as follows:

Iρρ =
n∑

i=1

∫ ∞
0

xρ−1(log x)2e−
x
ηµx̃i(x)dx∫ ∞

0
xρ−1e−

x
ηµx̃i(x)dx

−

n∑
i=1


∫ ∞

0
xρ−1 log x e−

x
ηµx̃i(x)dx∫ ∞

0
xρ−1e−

x
ηµx̃i(x)dx


2

Iηη =
n∑

i=1

∫ ∞
0

(
x−2η
η4

)
xρe−

x
ηµx̃i(x)dx∫ ∞

0
xρ−1e−

x
ηµx̃i(x)dx

−

n∑
i=1


∫ ∞

0
xρη−2e−

x
ηµx̃i(x)dx∫ ∞

0
xρ−1e−

x
ηµx̃i(x)dx


2

Iρη =

∫ ∞
0

xρη−2 log x e−
x
ηµx̃i(x)dx∫ ∞

0
xρ−1e−

x
ηµx̃i(x)dx

−

∫ ∞
0

xρe−
x
ηµx̃i(x)dx

∫ ∞
0

xρ−1 log x e−
x
ηµx̃i(x)dx(∫ ∞

0
xρ−1e−

x
ηµx̃i(x)dx

)2 .
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