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Abstract: The primary objective of the present study was to investigate the enhancement of heat 

transfer in a Jeffery–Hamel hybrid nanofluid through a porous medium, within stretching/shrinking 

and convergent/divergent channels. The Darcy–Forchheimer (DF) law was employed to model the 

flow and thermal behavior of the nanofluid. The governing system of equations was derived using 

appropriate transformations. Numerical computations were performed using the NDSolve method in 

Mathematica-11. Results are presented through numerical data and graphical representations, 

illustrating the effects of various physical parameters on the flow profiles. Key findings indicate that 

increasing the inertia coefficient and nanoparticle volume fraction accelerates the velocity of the 

nanofluid in both divergent and convergent channels. Furthermore, higher porosity and inertia 

coefficients lead to increased drag forces exerted by the channel. Jeffery–Hamel hybrid nanofluids 

are significantly enhanced by increasing nanoparticle volume fraction, inertia coefficient, porosity, 

and the presence of radiation and heat source parameters, with a notably higher rate observed in the 

case of an expanding channel compared to a contracting one. 
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Nomenclature 

Symbols Unit Expressions Symbols Unit Expressions 

( ),r   
m

s
 polar coordinates Ec   Eckert number 

Fr   inertia coefficient bc   drag coefficient 

Kp   porosity parameter n   solid nanoparticles 

k   porous permeability Re   Reynolds number 

Pr   Prandtl number    channel angle 

hnfk   
thermal conductivity of hybrid 

nanofluid 
nf  K  nanofluid 

U  
m

s
 velocity 

w
T   channel temperature 

nfk   thermal conductivity of nanofluid S   stretching/shrinking rate 

T  K  temperature pc  
2

.

kgm

s K
 specific heat 

1 2,    
hybrid nanomaterial volume 

friction 
wU   central line velocity 

hnf  
k g

m s
 dynamic viscosity of hybrid 

nanomaterial 
hnf  

3

kg

m
 

density of hybrid 

nanomaterial 

p  
2

N

m
 pressure S

 

2m

s
 

 

stretching/shrinking rate
 

1. Introduction  

When nanometer-sized (1–100 nm) particles mix with base fluids such as water, oil, or ethylene 

glycol, nanofluids are formed. Nanoparticles are incredibly small particles used in a variety of 

applications, such as medical skin creams, environmental preservation and remediation, 

chemotherapy drugs, or bacterial sensors by mixing antibodies with nanotubes. Mineral particles, 

such as titanium oxide, are utilized in sunscreens within the cosmetics industry due to their superior 

long-term stability compared with conventional chemical protection. Nanomaterials are also used in 

athletic competitions and military applications, for instance, to create new disguise techniques by 

inserting mobile paint nanocrystals into the materials of soldiers’ uniforms. Sensor systems also 

make use of nanomaterials to boost the heat capacity of a base liquid. Conductivity is the initial heat 

constraint when increasing heat in nanomaterials, which are made up of aluminum, oxides, carbides, 

iron, and carbon, among other components.  

Choi [1] was the first to work with nanomaterials, and Eastman et al. [2] examined their 

extraordinarily high thermal conductivities. Mahanthesh et al. [3] computed the numerical solution of 

a magnetized nanofluid flow over a nonlinear broadened surface, and Alsabery et al. [4] described 

nano-liquid free conjugate convection. Nasrin et al. [5] examined the free convection of nano-liquids 

through a chamber and observed uncertain variations in flow patterns at various volume fraction 

levels. Bhatti and Rashidi [6] investigated the sound effects of thermo dispersal over a sheet in 

Williamson nano-liquids, and Parvin et al. [7] analyzed the complimentary convection of nano-liquids 

via a warped hollow space. Selimefendigil and Oztop [8] investigated nano-liquid flow through a 
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titled hole using a conjugated convection method. Bilal et al. [9] examined the magneto-bioconvection 

properties of chemically reactive nanofluids in a Darcy–Forchheimer flow. Ketchate et al. [10] 

analyzed magnetohydrodynamic (MHD) mixed convection flow instability of nanofluids in a porous 

channel, improving electronics cooling systems, heat exchangers, and car radiators.  

Nanomaterials are used in medicine to provide accurate targeted heating for cancer 

hyperthermia therapy. Furthermore, hybrid nanofluids improve solar thermal systems’ energy 

conversion efficiency and heat dissipation in industrial processes like metal cutting and welding. The 

performance of this thermal system, when exposed to a magnetic field, was investigated by Oudina et 

al. [11] through numerical analysis of hybrid nanofluid flow inside a porous cavity, heat transfer 

attributes, and entropy generation. Jamaludin et al. [12] analyzed the flow and heat transfer 

characteristics of hybrid nanofluids in the presence of magnetohydrodynamics and heat sources. 

Other models have explored nanofluid applications [13−17]. 

Porous media are hard mixtures with connected voids (pores) that transfer liquids under 

pressure gradients. This allows improved combustion efficiency and minimizes pollution due to the 

homogeneous radioactive heat flow. Porous media has different industrial applications, including 

residential heaters, gas turbines, automobile heaters, fuel cells, and energy management. Verma et al. [18] 

showed that the suction effect in nanofluids with porous media enhances heat transfer rates and the 

skin friction coefficient. Kapen et al. [19] found that suction in porous media reduces drag and 

maintains steady flow. The intricate flow patterns produced by the interaction of suction and porous 

media may aid in cooling effectiveness and heat transfer augmentation. Through numerical analysis, 

researchers investigated the steady boundary layer free convection flow over a horizontal flat plate 

inserted into a porous medium containing two salts and a water-based nanofluid. Khan et al. [20] 

investigated the dual nature of the solution for heat transfer and fluid flow across a 

stretching/shrinking sheet in porous media, and Uddin et al. [21] evaluated the bio-nano-convection 

flow in a porous media with blowing effects. 

Jeffery–Hamel flow refers to a two-dimensional, incompressible fluid flow between 

non-parallel, divergent/convergent (CD) channels that are inclined at a fixed angle and determined by 

a line inflow or outflow located at the end. This flow configuration can also involve 

stretching/shrinking of the channels, adding complexity to fluid dynamics. Jeffery–Hamel flow is 

essential in aerospace engineering for estimating fluid behavior in a variety of channel geometries, 

aiding the design of effective rocket nozzles and supersonic wind tunnels. It also has applications in 

the non-Newtonian fluid optimization of reactors and mixers in chemical engineering, enhancing 

process efficiency, and in the study of blood flow in artery narrowing for biomedical applications to 

improve the design of medical devices (e.g., stents). In addition, this flow model is utilized in heat 

transfer and microfluidics systems to maximize cooling and fluid distribution. George Barker Jeffery [22] 

in 1915 and Georg Hamel [23] in 1917 worked in the Jeffery–Hamel flow model. Ara et al. [24] 

explored heat transfer in Jeffery–Hamel flow under Lorentz forces, and Turkyilmazoglu et al. [25] 

extended the conventional Jeffery–Hamel flow to stretchable convergent/divergent channels. Hafeez 

et al. [26] examined heat transfer characteristics of Jeffery–Hamel flow of hybrid nanofluids in 

divergent and convergent channels. The wavelet technique was employed by Kumbinarasaiah and 

Raghunatha [27] to examine the numerical solution of the Jeffery–Hamel flow. Biswal et al. [28] 

characterized the flexibility of nanofluids using flexible inclined plates. Qadeer et al. [29] examined 

the convergent/divergent aspects of nanofluid flow using irreversibility analysis. Abdelouahab et al. [30] 

investigated the combined effects of rotation and thermal radiation on heat and mass transfer in 

magnetohydrodynamic flow within converging/diverging walls. Mohamed et al. [31] investigated 

heat transfer in electro-magnetohydrodynamic ternary hybrid nanofluid flow through 
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extending/narrowing walls with stretching/shrinking channels. 

Based on this literature review, this study aims to enhance heat transfer in Jeffery–Hamel hybrid 

nanofluids through porous media in stretching/shrinking and convergent/divergent channels. The 

Darcy–Forchheimer (DF) law is employed to model the flow and thermal properties of the nanofluid, 

with the governing equations derived using appropriate transformations. Numerical computations are 

conducted using the NDSolve method in Mathematica-11, and the results are analyzed through 

numerical data and graphical representations. Key findings reveal that increasing the nanoparticle 

volume fraction and inertia coefficient significantly accelerates nanofluid velocity in both divergent 

and convergent channels. Additionally, higher porosity and inertia coefficients enhance drag forces, 

and the presence of radiation and heat source parameters further boost the heat transfer rate. A 

notable higher enhancement is observed in expanding channels compared to contracting ones. This study 

introduces novel insights into the interplay of hybrid nanofluids and porous media in varying channel 

geometries, presenting valuable contributions for optimizing heat transfer in engineering applications. 

2. Materials and methods 

Let us consider the non-Newtonian behavior of incompressible Jeffrey fluids in the presence of 

two anisotropic, divergent/convergent, and stretching/shrinking channels. In this scenario, the polar 

coordinate system is applied since there is an angle of two between two walls. The velocity field for 

Jeffery fluid is [ ( , ),0,0]V u r = . The channel walls contract and expand with radial velocity ,w

s
u u

r
= =

as show in Figure 1. Liquid velocity only occurs at a radial path. The channel stretches when 0c  ; 

otherwise, it shrinks. 

 

Figure 1. Geometrical visualization of the model. 

2.1. Continuity equation 

( )
1

0,ru
r r


=


           (1) 
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2.2. Velocity equation 

2 2
2

2 2 2

1 1 1
,

hnf fr

hnf hnf hnf

vuu p u u u u
u Fu

r r r r r r r k



   

    
= − + − + + − − 

     
     (2) 

2

2 1
0.

hnf

hnf hnf

u p

r r



   

 
− =

 
         (3) 

2.3. Energy equation 

2 22 2

2 2 2

1 1 1
.

( )

hnf

hnf

p hnf

kT T T T u u
u

r c r r r r r r


 

          
= + + + +                  

    (4) 

Equations (1)−(3) are the main equations of continuity, momentum, and energy [32]. 

2.4. Boundary conditions 

The boundary conditions are as follows [33]: 

2
, 0, 0 0, , .w

r w

TU u T s
u at u U T at

r r r
  

 

  
= = = = = = = = 

  
    (5) 

Here, p  designates pressure, U represents the center line velocity, and wU  depicts the velocity 

of the channel wall. Furthermore, k  is the porous media permeability, and F represents the irregular 

inertia parameter. wT  is the wall temperature. Additionally, ,hnf hnf   represent the thermal 

conductivity and heat capacity of the hybrid nanomaterial, respectively. 

The thermophysical properties of hybrid nanomaterials are described as follows [34]: 

( ) ( )

( ) ( )

( )

( )
( ) ( )

( )
( )

2.5 2.5

1 2

1 2
2 1 1 2

1 2

2 1 1 2

2 2 2

2 2 2

1
,

1 1

1 1 ,

( ) ( )
1 1 ,

( ) ( )

2 2
.

2

hnf

f

hnf s s

f f f

p hnf p s p s

f f p fp f

bf s f shnf

bf bf s f s

c c c

c cc

k k k kk

k k k k k



  

  
   

  

  
   

 






=

− −

    
= − − + +        

    

    
= − − + +        

    

+ − −
=

+ + −
















 

Where  

( )
( )

11 1

1 1 1

2 2
.

ss f fbf

f s f f s

k k k kk

k k k k k





+ − −
=

+ + −
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In the above equations, n  represents solid nanoparticles of the base fluid, ( )p f
c designates the 

heat capacity, and ( ) ( )
1 2
,p ps s

c c  are the heat capacitance of hybrid nanomaterials. Furthermore, 

1 2,   describe the volume friction of the hybrid nanomaterial. f  represents the density of the base 

fluid, and 1 2,s s   designate the densities of the hybrid nanoparticles. Similarly, fk  depicts the thermal 

conductivity of the base fluid, and 1 2,s sk k  describe the thermal conductivities of hybrid nanoparticles. 

( ) ( ), .F r u r =           (6) 

The similarity variable can be written as: 

( )
( ) 2, , .

w

F T
f r

U T

 
 


= = =         (7) 

( ) ( ) ( ) ( )

( ) ( )( )( )( )

( ) ( ) ( )( )

1 2

1 2

1

2.5 2.5

1 2 2 1 1 2

2.5 2.5 2

1 2 2 1 1 2

2.5 2.52

1 2 2 1 1 2

2 Re 1 1 1 1

4 1 1 1 1

2 1 1 1 1

s s

f f

s s

p

f f

s

f

f ff

k f

Fr

 
      

 

 
      

 


      



     
  + − − − − + + +         

     

    
− − − − − + + +        

    

 
− − − − + +  

 

2 2 0,
s

f

f













   
 =     

   

    (8) 

( ) ( )( )
( )
( )

( )
( )

( ) ( )
( ) ( )

( )
( )

( )
( )

( )

2 21 2
2 1 1 2

2 2 21 2
2 1 1 22.5 2.5

1 2

4 2Pr 1 1

Pr
1 1 4 0.

Re 1 1

p phnf s s

f p pf f

p ps s

p pf f

c ck
f

k c c

c cEc
f f

c c

 
     

 

 
    

  

   
    +  + − − + +  +
   

    


     
     − − + + + = 
    − − 

     

  (9) 

 

Applying the transformation to the initial and boundary conditions, 

(0) 0, (0) 0, (0) 0, (1) , (1) 1.f f f S = =  = =  =       (10) 

Here, 
f

p

v
K

kU
=  is the porosity parameter, 

2

hnf

U
Ec

K


=  represents the Eckert number, 

cb
Fr

k
=  is 

the Darcy-Forchheimer law, 
( )

Pr
p f

hnf

c U

k


=  is the Prandtl number, and 

s
S

U
=  is the stretching 

parameter. When ( )0  , the channel is convergent; otherwise, it is divergent. 

2.5. Physical quantities 

The physical quantities are as follows: 
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( ) ( ) ( ) ( )
2.5 2.5 1 2

1 2 2 1 1 2

(1)
Re ,

1 1 1 1

f

s s

f f

f
C

 
     

 


=

     
 − − − − + +         

     

    (11) 

(1).
hnf

f

k
Nu

k
 =            (12) 

3. Numerical techniques 

The main system of Eqs (8) and (9) with associated boundary conditions (10) are solved 

numerically using the NDSolve method with Mathematica-11 software. The main system of ordinary 

differential equations (ODEs) covers various expressions represented by ( )1 2 3, , ....... nH H H H  with 

the independent variable   and the dependent variable n  with ( )1 2 3, , ,.......... nK K K K . The 

reputable partial differential equation (PDE) system also presents boundary conditions.  

NDSolve [{ ( )1 2 3, , ....... nH H H H , BCs}, ( )1 2 3, , ,.......... nK K K K , { ,  min,  max}].  

The suggested mathematical model is shown in Figure 2. 

 

Figure 2. Flowchart of the mathematical model. 

4. Discussion outcomes 

In this section, the behavior of the physical parameters porosity, Reynolds number, inertia, and 
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volume friction (
1 2,Re, , ,Kp Fr   ) and the Eckert number ( Ec ) is investigated against the velocity 

( )f  and temperature ( )  profiles. Results show ranging values as follows: 

( ) ( ) ( ) ( ) ( )1 250 200 ,Re 05 20 , 0.2 0.8 , 0.01 0.04 , 10 40Kp Ec Fr = − = − = − = − = = − . Significant 

physical quantities such as the Nusselt number uN  and skin friction 
fC are analyzed based on 

different variables such as , ,ReKp Fr , and Ec  in Tables 1 and 2.  

4.1. Velocity profile 

In this section, 
1 2,Re, , ,Kp Fr   are examined against velocity ( )f   for both convergent and 

divergent ( )0, 0    channels. Figure 3 depicts the porosity parameter Kp , ranging from 50 to 

200 against ( )f   for converging/diverging ( )0, 0    channels. This shows that higher values 

of Kp  result in enhanced velocity in both extending and narrowing ( )0, 0    channels. 

Where the thermophysical properties of base fluids and nanoparticles is represented in Table 1. 

Figure 4 shows that the velocity profile ( )f   increases in convergent cases when the Reynolds 

number increases; on the other hand, there is an opposite trend in the divergent case. By increasing 

the Reynolds number Re , ( )f   decreases as a result of reverse motion generating new drag 

forces in the flow, which increases resistance to velocity away from the channel wall. When the 

inertia parameter increases, ( )f   is enhanced in both extending and narrowing channels (Figure 5). 

Figures 6 and 7 show the behavior of volume friction parameters 1  and 2  for extending and 

narrowing walls, showing a similar influence against velocity variations ( )f   for both 

divergent/convergent channels.  

Table 1. Thermophysical properties of base fluids and nanoparticles [35]. 

Physical properties p

J
c

kgK

 
 
 

 K  3

kg

m

 
 
 

 
510

K

 −
 Pr  

Kerosene oil 2090 0.145 783 99 21 

Gold 717 5000 1800 28.4  

Water 4179 0.613 997.1 21 6.2 

Ag  235 429 10,500 1.89  
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Figure 3. Behavior of velocity ( ( )f  ) against the porosity parameter ( Kp ). 

 

Figure 4. Behavior of velocity ( ( )f  ) against the Reynolds number ( Re ). 

 

Figure 5. Behavior of velocity ( ( )f  ) against the inertia parameter ( Fr ). 
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Figure 6. Behavior of velocity ( ( )f  ) against volume friction ( 1 ). 

 

Figure 7. Behavior of velocity ( ( )f  ) against volume friction (
2 ). 

4.2. Temperature profile 

The influence of Eckert number ( Ec ) and Reynolds number ( Re ) on the temperature ( ( ) ) 

profile for divergent and convergent channels is illustrated in Figures 8 and 9, respectively. Ec  

ranges from 0.2 to 0.8; the higher the Eckert number, the higher the temperature for extending and 

narrowing ( )0, 0    walls. Physically, the nanoparticle temperature increases with higher 

values of Ec  in both convergent and divergent walls. Viscosity and dissipative energy are 

physically enhanced by higher Eckert number estimations.  

A higher Reynolds number results in higher temperatures in the convergent case, while the 

opposite is true in the divergent case. This distinction is critical; in a convergent channel, the 

temperature rises with increasing Reynolds number due to enhanced fluid compression and heat 

accumulation. In contrast, in a divergent channel, the temperature decreases as the flow expands, 

leading to heat dissipation and reduced thermal energy concentration. These opposing effects 

emphasize the differential thermal dynamics in varying channel geometries. This notion is essential 
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for understanding and optimizing heat transfer in diverse engineering applications.  

Table 2 analyzes the Nusselt number for both extending/narrowing ( )0, 0    channels; the 

convergent channel has higher capability to improve the heat transfer rate than the divergent channel. 

 

Figure 8. Behavior of temperature ( ( ) ) against the Eckert number ( Ec ). 

 

Figure 9. Behavior of temperature ( ( ) ) against the Reynolds number ( Re ). 

Table 2. Analysis of the Nusselt number in divergent/convergent channels. 

 Divergent channel ( 0  ) Convergent channel ( 0  ) 

  Nu  %age Nu  %age 

0.00 1.706  1.053  

0.01 1.906 11.72333 1.253 18.99335 

0.02 1.936 13.48183 1.283 21.84236 

0.03 1.966 15.24033 1.313 24.69136 

0.04 1.996 16.99883 1.343 27.54036 
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5. Conclusions 

This study investigates the enhancement of heat transfer in Jeffery–Hamel hybrid nanofluids in 

the presence of porous media within stretching/shrinking and convergent/divergent ( )0, 0  

channels. Utilizing the Darcy–Forchheimer (DF) law, the flow and thermal behaviors of the 

nanofluid are modeled, and the governing equations are derived through suitable transformations. 

Numerical solutions are obtained using the NDSolve method in Mathematica-11, with results 

presented in both numerical and graphical formats. The findings reveal that increasing the inertia 

coefficient and nanoparticle volume fraction accelerates fluid velocity in both channel types, while 

drag forces are amplified by higher porosity and inertia coefficients. Notably, the heat transfer rate is 

improved by radiation and heat source parameters; this is more significant in expanding channels. 

These insights provide a deeper understanding of hybrid nanofluids’ dynamics and their potential for 

engineering applications. The most important results are listed below: 

• Velocity increased for both convergent/divergent channels due to larger values of Kp . 

• Velocity was enhanced in the convergent case and reduced in the divergent case for several 

Reynolds number. 

• Hybrid nanofluids make a more significant contribution to the velocity field. 

• Temperature is enhanced for greater values of the Eckert number in both 

convergent/divergent channels. 

• Greater values of Reynolds number lead to increases in temperature in convergent channels 

and decreased temperature in divergent channels. 

• This phenomenon has important applications for environmental science and medical engineering. 

• The current research work may be applied to improve the efficiency and structure of heat 

exchangers by modified designs. It can also be applied to solar energy systems. 

Future directions: Future researchers can build on this work by exploring alternative nanofluid 

compositions, including eco-friendly or biodegradable materials, to enhance performance while 

maintaining environmental sustainability. Extending the study to three-dimensional flows or more 

complex geometries could provide greater applicability to real-world scenarios. Experimental 

validation of numerical findings would also be valuable in bridging theoretical models with practical 

outcomes. Investigating transient or turbulent flow conditions and incorporating nonlinear effects 

such as temperature-dependent properties or nanoparticle interactions could lead to more 

comprehensive models. 
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