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Abstract: This paper aimed to establish the averaging principle for the two-timescale stochastic
functional differential equations with past-dependent switching. Initially, the existence and uniqueness
of solutions, as well as moment estimates, were obtained by using classical interlacing techniques.
Furthermore, the interaction between the fast and slow processes was derived based on the properties
of the Poisson random measure. Subsequently, employing the coupling method and the integration
by parts formula for the generator, the exponential ergodicity of the frozen Markov chain and the
Lipschitz continuity of its invariant measures were proved. In addition to the challenges posed by the
dependence on history, the Lipschitz condition under uniform norms that the generator satisfies also
introduced computational and proof difficulties. Therefore, more refined estimates were provided for
the segment process. Based on these results, together with weak convergence and martingale methods,
the averaging principle for the original system was established. Finally, two examples were provided
to illustrate the differences between the results presented here and the classical results.
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1. Introduction

The phenomenon of two timescales is commonly found in complex systems, appearing in fields
such as materials science, chemistry, fluid dynamics, control engineering, biology, ecology, financial
economics, climate dynamics, and other applications. For example, see [1] and the references therein.
In classical gene expression models, Messenger Ribonucleic Acid (mRNA) molecules are produced
from Deoxyribo Nucleic Acid (DNA) through the transcription process, while protein molecules are
generated from mRNA through the translation process. Both types of molecules are subject to
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degradation; however, the kinetic behavior of proteins is much slower than that of mRNA. Proteins
can exist for several weeks, whereas mRNA may only last a few minutes. The processes by which
protein molecules acquire their functional structures and conformations also exhibit different
timescales, with the vibrational timescale of covalent bonds on the order of femtoseconds (10−15

seconds), while protein folding likely occurs on the order of seconds. When mathematically
characterizing these phenomena that span different timescales, it is often necessary to introduce
fast-varying and slow-varying processes, thereby forming a two-timescale system. Due to the
coupling between the fast and slow processes, directly addressing the original system is often
extremely challenging. A common approach is to average the fast variables in the slow-varying
equations to obtain an averaged equation, which no longer depends on the fast-varying processes.
This averaged equation can then serve as a bridge to designing feasible processes to address the
original system. For instance, reference [2] introduced a reduction method grounded in chemical
Langevin equations with two timescales, utilizing the stochastic averaging principle to derive a limit
averaging system. This limit averaging system serves as an approximation for the slow-reacting
process. This reduction method not only significantly enhances computational speed during
numerical simulations, but also provides accurate error bounds.

In recent years, the averaging principles for stochastic systems with regime-switching involving
two timescales have garnered considerable attention from scholars. This interest arises from the fact
that in control engineering, finance, biology, and information transmission, the current state of a
system is influenced not only by intrinsic uncertainty factors but also by random factors in the
external environment. When both influences occur simultaneously, traditional stochastic differential
equations or stochastic functional differential equations are insufficient to characterize such systems.
To effectively express the impacts of both internal and external factors, researchers have introduced
stochastic systems with switching. A significant feature of these systems is the coexistence of discrete
events and continuous dynamics, which interact differently across various models. This characteristic
yields results that differ from those of traditional stochastic differential equations. For example,
reference [3] discussed the stability of stochastic systems with regime-switching, while reference [4]
explored numerical methods for these systems. Furthermore, for the stochastic models with
regime-switching mentioned above, when drastic changes in the external environment lead to a
significant disparity in the frequency of changes both inside and outside the system, it becomes
necessary to introduce a two-timescale structure to describe this phenomenon. Yin and his
collaborators established a comprehensive asymptotic expansion theory related to nonhomogeneous
Markov chains and their generators under various conditions in reference [5], obtaining stationary
distributions and convergence rates while investigating the central limit theorem for occupation
measures. Building on this theoretical foundation, the reference [6] examined the long-term behavior
and stochastic persistence properties of population models driven by rapidly switching Markov
chains. Notably, in the aforementioned two-timescale models, the rapidly switching Markov chains
do not depend on the slow-varying process. However, in practical applications, fluctuations in the
external environment affect the internal system, and, conversely, changes within the internal system
can influence the external environment’s development. Consequently, state-dependent
regime-switching models have attracted significant scholarly interest. Generally speaking, for Markov
chains that do not depend on the system state, they can be treated as exogenous noise. The challenge
in dealing with regime-switching models that depend on the current state of the system lies in the
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coupling relationship between regime-switching and continuous states. Reference [7] used weak
convergence and martingale methods to prove numerical methods for stochastic differential equations
with state-dependent switching; reference [8] investigated small perturbation large deviation for
diffusion systems with state-dependent rapid switching, where the diffusion coefficients may be
degenerate; reference [9] established an asymptotic expansion theory for state-dependent switching
diffusion systems, thereby deriving averaging principles. It is significant to point out that these studies
have only considered regime-switching dependent on the current state of the system. Recently,
references [10–12] proposed diffusion systems with regime-switching dependent on the historical
state of the system and explored recurrence and ergodicity. To the best of our knowledge, research on
stochastic differential equations with past-dependent switching is still in its early stages. Therefore,
issues such as averaging principle, numerical computation, numerical simulation, and stability
analysis of this model are all worthy of consideration. This paper mainly aims to introduce two time
scales into the model and establish the corresponding averaging principle, thereby providing a
theoretical foundation for further research on the model.

To date, there are four main methods for establishing averaging principles in two-timescale
models. The first method is based on asymptotic expansion techniques of partial differential
equations. It begins by demonstrating that the density function of the solution to the original system
satisfies a Fokker-Planck-Kolmogorov equation (FPK equation) with singular perturbation under
suitable conditions. Next, an asymptotic expansion is performed on this equation, and by taking the
limit of the expansion, one obtains the limit function of the density function, which remains a valid
density function. Finally, integrating the limit density function with respect to the stationary density
function of the fast-varying process yields a density function that satisfies an FPK equation. The
corresponding stochastic differential equation for this FPK equation is the limit equation for the
slow-varying process in the original system. It should be noted that this method requires strong
smoothness conditions on the coefficients of the original system, with more detailed explanations
available in reference [13]. The second method is based on certain properties and estimates of the
solutions to the Poisson equation defined on the entire space, including the existence and uniqueness
of solutions, growth estimates, and estimates of the growth of partial derivatives. The foundational
theory for this approach was established by Pardoux [14–16]. Subsequently, a substantial amount of
literature has utilized methods involving the Poisson equation to obtain richer results, such as
mentioned in [17,18]. In particular, one of the advantages of this method is its ability to determine the
convergence rate of the slow-varying process. The third method is the perturbation test function
method, which was first proposed by Khasminskii in the 1960s [19] and later developed and refined
by Kushner [20]. The fourth method is based on the technique of time discretization. If the diffusion
coefficient of the slow-varying equation does not depend on the fast-varying process, one can seek the
strong convergence (in the Lp sense) limit of the slow-varying equation. More detailed explanations
can be found in reference [21]. If the diffusion coefficient of the slow-varying process depends on the
fast-varying process, an example in [22] illustrates that the slow-varying process no longer possesses
a strong convergence limit; in this case, one can only look for its weak convergence limit using time
discretization techniques. Detailed discussions can be found in reference [20].

In summary, this paper aims to develop an averaging principle for stochastic functional differential
equations with past-dependent switching that incorporate two time scales. To this end, this paper
employs the aforementioned time discretization technique and is organized as follows. In the next
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section, we first provide definitions and assumptions of the model presented in this paper and prove
that the switching process can be represented as a stochastic differential equation with respect to the
Poisson random measure. Based on this, we can obtain the existence and uniqueness of the solution as
well as the moment estimation. Section 3 mainly studies the interaction between fast-varying and slow-
varying processes. Section 4 demonstrates through the coupling method that the exponential ergodicity
of the frozen Markov chain does not depend on the fixed parameter, and obtains the Lipschitz continuity
of invariant measures with respect to fixed parameters. The tightness of the slow-varying process Xε(t)
and the moment estimation of the segment process are discussed in Section 5. Based on this preparatory
work, Section 5 presents the core Theorem 5.5 of this article, which illustrates the main limit theorem
in the sense of weak convergence. Finally, Section 6 provides several different types of examples to
illustrate the results of this article.

2. Formulation and preliminaries

This paper considers the two-component process (Xε(t), αε(t)) where Xε(t) satisfies

dXε(t) = b(Xε
t , α

ε(t))dt + σ(Xε
t , α

ε(t))dW(t), (2.1)

z′ defines the transpose of z, C([a, b];Rn) denotes the family of continuous function ν from [a, b] to Rd

with the norm
||ν||∞ = supa≤t≤b|ν(t)|,

τ denotes the delay length,

b(·, ·) = (b1, b2, · · · , bn)′ : C([−τ, 0];Rn) × S 7−→ Rn,

σ(·, ·) = [σi j]n×q : C([−τ, 0];Rn) × S 7−→ Rn×q,

αε(t) is a pure jump process taking value in

S = {1, 2, . . . ,N},

and the set of positive integers with a finite N and W(t) is a standard Brownian motion defined on the
complete probability space (Ω,F , (Ft)t≥0,P), taking values in Rq and independent of αε(t). We assume
that the switching intensity of αε(t) depends on the segment process Xε

t , that is,

P(αε(t + δ) = j|αε(t) = i, Xε
s , α

ε(s), s ≤ t) =
1
ε

qi j(Xε
t )δ + o(δ), if i , j, (2.2a)

P(αε(t + δ) = i|αε(t) = i, Xε
s , α

ε(s), s ≤ t) = 1 +
1
ε

qii(Xε
t )δ + o(δ), (2.2b)

for δ > 0, i, j ∈ S and ε > 0 is a small positive parameter. For convenience of notation, we define

qi = −qii, i ∈ S .

The main objective of this paper is to establish the averaging principle for the aforementioned model.
The highlights and major contributions of this paper are reflected in the subsequent key aspects:
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(1) To the best of our knowledge, this paper establishes for the first time the averaging principle for
stochastic functional differential equations with past-dependent switching involving two
timescales. Since the diffusion coefficient depends on the fast-varying process, the
counterexample mentioned in the introduction indicates that this model does not possess a strong
convergence limit. Therefore, this paper employs weak convergence methods and martingale
methods to address this difficulty.

(2) Since Xε(t) and αε(t) depend on Xε
t , the existence and uniqueness of solutions, the interaction

between the fast-varying and slow-varying processes, and the invariant measure from classical
literature are no longer applicable. Therefore, this article utilizes the method in [23, 24], which
represents the switching process as a stochastic differential equation with respect to the Poisson
random measure. The advantage of doing so is that we can apply techniques related to stochastic
differential equations to the switching process. Furthermore, based on this, we obtain the
interaction between fast-varying and slow-varying processes, which will be repeatedly used in
the martingale method. At the same time, this article also discusses the moment estimation of
the segment process, obtaining an order that is sufficiently close to half, which will be used in
the implementation of martingale methods together with inequality (3.3) to form control over the
estimation term of martingales. In the following, the assumptions used in this paper are
presented along with some explanations.

The following are the assumptions that will be used in this paper. Throughout this paper, K denotes
a generic positive constant, whose value may change for different usage, so

K + K = K and KK = K

are understood in an appropriate sense. Kβ represents the generic constant depending on parameters β.
Let us begin by introducing some conditions on the two-timescale system (Xε(t), αε(t)), which will be
used throughout this article.

(A1) Assume that the initial value
Xε

0 = ξ ∈ C([−τ, 0];Rn)

is nonrandom and satisfies the Lipschitz property, and the initial value

αε(0) = i0 ∈ S

is independent of ε.
(A2) For any ϕ1, ϕ2 ∈ C([−τ, 0];Rn) and any i ∈ S , there exists a positive constant L1 such that

|b(ϕ1, i) − b(ϕ2, i)|2 ∨ |σ(ϕ1, i) − σ(ϕ2, i)|2 ≤ L1(||ϕ1 − ϕ2||
2
∞). (2.3)

(A3) For each ϕ ∈ C([−τ, 0];Rn),
Q(ϕ) = (qi j(ϕ))i, j∈S

is a conservative transition rate matrix.
(A4) Assume that

βi j := inf
ϕ∈C([−τ,0],Rn)

qi j(ϕ) > 0

for any i, j ∈ S .
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(A5) Assume that
M := sup

i∈S

∑
j∈S , j,i

sup
ϕ∈C([−τ,0],Rn)

qi j(ϕ) < ∞.

(A6) For any ϕ1, ϕ2 ∈ C([−τ, 0];Rn), there exists a constant K > 0 such that

||Q(ϕ1) − Q(ϕ2)||l1 := sup
i∈S

∑
j,i

|qi j(ϕ1) − qi j(ϕ2)| ≤ K||ϕ1 − ϕ2||∞.

Owing to the fact that b(·, i) and σ(·, i) are independent of t, the condition (A2) yields the linear growth
condition, that is, for any i ∈ S and any ϕ ∈ C([−τ, 0];Rn),

|b(ϕ, i)| ∨ |σ(ϕ, i)| ≤ K(1 + ||ϕ||∞). (2.4)

Thanks to the condition (A4) and the finite state space, each state has a strictly positive arrival
probability. According to the definition of irreducibility, we can conclude that

Q(ϕ) = (qi j(ϕ))i, j∈S

is a irreducible transition rate matrix for each ϕ ∈ C([−τ, 0];Rn). To proceed, we construct αε(t)
as the solution to a stochastic differential equation with respect to a Poisson random measure. For
ϕ ∈ C([−τ, 0],Rn) and ε > 0, let {Γεi j(ϕ), i, j ∈ S } be a family of consecutive left-closed and right-open
intervals on the half-line, each of length qi j(ϕ)/ε, that is

Γε12(ϕ) =
[
0,

q12(ϕ)
ε

)
, . . . ,Γε1N(ϕ) =

[ N−1∑
l=2

q1l(ϕ)
ε

,
q1(ϕ)
ε

)
,

. . .

Γεi j(ϕ) =
[ i−1∑

l=1

ql(ϕ)
ε
+

j−1∑
l=1

qil(ϕ)
ε

,

i−1∑
l=1

ql(ϕ)
ε
+

j∑
l=1

qil(ϕ)
ε

)
, i, j ∈ S , i ≥ 1, j , i,

. . .

ΓεN(N−1)(ϕ) =
[ N−1∑

l=1

ql(ϕ)
ε
+

N−1∑
l=1

qil(ϕ)
ε

,

N−1∑
l=1

ql(ϕ)
ε
+

N∑
l=1

qil(ϕ)
ε

)
.

For convenience of notation, we set

Γεii(ϕ) = ∅ and Γεi j(ϕ) = ∅

if
qi j(ϕ) = 0.

Before stating the construction of a Poisson random measure, we give the following lemma to
facilitate a subsequent proof.

Lemma 2.1. Assume that the condition (A5) holds. For any ϕ1, ϕ2 ∈ C([−τ, 0];Rn) and any i, j ∈ S ,

m(Γεi j(ϕ1)∆Γεi j(ϕ2)) ≤
2N
ε
||Q(ϕ1) − Q(ϕ2)||l1 ,

where m denotes the Lebesgue measure on R.
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Proof. According to the definition of {Γεi j(ϕ), i, j ∈ S },

m(Γεi j(ϕ1)∆Γεi j(ϕ2)) ≤
1
ε

∣∣∣∣ i−1∑
k=1

qk(ϕ1) +
j−1∑

k=1,k,i

qik(ϕ1) −
i−1∑
k=1

qk(ϕ2) −
j−1∑

k=1,k,i

qik(ϕ2)
∣∣∣∣

+
1
ε

∣∣∣∣ i−1∑
k=1

qk(ϕ1) +
j∑

k=1,k,i

qik(ϕ1) −
i−1∑
k=1

qk(ϕ2) −
j∑

k=1,k,i

qik(ϕ2)
∣∣∣∣

≤
2
ε

i−1∑
k=1

|qk(ϕ1) − qk(ϕ2)| +
2
ε

j∑
k=1,k,i

|qik(ϕ1) − qik(ϕ2)|

≤
2
ε

i−1∑
k=1

N∑
l=1,l,k

|qkl(ϕ1) − qkl(ϕ2)| +
2
ε

j∑
k=1,k,i

|qik(ϕ1) − qik(ϕ2)|

≤
2N
ε
||Q(ϕ1) − Q(ϕ2)||l1 .

This completes the proof. □

Next, we provide an explicit construction of the Poisson random measure as in [25, p.42] or [26, p.26].
Under condition (A5), we set

Hε = N(N − 1)M/ε

as an upper bound on the total length of {Γεi j(ϕ), i, j ∈ S } for fixed ε > 0. Let ξεl , l = 1, 2, . . . be a
sequence of random variables on [0,Hε] with

P(ξεl ∈ dx) =
m(dx)

Hε
(2.5)

and τεk, k = 1, 2, . . . be nonnegative random variables such that

P(τεk > t) = exp(−Hεt). (2.6)

Suppose that {ξεl , τ
ε
k}l,k≥1 are all mutually independent. Set

ζε1 = τ
ε
1, . . . , ζεk = τ

ε
1 + τ

ε
2 + · · · + τ

ε
k, k ∈ N.

Put
Dε

pε =
⋃
k∈N

{ζεk }

and
pε(ζεk ) = ξεk , k ∈ N.

Correspondingly, introduce a counting measure as follows:

Nε
pε((0, t] × A) = #{s ∈ Dε

pε : 0 < s ≤ t, pε(s) ∈ A}, t > 0, A ∈ B([0,∞)),

where # means the number of · counting in the {·}. Then, {pε(t)}t≥0 is a Poisson point process that
satisfies the jump height ξεk at the jump time ζεk , and its corresponding Poisson random measure is
Nε

pε(dt, dz) with intensity measure dt ×m(dz), which is independent of {W(t)}t≥0. Define

Vε : C([−τ, 0];Rn) × Z+ × R
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by
Vε(ϕ, i, z) =

∑
j∈S , j,i

( j − i)I{Γεi j(ϕ)}(z)

and the systems of equations
dXε(t) = b(Xε

t , α
ε(t))dt + σ(Xε

t , α
ε(t))dW(t),

dαε(t) =
∫
R

Vε(Xε
t , α

ε(t−), z)Nε
pε(dt, dz).

(2.7)

If the above systems of equations has a solution, the solution (Xε(t), αε(t)) to (2.7) satisfies Eqs (2.1)
and (2.2). In fact, we only need to demonstrate that the solution satisfies (2.2). Due to the property of
independent increment of the Poisson random measure, for any A ∈ B([0,∞)) and t, δ > 0,

P(Nε
pε((t, t + δ] × A) ≥ 2) = 1 − e−δm(A)δm(A) − e−δm(A) = o(δ)

and from
dαε(t) =

∫
R

Vε(Xε
t , α(t−), z)Nε

pε(dt, dz),

we have
αε(t + δ) − αε(t) =

∑
t≤s≤t+δ,s∈Dε

pε

∑
j∈S

( j − αε(s−))IΓε
αε(s−) j(X

ε
s )(pε(s)). (2.8)

In particular, if αε(t) = i,

αε(ζε,t1 ) = i +
∑
j∈S

( j − i)IΓεi j(X
ε

ζ
ε,t
1

)(pε(ζε,t1 )) = i +
∑
j∈S

( j − i)IΓεi j(X
ε

ζ
ε,t
1

)(ξε,t1 ), (2.9)

where ζε,t1 and ξε,t1 denote the first jump time and jump height of pε(t) after time t. For j , i and
ϕ ∈ C([−τ, 0];Rn),

P(αε(t + δ) = j|αε(t) = i, Xε
t = ϕ) = P(αε(t + δ) = j,

Nε
pε((t, t + δ] × [0,Hε]) = 1|αε(t) = i, Xε

t = ϕ) + P(αε(t + δ) = j,

Nε
pε((t, t + δ] × [0,Hε]) ≥ 2|αε(t) = i, Xε

t = ϕ) = P(pε(ζε1) ∈ Γεi j(ϕ),

Nε
pε((t, t + δ] × [0,Hε]) = 1|αε(t) = i, Xε

t = ϕ) + o(δ) =
1
ε

e−
qi j(ϕ)
ε δqi j(ϕ)δ + o(δ)

=
1
ε

qi j(ϕ)δ + o(δ).

For j = i and ϕ ∈ C([−τ, 0];Rn),

P(αε(t + δ) = i|αε(t) = i, Xε
t = ϕ) = P(αε(t + δ) = i,

Nε
pε((t, t + δ] × [0,Hε]) = 0|αε(t) = i, Xε

t = ϕ) + P(αε(t + δ) = i,

Nε
pε((t, t + δ] × [0,Hε]) = 1|αε(t) = i, Xε

t = ϕ) + P(αε(t + δ) = i,

Nε
pε((t, t + δ] × [0,Hε]) ≥ 2|αε(t) = i, Xε

t = ϕ) = e
qii(ϕ)
ε δ + o(δ)

= 1 +
1
ε

qii(ϕ)δ + o(δ).

Using (2.7), the following theorem gives the existence and uniqueness of solution and the moment
estimation which is independent of the small parameter ε.
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Theorem 2.2. Suppose that (A1)–(A6) hold. Then, for ε > 0 and any initial value

Xε
0 = ξ(t) ∈ C([−τ, 0];Rn)

and
αε(0) = i0 ∈ S ,

there exists a unique global strong solution (Xε(t), αε(t)) of (2.1) and (2.2). Moreover, for every T > 0,
there exists a positive constant KT such that

sup
0<ε<1

E
(

sup
−τ≤t≤T

|Xε(t)|4
)
≤ KT . (2.10)

We prepare a lemma to prove this theorem (see [27, Theorem 2.2]).

Lemma 2.3. Assume that (A2) holds. Then, for any i ∈ S , there exists a unique gobal solution X(t) to
the following equation:

dX(t) = b(Xt, i)dt + σ(Xt, i)dW(t)

with initial time t0 and initial value

Xt0 = ϕ ∈ C([−τ, 0];Rn).

Moreover, the initial time t0 can be a random variable provided that it is a stopping time.

Remark 2.4. For fixed state i ∈ S , under the global Lipschitz condition, the Picard iterative sequence
can approximate a unique solution X(t) ([27, Theorem 2.2]). When the initial time is a stopping time,
it does not affect the techniques used in the proof, such as martingales isometry ([28, Remark 3.10]).
This proof is omitted here.

Proof of Theorem 2.2. To construct the solution to (2.1) and (2.2) with initial value (ξ, i0) for fixed
ε > 0, we use the interlacing procedure similar to [11, Theorem 3.1] or [28, Theorem 3.13]. Let
X̃0,ε(t), t ≥ 0 be the solution to

dX̃0,ε(t) = b(X̃0,ε
t , i0)dt + σ(X̃0,ε

t , i0)dW(t)

with initial value
X̃0,ε(t) = ξ(t), t ∈ [−τ, 0].

Here, for the sake of uniformity of notation, we superscript X̃0,ε(t) with ε, which is virtually not related
to ε. Let

σε
1 = inf

{
t > 0 :

∫ t

0

∫
R

Vε(X̃0,ε
s , i0, z)Nε

pε(ds, dz) , 0
}

and

i1 = i0 +

∫ σε1

0

∫
R

Vε(X̃0,ε
s , i0, z)Nε

pε(ds, dz).

To proceed, let X̃1,ε(t), t ≥ σε
1 be the solution to

dX̃1,ε(t) = b(X̃1,ε
t , i1)dt + σ(X̃1,ε

t , i1)dW(t)
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with initial value
X̃1,ε(t) = X̃0,ε(t), t ∈ [σε

1 − τ, σ
ε
1].

Define

σε
2 = inf

{
t > σε

1 :
∫ t

0

∫
R

Vε(X̃1,ε
s , i1, z)Nε

pε(ds, dz) , 0
}

and

i2 = i1 +

∫ σε2

σε1

∫
R

Vε(X̃1,ε
s , i0, z)Nε

pε(ds, dz).

For the convenience of notation, set
σε

0 = 0.

When we have already defined X̃m−2,ε(t) on [σε
m−2 − τ, σ

ε
m−1], m ≥ 2, let X̃m−1,ε(t), t ≥ σε

m−1 be the
solution to

dX̃m−1,ε(t) = b(X̃m−1,ε
t , im−1)dt + σ(X̃m−1,ε

t , im−1)dW(t)

with initial value
X̃m−1,ε(t) = X̃m−2,ε(t), t ∈ [σε

m−1 − τ, σ
ε
m−1].

Define

σε
m = inf

{
t > σε

m−1 :
∫ t

0

∫
R

Vε(X̃m−1,ε
s , im−1, z)Nε

pε(ds, dz) , 0
}

and

im = im−1 +

∫ σεm

σεm−1

∫
R

Vε(X̃m−1,ε
s , im−1, z)Nε

pε(ds, dz). (2.11)

Clearly, continuing this procedure, we can construct a process

Xε(t) = X̃m,ε(t), αε(t) = im,

when
σε

m ≤ t ≤ σε
m+1, m ≥ 0,

which satisfies that
Xε(t) = ξ(t), t ∈ [−τ, 0]

and that 
Xε(t ∧ σε

m) = ξ(0) +
∫ t∧σεm

0
b(Xε

s , α
ε(s))ds +

∫ t∧σεm

0
σ(Xε

s , α
ε(s))dW(s),

αε(t ∧ σε
m) = i0 +

∫ t∧σεm

0

∫
R

Vε(Xε
s , α

ε(s−), z)Nε
pε(ds, dz).

Define
σε
∞ = lim

m→∞
σε

m.

To imply that (Xε(t), αε(t)) is the unique global solution, it is only necessary to obtain

σε
∞ = ∞.
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For any T > 0, one has

P(σε
m ≤ T ) = P

( ∫ σεm∧T

0

∫
R

I{
z∈
[
0,
∑N

j=1 q j(Xε
s )/ε

]}Nε
pε(ds, dz) = m

)
≤ P

( ∫ T

0

∫
R

I{z∈[0,Hε]}Np(ds, dz) ≥ m
)

=

∞∑
k=m

e−HεT (HεT )k

k!
,

which implies that
P(σε

m ≤ T )→ 0,

as m→ ∞. It follows that
σε
∞ = ∞.

The uniqueness of X̃m,ε(t) and the uniqueness of im defined by (2.11) on [σε
m, σ

ε
m+1] can derive the

uniqueness of (Xε(t), αε(t)). Finally, for the resulting solution, it can be given that for every t ∈ [0,T ]

E
(

sup
0≤s≤t
|Xε(s)|4

)
≤ K

[
||ξ||4∞ + E

(
sup
0≤s≤t

∣∣∣∣ ∫ s

0
b(Xε

r , α
ε(r))dr

∣∣∣∣4) + E( sup
0≤s≤t

∣∣∣∣ ∫ s

0
σ(Xε

r , α
ε(r))dW(r)

∣∣∣∣4)]
≤ K[||ξ||4∞ + E

( ∫ s

0
|b(Xε

r , α
ε(r))|4dr

)
+ E

( ∫ s

0
|σ(Xε

r , α
ε(r))|4dr

)]
≤ K||ξ||4∞ + K

∫ t

0

[
1 + E

(
sup
−τ≤u≤r

|Xε(u)|4
)]

dr.

It is easy to observe that

E
(

sup
−τ≤s≤t

|Xε(s)|4
)
≤ ||ξ||4∞ + E

(
sup
0≤s≤t
|Xε(s)|4

)
.

This, together with Gronwall inequality, yields that

E
(

sup
−τ≤s≤t

|Xε(s)|4
)
≤ KT .

Letting t = T concludes the proof. □

3. Interaction between fast-varying and slow-varying processes

Applying (2.7), consider the solution (Xε(t), α1,ε(t)) and (Yε(t), α2,ε(t)) respectively to the following
systems of equations: 

dXε(t) = b1(Xε
t , α

1,ε(t))dt + σ1(Xε
t , α

1,ε(t))dW(t),

dα1,ε(t) =
∫
R

Vε(Xε
t , α

1,ε(t−), z)Nε
pε(dt, dz),

X0 = ϕ1, α
1,ε(0) = i0 ∈ S ,

(3.1)
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and 
dYε(t) = b2(Yε

t , α
2,ε(t))dt + σ2(Yε

t , α
2,ε(t))dW(t),

dα2,ε(t) =
∫
R

Vε(Yε
t , α

2,ε(t−), z)Nε
pε(dt, dz),

Y0 = ϕ2, α
2,ε(0) = i0 ∈ S ,

(3.2)

where we assume that ϕ1, ϕ2 ∈ C([−τ, 0];Rn) are nonrandom and W(t) is a standard Brownian motion.

Lemma 3.1. Suppose that bi, σi, i = 1, 2 satisfy the condition (A2), replacing b and σ, respectively. If

α1,ε(s) = α2,ε(s)

for any s, t ∈ [0,T ], s < t, there exist the solutions to (3.1) and (3.2) such that

1
t − s

∫ t

s
E
[
I{α1,ε(r),α2,ε(r)}|F

ε
s

]
dr ≤ 2N(N − 1)

1
ε

∫ t

s
E(||Q(Xε

r ) − Q(Yε
r )||l1 |F

ε
s )dr, (3.3)

where
F ε

t = σ{W(s),Nε
pε((0, s] × [0,Hε]) : s ≤ t}.

Proof. Obviously,

1 − e−xHε

− e−xHε

· (xHε) = e−xHε
[ (xHε)2

2
+ o(x2)

]
for any x > 0. Choose a δ > 0 so that when x ∈ (0, δ],

1 − e−xHε

− e−xHε

· (xHε) ≤ (xHε)2

holds. Divide [s, t] by δ. Let tk = s + kδ, k = 0, 1, 2, . . . , K̄, where we denote

K̄ = [
t − s
δ

],

the integer part of t−s
δ

, and
tK̄+1 = t.

For the interval [t0, t1],

P(α1,ε(t1) , α2,ε(t1)|F ε
s ) = P(α1,ε(t1) , α2,ε(t1),Nε

pε((t0, t1] × [0,Hε]) = 1|F ε
t0 )

+ P(α1,ε(t1) , α2,ε(t1),Nε
pε((t0, t1] × [0,Hε]) ≥ 2|F ε

t0 ). (3.4)

According to the definition of the Poisson random measure and its property of independent
increment,

P(α1,ε(t1) , α2,ε(t1),Nε
pε((t0, t1] × [0,Hε]) ≥ 2|F ε

t0 )

≤ P(Nε
pε((t0, t1] × [0,Hε]) ≥ 2)

= 1 − e−Hεδ − e−Hεδ · (Hεδ)
≤ (Hεδ)2. (3.5)
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Below, we estimate the first term on the right side of Eq (3.4). Recall that ζε,sk and ξε,sk denote the kth
jump time and jump height after time s, respectively. From (2.8) and (2.9),

P(α1,ε(t1) , α2,ε(t1),Nε
pε((t0, t1] × [0,Hε]) = 1|F ε

t0 )

= P(α1,ε(t1) , α2,ε(t1), ζε,t01 ∈ (t0, t1], ζε,t02 > t1|F
ε

t0 )

= P
(
α1,ε(t0) +

∑
l∈S

(l − α1,ε(t0))IΓε
α1,ε(t0)l

(Xε

ζ
ε,t0
1

)(ξ
ε,t0
1 )

, α2,ε(t0) +
∑
l∈S

(l − α2,ε(t0))IΓε
α2,ε(t0)l

(Yε
ζ
ε,t0
1

)(ξ
ε,t0
1 ), ζε,t01 ∈ (t0, t1], ζε,t02 > t1

∣∣∣F ε
t0

)
= P

(
ξε,t01 ∈

⋃
l,α1,ε(s)

{Γε
α1,ε(t0)l(X

ε

ζ
ε,t0
1

)∆Γε
α2,ε(t0)l(Y

ε

ζ
ε,t0
1

)}, ζε,t01 ∈ (t0, t1], ζε,t02 > t1

∣∣∣F ε
t0

)
. (3.6)

Note that on [t0, ζ
ε,t0
1 ], the solutions Xε(u) and Yε(u) of (3.1) and (3.2) are respectively determined by

dXε(u) = b1(Xε
u, α

1,ε(t0))du + σ1(Xε
u, α

1,ε(t0))dW(u),
dYε(u) = b2(Yε

u , α
2,ε(t0))du + σ2(Yε

u , α
2,ε(t0))dW(u),

where the initial values are, respectively, Xε
t0 and Yε

t0 . Therefore, due to the mutual independence of
Nε

pε(dt, dz) and (W(t))t≥0, it follows that {Xε
u}u∈[t0,ζ

ε,t0
1 ] , {Yε

u }u∈[t0,ζ
ε,t0
1 ], and ζε,t01 , ζε,t02 are mutual conditional

independent with respect to F ε
t0 . This, together with (2.5), (2.6), and (3.6) yields that

P(α1,ε(t1) , α2,ε(t1),Nε
pε((t0, t1] × [0,Hε]) = 1|F ε

t0 )

=

∫ t1

t0

∫
Ω

1
Hε

m
( ⋃

l,α1,ε(t0)

{Γε
α1,ε(t0)l(X

ε
v )∆Γε

α1,ε(t0)l(Y
ε
v )}

)
P(dω|F ε

t0 ) × e−Hε(r−u)P(ζε,t01 ∈ du)

≤

∫ t1

t0
E
(
m

( ⋃
l,α1,ε(t0)

{Γε
α1,ε(t0)l(X

ε
v )∆Γε

α1,ε(t0)l(Y
ε
v )}

)∣∣∣F ε
t0

)
du. (3.7)

Substituting (3.5) and (3.7) into (3.4) yields that

P(α1,ε(t1) , α2,ε(t1)|F ε
t0 ) ≤ (Hεδ)2 + 2N(N − 1)

∫ t1

t0
E(||Q(Xε

u) − Q(Yε
u )||l1 |F

ε
t0 )du. (3.8)

To proceed, we estimate

P(α1,ε(t2) , α2,ε(t2)|F ε
t0 ) = P(α1,ε(t2) , α2,ε(t2), α1,ε(t1) , α2,ε(t1)|F ε

t0 )
+ P(α1,ε(t2) , α2,ε(t2), α1,ε(t1) = α2,ε(t1)|F ε

t0 ). (3.9)

On one hand, (3.8) gives the estimation of the first term on the right side of the above equation. On the
other hand, clearly,

P(α1,ε(t2) , α2,ε(t2), α1,ε(t1) = α2,ε(t1)|F ε
t0 )

≤ P(α1,ε(t2) , α2,ε(t2), α1,ε(t1) = α2,ε(t1),Nε
pε((t1, t2] × [0,Hε]) = 1|F ε

t0 ) + (Hεδ)2. (3.10)
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Similar to (3.6) and (3.7),

P(α1,ε(t2) , α2,ε(t2), α1,ε(t1) = α2,ε(t1),Nε
pε((t1, t2] × [0,Hε]) = 1|F ε

t0 )

= E(Iα1,ε(t1)=α2,ε(t1)P(α1,ε(t2) , α2,ε(t2),Nε
pε((t1, t2] × [0,Hε]) = 1|F ε

t1 )|F ε
t0 ). (3.11)

Restricted to the set {α1,ε(t1) = α2,ε(t1)}, it can be deduced that

P(α1,ε(t2) , α2,ε(t2),Nε
pε((t1, t2] × [0,Hε]) = 1|F ε

t1 )

= P(α1,ε(t2) , α2,ε(t2), ζε,t11 ∈ (t1, t2], ζε,t12 > 2δ|F ε
t1 )

≤ P
(
ξε,t11 ∈

⋃
l,α1,ε(t1)

{Γε
α1,ε(t1)l(X

ε

ζ
ε,t1
1

)∆Γε
α2,ε(t1)l(Y

ε

ζ
ε,t1
1

)}, ζε,t11 ∈ (t1, t2], ζε,t12 > t2

∣∣∣F ε
t1

)
=

∫ t2

t1

∫
Ω

1
Hε

m
( ⋃

l,α1,ε(t1)

{Γε
α1,ε(t1)l(X

ε
u))∆Γε

α2,ε(t1)l(Y
ε
u )}

)
P(dω|F ε

t1 )e−Hε(t2−u)P(ζε,t11 ∈ du)

≤ 2N(N − 1)
1
ε

∫ t2

t1
E(||Q(Xε

u) − Q(Yε
u )||l1 |F

ε
t1 )du. (3.12)

Substituting (3.8), (3.10), and (3.12) into (3.9) yields that

P(α1,ε(t2) , α2,ε(t2)|F ε
t0 ) ≤ 2(Hεδ)2 + 2N(N − 1)

1
ε

∫ t2

t0
E(||Q(Xε

u) − Q(Yε
u )||l1 |F

ε
t0 )du.

Deducing inductively, we obtain

P(α1,ε(tk) , α2,ε(tk)|F ε
t0 ) ≤ k(Hεδ)2 + KN,ε

∫ tk

t0
E(||Q(Xε

u) − Q(Yε
u )||l1 |F

ε
t0 )du, (3.13)

where
KN,ε = 2N(N − 1)

1
ε
.

Finally, applying (3.13) gives that∫ t

s
P(α1,ε(r) , α2,ε(r)|F ε

s ) =
K̄∑

k=0

∫ tk+1

tk
P(α1,ε(r) , α2,ε(r)|F ε

s )

=

K̄∑
k=0

∫ tk+1

tk
P(α1,ε(r) , α2,ε(r), α1,ε(tk) = α2,ε(tk)|F ε

s )

+

K̄∑
k=0

∫ tk+1

tk
P(α1,ε(r) , α2,ε(r), α1,ε(tk) , α2,ε(tk)|F ε

s )

≤

K̄∑
k=0

∫ tk+1

tk
P(Nε

pε(tk, tk+1) × [0,Hε] ≥ 1)dr

+

K̄∑
k=0

∫ tk+1

tk
P(α1,ε(tk) , α2,ε(tk)|F ε

s )dr
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≤

K̄∑
k=0

∫ tk+1

tk

[
(1 − e−Hεδ) + k(Hεδ)2

+ KN,ε

∫ tk

t0
E(||Q(Xε

u) − Q(Yε
u )||l1 |F

ε
s )du

]
dr

= (K̄ + 1)δ(1 − e−Hεδ) + (Hε)2δ3 K̄(K̄ + 1)
2

+ K̃
∫ t

s
E(||Q(Xε

u) − Q(Yε
u )||l1 |F

ε
s )du,

where
K̃ = (K̄ + 1)δKε,N .

Letting δ→ 0 together with the fact that (K̄ + 1)δ→ (t − s), as δ→ 0, gives that (3.3) holds.
The proof is completed. □

4. Invariant probability measures for frozen Markov chains

In this section, for any probability measure

µ = (µi)i∈S and ν = (νi)i∈S ,

the total variation distance between µ and ν is defined by

||µ − ν||var = sup
| f |≤1
|µ( f ) − ν( f )|,

where
µ( f ) =

∑
i∈S

µi f (i) and ν( f ) =
∑
i∈S

νi f (i).

To proceed, we will use the following coupling methods; for details, see [29, Chapter 5]. For any
ϕ ∈ C([−τ, 0];Rn), let (αϕ1(t), αϕ2(t)) be a coupling Markov process on phase space S × S with marginal
distributed as αϕ(t) and αϕl (0) = il (l = 1, 2), where the process αϕ· (·) with the parameter variable ϕ,
when ϕ is fixed, is referred to as a frozen Markov process, which can be handled using the conclusions
of Markov processes. Denote the classical coupling operator

Ωϕ f (k1, k2) = I∆c(k1, k2)
(∑

l1∈S

qk1l1(ϕ)( f (l1, k2) − f (k1, k2)) +
∑
l2∈S

qk2l2(ϕ)( f (k1, l2) − f (k1, k2))
)

+ I∆(k1, k2)
∑
l1∈S

qk1l1(ϕ)
(

f (l1, l1) − f (k1, k2)
)
, (4.1)

where f is a bounded function on S × S and

∆ := {(k1, k2) ∈ S × S : k1 = k2}.

This classical coupling means that the marginals evolve independently until they meet. After they
meet, they will move together at rate Q(ϕ). Define the coupling time

T = inf{t ≥ 0 : αϕ1(t) = αϕ2(t)}.
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Then, by the well-known coupling inequality (see [29, p.195]), we have

||Pϕ(t, i1, ·) − Pϕ(t, i2, ·)||var ≤ 2Ei1,i2
ϕ (Iαϕ1 (t),αϕ2 (t)) = 2Pi1,i2

ϕ (T > t). (4.2)

where Pi1,i2
ϕ and Ei1,i2

ϕ denote the probability and expectation for the coupling process (αϕ1(t), αϕ2(t))
starting from (i1, i2). Furthermore, let πϕ be invariant probability measure associated to Markov chain
αϕ(t) with fixed ϕ ∈ C([−τ, 0];Rn). When πϕ is assumed to exist, then from the fact

πϕ = πϕPϕ

and (4.2), it can be obtained that:

||Pϕ(t, i1, ·) − πϕ||var =
∣∣∣∣∣∣∣∣Pϕ(t, i1, ·) −

∑
i2∈S

Pϕ(t, i2, ·)πϕ(i2)
∣∣∣∣∣∣∣∣

var

≤
∑
i2∈S

π(i2)||Pϕ(t, i1, ·) − Pϕ(t, i2, ·)||var

≤ 2
∑
i2∈S

π(i2)Pi1,i2
ϕ (T > t). (4.3)

From the inequality above, it can be seen that a coupling time gives us some information about the
convergence rate. To obtain the strong ergodicity uniformly in ϕ ∈ C([−τ, 0];Rn), we just estimate
Pi1,i2
ϕ (T > t).

Theorem 4.1. Under assumptions (A3)–(A5), Pϕ
t is strongly ergodic and uniformly in

ϕ ∈ C([−τ, 0];Rn), that is, there exist constants L3, λ > 0 such that

sup
i∈S
||Pϕ

t (i, ·) − πϕ||var ≤ L3e−λt. (4.4)

Proof. For fixed ϕ ∈ C([−τ, 0];Rn), from classic conclusions (see [5, Lemma A.2]), it can be concluded
that

sup
i∈S
||Pϕ

t (i, ·) − πϕ||var ≤ Kexp(−κ̂(ϕ)s).

where the convergence rate κ̃(ϕ) depends on ϕ. To proceed, we show that κ̃(ϕ) has a uniform lower
bound. Set

κ̂0(ϕ) = min
{

min
{
(1 − e−qk(ϕ))

qkl(ϕ)
qk(ϕ)

: l ∈ S \{k}
}
, e−qk(ϕ) : k ∈ S

}
,

κ1 = inf
ϕ∈C([−τ,0];Rn)

κ̂0(ϕ),

κ2 = sup
ϕ∈C([−τ,0];Rn)

κ̂0(ϕ).

Under assumptions (A4) and (A5), we can obtain

κ1 ≥ min
{

min
{
(1 − e−βkk)

βkl

M
: l ∈ S \{k}

}
, e−βkk : k ∈ S

}
> 0 (4.5)
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and

κ2 ≤ sup
ϕ∈C([−τ,0];Rn)

∑
l∈S \{k}

(1 − e−qk(ϕ))
qkl(ϕ)
qk(ϕ)

≤ sup
ϕ∈C([−τ,0];Rn)

(1 − e−qk(ϕ))

≤ 1 − e−M. (4.6)

By the classical coupling (αϕ1(t), αϕ2(t)) constructed by (4.1), together with the definition of κ̂0(ϕ) one
has for i1 , i2,

Pi1,i2
ϕ (T ≤ 1) ≥

∑
l,k1,k2

(1 − e−qk1 (ϕ))
qk1l(ϕ)
qk1(ϕ)

(1 − e−qk2 (ϕ))
qk2l(ϕ)
qk2(ϕ)

+ (1 − e−qk1 (ϕ))
qk1k2(ϕ)
qk1(ϕ)

e−qk2 (ϕ) + (1 − e−qk2 (ϕ))
qk2k1(ϕ)
qk1(ϕ)

e−qk1 (ϕ)

≥ κ̂0(ϕ)
∑

l,k1,k2

(1 − e−qk1 (ϕ))
qk1l(ϕ)
qk1(ϕ)

+ κ̂0(ϕ)(1 − e−qk1 (ϕ))
qk1k2(ϕ)
qk1(ϕ)

+ κ̂0(ϕ)e−qk1 (ϕ)

≥ κ̂0(ϕ).

Note that
Pi1,i2
ϕ (T ≤ 1) = 1 ≥ κ̂0(ϕ)

as i1 = i2, which implies
Pi1,i2
ϕ (T ≤ 1) ≥ κ̂0(ϕ)

for any i1, i2 ∈ S . This, together with Markov property, can derive that

Pi1,i2
ϕ (T > t) ≤ (1 − κ̂0(ϕ))[t]

for any i1, i2 ∈ S by the induction method, where [t] denotes the integral part of t. In fact, suppose that

Pi1,i2
ϕ (T > [t] − 1) ≤ (1 − κ̂0(ϕ))[t]−1

for t ≥ 1. Then

Pi1,i2
ϕ (T > t) ≤ Ei1,i2

ϕ (T > [t])

= Ei1,i2
ϕ (I(T>1)E

α
ϕ
1 (1),αϕ2 (1)
ϕ I(T>[t]−1))

≤ (1 − κ̂0(ϕ))[t]−1Pi1,i2
ϕ (T > 1)

≤ (1 − κ̂0(ϕ))[t]. (4.7)

Substituting (4.7) into (4.3) yields that

||Pϕ(t, i1, ·) − πϕ||var ≤ 2(1 − κ̂0(ϕ))[t]

= 2e−{t}ln(1−κ̂0(ϕ))etln(1−κ̂0(ϕ))

≤ 2e−{t}ln(1−κ2)etln(1−κ1)

≤ 2eMetln(1−κ1),

where {·} denotes the decimal part.
This concludes the proof. □
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Theorem 4.2. Under assumptions (A3)–(A6), the functional ϕ 7→ πϕ from C([−τ, 0];Rn) to P(S ),
endowed with the total variation norm, is Lipschitz continuous, i.e., there exists a constant L4 such that

||πϕ1 − πϕ2 ||var ≤ L4||ϕ1 − ϕ2||∞ (4.8)

for any ϕ1 and ϕ2 ∈ C([−τ, 0],Rn).

Proof. For ϕ1 and ϕ2 ∈ C([−τ, 0],Rn), by the integration by parts formula for continuous Markov
chains (see [29, Thoerem 13.40]),

Pϕ1
t f (i) − Pϕ2

t f (i) =
∫ t

0
Pϕ1

t−s(Q(ϕ1) − Q(ϕ2))Pϕ2
s f (i)ds, t > 0, f ∈ B(S ). (4.9)

For any | f | ≤ 1 and any 0 ≤ s < t,

sup
i∈S
|Pϕ1

t−s(Q(ϕ1) − Q(ϕ2))Pϕ2
s f (i)| ≤ sup

i∈S
|(Q(ϕ1) − Q(ϕ2))Pϕ2

s f (i)|

= sup
i∈S
|(Q(ϕ1) − Q(ϕ2))(Pϕ2

s − π
ϕ2) f (i)|. (4.10)

It is easy to observe that for any | f | ≤ 1,

sup
i∈S
|(Q(ϕ1) − Q(ϕ2)) f (i)| ≤ sup

i∈S

[
|qii(ϕ1) − qii(ϕ2)| +

∑
j∈S , j,i

|qi j(ϕ1) − qi j(ϕ2)|
]

≤ 2||Q(ϕ1) − Q(ϕ2)||l1 .

This, together with (4.10), the condition (A6), and the fact that for any | f | ≤ 1,

sup
i∈S
|(Pϕ2

s − π
ϕ2) f (i)| ≤ sup

i∈S
||Pϕ2

s (i, ·) − πϕ2 ||var

implies that

sup
i∈S
|Pϕ1

t−s(Q(ϕ1) − Q(ϕ2))Pϕ2
s f (i)| ≤ K||ϕ1 − ϕ2||∞ sup

i∈S
||Pϕ2

s (i, ·) − πϕ2 ||var.

Combining the estimation above with (4.4), we get from (4.9) that for i ∈ S

|Pϕ1
t f (i) − Pϕ2

t f (i)| ≤ KL3||ϕ1 − ϕ2||∞

∫ t

0
e−λsds ≤ K||ϕ1 − ϕ2||∞(1 − e−λt). (4.11)

Consequently, (4.4) and (4.11) show that

|πϕ1 f − πϕ2 f | =
∣∣∣∣ N∑

i=1

N∑
j=1

πϕ2(i)πϕ1( j)Pϕ1
t f ( j) −

N∑
i=1

N∑
j=1

πϕ1( j)πϕ2(i)Pϕ2
t f (i)

∣∣∣∣
≤

∑
i, j∈S

πϕ1( j)πϕ2(i)
∣∣∣∣Pϕ1

t f ( j) − Pϕ2
t f (i)

∣∣∣∣
≤

∑
i, j∈S

πϕ1( j)πϕ2(i)
∣∣∣∣Pϕ1

t f ( j) − Pϕ2
t f ( j)

∣∣∣∣ +∑
i, j∈S

πϕ1( j)πϕ2(i)
∣∣∣∣Pϕ2

t f ( j) − πϕ2 f
∣∣∣∣
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+
∑
i, j∈S

πϕ1( j)πϕ2(i)
∣∣∣∣Pϕ2

t f (i) − πϕ2 f
∣∣∣∣

≤ K||ϕ1 − ϕ2||∞(1 − e−λt) + L3e−λt.

Finally, letting t → ∞ and taking supremum over | f | ≤ 1, it follows that

||πϕ1 − πϕ2 ||var ≤ K||ϕ1 − ϕ2||∞.

This completes the proof. □

By using the invariant measure πϕ, let us define

b̄(ϕ) =
∑
i∈S

b(ϕ, i)πϕ(i) and Σ̄(ϕ) =
∑
i∈S

σ(ϕ, i)σ′(ϕ, i)πϕ(i).

Obviously, b̄(·) satisfies the linear growth condition. According to the definition of Σ̄(·), we can yield
that for ϕ, ϕ1, and ϕ2 ∈ C([−τ, 0];Rn)

|b̄(ϕ1) − b̄(ϕ2)| ≤ K(1 + ||ϕ1||
2
∞ + ||ϕ2||

2
∞)||ϕ1 − ϕ2||∞, (4.12)

|Σ̄(ϕ)| ≤
∑
i∈S

|σ(ϕ, i)|2πϕ(i) ≤ K(1 + ||ϕ||2∞) (4.13)

and

|Σ̄(ϕ1) − Σ̄(ϕ2)| ≤ K(1 + ||ϕ1||
2
∞ + ||ϕ2||

2
∞)||ϕ1 − ϕ2||∞. (4.14)

Let us introduce the following equation:

(A7) The following equation,
dX(t) = b̄(Xt)dt + σ̄(Xt)dw̃(t) (4.15)

has a solution that is unique in the weak sense (i.e., uniqueness in the sense of the distribution)
on [0,T ] for the same initial date

X(t) = ξ ∈ C([−τ, 0],Rn)

as Eq (2.1), where w̃ is a standard Brownian motion and

σ̄(·)σ̄′(·) = Σ̄(·).

5. Weak convergence and asymptotic approximation

This section will show that Xε weakly converges to X determined by (4.15). To prove this claim,
tightness of Xε is needed.

Theorem 5.1. Under assumptions (A1)–(A5), {Xε(·)}ε∈(0,1) is tight on C([0,T ];Rn).

To obtain tightness, we need the following sufficient condition for tightness (see [30, p.64]).
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Lemma 5.2. If {Xε}ε∈(0,1) ∈ C([0,T ];Rn) satisfy that, for some positive constants α, β, ν,

sup
ε∈(0,1)

E|Xε(0)|ν < ∞, (5.1a)

sup
ε∈(0,1)

E|Xε(t) − Xε(s)|α ≤ K|t − s|1+β; 0 ≤ s < t ≤ T , (5.1b)

then the probability measures induced by Xε form a tight sequence.

Proof of Theorem 5.1. Because
Xε(0) = ξ(0)

is independent of ε, it is sufficient to check (5.1b). Hence, for any p ≥ 2, δ > 0, and 0 ≤ s < t ≤ T , it
follows from (2.1) that

E
[

sup
s≤t≤s+δ

|Xε(t) − Xε(s)|p
]
≤ K

{
E
[

sup
s≤t≤s+δ

∣∣∣∣ ∫ t

s
b(Xε

r , α
ε(r))dr

∣∣∣∣p] + E[ sup
s≤t≤s+δ

∣∣∣∣ ∫ t

s
σ(Xε

r , α
ε(r))dW(r)

∣∣∣∣p]}
≤ Kδp−1

∫ t

s
E|b(Xε

r , α
ε(r))|pdr + Kδ

p−2
2

∫ t

s
E|σ(Xε

r , α
ε(r))|pdr,

which, combined with assumption (A2) and (2.10), implies that

E
[

sup
s≤t≤s+δ

|Xε(t) − Xε(s)|p
]
≤ Kδ

p
2 . (5.2)

Then letting
p = 4 > 2 and δ = t − s

gives that (5.1b) holds. □

According to tightness of {Xε(·)}, by the Prohorov theorem (see [31, p.59]), there exists X(·) defined
on C([−τ,T ];Rn) and the subsequence of ε (without loss of generality, we still denote the superscript
of convergent subsequence as ε) such that

Xε(t)⇒ X(t),

as ε→ 0. To proceed, we shall need the following version of the Arzelá-Ascoli theorem (see [30, p.63])
and the moment estimation of the segment process:

Lemma 5.3. {Xε}ε∈(0,1) ∈ C([−τ,T ];Rn) is tight if and only if

lim
µ↑∞

sup
ε∈(0,1)

P(|Xε(0)| > µ) = 0, (5.3a)

lim
δ↓0

sup
ε∈(0,1)

P
(
Λδ,ε > γ1

)
= 0 for any γ1 > 0, (5.3b)

where we define
Λδ,ε = sup

s,t∈[−τ,T ]
|s−t|<δ

|Xε(t) − Xε(s)|.
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Lemma 5.4. For p > 2, 0 < δ < 1, and γ2 <
p
2 − 1, we have

E
[

sup
s,t∈[0,T ]
|s−t|<δ

sup
θ∈[−τ,0]

|Xε
t (θ) − Xε

t (θ)|
]
≤ Kδ

1
2−

1+γ2
p .

Proof. Let

N1 = [
T + τ
δ

], tm = −τ + mδ,

m = 0, 1, . . . ,N1, and tN1+1 = T . Denote

Ξ = max
1≤i≤N1+1

sup
ti−1≤s≤ti

|Xε(s) − Xε(ti−1)|.

Due to |s − t| < δ, s and t either fall into the same interval

Ii := [ti−1, ti]

or into different adjacent intervals Ii and

Ii+1 := [ti, ti+1].

If s and t fall into the same interval Ii, then

|Xε(s) − Xε(t)| ≤ |Xε(s) − Xε(ti−1)| + |Xε(t) − Xε(ti−1)| ≤ 2Ξ.

If s and t fall into different adjacent intervals Ii and Ii+1, then

|Xε(s) − Xε(t)| ≤ |Xε(s) − Xε(ti−1)| + |Xε(ti) − Xε(ti−1)| + |Xε(t) − Xε(ti)| ≤ 3Ξ.

From this, it can be concluded that

sup
s,t∈[0,T ]
|s−t|<δ

|Xε(t) − Xε(s)| ≤ 3 max
1≤i≤N1+1

sup
ti−1≤s≤ti

|Xε(s) − Xε(ti−1)|, (5.4)

which implies that for β > 0,

P
(

sup
s,t∈[0,T ]
|s−t|<δ

sup
θ∈[−τ,0]

|Xε
t (θ) − Xε

s (θ)| > β
)
≤ P

(
sup

s,t∈[−τ,T ]
|s−t|<δ

|Xε(t) − Xε(s)| > β
)

≤ P
(

max
1≤i≤N1+1

sup
ti−1≤s≤ti

|Xε(s) − Xε(ti−1)| >
β

3

)
≤

N1+1∑
i=1

P
(

sup
ti−1≤s≤ti

|Xε(s) − Xε(ti−1)| >
β

3

)
≤ (N1 + 1) sup

−τ≤s≤T
P
(

sup
s≤t≤s+δ

|Xε(t) − Xε(s)| >
β

3

)
≤

K
δ

sup
−τ≤s≤T

P
(

sup
s≤t≤s+δ

|Xε(t) − Xε(s)| >
β

3

)
. (5.5)
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By using the in [32, Corollary 2] and (5.5), one can derive that

E
[

sup
s,t∈[0,T ]
|s−t|<δ

sup
θ∈[−τ,0]

|Xε
t (θ) − Xε

s (θ)|p
]
= p

∫ ∞

0
βp−1P

(
sup

s,t∈[0,T ]
|s−t|<δ

sup
θ∈[−τ,0]

|Xε
t (θ) − Xε

s (θ)|p > β
)
dβ

≤ K p
∫ ∞

0
βp−1 1

δ
sup
−τ≤s≤T

P
(

sup
s≤t≤s+δ

|Xε(t) − Xε(s)| >
β

3

)
dβ

= K p
∫ δ

0
βp−1 1

δ
sup
−τ≤s≤T

P
(

sup
s≤t≤s+δ

|Xε(t) − Xε(s)| >
β

3

)
dβ

+ K p
∫ 1

δ

βp−1 1
δ

sup
−τ≤s≤T

P
(

sup
s≤t≤s+δ

|Xε(t) − Xε(s)| >
β

3

)
dβ

+ K p
∫ ∞

1
βp−1 1

δ
sup
−τ≤s≤T

P
(

sup
s≤t≤s+δ

|Xε(t) − Xε(s)| >
β

3

)
dβ

=: Υ1 + Υ2 + Υ3.

It is easy to observe that

Υ1 ≤ Kδ−1
∫ δ

0
pβp−1dβ = Kδp−1.

Applying the Chebyshev inequality, assumption (A1) and (5.2) give that for q ≥ 2

P
(

sup
s≤t≤s+δ

|Xε(t) − Xε(s)| >
β

3

)
≤

KE
[

sup
s≤t≤s+δ

|Xε(t) − Xε(s)|q
]

βq ≤ K
δ

q
2

βq . (5.6)

In the above inequality, letting q = p yields that

Υ2 ≤ K p
∫ 1

δ

βp−1 δ
p
2−1

βp dβ = Kδ
p
2−1 ln

1
δ
.

Similarly, letting q = 2p gives

Υ3 ≤ K p
∫ ∞

1
βp−1 δ

p−1

β2p dβ = Kδp−1.

Note that
γ2 <

p
2
− 1

and
0 < δ < 1, lim

δ→0
δγ2 ln

1
δ
= 0.

From this, it can be concluded that
Υ2 ≤ Kδ

p
2−1−γ2 ,

which implies that
E
[

sup
s,t∈[0,T ]
|s−t|<δ

sup
θ∈[−τ,0]

|Xε
t (θ) − Xε

s (θ)|p
]
≤ Kδ

p
2−1−γ2 .
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This, together with the Lyapunov inequlity, yields that

E
[

sup
s,t∈[0,T ]
|s−t|<δ

sup
θ∈[−τ,0]

|Xε
t (θ) − Xε

s (θ)|
]
≤ Kδ

1
2−

1+γ2
p .

This completes the proof. □

Now, let us state the main result of this article.

Theorem 5.5. Under assumptions (A1)–(A7), the limit of any weakly convergent subsequence of the
process {Xε(·)}ε∈(0,1) satisfies the Eq (4.15) with the same value

Xε
0 = ξ ∈ C([−τ, 0];Rn).

Proof. For any f ∈ C∞0 (Rn,R), applying the Itô formula to f (Xε(t)) for Eq (2.1)yields that

Mε
f (t) := f (Xε(t)) − f (Xε(0)) −

∫ t

0
Lε(Xε

r , α
ε(r)) f (Xε(r))dr

=

∫ t

0
fx(Xε(r))σ(Xε

r , α
ε(r))dW(r) (5.7)

is a martingale, where

Lε(Xε
r , α

ε(r)) f (Xε(r)) = fx(Xε(r))b(Xε
r , α

ε(r)) +
1
2

n∑
i, j=1

Σi j(Xε
r , α

ε(r)) fxi x j(X
ε(r))

and

Σi j(Xε
r , α

ε(r)) = σi(Xε
r , α

ε(r))σ j(Xε
r , α

ε(r)).

This is equivalent to

E
[
(h(Xε(si)), i ≤ k)

(
f (Xε(t)) − f (Xε(s)) −

∫ t

s
Lε(Xε

r , α
ε(r)) f (Xε(r))dr

)]
= 0, (5.8)

for arbitrary k, s, and t with s1 < s2 < . . . < sk < s < t, and any bounded and continuous function h(·).
To characterize the limit process {X(t)}t≥0, it suffices to show that letting ε→ 0 on both sides of (5.8),

0 = lim
ε→0
E
[
(h(Xε(si)), i ≤ k)

(
f (Xε(t)) − f (Xε(s)) −

∫ t

s
Lε(Xε

r , α
ε(r)) f (Xε(r))dr

)]
= E

[
(h(X(si)), i ≤ k)

(
f (X(t)) − f (X(s)) −

∫ t

s
L(Xr) f (X(r))dr

)]
, (5.9)

where

L(Xr) f (X(r)) = fx(X(r))b̄(Xr) +
1
2

n∑
i, j=1

σ̄i(Xr)σ̄ j(Xr) fxi x j(X(r)).
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By the Skorohod representation theorem ( [32, p.354]) and Theorem 5.1, we may assume for s ∈ [0,T ],
Xε(s)→ X(s) in the sense of w.p.1 as ε→ 0. This, together with the Lebesgue dominated convergence
theorem, yields that

E[h(Xε(si), i ≤ k)( f (Xε(t)) − f (Xε(s)))]→ E[h(X(si), i ≤ k)( f (X(t)) − f (X(s)))] (5.10)

for all 0 ≤ s < t. Furthermore, by Vitali convergence theorem (refer to [33] and the related literature
for further details) and Theorem 2.10, we can obtain

E
[

sup
0≤s≤T

|Xε(s)|4
]
−→ E

[
sup

0≤s≤T
|X(s)|4

]
≤ K. (5.11)

Next, we only need to show

lim
ε→0
E
[
h(Xε(si), i ≤ k)

∫ t

s
Lε(Xε

r , α
ε(r)) f (Xε(r))dr

]
= E

[
h(X(si), i ≤ k)

∫ t

s
L(Xr) f (X(r))dr

]
.

According to the definition of Lε and L, we shall only consider

I1 := E
[ ∫ t

s
| fx(Xε(r))b(Xε

r , α
ε(r)) − fx(X(r))b̄(Xr)|dr

]
and

I2 :=
n∑

k,l=1

E
[ ∫ t

s
| fxk xl(X

ε(r))σk(Xε
r , α

ε(r))σl(Xε
r , α

ε(r)) − fxk xl(X(r))σ̄k(Xr)σ̄l(Xr)|dr
]
,

where we define

I2 =:
n∑

k,l=1

Ik,l
2 .

For δ > 0, set
N = [

t − s
δ

], sm = s + mδ

for m = 0, 1, . . . ,N and
sN+1 = t.

Hence,

I1 ≤ E
[ N∑

m=0

∫ sm+1

sm

| fx(Xε(r))b(Xε
r , α

ε(r)) − fx(Xε(sm))b(Xε
sm
, αε(r))|dr

]
+ E

[ N∑
m=0

∫ sm+1

sm

| fx(Xε(sm))b(Xε
sm
, αε(r)) − fx(Xε(sm))b̄(Xε

sm
)|dr

]
+ E

[ N∑
m=0

∫ sm+1

sm

| fx(Xε(sm))b̄(Xε
sm

) − fx(X(r))b̄(Xr)|dr
]

=: I11 + I12 + I13.
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Recall that f ∈ C∞0 (Rn,R). This and assumption (A2) give

I11 ≤ E
[ N∑

m=0

∫ sm+1

sm

| fx(Xε(r))b(Xε
r , α

ε(r)) − fx(Xε(sm))b(Xε
r , α

ε(r))|dr
]

+ E
[ N∑

m=0

∫ sm+1

sm

| fx(Xε(sm))b(Xε
r , α

ε(r)) − fx(Xε(sm))b(Xε
sm
, αε(r))|dr

]
≤ KE

[ N∑
m=0

∫ sm+1

sm

(|Xε(r) − Xε(sm)|(1 + ||Xε
r ||∞) + ||Xε

r − Xε
sm
||∞)

]
.

Consequently, by virtual of (2.10), (5.2), and the Hölder inequality, we arrive at

I11 ≤ K
N∑

m=0

∫ sm+1

sm

((E|Xε(r) − Xε(sm)|2)
1
2 + E||Xε

r − Xε
sm
||∞)dr.

According to the tightness of {Xε(·)} and (5.3b), we obtain that Λδ,ε
P
−→ 0 uniformly with respect to ε,

as δ→ 0. This, together with the Lebesgue dominated convergence theorem, yields that

I11 ≤ K(N + 1)δ(δ
1
2 + EΛδ,ε)→ 0, as δ→ 0. (5.12)

Similar to I11, together with the definition of b̄(·) and (4.12), we have

I13 ≤ E
[ N∑

m=0

∫ sm+1

sm

| fx(Xε(sm))b̄(Xε
sm

) − fx(Xε(sm))b̄(Xr)|dr
]

+ E
[ N∑

m=0

∫ sm+1

sm

| fx(Xε(sm))b̄(Xr) − fx(X(r))b̄(Xr)|dr
]

≤ K
N∑

m=0

∫ sm+1

sm

[(E||Xε
sm
− Xr||

2
∞)

1
2 + (E|Xε(sm) − X(r)|2)

1
2 ]dr.

Note that
|Xε(sm) − X(r)| ≤ ||Xε

sm
− Xr||∞

and

||Xε
sm
− Xr||∞ ≤ sup

s,t∈[−τ,T ]
|s−t|<δ

|Xε(s) − X(t)|

≤ sup
s,t∈[−τ,T ]
|s−t|<δ

|Xε(s) − Xε(t)| + sup
s,t∈[−τ,T ]
|s−t|<δ

|Xε(t) − X(t)|

≤ Λδ,ε + sup
t∈[−τ,T ]

|Xε(t) − X(t)|. (5.13)

Define
Γδ,ε = Λδ,ε + sup

t∈[−τ,T ]
|Xε(t) − X(t)|.
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The Lebesgue dominated convergence theorem and (5.11) give

I13 ≤ Kδ(N + 1)(EΓ2
δ,ε)

1
2 → 0, as δ, ε→ 0. (5.14)

Now, we construct an auxiliary Markov chain {α̃m(r)}r≥sm in S satisfying the transition rate
( 1
ε
qi j(Xε

sm
))i, j∈S and

α̃m(sm) = αε(sm).

By virtue of Lemma 3.3, together with assumption (A6), we have∫ sm+1

sm

E
[
I{αε(r),α̃m(r)}|F

ε
sm

]
dr ≤ 2N(N − 1)

δ

ε

∫ sm+1

sm

E(||Xε
r − Xε

sm
||∞|F

ε
sm

)dr. (5.15)

Then,

I12 ≤ KE
[ N∑

m=0

∫ sm+1

sm

| fx(Xε(sm))b(Xε
sm
, αε(r)) − fx(Xε(sm))b(Xε

sm
, α̃m(r))|dr

]
+ KE

[ N∑
m=0

∫ sm+1

sm

| fx(Xε(sm))b(Xε
sm
, α̃m(r)) − fx(Xε(sm))b̄(Xε

sm
)|dr

]
=: I12,1 + I12,2.

Applying (5.15), the Hölder inequality, assumption (A2), and Theorem 2.2, we obtain that

I12,1 ≤ KE
[ N∑

m=0

∫ sm+1

sm

|b(Xε
sm
, αε(r)) − b(Xε

sm
, α̃m(r))|I{αε(r),α̃m(r)}dr

]
≤ K

N∑
m=0

( ∫ sm+1

sm

E|b(Xε
sm
, αε(r)) − b(Xε

sm
, α̃m(r))|2

) 1
2
(
E

∫ sm+1

sm

E[I{αε(r),α̃m(r)}|F
ε
sm

]dr
) 1

2

≤ K
N∑

m=0

δ
1
2
(δ
ε

∫ sm+1

sm

E||Xε
r − Xε

sm
||∞dr

) 1
2
. (5.16)

Next, in Lemma 5.4, letting
p = 4

and
γ2 =

1
3

gives
E||Xε

r − Xε
sm
||∞ ≤ E

[
sup

s,t∈[0,T ]
|s−t|<δ

sup
θ∈[−τ,0]

|Xε
t (θ) − Xε

s (θ)|
]
≤ Kδ

1
6 . (5.17)

Substituting (5.17) into (5.16) yields that

I12,1 ≤ K(N + 1)δ
δ

7
12

ε
1
2

. (5.18)
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According to (4.4), one can derive that

I12,2 ≤ KE
[ N∑

m=0

∫ sm+1

sm

E
(
|b(Xε

sm
, α̃m(r)) − b̄(Xε

sm
)|
∣∣∣∣F ε

sm

)
dr

]
≤ KE

[ N∑
m=0

∫ sm+1

sm

(1 + ||Xε
sm
||∞)E

(∣∣∣∣∣∣∣∣PXε
sm

r−sm
ε

(αε(sm), ·) − πXε
sm

∣∣∣∣∣∣∣∣
var

∣∣∣∣F ε
sm

)
dr

]
= KE

[ N∑
m=0

ε

∫ δ
ε

0
(1 + ||Xε

sm
||∞)E(||PXε

sm
r (αε(sm), ·) − πXε

sm ||var|F
ε
sm

)dr
]

≤ Kε(N + 1)
L3

λ
(1 − e−

δ
ελ). (5.19)

For the same interval division [sm, sm+1],m = 1, 2, . . . ,N,

Ik,l
2 ≤

N∑
m=0

E
( ∫ sm+1

sm

|σk(Xε
r , α

ε(r))σl(Xε
r , α

ε(r)) fxk xl(X
ε(r))

− σk(Xε
sm
, αε(r))σl(Xε

sm
, αε(r)) fxk xl(X

ε(sm))|dr
)

+

N∑
m=0

E
( ∫ sm+1

sm

|σk(Xε
sm
, αε(r))σl(Xε

sm
, αε(r)) fxk xl(X

ε(sm))

− σ̄k(Xε
sm

)σ̄l(Xε
sm

) fxk xl(X
ε(sm))|dr

)
+

N∑
m=0

E
( ∫ sm+1

sm

|σ̄k(Xε
sm

)σ̄l(Xε
sm

) fxk xl(X
ε(sm)) − σ̄k(Xr)σ̄l(Xr) fxk xl(X(r))|dr

)
=: Ik,l

2,1 + Ik,l
2,2 + Ik,l

2,3. (5.20)

By the Hölder inequality, assumption (A2), Theorem 2.2, and the fact f ∈ C∞0 (Rn,R), combined with

the result that Λδ,ε
P
−→ 0 uniformly with respect to ε, as δ→ 0, we have

Ik,l
2,1 ≤

N∑
m=0

E
( ∫ sm+1

sm

|σk(Xε
r , α

ε(r))σl(Xε
r , α

ε(r)) fxk xl(X
ε(r))

− σk(Xε
sm
, αε(r))σl(Xε

r , α
ε(r)) fxk xl(X

ε(r))|dr
)

+

N∑
m=0

E
( ∫ sm+1

sm

|σk(Xε
sm
, αε(r))σl(Xε

r , α
ε(r)) fxk xl(X

ε(r))

− σk(Xε
sm
, αε(r))σl(Xε

sm
, αε(r)) fxk xl(X

ε(r))|dr
)

+

N∑
m=0

E
( ∫ sm+1

sm

|σk(Xε
sm
, αε(r))σl(Xε

sm
, αε(r)) fxk xl(X

ε(r))

− σk(Xε
sm
, αε(r))σl(Xε

sm
, αε(r)) fxk xl(X

ε(sm))|dr
)

≤ K(N + 1)δ(EΛ2
δ,ε)

1
2 → 0, (5.21)
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as δ→ 0, where the convergence is derived from the Lebesgue dominated convergence theorem.
According to (4.13) and (4.14), it follows that

Ik,l
2,3 ≤

N∑
m=0

E
( ∫ sm+1

sm

|Σ̄k,l(Xε
sm

) fxk xl(X
ε(sm)) − Σ̄k,l(Xε

sm
) fxk xl(X(r))|dr

)
+

N∑
m=0

E
( ∫ sm+1

sm

|Σ̄k,l(Xε
sm

) fxk xl(X(r)) − Σ̄k,l(Xr) fxk xl(X(r))|dr
)

≤ K
N∑

m=0

∫ sm+1

sm

(1 + E||Xε
sm
||4∞ + E||Xr||

4
∞)

1
2 (E||Xε

sm
− Xr||

2
∞)

1
2 dr,

which, combined with (5.13), gives

Ik,l
2,3 ≤ Kδ(N + 1)(EΓ2

δ,ε)
1
2 → 0, as δ, ε→ 0. (5.22)

As for Ik,l
2,2, recalling the definition of α̃m(t), we have

Ik,l
2,2 ≤

N∑
m=0

E
( ∫ sm+1

sm

|σk(Xε
sm
, αε(r))σl(Xε

sm
, αε(r)) − σk(Xε

sm
, α̃m(r))σl(Xε

sm
, α̃m(r))|dr

)
+

N∑
m=0

E
( ∫ sm+1

sm

|σk(Xε
sm
, α̃m(r))σl(Xε

sm
, α̃m(r)) − σ̄(Xε

sm
)σ̄(Xε

sm
)|dr

)
=: Ik,l

2,21 + Ik,l
2,22.

Similar to (5.16), using (5.15) yields that

Ik,l
2,21 ≤

N∑
m=0

K
( ∫ sm+1

sm

E(1 + ||Xε
sm
||2∞)2

) 1
2
(
E

∫ sm+1

sm

E[I{αε(r),α̃m(r)}|F
ε
sm

]dr
) 1

2

≤ K(N + 1)δ
δ

7
12

ε
1
2

. (5.23)

Furthermore, as a result of (4.4), we obtain that

Ik,l
2,22 ≤

N∑
m=0

E
( ∫ sm+1

sm

(1 + ||Xε
sm
||∞)2E

(∣∣∣∣∣∣∣∣PXε
sm

r−sm
ε

(αε(sm), ·) − πXε
sm

∣∣∣∣∣∣∣∣
var

∣∣∣∣F ε
sm

)
dr

)
= KE

[ N∑
m=0

ε

∫ δ
ε

0
(1 + ||Xε

sm
||∞)2E(||PXε

sm
r (αε(sm), ·) − πXε

sm ||var|F
ε
sm

)dr
]

≤ Kε(N + 1)
L3

λ
(1 − e−

δ
ελ). (5.24)

Finally, according to (5.12), (5.14), (5.18), (5.19), and (5.21)–(5.24), we can get

I1 + I2 ≤ K(N + 1)δ[(EΛ2
δ,ε)

1
2 + (EΓ2

δ,ε)
1
2 + δ

7
12ε−

1
2 ] + Kε(N + 1)

L3

λ
(1 − e−

δ
ελ).

To obtain the desired conclusion, let δ = ε
11
12 in the inequality above. □
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6. Examples

The two examples provided in this section cannot be validated using results from the classical
literature due to the presence of past-dependent switching. We will verify them one by one to ensure
they meet the assumptions proposed in this paper, allowing us to derive the averaged equations from
Theorem 5.5. To proceed, consider a special two-state switching process with generator Q, that is,

S = {1, 2}.

Set

Q =
(
−b1 b1

a1 −a1

)
.

It is easy to obtain that the stationary distribution is

ν := (
a1

a1 + b1
,

b1

a1 + b1
).

Example 6.1. Consider the following one-dimensional two-timescale stochastic integral differential
equation:

dXε(t) = A(αε(t)) f
( ∫ 0

−τ

Xε(t + θ)dθ
)
dt + B(αε(t))g

( ∫ 0

−τ

Xε(t + θ)dθ
)
dB1(t), (6.1)

where B1(t) is a standard Brownian motion,

Xε
0 = ξ ∈ C([−τ, 0];Rn)

is nonrandom and satisfies the Lipschitz property,

αε(t) = α(t/ε),
αε(0) = 1,

and α(t) is a pure jump process taking value in {1, 2} and equipping generator

Q̃(ϕ) =

 −
(
a + b cos2

( ∫ 0

−τ
ϕ(θ)dθ

))
a + b cos2

( ∫ 0

−τ
ϕ(θ)dθ

)
c + d cos2

( ∫ 0

−τ
ϕ(θ)dθ

)
−
(
c + d cos2

( ∫ 0

−τ
ϕ(θ)dθ

))  ,
for ϕ ∈ C([−τ, 0];Rn) and a, b, c, d > 0.

Clearly, for
ϕ, ψ ∈ C([−τ, 0];Rn),

||Q̃(ϕ) − Q̃(ψ)||l1 ≤ max{b, d}
∣∣∣∣ cos2

( ∫ 0

−τ

ϕ(θ)dθ
)
− cos2

( ∫ 0

−τ

ψ(θ)dθ
)∣∣∣∣

≤ 2τmax{b, d}||ϕ − ψ||∞,
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which implies that Q̃(ϕ) is Lipschitz continuous. According to the beginning of this section, the
stationary distribution corresponding to Q̃(ϕ) is

ν̃(ϕ) = (ν̃1(ϕ), ν̃2(ϕ))

:=
( c + d cos2

( ∫ 0

−τ
ϕ(θ)dθ

)
a + c + (b + d) cos2

( ∫ 0

−τ
ϕ(θ)dθ

) , a + b cos2
( ∫ 0

−τ
ϕ(θ)dθ

)
a + c + (b + d) cos2

( ∫ 0

−τ
ϕ(θ)dθ

)).
Furthermore, let

f : R 7−→ R and g : R 7−→ R

be Borel measurable and A(1), A(2), B(1), and B(2) be both constants and

B(1) = −B(2).

Assume that there exists a positive K such that for any x, y ∈ R,

| f (x) − f (y)| ∨ |g(x) − g(y)| ≤ K|x − y|

and
| f (x)| ≤ K.

By virtue of (4.15), we can get

dX(t) = F(Xt)dt +G(Xt)dB2(t), (6.2)

where B2(t) is a standard Brownian motion. Meanwhile, for ϕ ∈ C([−τ, 0];Rn),

F(ϕ) = (A(1)ν̃1(ϕ) + A(2)ν̃2(ϕ)) f
( ∫ 0

−τ

ϕ(θ)dθ
)

and

G(ϕ) = |B(1)|
∣∣∣∣g( ∫ 0

−τ

ϕ(θ)dθ
)∣∣∣∣.

It is easy to obtain that ψ, ϕ ∈ C([−τ, 0];Rn),

|G(ϕ) −G(ψ)| ≤ |B(1)|
∣∣∣∣ ∫ 0

−τ

(ϕ(θ) − ψ(θ))dθ
∣∣∣∣ ≤ K||ϕ − ψ||∞. (6.3)

By calculation, it can be concluded that for ψ, ϕ ∈ C([−τ, 0];Rn),

|ν̃1(ϕ) − ν̃1(ψ)| ≤
c(b + d) + d(a + c)

(a + c)2

∣∣∣∣ cos2
( ∫ 0

−τ

ϕ(θ)dθ
)
− cos2

( ∫ 0

−τ

ψ(θ)dθ
)∣∣∣∣

≤ τ
c(b + d) + d(a + c)

(a + c)2 ||ϕ − ψ||∞

and
|ν̃1(ϕ)| ≤

c + d
a + c

.
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Similarly,

|ν̃2(ϕ) − ν̃2(ψ)| ≤ τ
a(b + d) + b(a + c)

(a + c)2 ||ϕ − ψ||∞

and

|ν̃2(ϕ)| ≤
a + b
a + c

.

Due to the boundedness and the Lipschitz property of f (·), for ψ, ϕ ∈ C([−τ, 0];Rn),

|F(ϕ) − F(ψ)| ≤
∣∣∣∣ f ( ∫ 0

−τ

ϕ(θ)dθ
)∣∣∣∣[|A(1)||ν̃1(ϕ) − ν̃2(ψ)| + |A(2)||ν̃2(ϕ) − ν̃2(ψ)|]

+ |A(1)ν̃1(ψ) + A(2)ν̃2(ψ)|
∣∣∣∣ f ( ∫ 0

−τ

ϕ(θ)dθ
)
− f

( ∫ 0

−τ

ψ(θ)dθ
)∣∣∣∣

≤ K||ϕ − ψ||∞. (6.4)

This, togeher with (6.3) and (6.4) yields the existence and uniqueness of the solution to (4.15). Finally,
according to Theorem 5.5, the limit of any weakly convergent subsequence of the solution to (6.1)
satisfies (6.2).

Example 6.2. Consider a one-dimensional two-timescale stochastic delay differential equation:

dXε(t) =(A(αε(t)) + B(αε(t))h(Xε(t − τ)))dt

+ (C(αε(t)) + D(αε(t))r(Xε(t − τ)))dB3(t), (6.5)

where B3(t) is a standard Brownian motion,

Xε
0 = ξ ∈ C([−τ, 0];Rn)

is nonrandom and satisfies the Lipschitz property,

αε(t) = α(t/ε), αε(0) = 1

and α(t) is a pure jump process taking value in {1, 2} and equipping generator

Q̂(ϕ) =
(
−(a + b · e− sup−τ≤θ≤0 |ϕ(θ)|) a + b · e− sup−τ≤θ≤0 |ϕ(θ)|

c + d · e− sup−τ≤θ≤0 |ϕ(θ)| −(c + d · e− sup−τ≤θ≤0 |ϕ(θ)|)

)
,

for ϕ ∈ C([−τ, 0];Rn) and a, b, c, d > 0.

Clearly, Q̂(·) satisfies assumputions (A3) and (A4). Next, let us verify that (6.5) satisfies the
assumption (A5). For ϕ, ψ ∈ C([−τ, 0];Rn),

||Q̂(ϕ) − Q̂(ψ)||l1 ≤ max{b, d} ·
∣∣∣∣e− sup−τ≤θ≤0 |ϕ(θ)| − e− sup−τ≤θ≤0 |ψ(θ)|

∣∣∣∣
≤ max{b, d} ·

∣∣∣∣ sup
−τ≤θ≤0

|ϕ(θ)| − sup
−τ≤θ≤0

|ϕ(θ)|
∣∣∣∣
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≤ max{b, d} · sup
−τ≤θ≤0

|ϕ(θ) − ψ(θ)|.

According to the beginning of this section, the stationary distribution corresponding to Q̂(ϕ) is

ν̂(ϕ) = (ν̂1(ϕ), ν̂2(ϕ))

:=
(

c + d · e− sup−τ≤θ≤0 |ϕ(θ)|

a + c + (b + d) · e− sup−τ≤θ≤0 |ϕ(θ)| ,
a + b · e− sup−τ≤θ≤0 |ϕ(θ)|

a + c + (b + d) · e− sup−τ≤θ≤0 |ϕ(θ)|

)
.

By calculation, it follows that for ψ, ϕ ∈ C([−τ, 0];R),

|ν̂1(ϕ) − ν̂1(ψ)| ≤
c(b + d) + d(a + c)

(a + c)2

∣∣∣∣e− sup−τ≤θ≤0 |ϕ(θ)| − e− sup−τ≤θ≤0 |ψ(θ)|
∣∣∣∣

≤
c(b + d) + d(a + c)

(a + c)2 ||ϕ − ψ||∞

and
|ν̂1(ϕ)| ≤

c + d
a + c

.

Similarly,

|ν̂2(ϕ) − ν̂2(ψ)| ≤
a(b + d) + b(a + c)

(a + c)2 ||ϕ − ψ||∞

and
|ν̂2(ϕ)| ≤

a + b
a + c

.

Furthermore, let
h : C([−τ, 0];R) 7−→ R and r : C([−τ, 0];R) 7−→ R

be both Borel measurable and A(i), B(i),C(i),D(i), i = 1, 2 be both constants and

C(1) = −C(2), D(1) = −D(2).

Assume that there exists a positive constant K such that for any ϕ and ψ ∈ C([−τ, 0];R),

|h(ϕ(−τ)) − h(ψ(−τ))| ∨ |r(ϕ(−τ)) − r(ψ(−τ))| ≤ K||ϕ − ψ||∞

and
|h(ϕ(−τ))| ≤ K.

According to (4.15), one can derive that

dX(t) = H(Xt)dt + R(Xt)dB4(t), (6.6)

where B4(t) is a standard Brownian motion and for any ϕ ∈ C([−τ, 0];Rn),

H(ϕ(−τ)) = [A(1) + B(1)h(ϕ(−τ))]ν̂1(ϕ) + [A(2) + B(2)h(ϕ(−τ))]ν̂2(ϕ)

and
R(ϕ(−τ)) = |C(1) + D(1)r(ϕ(−τ))|.

Similar to (6.1), according to the definition of ν̂(·), r(·), and h(·), for ψ, ϕ ∈ C([−τ, 0];Rn),

|H(ϕ) − H(ψ)| ∨ |R(ϕ) − R(ψ)| ≤ K||ϕ − ψ||∞.

which yields the existence and uniqueness of the solution to (6.6). Finally, according to Theorem 5.5,
the limit of any weakly convergent subsequence of the solution to (6.5) satisfies (6.6).
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7. Conclusions

The article overcomes the difficulties arising from past-dependent switching and the presence of
delay terms in continuous dynamic equations. Under the Lipschitz condition defined by the uniform
norm, it establishes for the first time the averaging principle for stochastic functional differential
equations with past-dependent switching. Inspired by reference [34], there will be a focus on how to
establish the averaging principle of this system under non-Lipschitz conditions in future research. In
addition, the numerical simulation and stability analysis issues related to this model will also be
explored in future research.

Author contributions

Minyu Wu: conceptualization, methodology, investigation, writing–original draft, writing–review
and editing; Xizhong Yang: conceptualization, methodology and validation; Feiran Yuan:
conceptualization, validation, writing–review and editing; Xuyi Qiu: supervision, writing–review and
editing. All authors have read and agreed to the published version of the manuscript.

Use of Generative-AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

Here, we would like to express our sincere gratitude to Professor Shao Jinghai and Professor Wu
Fuke for their guidance and care during the initial stage of writing this paper.

Conflict of interest

The authors declare no conflicts of interest.

References

1. Y. Li, F. Wu, G. Yin, Asymptotic behavior of gene expression with complete memory and two-time
scales based on the chemical Langevin equations, Discrete Contin. Dyn. Syst. Ser. B, 24 (2019),
4417–4443. http://doi.org/10.3934/dcdsb.2019125

2. F. Wu, T. Tian, J. B. Rawlings, Approximate method for stochastic chemical kinetics with
two-time scales by chemical Langevin equations, J. Chem. Phys., 144 (2016), 174112.
http://doi.org/10.1063/1.4948407

3. L. Hu, X. Mao, Y. Shen, Stability and boundedness of nonlinear hybrid stochastic differential delay
equations, Syst. Control Lett., 62 (2013), 178–187. http://doi.org/10.1016/j.sysconle.2012.11.009

4. H. Qian, Z. Wen, G. Yin, Numerical solutions for optimal control of stochastic Kolmogorov
systems with regime-switching and random jumps, Stat. Infer. Stoch. Process., 25 (2022), 105–
125. http://doi.org/10.1007/s11203-021-09267-z

AIMS Mathematics Volume 10, Issue 1, 353–387.

https://dx.doi.org/http://doi.org/10.3934/dcdsb.2019125
https://dx.doi.org/http://doi.org/10.1063/1.4948407
https://dx.doi.org/http://doi.org/10.1016/j.sysconle.2012.11.009
https://dx.doi.org/http://doi.org/10.1007/s11203-021-09267-z


386

5. G. Yin, Q. Zhang, Continuous-time Markov chains and applications: a two-time-scale approach,
Springer, 2013. http://doi.org/10.1007/978-1-4614-4346-9

6. R. Wang, X. Li, G. Yin, Asymptotic properties of multi-species Lotka-Volterra models with
regime switching involving weak and strong interactions, J. Nonlinear Sci., 30 (2020), 565–601.
http://doi.org/10.1007/s00332-019-09583-y

7. G. Yin, X. Mao, C. Yuan, D. Cao, Approximation methods for hybrid diffusion systems with state-
dependent switching processes: numerical algorithms and existence and uniqueness of solutions,
SIAM J. Math. Anal., 41 (2010), 2335–2352. http://doi.org/10.1137/080727191

8. A. Budhiraja, P. Dupuis, A. Ganguly, Large deviations for small noise diffusions in a fast
Markovian environment, Electron. J. Probab., 23 (2018), 112. http://doi.org/10.1214/18-EJP228

9. D. T. Nguyen, G. Yin, Asymptotic expansions of solutions of systems of Kolmogorov
backward equations for two-time-scale switching diffusions, Q. Appl. Math., 71 (2013), 601–628.
http://doi.org/10.1090/S0033-569X-2013-01277-X

10. D. H. Nguyen, G. Yin, Recurrence for switching diffusion with past dependent
switching and countable state space, Math. Control Relat. Fields, 8 (2018), 879–897.
http://doi.org/10.3934/mcrf.2018039

11. D. H. Nguyen, G. Yin, Modeling and analysis of switching diffusion systems: past-dependent
switching with a countable state space, SIAM J. Control Optim., 54 (2016), 2450–2477.
http://doi.org/10.1137/16M1059357

12. D. H. Nguyen, G. Yin, Recurrence and ergodicity of switching diffusions with past-
dependent switching having a countable state space, Potential Anal., 48 (2018), 405–435.
http://doi.org/10.1007/s11118-017-9641-y

13. R. Z. Khasminskii, G. Yin, On transition densities of singularly perturbed
diffusions with fast and slow components, SIAM J. Appl. Math., 56 (1996), 39–51.
http://doi.org/10.1137/S0036139995282906

14. E. Pardoux, A. Y. Veretennikov, On the Poisson equation and diffusion approximation 1, Ann.
Probab., 29 (2001), 1061–1085. http://doi.org/10.1214/aop/1015345596

15. E. Pardoux, A. Y. Veretennikov, On the Poisson equation and diffusion approximation 2, Ann.
Probab., 31 (2003), 1166–1192. http://doi.org/10.1214/aop/1055425774

16. E. Pardoux, A. Y. Veretennikov, On the Poisson equation and diffusion approximation 3, Ann.
Probab., 33 (2005), 1111–1133. http://doi.org/10.1214/009117905000000062
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