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Abstract: The picture hesitant fuzzy set (PHFS) integrates elements of picture fuzzy sets and hesitant
fuzzy sets, incorporating membership, abstinence, and non-membership degrees to provide a robust
framework for addressing uncertainties and complex data in real-world scenarios. In this study, we
introduce key characteristics of picture hesitant fuzzy elements, including average functions, variance
functions, and hesitancy degrees, to enhance its descriptive capability. Based on these characteristics,
we proposed novel distance measures for PHFS. Further, we investigated their properties and proved
the triangle inequality of distance measure. These measures were systematically applied in a medical
diagnostic context, where they demonstrated significant improvements in diagnostic accuracy by
effectively distinguishing patient conditions. Sensitivity analyses and comparative evaluations further
validated the practicality and robustness of the proposed methods, highlighting their potential for
broader applications in decision-making under uncertainty.
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1. Introduction

The concept of a fuzzy set (FS), introduced by Zadeh [1], laid the foundation for handling uncertain
and vague data across domains. A fuzzy set (FS) relies on a membership function that assigns a
membership degree to each element in the discourse set X within the interval [0, 1]. Atanassov [2]
further generalized this by introducing the intuitionistic fuzzy set (IFS), which includes a non-
membership degree in addition to the membership degree. Notably, taking the non-membership degree
as zero reduces an intuitionistic fuzzy set (IFS) to a standard fuzzy set (FS).
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Later, Cuong [3] presented the picture fuzzy set (PFS), an extension of both FS and IFS,
which incorporates an abstinence degree alongside membership and non-membership degrees. This
additional degree enables a more nuanced representation of uncertainty, which enhances applications
in fields such as medical diagnosis and pattern recognition.

To further improve the ability to capture precise fuzzy information, Torra and Narukawa [4, 5]
introduced the hesitant fuzzy set (HFS), which permits multiple membership degrees for each element.
This concept attracted significant scholarly attention. For instance, Xu [6] and Xia et al. [7] explored
mathematical representations of HFS and developed robust aggregation operators. Xu and Xia
also extended entropy and cross-entropy concepts to HFS [8], along with distance and similarity
measures [9,10]. Additionally, Farhadinia [11] and Li et al. [12,13] contributed by exploring hesitancy
degrees and distance measures in hesitant fuzzy contexts.

In an effort to broaden the applications of HFS theory, Zeng et al. [14] developed new distance
measures and applied them to pattern recognition. Further advancements in HFS research include
works by Rodriguez et al. [15], who introduced linguistic terms into HFS theory to enhance decision-
making, and Chen et al. [16] and Wei et al. [17], who applied interval values within HFS. Such
contributions demonstrate the effectiveness of hesitant fuzzy approaches in representing complex data.

In 2018, Wang et al. [18] proposed the concept of a picture hesitant fuzzy set (PHFS) and explored
its use in multi-attribute decision-making (MADM). PHFS combines the advantages of PFS and
HFS, providing a robust framework for addressing complex problems. In fields such as pattern
recognition, approximate reasoning, image segmentation, and medical diagnosis, the distance and
similarity measures play a pivotal role in fuzzy systems. In medical contexts, clinicians often encounter
patients exhibiting symptoms accompanied by uncertainty. Accurately identifying diseases under such
conditions is a crucial challenge in pattern recognition. Given the subjective nature of traditional
diagnoses, there is a significant risk of misjudgment, potentially leading to severe consequences.

Consequently, various fuzzy systems have been applied in medical diagnosis. For example,
Emanuel et al. [19] used interval type-2 fuzzy theory, Molla et al. [20] applied Pythagorean fuzzy
theory, and Singh [21] proposed a dual hesitant fuzzy set (DHFS) distance measure for evaluating
investment alternatives. Moreover, scholars have extended distance and similarity measures to PHFS,
with works by Ahmad et al. [22] and Ali et al. [23] focusing on measures tailored for pattern recognition
and multi-criteria decision-making.

Among fuzzy systems, PHFS stands out for its ability to incorporate diverse expert evaluations,
making it particularly advantageous for decision-making and medical diagnosis. Here, motivated by
the effectiveness of PHFS in managing uncertainty, we introduce novel characteristics for picture
hesitant fuzzy elements (PHFE), such as the average function, variance function, and hesitancy
degree. The average function enables us to capture central tendencies of membership values within
PHFEs, offering a balanced view of the data, while the variance function provides insights into
the consistency and stability of these values, ensuring that variability is accounted for in decision-
making. Additionally, the hesitancy degree is vital in representing the ambiguity or indecision in data,
enabling a more comprehensive analysis, especially when expert opinions are inconclusive. Based
on these characteristics, we propose novel distance and weighted distance measures for PHFEs. To
demonstrate the practical application of our approach, we apply our distance measure in a medical
diagnosis example, showcasing its effectiveness in enhancing diagnostic accuracy and supporting
reliable decision-making processes under uncertainty.
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Considering the benefits of PHFS, our goals are as follows:

1. To introduce and analyze the essential characteristics of PHFEs, such as the average function,
variance function, and hesitancy degree, providing a robust framework for describing fuzzy
elements in complex environments.

2. To propose and explore various normalized distance measures, including Hamming, Euclidean,
and generalized distance measures, tailored specifically for (PHFEs). These measures are
developed to ensure compatibility with mathematical properties like the triangle inequality.

3. To demonstrate the feasibility and effectiveness of the proposed distance measures in
distinguishing diseases and improving diagnostic accuracy. This is achieved through detailed
medical diagnosis examples involving PHF data.

4. To validate the proposed distance measures by comparing them with existing methods,
highlighting their superior performance and broader applicability in decision-making contexts.

The organization of this paper is as follows: In Section 2, we review fundamental representations
of HFS and PHFS. In Section 3, we introduce characteristics such as the average function, variance
function, and hesitancy degree for PHFS and propose new distance measures. In Section 4, we apply
the proposed distance measures in a medical diagnosis example to illustrate their utility. Finally, the
conclusion is presented in Section 5.

2. Preliminaries

The theory of intuitionistic fuzzy sets (IFSs) can effectively represent events involving two types
of uncertainty. However, there are certain instances where the framework of IFSs is not applicable.
For example, in a voting scenario with four possible options: Voting in favor, abstaining, voting
against, and refusing to vote. This specific scenario cannot be represented using IFSs. Consequently,
Cuong [3] introduced a novel theory called picture fuzzy sets (PFSs) to address this issue. The concept
of PFS is discussed below.

Definition 1. Cuong [3] Let X be a set. Then a (PFS) on X is described by

PF =
{(

MPF (x), APF (x),NPF (x)
)

: x ∈ X
}
, (2.1)

with 0 ≤ MPF (x) + APF (x) + NPF (x) ≤ 1, where MPF (x), APF (x),NPF (x) : X → [0, 1]. The mathematical
structure of a picture fuzzy number is represented by (MP f (x), AP f (x),NP f (x)) and

RP f (x) = 1 −
(
MP f (x) + AP f (x) + NP f (x)

)
, (2.2)

referred to as the refusal degree.
In this study, let X = {x1, x2, . . . , xn} denote the discourse set. Here, (HFS) and (PHFS) refer to the

hesitant fuzzy set and the picture hesitant fuzzy set, respectively, while (HFE) and (PHFE) represent
the hesitant fuzzy element and the picture hesitant fuzzy element, respectively.
Definition 2. Xia and Xu [9] The mathematical expression that describes the (HFS) E on a given set X
is as follows:

E = {〈x, hE(x)〉 | x ∈ X}, (2.3)
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where hE(x) ⊆ [0, 1], represents the set of possible membership degrees of the element x ∈ X to the set
E, and h(x) = hE(x) is called a hesitant fuzzy element (HFE).

For given (HFEs) h(x), h1(x) and h2(x), Torra [5], Xia and Xu [9], and Liao et al. [13] gave the
following operations.

h−(x) = min h(x), h+(x) = max h(x), (2.4)

hc(x) =
⋃
γ∈h(x)

{1 − γ}, (2.5)

h1(x) ∪ h2(x) =
{
γ ∈ h1(x) ∪ h2(x) | γ ≥ max

(
h−1 (x), h−2 (x)

)}
= ∪γ1∈h1(x),γ2∈h2(x) max {γ1, γ2} , (2.6)

h1(x) ∩ h2(x) =
{
γ ∈ h1(x) ∩ h2(x) | γ ≤ min

(
h+

1 (x), h+
2 (x)

)}
= ∪γ1∈h1(x),γ2∈h2(x) min {γ1, γ2} , (2.7)

hλ(x) = ∪γ∈h(x)

{
γλ

}
, (2.8)

λh(x) = ∪γ∈h(x)

{
1 − (1 − γ)λ

}
, λ > 0, (2.9)

h1(x) ⊕ h2(x) = ∪γ1∈h1(x),γ2∈h2(x){γ1 + γ2 − γ1γ2}, (2.10)

h1(x) ⊗ h2(x) = ∪γ1∈h1(x),γ2∈h2(x) {γ1γ2} . (2.11)

Furthermore, Xia and Xu [6] proposed a score function for (HFE) h(x), defined as:

s(h(x)) =
1

l(h(x))

∑
γ∈h(x)

γ, (2.12)

where l(h(x)) denotes the number of elements in h(x). They also introduced a ranking rule as follows:
if s (h1(x)) > s (h2(x)), then h1(x) > h2(x); and if s (h1(x)) = s (h2(x)), then h1(x) = h2(x).

Motivated by the concept of intuitionistic fuzzy sets, Wang and Li [18] introduced picture hesitant
fuzzy sets (PHFS) as a means to effectively manage uncertain information in real-world scenarios.
PHFS incorporates three functions: Membership, abstinence, and non-membership, enabling more
precise handling of fuzzy information compared to HFS.
Definition 3. Wang and Li [18] A (PHFS) PH on X is of the shape:

PH =
{(

MipH (x), AipH (x),NipH (x)
)

: x ∈ X
}
, i = 1, 2, 3, . . . , z, (2.13)

where MipH (x), AipH (x), and NipH (x) are finite subsets of [0, 1]. Furthermore, the mathematical
expression of (PHFN) is designed by

(
Miph(x), Aiph(x),Niph(x)

)
, and the refusal degree is given by:

Riph(x) = 1 −
(
Miph(x) + Aiph(x) + Niph(x)

)
.

Similarly, for two picture hesitant fuzzy numbers (PHFNs):

Ph1 =
{
Miph1

(x), Aiph1
(x),Niph1

(x)
}
, Ph2 =

{
Miph2

(x), Aiph2
(x),Niph2

(x)
}
,

we have:

Ph1 ∪ Ph2 =


〈

x,max
(
Miph1

(x),Miph2
(x)

)
,min

(
Aiph1

(x), Aiph2
(x)

)
,

min
(
Niph1

(x),Niph2
(x)

) 〉∣∣∣∣∣∣∣ x ∈ X

 , (2.14)
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Ph1 ∩ Ph2 =


〈

x,min
(
Miph1

(x),Miph2
(x)

)
,max

(
Aiph1

(x), Aiph2
(x)

)
,

max
(
Niph1

(x),Niph2
(x)

) 〉∣∣∣∣∣∣∣ x ∈ X

 , (2.15)

Pc
h =

{(
NiPh(x), AiPh(x),MiPh(x)

)}
. (2.16)

Definition 4. Kifayat Ullah et al. [22] Let PH1 =
{
〈x,MipH1

(x), AipH1
(x),NipH1

(x)〉 | x ∈ X
}

and

PH2 =
{
〈x,MipH2

(x), AipH2
(x),NipH2

(x)〉 | x ∈ X
}

be two PHFSs, then dis(PH1 ,PH2) is called the distance
measure of (PHFSs) PH1 and PH2 satisfying the following conditions:

(1) 0 ≤ dis(PH1 ,PH2) ≤ 1;
(2) dis(PH1 ,PH2) = 0 if and only if PH1 = PH2;
(3) dis(PH1 ,PH2) = dis(PH2 ,PH1).

3. Novel distance measures of picture hesitant fuzzy set

In the following, we investigate some characteristics of (PHFE) to describe it and explore novel
distance measures for (PHFSs) based on these characteristics.

Definition 5. For a (PHFE) Ph = (Mi, Ai,Ni), then

P+
h =

{
PhM+

i
,PhA+

i
,PhN+

i

}
= {max{γ | γ ∈ Mi},min{η | η ∈ Ai},min{ν | ν ∈ Ni}} , (3.1)

and
P−h =

{
PhM−i ,PhA−i ,PhN−i

}
= {min{γ | γ ∈ Mi},max{η | η ∈ Ai},max{ν | ν ∈ Ni}} , (3.2)

are called the upper bound and the lower bound of (PHFE)Ph, respectively.

Definition 6. For a (PHFE) Ph = (Mi, Ai,Ni), the average function a (Ph) and the variance function
v (Ph) are defined as follows:

a (Ph) =
{
aMi , aAi , aNi

}
=

 1
l (Mi)

∑
γ∈Mi

γ,
1

l (Ai)

∑
η∈Ai

η,
1

l (Ni)

∑
ν∈Ni

ν

 , (3.3)

and

v (Ph) =
{
vMi , vAi , vNi

}
=


√

1
l (Mi)

∑
γ∈Mi

(
γ − aMi

)2,

√
1

l (Ai)

∑
η∈Ai

(
η − aAi

)2,

√
1

l (Ni)

∑
ν∈Ni

(
ν − aNi

)2

 ,
(3.4)

where l (Mi) , l (Ai) , and l (Ni) denote the number of elements in Mi, Ai, and Ni, respectively.
Example 1. For a given X = {x}, Ph1 = {{0.1, 0.2}, {0.6, 0.8}, {0.3, 0.4}} and Ph2 =

{{0.2, 0.3}, {0.4, 0.5}, {0.8, 0.9}} are two (PHFEs). Then we have some related characteristics of
(PHFE) Ph1 and (PHFE) Ph2 as follows:

P+
h1

=
{
Ph1 M+

i
,Ph1A+

i
,Ph1N+

i

}
= {0.2, 0.6, 0.3},P−h1

=
{
Ph1 M−i ,Ph1A−i ,Ph1N−i

}
= {0.1, 0.8, 0.4},

P+
h2

=
{
Ph2 M+

i
,Ph2A+

i
,Ph2N+

i

}
= {0.3, 0.4, 0.8},P−h2

=
{
Ph2 M−i ,Ph2A−i ,Ph2N−i

}
= {0.2, 0.5, 0.9},
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a(Ph1) =
{
aMi1

, aAi1
, aNi1

}
= {0.15, 0.7, 0.35}, a(Ph2) =

{
aMi2

, aAi2
, aNi2

}
= {0.25, 0.45, 0.85},

v(Ph1) =
{
vMi1

, vAi1
, vNi1

}
= {0.05, 0.10, 0.05}, v(Ph2) =

{
vMi2

, vAi2
, vNi2

}
= {0.05, 0.05, 0.05}.

Definition 7. For a (PHFE) Ph = {Mi, Ai,Ni}, then

u(Ph) =
{
uMi , uAi , uNi

}
=

{
1 −

1
l(Mi)

, 1 −
1

l(Ai)
, 1 −

1
l(Ni)

}
, (3.5)

is called the hesitancy degree of (PHFE) Ph.

Following that, we will introduce novel distance measures for (PHFEs) Ph1 and Ph2 , taking into
account the previously discussed characteristics of (PHFE).
Definition 8. For two (PHFEs) Ph1andPh2 , then

dis1

(
Ph1 ,Ph2

)
=

1
15

( ∣∣∣∣P+
h1Mi
− P+

h2Mi

∣∣∣∣ +
∣∣∣∣P−h1Mi

− P−h2Mi

∣∣∣∣
+

∣∣∣∣P+
h1Ai
− P+

h2Ai

∣∣∣∣ +
∣∣∣∣P−h1Ai

− P−h2Ai

∣∣∣∣
+

∣∣∣∣P+
h1Ni
− P+

h2Ni

∣∣∣∣ +
∣∣∣∣P−h1Ni

− P−h2Ni

∣∣∣∣
+

∣∣∣a1Mi − a2Mi

∣∣∣ +
∣∣∣a1Ai − a2Ai

∣∣∣ +
∣∣∣a1Ni − a2Ni

∣∣∣
+

∣∣∣v1Mi − v2Mi

∣∣∣ +
∣∣∣v1Ai − v2Ai

∣∣∣ +
∣∣∣v1Ni − v2Ni

∣∣∣
+

∣∣∣u1Mi − u2Mi

∣∣∣ +
∣∣∣u1Ai − u2Ai

∣∣∣ +
∣∣∣u1Ni − u2Ni

∣∣∣ ),

(3.6)

dis2

(
Ph1 ,Ph2

)
=

1
15

( ∣∣∣∣P+
h1Mi
− P+

h2Mi

∣∣∣∣2 +
∣∣∣∣P−h1Mi

− P−h2Mi

∣∣∣∣2
+

∣∣∣∣P+
h1Ai
− P+

h2Ai

∣∣∣∣2 +
∣∣∣∣P−h1Ai

− P−h2Ai

∣∣∣∣2
+

∣∣∣∣P+
h1Ni
− P+

h2Ni

∣∣∣∣2 +
∣∣∣∣P−h1Ni

− P−h2Ni

∣∣∣∣2
+

∣∣∣a1Mi − a2Mi

∣∣∣2 +
∣∣∣a1Ai − a2Ai

∣∣∣2 +
∣∣∣a1Ni − a2Ni

∣∣∣2
+

∣∣∣v1Mi − v2Mi

∣∣∣2 +
∣∣∣v1Ai − v2Ai

∣∣∣2 +
∣∣∣v1Ni − v2Ni

∣∣∣2
+

∣∣∣u1Mi − u2Mi

∣∣∣2 +
∣∣∣u1Ai − u2Ai

∣∣∣2 +
∣∣∣u1Ni − u2Ni

∣∣∣2 )1/2

,

(3.7)

dis3

(
Ph1 ,Ph2

)
=

1
15

( ∣∣∣∣P+
h1Mi
− P+

h2Mi

∣∣∣∣λ +
∣∣∣∣P−h1Mi

− P−h2Mi

∣∣∣∣λ
+

∣∣∣∣P+
h1Ai
− P+

h2Ai

∣∣∣∣λ +
∣∣∣∣P−h1Ai

− P−h2Ai

∣∣∣∣λ
+

∣∣∣∣P+
h1Ni
− P+

h2Ni

∣∣∣∣λ +
∣∣∣∣P−h1Ni

− P−h2Ni

∣∣∣∣λ
+

∣∣∣a1Mi − a2Mi

∣∣∣λ +
∣∣∣a1Ai − a2Ai

∣∣∣λ +
∣∣∣a1Ni − a2Ni

∣∣∣λ
+

∣∣∣v1Mi − v2Mi

∣∣∣λ +
∣∣∣v1Ai − v2Ai

∣∣∣λ +
∣∣∣v1Ni − v2Ni

∣∣∣λ
+

∣∣∣u1Mi − u2Mi

∣∣∣λ +
∣∣∣u1Ai − u2Ai

∣∣∣λ +
∣∣∣u1Ni − u2Ni

∣∣∣λ )1/λ

, λ > 0,

(3.8)
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are called the normalized Hamming distance measure, normalized Euclidean distance measure, and
normalized generalized distance measure between (PHFEs) Ph1 and Ph2 , respectively.
Example 2. For a given X = {x}, Ph1 = {{0.7, 0.8}, {0.1, 0.2}, {0.3, 0.4}} and Ph2 =

{{0.5, 0.6, 0.7}, {0.1, 0.2, 0.3}, {0.3, 0.4, 0.5}} are two (PHFEs) on X then we can obtain:

P+
h1

=
{
Ph1 M+

i
,Ph1A+

i
,Ph1N+

i

}
= {0.8, 0.1, 0.3},P−h1

=
{
Ph1 M−i ,Ph1A−i ,Ph1N−i

}
= {0.7, 0.2, 0.4},

P+
h2

=
{
Ph2 M+

i
,Ph2A+

i
,Ph2N+

i

}
= {0.7, 0.1, 0.3},P−h2

=
{
Ph2 M−i ,Ph2A−i ,Ph2N−i

}
= {0.5, 0.3, 0.5},

a(Ph1) =
{
aMi1

, aAi1
, aNi1

}
= {0.75, 0.15, 0.35}, a(Ph2) =

{
aMi2

, aAi2
, aNi2

}
= {0.6, 0.2, 0.4},

v(Ph1) =
{
vMi1

, vAi1
, vNi1

}
= {0.05, 0.05, 0.05}, v(Ph2) =

{
vMi2

, vAi2
, vNi2

}
= {0.08, 0.08, 0.08},

u(Ph1) =
{
uMi1

, uAi1
, uNi1

}
= {0.5, 0.5, 0.5}, u(Ph2) =

{
uMi2

, uAi2
, uNi2

}
= {0.67, 0.67, 0.67}.

Thus, we have the normalized Hamming distance measure

dis1

(
Ph1 ,Ph2

)
=

1
15

(
0.1 + 0 + 0 + 0.2 + 0.1 + 0.1 + 0.15 + 0.05 + 0.05 + 0.03 + 0.03 + 0.03 + 0.17

+0.17 + 0.17
)

= 0.09.

Theorem 1. Let Ph1 and Ph2 be two (PHFEs), then the normalized Hamming distance measure
dis1

(
Ph1 ,Ph2

)
satisfy the triangle inequality.

proof.

1. It is established that the normalized Hamming distance measure dis1 for two (PHFEs), Ph1 and
Ph2 , is always bounded within the interval [0, 1]. Therefore, we have

0 ≤ dis1

(
Ph1 ,Ph2

)
≤ 1.

2. Let Ph1 = Ph2 , then we have:

P+
h1Mi

= P+
h2Mi

, P−h1Mi
= P−h2Mi

, P+
h1Ai

= P+
h2Ai
, P−h1Ai

= P−h2Ai
,

P+
h1Ni

= P+
h2Ni
, P−h1Ni

= P−h2Ni
, a1Mi = a2Mi , a1Ai = a2Ai ,

a1Ni = a2Ni , v1Mi = v2Mi , v1Ai = v2Ai , v1Ni = v2Ni ,

u1Mi = u2Mi , u1Ai = u2Ai , u1Ni = u2Ni .

This implies that:∣∣∣∣P+
h1Mi
− P+

h2Mi

∣∣∣∣ = 0,
∣∣∣∣P−h1Mi

− P−h2Mi

∣∣∣∣ = 0,
∣∣∣∣P+

h1Ai
− P+

h2Ai

∣∣∣∣ = 0,∣∣∣∣P−h1Ai
− P−h2Ai

∣∣∣∣ = 0,
∣∣∣∣P+

h1Ni
− P+

h2Ni

∣∣∣∣ = 0,
∣∣∣∣P−h1Ni

− P−h2Ni

∣∣∣∣ = 0,∣∣∣a1Mi − a2Mi

∣∣∣ = 0,
∣∣∣a1Ai − a2Ai

∣∣∣ = 0,
∣∣∣a1Ni − a2Ni

∣∣∣ = 0,∣∣∣v1Mi − v2Mi

∣∣∣ = 0,
∣∣∣v1Ai − v2Ai

∣∣∣ = 0,
∣∣∣v1Ni − v2Ni

∣∣∣ = 0,∣∣∣u1Mi − u2Mi

∣∣∣ = 0,
∣∣∣u1Ai − u2Ai

∣∣∣ = 0,
∣∣∣u1Ni − u2Ni

∣∣∣ = 0.
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Therefore, dis1

(
Ph1 ,Ph2

)
= 1

15 (0) = 0.

Conversely, suppose that dis1

(
Ph1 ,Ph2

)
= 0, this implies that:∣∣∣∣P+

h1Mi
− P+

h2Mi

∣∣∣∣ = 0,
∣∣∣∣P−h1Mi

− P−h2Mi

∣∣∣∣ = 0,
∣∣∣∣P+

h1Ai
− P+

h2Ai

∣∣∣∣ = 0,∣∣∣∣P−h1Ai
− P−h2Ai

∣∣∣∣ = 0,
∣∣∣∣P+

h1Ni
− P+

h2Ni

∣∣∣∣ = 0,
∣∣∣∣P−h1Ni

− P−h2Ni

∣∣∣∣ = 0,∣∣∣a1Mi − a2Mi

∣∣∣ = 0,
∣∣∣a1Ai − a2Ai

∣∣∣ = 0,
∣∣∣a1Ni − a2Ni

∣∣∣ = 0,∣∣∣v1Mi − v2Mi

∣∣∣ = 0,
∣∣∣v1Ai − v2Ai

∣∣∣ = 0,
∣∣∣v1Ni − v2Ni

∣∣∣ = 0,∣∣∣u1Mi − u2Mi

∣∣∣ = 0,
∣∣∣u1Ai − u2Ai

∣∣∣ = 0,
∣∣∣u1Ni − u2Ni

∣∣∣ = 0.

Hence,
P+

h1Mi
= P+

h2Mi
, P−h1Mi

= P−h2Mi
, P+

h1Ai
= P+

h2Ai
, P−h1Ai

= P−h2Ai
,

P+
h1Ni

= P+
h2Ni
, P−h1Ni

= P−h2Ni
, a1Mi = a2Mi , a1Ai = a2Ai ,

a1Ni = a2Ni , v1Mi = v2Mi , v1Ai = v2Ai , v1Ni = v2Ni ,

u1Mi = u2Mi , u1Ai = u2Ai , u1Ni = u2Ni .

Therefore, Ph1 = Ph2 .

3. From Definition 8, we have:

dis1

(
Ph1 ,Ph2

)
=

1
15

( ∣∣∣∣P+
h1Mi
− P+

h2Mi

∣∣∣∣ +
∣∣∣∣P−h1Mi

− P−h2Mi

∣∣∣∣
+

∣∣∣∣P+
h1Ai
− P+

h2Ai

∣∣∣∣ +
∣∣∣∣P−h1Ai

− P−h2Ai

∣∣∣∣
+

∣∣∣∣P+
h1Ni
− P+

h2Ni

∣∣∣∣ +
∣∣∣∣P−h1Ni

− P−h2Ni

∣∣∣∣
+

∣∣∣a1Mi − a2Mi

∣∣∣ +
∣∣∣a1Ai − a2Ai

∣∣∣ +
∣∣∣a1Ni − a2Ni

∣∣∣
+

∣∣∣v1Mi − v2Mi

∣∣∣ +
∣∣∣v1Ai − v2Ai

∣∣∣ +
∣∣∣v1Ni − v2Ni

∣∣∣
+

∣∣∣u1Mi − u2Mi

∣∣∣ +
∣∣∣u1Ai − u2Ai

∣∣∣ +
∣∣∣u1Ni − u2Ni

∣∣∣ )
=

1
15

( ∣∣∣∣P+
h2Mi
− P+

h1Mi

∣∣∣∣ +
∣∣∣∣P−h2Mi

− P−h1Mi

∣∣∣∣
+

∣∣∣∣P+
h2Ai
− P+

h1Ai

∣∣∣∣ +
∣∣∣∣P−h2Ai

− P−h1Ai

∣∣∣∣
+

∣∣∣∣P+
h2Ni
− P+

h1Ni

∣∣∣∣ +
∣∣∣∣P−h2Ni

− P−h1Ni

∣∣∣∣
+

∣∣∣a2Mi − a1Mi

∣∣∣ +
∣∣∣a2Ai − a1Ai

∣∣∣ +
∣∣∣a2Ni − a1Ni

∣∣∣
+

∣∣∣v2Mi − v1Mi

∣∣∣ +
∣∣∣v2Ai − v1Ai

∣∣∣ +
∣∣∣v2Ni − v1Ni

∣∣∣
+

∣∣∣u2Mi − u1Mi

∣∣∣ +
∣∣∣u2Ai − u1Ai

∣∣∣ +
∣∣∣u2Ni − u1Ni

∣∣∣ ) = dis1

(
Ph2 ,Ph1

)
.

Therefore,
dis1

(
Ph1 ,Ph2

)
= dis1

(
Ph2 ,Ph1

)
.
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4.

dis1

(
Ph1 ,Ph3

)
=

1
15

( ∣∣∣∣P+
h1Mi
− P+

h3Mi

∣∣∣∣ +
∣∣∣∣P−h1Mi

− P−h3Mi

∣∣∣∣ +
∣∣∣∣P+

h1Ai
− P+

h3Ai

∣∣∣∣ +
∣∣∣∣P−h1Ai

− P−h3Ai

∣∣∣∣
+

∣∣∣∣P+
h1Ni
− P+

h3Ni

∣∣∣∣ +
∣∣∣∣P−h1Ni

− P−h3Ni

∣∣∣∣ +
∣∣∣a1Mi − a3Mi

∣∣∣ +
∣∣∣a1Ai − a3Ai

∣∣∣ +
∣∣∣a1Ni − a3Ni

∣∣∣
+

∣∣∣v1Mi − v3Mi

∣∣∣ +
∣∣∣v1Ai − v3Ai

∣∣∣ +
∣∣∣v1Ni − v3Ni

∣∣∣ +
∣∣∣u1Mi − u3Mi

∣∣∣ +
∣∣∣u1Ai − u3Ai

∣∣∣ +
∣∣∣u1Ni − u3Ni

∣∣∣ )
≤

1
15

( ∣∣∣∣P+
h1Mi
− P+

h2Mi

∣∣∣∣ +
∣∣∣∣P−h1Mi

− P−h2Mi

∣∣∣∣ +
∣∣∣∣P+

h1Ai
− P+

h2Ai

∣∣∣∣ +
∣∣∣∣P−h1Ai

− P−h2Ai

∣∣∣∣
+

∣∣∣∣P+
h1Ni
− P+

h2Ni

∣∣∣∣ +
∣∣∣∣P−h1Ni

− P−h2Ni

∣∣∣∣ +
∣∣∣a1Mi − a2Mi

∣∣∣ +
∣∣∣a1Ai − a2Ai

∣∣∣ +
∣∣∣a1Ni − a2Ni

∣∣∣
+

∣∣∣v1Mi − v2Mi

∣∣∣ +
∣∣∣v1Ai − v2Ai

∣∣∣ +
∣∣∣v1Ni − v2Ni

∣∣∣ +
∣∣∣u1Mi − u2Mi

∣∣∣ +
∣∣∣u1Ai − u2Ai

∣∣∣ +
∣∣∣u1Ni − u2Ni

∣∣∣ )
+

1
15

( ∣∣∣∣P+
h2Mi
− P+

h3Mi

∣∣∣∣ +
∣∣∣∣P−h2Mi

− P−h3Mi

∣∣∣∣ +
∣∣∣∣P+

h2Ai
− P+

h3Ai

∣∣∣∣ +
∣∣∣∣P−h2Ai

− P−h3Ai

∣∣∣∣
+

∣∣∣∣P+
h2Ni
− P+

h3Ni

∣∣∣∣ +
∣∣∣∣P−h2Ni

− P−h3Ni

∣∣∣∣ +
∣∣∣a2Mi − a3Mi

∣∣∣ +
∣∣∣a2Ai − a3Ai

∣∣∣ +
∣∣∣a2Ni − a3Ni

∣∣∣
+

∣∣∣v2Mi − v3Mi

∣∣∣ +
∣∣∣v2Ai − v3Ai

∣∣∣ +
∣∣∣v2Ni − v3Ni

∣∣∣ +
∣∣∣u2Mi − u3Mi

∣∣∣ +
∣∣∣u2Ai − u3Ai

∣∣∣ +
∣∣∣u2Ni − u3Ni

∣∣∣ )
= dis1

(
Ph1 ,Ph2

)
+ dis1

(
Ph2 ,Ph3

)
.

Thus, Theorem 1 has been proven.
Theorem 2. Let Ph1 and Ph2 be two (PHFEs), then the normalized Euclidean distance measure
dis2

(
Ph1 ,Ph2

)
and the normalized generalized distance measure dis3

(
Ph1 ,Ph2

)
satisfy the triangle

inequality.
The proof is similar to Theorem 1.
In the context of practical applications, if each characteristic of (PHFE) is assigned different

weights, we propose employing the normalized weighted Hamming distance measure, the normalized
weighted Euclidean distance measure, and the normalized weighted generalized distance measure
for (PHFEs).

disw1

(
Ph1 ,Ph2

)
= w1 ∗

∣∣∣∣P+
h1Mi
− P+

h2Mi

∣∣∣∣ + w2 ∗

∣∣∣∣P−h1Mi
− P−h2Mi

∣∣∣∣ + w3 ∗

∣∣∣∣P+
h1Ai
− P+

h2Ai

∣∣∣∣
+ w4 ∗

∣∣∣∣P−h1Ai
− P−h2Ai

∣∣∣∣ + w5 ∗

∣∣∣∣P+
h1Ni
− P+

h2Ni

∣∣∣∣ + w6 ∗

∣∣∣∣P−h1Ni
− P−h2Ni

∣∣∣∣
+ w7 ∗

∣∣∣a1Mi − a2Mi

∣∣∣ + w8 ∗
∣∣∣a1Ai − a2Ai

∣∣∣ + w9 ∗
∣∣∣a1Ni − a2Ni

∣∣∣
+ w10 ∗

∣∣∣v1Mi − v2Mi

∣∣∣ + w11 ∗
∣∣∣v1Ai − v2Ai

∣∣∣ + w12 ∗
∣∣∣v1Ni − v2Ni

∣∣∣
+ w13 ∗

∣∣∣u1Mi − u2Mi

∣∣∣ + w14 ∗
∣∣∣u1Ai − u2Ai

∣∣∣ + w15 ∗
∣∣∣u1Ni − u2Ni

∣∣∣ ,
(3.9)
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disw2

(
Ph1 ,Ph2

)
=

(
w1 ∗

(∣∣∣∣P+
h1Mi
− P+

h2Mi

∣∣∣∣)2
+ w2 ∗

(∣∣∣∣P−h1Mi
− P−h2Mi

∣∣∣∣)2
+ w3 ∗

(∣∣∣∣P+
h1Ai
− P+

h2Ai

∣∣∣∣)2

+ w4 ∗

(∣∣∣∣P−h1Ai
− P−h2Ai

∣∣∣∣)2
+ w5 ∗

(∣∣∣∣P+
h1Ni
− P+

h2Ni

∣∣∣∣)2
+ w6 ∗

(∣∣∣∣P−h1Ni
− P−h2Ni

∣∣∣∣)2

+ w7 ∗
(∣∣∣a1Mi − a2Mi

∣∣∣)2
+ w8 ∗

(∣∣∣a1Ai − a2Ai

∣∣∣)2
+ w9 ∗

(∣∣∣a1Ni − a2Ni

∣∣∣)2

+ w10 ∗
(∣∣∣v1Mi − v2Mi

∣∣∣)2
+ w11 ∗

(∣∣∣v1Ai − v2Ai

∣∣∣)2
+ w12 ∗

(∣∣∣v1Ni − v2Ni

∣∣∣)2

+ w13 ∗
(∣∣∣u1Mi − u2Mi

∣∣∣)2
+ w14 ∗

(∣∣∣u1Ai − u2Ai

∣∣∣)2
+ w15 ∗

(∣∣∣u1Ni − u2Ni

∣∣∣)2
)1/2

,

(3.10)

disw3

(
Ph1 ,Ph2

)
=

(
w1 ∗

(∣∣∣∣P+
h1Mi
− P+

h2Mi

∣∣∣∣)λ + w2 ∗

(∣∣∣∣P−h1Mi
− P−h2Mi

∣∣∣∣)λ + w3 ∗

(∣∣∣∣P+
h1Ai
− P+

h2Ai

∣∣∣∣)λ
+ w4 ∗

(∣∣∣∣P−h1Ai
− P−h2Ai

∣∣∣∣)λ + w5 ∗

(∣∣∣∣P+
h1Ni
− P+

h2Ni

∣∣∣∣)λ + w6 ∗

(∣∣∣∣P−h1Ni
− P−h2Ni

∣∣∣∣)λ
+ w7 ∗

(∣∣∣a1Mi − a2Mi

∣∣∣)λ + w8 ∗
(∣∣∣a1Ai − a2Ai

∣∣∣)λ + w9 ∗
(∣∣∣a1Ni − a2Ni

∣∣∣)λ
+ w10 ∗

(∣∣∣v1Mi − v2Mi

∣∣∣)λ + w11 ∗
(∣∣∣v1Ai − v2Ai

∣∣∣)λ + w12 ∗
(∣∣∣v1Ni − v2Ni

∣∣∣)λ
+ w13 ∗

(∣∣∣u1Mi − u2Mi

∣∣∣)λ + w14 ∗
(∣∣∣u1Ai − u2Ai

∣∣∣)λ + w15 ∗
(∣∣∣u1Ni − u2Ni

∣∣∣)λ )1/λ

, λ > 0,

(3.11)
where 0 ≤ ωi ≤ 1 (i = 1, 2, . . . , 15) and

∑15
i=1 ωi = 1.

Theorem 3. Let Ph1 and Ph2 be two (PHFEs). Then the normalized weighted distance measures, such
as disw1

(
Ph1 ,Ph2

)
, disw2

(
Ph1 ,Ph2

)
, and disw3

(
Ph1 ,Ph2

)
, satisfy the triangle inequality.

The proof is similar to Theorem 1.
Definition 9. Let X = (x1, x2, . . . , xn), and let PH1 and PH2 be PHFSs on X. Then

dis1

(
PH1 ,PH2

)
=

1
15n

n∑
i=1

( ∣∣∣∣P+
H1Mi

(xi) − P+
H2Mi

(xi)
∣∣∣∣ +

∣∣∣∣P−H1Mi
(xi) − P−H2Mi

(xi)
∣∣∣∣

+
∣∣∣∣P+

H1Ai
(xi) − P+

H2Ai
(xi)

∣∣∣∣ +
∣∣∣∣P−H1Ai

(xi) − P−H2Ai
(xi)

∣∣∣∣
+

∣∣∣∣P+
H1Ni

(xi) − P+
H2Ni

(xi)
∣∣∣∣ +

∣∣∣∣P−H1Ni
(xi) − P−H2Ni

(xi)
∣∣∣∣

+
∣∣∣a1Mi (xi) − a2Mi (xi)

∣∣∣ +
∣∣∣a1Ai (xi) − a2Ai (xi)

∣∣∣ +
∣∣∣a1Ni (xi) − a2Ni (xi)

∣∣∣
+

∣∣∣v1Mi (xi) − v2Mi (xi)
∣∣∣ +

∣∣∣v1Ai (xi) − v2Ai (xi)
∣∣∣ +

∣∣∣v1Ni (xi) − v2Ni (xi)
∣∣∣

+
∣∣∣u1Mi (xi) − u2Mi (xi)

∣∣∣ +
∣∣∣u1Ai (xi) − u2Ai (xi)

∣∣∣ +
∣∣∣u1Ni (xi) − u2Ni (xi)

∣∣∣ ), (3.12)

dis2

(
PH1 ,PH2

)
=

(
1

15n

n∑
i=1

( ∣∣∣∣P+
H1Mi

(xi) − P+
H2Mi

(xi)
∣∣∣∣2 +

∣∣∣∣P−H1Mi
(xi) − P−H2Mi

(xi)
∣∣∣∣2

+
∣∣∣∣P+

H1Ai
(xi) − P+

H2Ai
(xi)

∣∣∣∣2 +
∣∣∣∣P−H1Ai

(xi) − P−H2Ai
(xi)

∣∣∣∣2
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+
∣∣∣∣P+

H1Ni
(xi) − P+

H2Ni
(xi)

∣∣∣∣2 +
∣∣∣∣P−H1Ni

(xi) − P−H2Ni
(xi)

∣∣∣∣2
+

∣∣∣a1Mi (xi) − a2Mi (xi)
∣∣∣2 +

∣∣∣a1Ai (xi) − a2Ai (xi)
∣∣∣2 +

∣∣∣a1Ni (xi) − a2Ni (xi)
∣∣∣2

+
∣∣∣v1Mi (xi) − v2Mi (xi)

∣∣∣2 +
∣∣∣v1Ai (xi) − v2Ai (xi)

∣∣∣2 +
∣∣∣v1Ni (xi) − v2Ni (xi)

∣∣∣2
+

∣∣∣u1Mi (xi) − u2Mi (xi)
∣∣∣2 +

∣∣∣u1Ai (xi) − u2Ai (xi)
∣∣∣2 +

∣∣∣u1Ni (xi) − u2Ni (xi)
∣∣∣2 ))1/2

, (3.13)

dis3

(
PH1 ,PH2

)
=

(
1

15n

n∑
i=1

( ∣∣∣∣P+
H1Mi

(xi) − P+
H2Mi

(xi)
∣∣∣∣λ +

∣∣∣∣P−H1Mi
(xi) − P−H2Mi

(xi)
∣∣∣∣λ

+
∣∣∣∣P+

H1Ai
(xi) − P+

H2Ai
(xi)

∣∣∣∣λ +
∣∣∣∣P−H1Ai

(xi) − P−H2Ai
(xi)

∣∣∣∣λ
+

∣∣∣∣P+
H1Ni

(xi) − P+
H2Ni

(xi)
∣∣∣∣λ +

∣∣∣∣P−H1Ni
(xi) − P−H2Ni

(xi)
∣∣∣∣λ

+
∣∣∣a1Mi (xi) − a2Mi (xi)

∣∣∣λ +
∣∣∣a1Ai (xi) − a2Ai (xi)

∣∣∣λ +
∣∣∣a1Ni (xi) − a2Ni (xi)

∣∣∣λ
+

∣∣∣v1Mi (xi) − v2Mi (xi)
∣∣∣λ +

∣∣∣v1Ai (xi) − v2Ai (xi)
∣∣∣λ +

∣∣∣v1Ni (xi) − v2Ni (xi)
∣∣∣λ

+
∣∣∣u1Mi (xi) − u2Mi (xi)

∣∣∣λ +
∣∣∣u1Ai (xi) − u2Ai (xi)

∣∣∣λ +
∣∣∣u1Ni (xi) − u2Ni (xi)

∣∣∣λ ))1/λ

, (3.14)

where λ > 0.
Moreover, if every characteristic of (PHFE) has a distinct weight, then

dis1

(
PH1 ,PH2

)
=

1
n

n∑
i=1

(
ω1

∣∣∣∣P+
H1Mi

(xi) − P+
H2Mi

(xi)
∣∣∣∣ + ω2

∣∣∣∣P−H1Mi
(xi) − P−H2Mi

(xi)
∣∣∣∣

+ ω3

∣∣∣∣P+
H1Ai

(xi) − P+
H2Ai

(xi)
∣∣∣∣ + ω4

∣∣∣∣P−H1Ai
(xi) − P−H2Ai

(xi)
∣∣∣∣

+ ω5

∣∣∣∣P+
H1Ni

(xi) − P+
H2Ni

(xi)
∣∣∣∣ + ω6

∣∣∣∣P−H1Ni
(xi) − P−H2Ni

(xi)
∣∣∣∣

+ ω7

∣∣∣a1Mi (xi) − a2Mi (xi)
∣∣∣ + ω8

∣∣∣a1Ai (xi) − a2Ai (xi)
∣∣∣ + ω9

∣∣∣a1Ni (xi) − a2Ni (xi)
∣∣∣

+ ω10

∣∣∣v1Mi (xi) − v2Mi (xi)
∣∣∣ + ω11

∣∣∣v1Ai (xi) − v2Ai (xi)
∣∣∣ + ω12

∣∣∣v1Ni (xi) − v2Ni (xi)
∣∣∣

+ ω13

∣∣∣u1Mi (xi) − u2Mi (xi)
∣∣∣ + ω14

∣∣∣u1Ai (xi) − u2Ai (xi)
∣∣∣

+ ω15

∣∣∣u1Ni (xi) − u2Ni (xi)
∣∣∣ ),

(3.15)
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dis2

(
PH1 ,PH2

)
=

(
1
n

n∑
i=1

(
ω1

∣∣∣∣P+
H1Mi

(xi) − P+
H2Mi

(xi)
∣∣∣∣2 + ω2

∣∣∣∣P−H1Mi
(xi) − P−H2Mi

(xi)
∣∣∣∣2

+ ω3

∣∣∣∣P+
H1Ai

(xi) − P+
H2Ai

(xi)
∣∣∣∣2 + ω4

∣∣∣∣P−H1Ai
(xi) − P−H2Ai

(xi)
∣∣∣∣2

+ ω5

∣∣∣∣P+
H1Ni

(xi) − P+
H2Ni

(xi)
∣∣∣∣2 + ω6

∣∣∣∣P−H1Ni
(xi) − P−H2Ni

(xi)
∣∣∣∣2

+ ω7

∣∣∣a1Mi (xi) − a2Mi (xi)
∣∣∣2 + ω8

∣∣∣a1Ai (xi) − a2Ai (xi)
∣∣∣2 + ω9

∣∣∣a1Ni (xi) − a2Ni (xi)
∣∣∣2

+ ω10

∣∣∣v1Mi (xi) − v2Mi (xi)
∣∣∣2 + ω11

∣∣∣v1Ai (xi) − v2Ai (xi)
∣∣∣2 + ω12

∣∣∣v1Ni (xi) − v2Ni (xi)
∣∣∣2

+ ω13

∣∣∣u1Mi (xi) − u2Mi (xi)
∣∣∣2 + ω14

∣∣∣u1Ai (xi) − u2Ai (xi)
∣∣∣2

+ ω15

∣∣∣u1Ni (xi) − u2Ni (xi)
∣∣∣2 ))1/2

,

(3.16)

dis3

(
PH1 ,PH2

)
=

(
1
n

n∑
i=1

(
ω1

∣∣∣∣P+
H1Mi

(xi) − P+
H2Mi

(xi)
∣∣∣∣λ + ω2

∣∣∣∣P−H1Mi
(xi) − P−H2Mi

(xi)
∣∣∣∣λ

+ ω3

∣∣∣∣P+
H1Ai

(xi) − P+
H2Ai

(xi)
∣∣∣∣λ + ω4

∣∣∣∣P−H1Ai
(xi) − P−H2Ai

(xi)
∣∣∣∣λ

+ ω5

∣∣∣∣P+
H1Ni

(xi) − P+
H2Ni

(xi)
∣∣∣∣λ + ω6

∣∣∣∣P−H1Ni
(xi) − P−H2Ni

(xi)
∣∣∣∣λ

+ ω7

∣∣∣a1Mi (xi) − a2Mi (xi)
∣∣∣λ + ω8

∣∣∣a1Ai (xi) − a2Ai (xi)
∣∣∣λ + ω9

∣∣∣a1Ni (xi) − a2Ni (xi)
∣∣∣λ

+ ω10

∣∣∣v1Mi (xi) − v2Mi (xi)
∣∣∣λ + ω11

∣∣∣v1Ai (xi) − v2Ai (xi)
∣∣∣λ + ω12

∣∣∣v1Ni (xi) − v2Ni (xi)
∣∣∣λ

+ ω13

∣∣∣u1Mi (xi) − u2Mi (xi)
∣∣∣λ + ω14

∣∣∣u1Ai (xi) − u2Ai (xi)
∣∣∣λ

+ ω15

∣∣∣u1Ni (xi) − u2Ni (xi)
∣∣∣λ ))1/λ

, λ > 0,

(3.17)
are called the normalized weighted Hamming distance measure, normalized weighted Euclidean
distance measure, and normalized weighted generalized distance measure between (PHFSs) PH1 and
PH2 based on the characteristics of (PHFE). Where 0 ≤ ωi ≤ 1, i = 1, 2, . . . , 15 and

∑15
i=1 ωi = 1.

4. Application

The distance measure is a critical tool widely employed in both theoretical research and practical
applications. It plays a pivotal role in various fields, including cluster analysis, pattern recognition,
medical diagnosis, and decision-making.
Example 3. Medical diagnosis represents a vital element of computer-aided systems, emphasizing the
assessment of a patient’s clinical symptoms and diagnostic tests to determine the most likely disease.
In this study, five diseases are examined: P1 (Viral fever), P2 (Malaria), P3 (Typhoid), P4 (Stomach
problem), and P5 (Chest problem). These diseases are associated with five corresponding symptoms:
S 1 (Body temperature), S 2 (Headache), S 3 (Cough), S 4 (Stomachache pain), and S 5 (Chest pain). The
relationships between these diseases and their symptoms are summarized in Table 1, while Table 2
illustrates the relationships between patients and their symptoms. The main objective is to identify
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the most probable disease for each patient based on their symptoms, ensuring precise diagnosis and
facilitating effective treatment strategies.

Each (PHFE) corresponds to the precise extent of the association between disease data
and symptoms or between patient data and symptoms, as illustrated in Tables 1 and 2.
Let X={S 1, S 2, S 3, S 4, S 5}, where a (PHFS) on X represents either a patient A j ( j = 1, 2, 3, 4) or a
disease Pi (i = 1, 2, 3, 4, 5). The normalized distance measure between a disease Pi and a patient A j is
calculated using the proposed methodology. A smaller distance measure indicates a higher probability
of diagnosing the patient with the respective disease.

The process of calculating medical diagnoses and analyzing the results is presented in Tables 3–6.
Based on the proposed distance measures and the data provided in these tables, patient A1 (Al) is
diagnosed with P1 (Viral fever) for λ = 0.5, 1, 2, 3, and 4, and with P4 (Stomach problem) for λ = 10.
Patient A2 (Bob) is diagnosed with P4 (Stomach problem) for λ = 0.5 and 1, and with P1 (Viral fever)
for λ = 2, 3, 4, and 10. Patient A3 (Joe) is consistently diagnosed with P1 (Viral fever), and patient
A4 (Ted) is also consistently diagnosed with P1 (Viral fever).

These results demonstrate the robustness and effectiveness of the proposed distance measures in
accurately diagnosing diseases based on clinical symptoms.

Table 1. Disease data for symptoms.

S 1 S 2 S 3 S 4 S 5

P1

{{0.6, 0.4, 0.3},
{0.2, 0.0},

{0.8, 0.7, 0.4}}

{{0.7, 0.5, 0.3, 0.2},
{0.3, 0.1},

{0.5, 0.3, 0.2, 0.1}}

{{0.5, 0.3},
{0.5, 0.4, 0.2},

{0.2, 0.1}}

{{0.5, 0.4, 0.3, 0.2, 0.1},
{0.5, 0.3},

{0.6, 0.5, 0.3, 0.2, 0.1}}

{{0.5, 0.4, 0.2, 0.1},
{0.5, 0.4, 0.3},

{0.4, 0.3, 0.2, 0.1}}

P2

{{0.9, 0.8, 0.7},
{0.1, 0.0},

{0.6, 0.3, 0.1}}

{{0.5, 0.3, 0.2, 0.1},
{0.4, 0.3},

{0.9, 0.8, 0.7, 0.6}}

{{0.2, 0.1},
{0.7, 0.6, 0.5},

{0.5, 0.3}}

{{0.6, 0.5, 0.3, 0.2, 0.1},
{0.3, 0.2},

{0.5, 0.4, 0.3, 0.2, 0.1}}

{{0.4, 0.3, 0.2, 0.1},
{0.6, 0.5, 0.4},

{0.6, 0.4, 0.3, 0.2}}

P3

{{0.6, 0.3, 0.1},
{0.3, 0.2},

{0.5, 0.4, 0.2}}

{{0.9, 0.8, 0.7, 0.6},
{0.1, 0.0},

{0.4, 0.3, 0.2, 0.1}}

{{0.5, 0.3},
{0.5, 0.4, 0.3},

{0.4, 0.3}}

{{0.5, 0.4, 0.3, 0.2, 0.1},
{0.5, 0.4},

{0.9, 0.8, 0.7, 0.6, 0.5}}

{{0.6, 0.4, 0.3, 0.2},
{0.4, 0.3, 0.2},

{0.5, 0.4, 0.2, 0.1}}

P4

{{0.5, 0.4, 0.2},
{0.5, 0.3},

{0.3, 0.2, 0.1}}

{{0.4, 0.3, 0.2, 0.1},
{0.4, 0.3},

{0.5, 0.3, 0.2, 0.1}}

{{0.4, 0.3},
{0.6, 0.5, 0.4},

{0.3, 0.2}}

{{0.9, 0.8, 0.7, 0.6, 0.5},
{0.1, 0.0},

{0.7, 0.6, 0.5, 0.3, 0.2}}

{{0.5, 0.4, 0.2, 0.1},
{0.5, 0.4, 0.3},

{0.8, 0.7, 0.6, 0.5}}

P5

{{0.3, 0.2, 0.1},
{0.7, 0.6},

{0.5, 0.4, 0.2}}

{{0.5, 0.3, 0.2, 0.1},
{0.5, 0.3},

{0.4, 0.3, 0.2, 0.1}}

{{0.3, 0.2},
{0.6, 0.4, 0.3},

{0.4, 0.3}}

{{0.7, 0.6, 0.5, 0.3, 0.2},
{0.2, 0.1},

{0.9, 0.8, 0.7, 0.6, 0.5}}

{{0.8, 0.7, 0.6, 0.5},
{0.2, 0.1, 0.0},

{0.4, 0.3, 0.2, 0.1}}
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Table 2. Patient data for symptoms.

S 1 S 2 S 3 S 4 S 5

A1

{{0.9, 0.7, 0.5},
{0.1, 0.0},

{0.5, 0.4, 0.2}}

{{0.4, 0.3, 0.2, 0.1},
{0.5, 0.4},

{0.5, 0.4, 0.3, 0.1}}

{{0.4, 0.3},
{0.5, 0.4, 0.2},

{0.2, 0.1}}

{{0.6, 0.5, 0.4, 0.2, 0.1},
{0.3, 0.2},

{0.9, 0.8, 0.6, 0.5, 0.4}}

{{0.4, 0.3, 0.2, 0.1},
{0.5, 0.4, 0.3},

{0.5, 0.4, 0.3, 0.2}}

A2

{{0.5, 0.4, 0.2},
{0.5, 0.3},

{0.9, 0.7, 0.6}}

{{0.5, 0.4, 0.3, 0.1},
{0.4, 0.3},

{0.7, 0.4, 0.3, 0.1}}

{{0.2, 0.1},
{0.7, 0.6, 0.5},

{0.3, 0.2}}

{{0.9, 0.8, 0.6, 0.5, 0.4},
{0.1, 0.0},

{0.6, 0.4, 0.3, 0.2, 0.1}}

{{0.5, 0.4, 0.3, 0.2},
{0.5, 0.4, 0.3},

{0.6, 0.3, 0.2, 0.1}}

A3

{{0.9, 0.7, 0.6},
{0.1, 0.0},

{0.8, 0.7, 0.5}}

{{0.7, 0.4, 0.3, 0.1},
{0.2, 0.1},

{0.6, 0.5, 0.4, 0.2}}

{{0.3, 0.2},
{0.5, 0.4, 0.3},

{0.5, 0.3}}

{{0.6, 0.4, 0.3, 0.2, 0.1},
{0.4, 0.3},

{0.6, 0.4, 0.3, 0.2, 0.1}}

{{0.6, 0.3, 0.2, 0.1},
{0.4, 0.3, 0.2},

{0.5, 0.4, 0.2, 0.1}}

A4

{{0.8, 0.7, 0.5},
{0.2, 0.1},

{0.9, 0.7, 0.5}}

{{0.6, 0.5, 0.4, 0.2},
{0.4, 0.3},

{0.4, 0.3, 0.2, 0.1}}

{{0.5, 0.3},
{0.5, 0.4, 0.3},

{0.4, 0.3}}

{{0.6, 0.4, 0.3, 0.2, 0.1},
{0.4, 0.3},

{0.6, 0.5, 0.4, 0.2, 0.1}}

{{0.5, 0.4, 0.2, 0.1},
{0.5, 0.4, 0.3},

{0.4, 0.3, 0.2, 0.1}}

Table 3. Normalized generalized distance measures between Al and diseases Pi, i =

1, 2, 3, 4, 5.

Al λ = 0.5 λ = 1 λ = 2 λ = 3 λ = 4 λ = 10
P1 0.0215917 0.0792890 0.1372727 0.1590846 0.1811565 0.3680563
P2 0.0362257 0.0831933 0.1473736 0.1929749 0.2277158 0.3370483
P3 0.0516143 0.1024718 0.1708586 0.2206327 0.2583607 0.3678254
P4 0.0463843 0.0949614 0.1562820 0.1944856 0.2214545 0.2981283
P5 0.0530238 0.1109942 0.1976700 0.2633571 0.3123987 0.4501101

Table 4. Normalized generalized distance measures between Bob and diseases Pi, i =

1, 2, 3, 4, 5.

Bob λ = 0.5 λ = 1 λ = 2 λ = 3 λ = 4 λ = 10
P1 0.0358908 0.0778457 0.1342093 0.1740103 0.2033980 0.2873545
P2 0.0476015 0.1060223 0.1817962 0.2317905 0.2675776 0.3698351
P3 0.0809893 0.1394174 0.2057908 0.2462847 0.2740206 0.3994317
P4 0.0219417 0.0658023 0.1421767 0.2057392 0.2561777 0.4055136
P5 0.0636871 0.1130900 0.1684717 0.2037327 0.2290297 0.3021722
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Table 5. Normalized generalized distance measures between Joe and diseases Pi, i =

1, 2, 3, 4, 5.

Joe λ = 0.5 λ = 1 λ = 2 λ = 3 λ = 4 λ = 10
P1 0.0311657 0.0598506 0.0989361 0.1295466 0.1539220 0.2248739
P2 0.0371389 0.0779744 0.1291708 0.1647957 0.1926287 0.2829736
P3 0.0457718 0.0966266 0.1630490 0.2096375 0.2448786 0.3538900
P4 0.0792490 0.1352725 0.1997921 0.2409857 0.2700455 0.3537134
P5 0.0743473 0.1375754 0.2198130 0.2781398 0.3225091 0.4531066

Table 6. Normalized generalized distance measures between Ted and diseases Pi, i =

1, 2, 3, 4, 5.

Ted λ = 0.5 λ = 1 λ = 2 λ = 3 λ = 4 λ = 10
P1 0.0152562 0.0407857 0.0759397 0.0996926 0.1169566 0.1646771
P2 0.0496966 0.0990685 0.1745871 0.2389096 0.2929653 0.4793828
P3 0.0383785 0.0888440 0.1556240 0.1986697 0.2281489 0.3050077
P4 0.0508915 0.1101930 0.1856829 0.2356880 0.2727491 0.3989416
P5 0.0591256 0.1232246 0.2019790 0.2511524 0.2854115 0.3816457

4.1. Discussion and comparative analysis of distance measures

The comparative analysis of distance measures, as illustrated in Table 7, demonstrates the significant
advancements introduced in this study for handling (PHFS). By addressing the limitations of methods
like the generalized picture hesitant normalized distance measure GPHNDM [24] and the generalized
picture hesitant Hausdorff distance measure GPHHDM [25], the proposed measures prove to be more
reliable and practical, particularly in medical diagnostic contexts.

Table 7. Comparative analysis of distance measures.

Measure Al Bob Joe Ted

GPHNDM [24] P1

P1(λ = 0.5, 1, 3, 4)

P4(λ = 2)

P5(λ = 10)

P1 P1

GPHHDM [25] P1
P4(λ = 0.5, 1, 2)

P5(λ = 3, 4, 10)
P1 P1

Our proposed
distance
measures

P1(λ = 0.5, 1, 2, 3, 4)

P4(λ = 10)

P4(λ = 0.5, 1)

P1(λ = 2, 3, 4, 10)
P1 P1

For example, in Bob’s diagnosis, traditional approaches often yield ambiguous outcomes across λ
values, complicating the interpretation of results, particularly in complex cases. Sensitivity analyses
reveal that these methods frequently produce multiple diagnostic results, introducing significant
uncertainty. In contrast, the proposed measures consolidate these outcomes into stable and interpretable
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conclusions, showcasing superior reliability. Similarly, in Al’s case, the proposed measures
demonstrate adaptability by providing a broader yet stable diagnostic range, outperforming existing
methods. In simpler cases like Joe and Ted, while all methods yield consistent results, the proposed
measures excel in detecting subtle differences in hesitancy and variance.

From a theoretical perspective, the incorporation of advanced features such as the average function,
variance function, and degree of hesitancy enhances the ability to model and evaluate uncertain data
with greater precision. Adherence to mathematical principles, such as the triangle inequality, ensures
robustness and reliability, marking a substantial contribution to the theoretical framework of PHFS.

Practically, the proposed measures significantly improve medical diagnostics by enabling
physicians to assess patient symptoms with higher precision and reduced ambiguity, leading to better
diagnostic outcomes. Beyond medical diagnosis, these measures demonstrate broad applicability in
domains such as pattern recognition, clustering, and multi-criteria decision-making, addressing real-
world challenges characterized by uncertainty and complexity.

While the proposed measures offer significant theoretical and practical advancements, further
validation using diverse real-world datasets is essential to assess their scalability and robustness. Future
research could explore extending these measures to dynamic systems, enabling real-time decision-
making under evolving conditions of uncertainty.

4.2. Advantages

The advantages of the proposed normalized distance measure can be summarized as follows:

1. The proposed distance measure eliminates the need to equalize the lengths of membership,
neutral, and non-membership degrees for any two PHFEs, thereby simplifying computations.

2. PHFEs are characterized by fundamental properties, including upper bound, lower bound, average
function, variance function, and hesitancy degree, which collectively enhance their descriptive
power.

3. The proposed distance measure satisfies the triangle inequality, ensuring mathematical validity
and consistency.

4. The normalized weighted distance measure is highly adaptable to diverse application
requirements, accommodating various characteristics of PHFEs.

Additionally, other distance measures, such as the Hausdorff distance and hybrid distance, can be
applied using the feature vector representation of PHFEs, further enriching the analysis.

5. Conclusions

In this research, we have introduced innovative characteristics to enhance the descriptive capabilities
of (PHFSs), including the average function, variance function, and hesitancy degree. Utilizing these
characteristics, we developed novel distance measures for PHFSs, demonstrating their compliance
with fundamental mathematical properties such as the triangle inequality and achieving significant
improvements in diagnostic accuracy for medical applications.

While the results are promising, the study has certain limitations. The evaluation primarily
focuses on medical diagnostic data, which may limit its applicability to other domains. Additionally,
the computational complexity of the proposed measures increases with high-dimensional datasets,
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requiring further optimization for scalability. Despite these challenges, the proposed measures
offer broad potential for applications in pattern recognition, clustering, and decision-making under
uncertainty.

Researchers will address these limitations by validating the methods across diverse datasets,
enhancing computational efficiency, and exploring broader applications in dynamic systems and real-
time decision-making.
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