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Abstract: Picture fuzzy sets (PFS) extend intuitionistic fuzzy sets by incorporating positive,
neutral, and negative memberships to capture richer information. A notable challenge of PFS
and its derivatives is the need to specify these degrees using decimals, thus limiting their
practical applicability. To address this issue, we utilize proportional picture fuzzy sets (PPFS)
to define these parameters through proportional relationships. Our approach selects a PFS as the
unit fuzzy set, while the newly formulated proportional grey picture fuzzy sets (PGPFS) exploits
the proportionality between the individual and the unit fuzzy set parameters. Additionally,
we introduce the concept of a fuzzy tensor entropy measures and aggregation operators for
PGPFS. Additionally, we develop an aggregation decision-making method based on PGPFS,
thereby, accommodating the inherent ambiguity and uncertainty of the data. The feasibility
of the PGPFS approach in addressing multi-criteria decision-making (MCDM) scenarios with
uncertain criteria and expert weights is verified through an application of haze management
scheme selection. The reasonableness and effectiveness of the method are further confirmed
through sensitivity and comparative analyses.
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Abbreviations
CIFS Circular intuitionistic fuzzy sets
CPFS Complex Pythagorean fuzzy sets
DFS Decomposition fuzzy sets
DPFS Decomposed Pythagorean fuzzy sets
ELECTRE Elimination et choice translating reality
FS Fuzzy sets
GGN General grey number
GRP Grey correlation projection
IFS Intuitionistic fuzzy sets
IGFS Interval graphical fuzzy sets
IIFS Interval intuitionistic fuzzy sets
ISLFS Interval spherical linguistic fuzzy sets
IVPFN Interval-valued picture fuzzy number
IVPFOWIA Interval-valued picture fuzzy ordered weighted interactive averaging
IVPFS Interval-valued picture fuzzy sets
MCDM Multi-criteria decision-making
OPFWGO Optimized picture fuzzy weighted geometric operator
PFN Picture fuzzy numbers
PFPPtHMq DST Picture fuzzy power partitioned Hamymean
PFS Picture fuzzy sets
PFW PPtHMq DST Picture fuzzy weighted power partitioned Hamymean
PFWGO Picture fuzzy-weighted geometric aggregation operators
PFWIA Picture fuzzy weighted interactive average
PGPFE Proportional grey picture fuzzy entropy
PGPFN Proportional grey picture fuzzy number
PGPFS Proportional grey picture fuzzy set
PGPFWA Proportional grey picture fuzzy weighted aggregation
PPFN Proportional picture fuzzy number
PPFS Proportional picture fuzzy sets
PPFWA Proportional picture fuzzy-weighted average
PPFWG Proportional picture fuzzy-weighted geometric
PtFS Pythagorean fuzzy sets
TODIM Portuguese acronym for interactive multicriteria decision-making

1. Introduction

The inherent ambiguity of much real-world information makes precise numerical
expressions challenging. To address this, Zadeh [1] proposed fuzzy sets (FS), which use
a number between 0 and 1 to represent the membership degree of information. However,
FS cannot entirely eliminate uncertainty in decision-making problems [2]. Consequently,
researchers have developed various FS extensions. Atanassov [3] introduced intuitionistic fuzzy
sets (IFS), which use two dimensions-membership degrees and non-membership degrees to
manage uncertain information. Due to its advantages, IFS has attracted significant research
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attention. For instance, interval intuitionistic fuzzy sets (IIFS), where membership and non-
membership degrees are expressed as interval numbers, make fuzzy representations more
comprehensive [4]. Yager [5] proposed Pythagorean fuzzy sets (PtFS), which also feature
membership and non-membership degrees, but require their sum of squares to be no more
than 1, thus allowing for a broader range of expression compared to IFS. Additional extensions
of IFS are the addition of dimensions to express information, such as Picture fuzzy sets
(PFS) by Cuong and Kreinovich [6] and Spherical fuzzy sets (SFS) by Mahmood et al. [7],
which include positive, neutral, and negative degrees. This approach enables more effective
handling of certain facts, events, and the data that other sets (e.g., IFS and PtFS) cannot
manage. Additionally, circular intuitionistic fuzzy sets (CIFS) [8], interval graphical fuzzy
sets (IGFS) [9], decomposition fuzzy sets (DFS) [10], decomposed Pythagorean fuzzy sets
(DPFS) [2], interval graphical fuzzy sets (IGFS) [11], and interval spherical linguistic fuzzy
sets (ISLFS) [12] further extend the range of information that FS can express.

The newly introduced fuzzy set, called the proportional picture fuzzy set (PPFS) [13],
departs from the traditional method of determining the parameters by decimals and proposes
a proportional representation approach. Based on the picture fuzzy set, it captures the experts’
proportional representation of the degrees of positive and negative memberships in relation to
the degree of neutral membership, thereby using the latter as a reference point. For instance,
an expert migis “movie A?” Suppose the expert assigns < 0.55, 0.32 >, indicating that the
degree of positive membership is 0.55 times the degree of neutral membership, and the degree
of negative membership is 0.32 times the degree of neutral membership. This model is more
intuitive and relevant but faces a notable issue: When the expert is unable to provide the degree
of neutral membership-such as when the degree of neutral membership is 0-both the degrees of
positive and negative memberships will also be 0. Additionally, when an expert estimates the
degree of positive membership as 0.55 times the degree of neutral membership and the degree
of negative membership as [0.3, 0.4] times the degree of neutral membership, then the PPFS is
unable to effectively handle this situation.

Based on this, the paper proposes a more rational model to express the membership
degrees using proportions. We use three elements to represent the fuzzy number and develop
the proportionht assign a proportional picture fuzzy number < x; kπµ, kπν > to express their
opinion on “How good al grey picture fuzzy set (PGPFS) for its capacity to encapsulate more
information.” To avoid the issue where any element cannot be equal to 0, this model does not use
the degree of neutral membership as a benchmark, but rather introduces the concept of a “unit”.
For example, in response to the proposition “How good is movie A?”, if movie B is taken as
the unit and assigned < e, e, e >, then movie A can be assigned < 3e, 0.2e, 0.5e >. To address
the uncertainty of proportions, we incorporate the concept of grey numbers, as they can flexibly
represent values where only the range is known, rather than the exact figure. Consequently,
movie A can be assigned < 3e, [0.3, 0.4]e, 0.5e >when the expert believes the degree of positive
membership is 3 times the unit membership degree, the degree of negative membership is 0.5,
and the degree of neutral membership is [0.3, 0.4] times the unit non-membership degree.

With research in FS extensions progressing rapidly, their application in various methods
and techniques, particularly in multi-criteria decision making (MCDM), has become prominent
[14, 15]. FS can address real-life decision-making problems by handling high levels of
uncertainty and providing missing information, thereby resolving the complex issues in MCDM
that involve fuzzy and contradictory data [16]. Two critical aspects of MCDM problems need
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to be addressed: The calculation of entropy, which is crucial for determining the weights
of criteria or experts, and the aggregation operator, which can aggregate data from multiple
decision makers in MCDM problems.

There are many entropy-based MCDM methods. For instance, Van Pham et al. [17] proposed
an entropy measure based on picture fuzzy distances and developed an ideal solution similarity
preference ranking technique to solve MCDM problems. On the other hand, Hezam et al. [18]
and Thao [19] proposed weighting models based on picture fuzzy similarity metrics, which
were respectively applied to the MCDM problems of siting a biofuel production plant and
supplier selection. Kumar et al. [16] introduced a new picture fuzzy entropy (PFE) measure that
satisfied the axiomatic definition of PFE and combined the advantages of portuguese acronym
for interactive multicriteria decision-making (TODIM) and elimination et choice translating
reality (ELECTRE) to evaluate the selection of sustainable partners in the PFS environment.
Han [20] proposed a new class of PFE based on the cosine function and picture fuzzy weighted
symmetric cross-entropy, thereby applying it to the problem of selecting innovative projects.
Ma et al. [21] introduced entropy under Interval-Valued Picture Fuzzy Sets (IVPFS) and an
improved MCDM method with a grey correlation projection (GRP), which was applied to
determine the optimal design in yacht schemes.

MCDM methods based on aggregation operators have seen significant advancements.
Punetha et al. [22] introduced two new operators named picture fuzzy power partitioned
Hamymean (PFPPtHMq

DS T ) and picture fuzzy weighted power partitioned Hamymean (PFW
PPtHMq

DS T ); based on these operators, they designed a new method for MCDM in a PFS
environment. Jaikumar et al. [23] proposed an MCDM technique based on the Optimized
Picture Fuzzy Weighted Geometric Operator (OPFWGO) to address the shortcomings of
existing picture fuzzy-weighted geometric aggregation operators (PFWGO). Kahraman [13]
proposed the proportional picture fuzzy-weighted average (PPFWA) operator and proportional
picture fuzzy-weighted geometric (PPFWG) operator for the PPFS environment, along with a
new AHP method to determine the optimal solution for MCDM problems. Additionally, there
are MCDM methods based on both entropy measures and aggregation operators. For example,
Sun et al. [24] used picture fuzzy numbers (PFN) and picture fuzzy weighted interactive average
(PFWIA) operators and entropy measures of PFS to improve the ranking performance by
combining TOPSIS and the weighted Martensian distance to enhance the GRP method. Ma
et al. [31] introduced the interval-valued picture fuzzy number (IVPFN) and interval-valued
picture fuzzy ordered weighted interactive averaging (IVPFOWIA) operators, and proposed an
entropy weighting method based on IVPFS, which was combined with the extended TOPSIS
method and applied to the selection of optimal design conceptualization schemes.

Since MCDM methods that use fuzzy set extensions provide more efficient decision-making
results [2], PGPFS-based MCDM methods need to be proposed. We introduce a new MCDM
method in the PGPFS environment that can simultaneously handle unknown criteria and expert
weights while simplifying the operations of weighting and aggregation operators. Specifically,
the method introduces the concept of a fuzzy tensor, which can manage high-dimensional data,
thus allowing a single formula to be used in cases with multiple experts and multiple metrics.

The main contributions of this paper are as follows:
(1) The proposition of proportional grey picture fuzzy sets (PGPFS) and their

arithmetic rules;
(2) The introduction of an entropy measure based on the fuzzy tensor of PGPFS, integrating
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the fuzzy and grey degrees;
(3) The introduction of an aggregation operator using the proportional grey picture

fuzzy tensor;
(4) The proposal of a suitable aggregation decision-making method for PGPFS.
The paper is organized as follows: Section 2 reviews the basic concepts of proportional

picture fuzzy sets, grey numbers, and fuzzy tensors; Section 3 introduces proportional grey
picture fuzzy sets, thereby detailing their arithmetic, entropy, and aggregation operators;
Section 4 presents an integral tensor decision method for proportional grey picture fuzzy sets;
Section 5 applies this decision-making method to a case study of a haze management program
selection; and Section 6 provides a concluding discussion. The flow chart of this study is shown
in Figure 1.

Innovation

PGPFS

Construction of the PGPFS

 Description of the problem;
 Presentation of the PGPFS;
 Proposing score function

and accuracy function for
PGPFS.

Arithmetic operations with PGPFS

Entropy operations with PGPFS

 Propose new axiomatic definitions;
 Description of entropy operations;
 Construction of tensor-based entropy

for PGPFS.

Aggregation operators for PGPFS

 Construction of tensor-based
aggregation operators for PGPFS

Application

Construction of the aggregation decision method with PGPFS

Determining the optimal alternative

Step 1：Obtain the proportional data;
Step 2：Realization of data conversion;
Step 3：Calculation of critera weights;
Step 4：Calculation of expert weights;
Step 5：Compute the aggregation operator;
Step 6：Calculation of score function and

accuracy function;
Step 7：Get Sorting.

Based on the aggregation
decision method

Comparison with previous
studies

An application for the haze management program selection.

Figure 1. Flow chart of the study.
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2. Preliminaries

2.1. Proportional picture fuzzy sets

Definition 1. [13] Let P = {< x; µ(x), ν(x), π(x) > |x ∈ X} be a picture fuzzy set, and the expert
judges the proportions between µ(x), ν(x), and π(x) as follows:

µ(x) = k1π(x), (2.1)

ν(x) = k2π(x), (2.2)

where µ(x) ∈ [0, 1] is the degree of positive membership of x in P, ν(x) ∈ [0, 1] is the degree of
neutral membership of x in P, and π(x) ∈ [0, 1] is the degree of negative membership of x in P,
which satisfies the following:

π(x) + k1π(x) + k2π(x) ≤ 1. (2.3)

Thus, the proportional picture fuzzy sets can be represented by the following:

P = {< x; kπ1, kπ2 > |x ∈ X}. (2.4)

Definition 2. [13] Let A =< kπA1, πA, kπA2 > and B =< kπB1, πB, kπB2 > be two
proportional picture fuzzy numbers (PPFNs) and λ > 0. Some mathematical operations are
given in Eqs (2.5)–(2.9):

A + B =< kπA1πA + kπB1πB − kπA1πA × kπB1πB, πA × πB, kπB2πB × kπA2πA > . (2.5)

A × B =< kπA1πA × kπB1πBπA + πB − πA × πB, kπB2πB + kπA2πA − kπB2πB × kπA2πA > . (2.6)

λA =< 1 − (1 − kπA1πA)λ, πA
λ, (kπA2πA)λ > . (2.7)

Aλ =< (kπA1πA)λ, 1 − (1 − πA)λ, 1 − (1 − kπA2πA)λ > . (2.8)

AC =< kπA2, πA, kπA1 > . (2.9)

Definition 3. [13] Let ai(i = 1, 2, ..., n) be a collection of PPFNs. The proportional picture
fuzzy weighted averaging (PPFWA) operator is a mapping PPn → PP such that

PPFWAw(a1, a2, ..., an) = ⊕n
i=1(wiai), (2.10)

where w = (w1,w2, ...,wn)T is the weight vector of ai(i = 1, 2, ..., n) and wi > 0,∑n
i=1 wi = 1. Then,

PPFWAw(a1, a2, ..., an) = (1 −
n∏

i=1

(1 − kπ1iπi)wi ,

n∏
i=1

(πi)wi ,

n∏
i=1

(kπ2iπi)wi). (2.11)
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2.2. Grey number

Definition 4. [26] The following is called a general grey number:

g± ∈
n
∪
i=1

[ai, ai] =
n
∪
i=1
⊗i; i = 1, 2, ..., n, (2.12)

where ⊗i is an interval grey number and

⊗i ∈ [ai, ai] ⊂
n
∪
i=1

[ai, ai], (2.13)

where ai and ai are the lower and upper limits of the information separately in formula (2.13),
and meet the following two conditions:

ai, ai ∈ R and ai−1 ≤ ai ≤ ai ≤ ai+1 . g− = infai∈g
±ai , g+ = supai∈g±ai are called lower bound

and upper bound of g± respectively, where the interval grey number and the real number are
special cases of the general grey number.

Definition 5. [26] (1) For a general grey number g± ∈
n
∪
i=1

[ai, ai],

ĝ = 1/n
n∑

i=1

âi (2.14)

is called the “kernel” of it.

(2) Suppose a general grey number g± ∈
n
∪
i=1

[ai, ai](i = 1, 2, ..., n) with a known probability

distribution; in the case of a probability, pi and pi > 0, i = 1, 2, ..., n ,
n∑

i=1
pi = 1 ,

ĝ = 1/n
n∑

i=1

piâi (2.15)

is called the “kernel” of it.

Definition 6. [27] Let Ω ∈ R be the domain of universe, g± ∈
n⋃

i=1
[ai, ai] ⊆ Ω , and dmin, dmax ∈ Ω,

dmin = min{Ω}, dmax = max{Ω}; then, the degree of greyness of a grey number is defined
as follows:

g◦ =
|g+ − g−|
|dmax − dmin|

. (2.16)

2.3. Fuzzy tensor

Definition 7. [28] Suppose n1n2 · · · nm elements form the following multidimensional array:

A = (ai1i2...im), i1 ∈ [n1], i2 ∈ [n2], ..., im ∈ [nm], (2.17)

which is an m-order n1n2 · · · nm-dimensional tensor, denoted as follows:

A ∈ TR(m, n1 × n2 × · · · × nm), (2.18)

where ai1i2...im is an entry of A, and ai1i2...im ∈ R.
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Note: According to the definition, vectors are considered first-order tensors, matrices
represent second-order tensors, and collections of vectors across multiple dimensions constitute
higher-order tensors. A visual representation of these basis tensors is provided in Figure 2.

First-order tensor Second-order tensor Third-order tensor

Figure 2. Schematic visualizations of basis tensors.

Definition 8. [29] Suppose Ã ∈ TR(m, n1 × n2 × · · · × nm) and its entries are ai1i2...im ∈ [0, 1],
where i1 ∈ [n1], i2 ∈ [n2], ..., im ∈ [nm]. Then, Ã is referred to as a fuzzy tensor of order m.

3. Proportional grey picture fuzzy sets

Definition 9. Let P = {< x; µ(x), π(x), ν(x) > |x ∈ X} be a picture fuzzy set, e is the unit of
assessment, and the expert judges the proportions between µ(x), ν(x), π(x), and e as follows:

µ(x) = k1e, (3.1)

π(x) = k2e, (3.2)

ν(x) = k3e. (3.3)

The refusal degree can be given by the following:

r(x) = k4e. (3.4)

At this point, the values of µ(x), π(x), and ν(x) may exceed 1. To address this issue, set
the following:

µP(x) =
k1

k1 + k2 + k3 + k4
, (3.5)

πP(x) =
k2

k1 + k2 + k3 + k4
, (3.6)

νP(x) =
k3

k1 + k2 + k3 + k4
, (3.7)

which satisfies the following:

0 ≤ µP(x) + υP(x) + πP(x) ≤ 1. (3.8)

The refusal degree can be given by the following:

rP(x) = 1 −
k1 + k2 + k3

k1 + k2 + k3 + k4
. (3.9)

Thus, the improved proportional picture fuzzy sets can be represented by the following:

P = {< x;
k1

k1 + k2 + k3 + k4
,

k2

k1 + k2 + k3 + k4
,

k3

k1 + k2 + k3 + k4
> |x ∈ X}. (3.10)
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Experts often use fuzzy terminology when predicting ratios, such as the membership degree
being “about twice” or “between two and three times” the unit. Kahraman [13] advocated using
triangular and trapezoidal ratios to predict these cases. However, in practice, experts use both
fuzzy expressions, and triangular and trapezoidal fuzzy numbers cannot simultaneously address
this situation. Therefore, grey numbers are introduced to solve this problem. Let e be the unit
of assessment. The expert judges the proportions between µ(x), π(x), ν(x), and e as follows:

µ(x) = [k1, k1]e, (3.11)

π(x) = [k2, k2]e, (3.12)

ν(x) = [k3, k3]e. (3.13)

The refusal degree can be given by the following:

r(x) = [k4, k4]e. (3.14)

Definition 10. Let Pg be proportional picture grey fuzzy sets,

Pg = {< ⊗i; µg(⊗i), πg(⊗i), νg(⊗i) > |⊗i ∈ g±}, (3.15)

where
µg(⊗i) =

ĝk1(⊗i)
ĝk1(⊗i) + ĝk2(⊗i) + ĝk3(⊗i) + ĝk4(⊗i)

, (3.16)

πg(⊗i) =
ĝk2(⊗i)

ĝk1(⊗i) + ĝk2(⊗i) + ĝk3(⊗i) + ĝk4(⊗i)
, (3.17)

υg(⊗i) =
ĝk3(⊗i)

ĝk1(⊗i) + ĝk2(⊗i) + ĝk3(⊗i) + ĝk4(⊗i)
, (3.18)

rg(⊗i) = 1 −
ĝk1(⊗i) + ĝk2(⊗i) + ĝk3(⊗i)

ĝk1(⊗i) + ĝk2(⊗i) + ĝk3(⊗i) + ĝk4(⊗i)
, (3.19)

ĝk1(⊗i) refers to the kernel of the interval grey number [k1, k1], ĝk2(⊗i) refers to the kernel of the
interval grey number [k2, k2], ĝk3(⊗i) refers to the kernel of the interval grey number [k3, k3], and
ĝk4(⊗i) refers to the kernel of the interval grey number [k4, k4]. It is worth noting that for the
case “approximately k times the temporary unit e”, ĝk j(⊗i) = k, j = 1, 2, 3, 4, and is satisfied by
the following:

0 ≤ µg(⊗i) + υg(⊗i) + πg(⊗i) ≤ 1. (3.20)

Then, the proportional grey picture fuzzy number(PGPFN) can be expressed as follows:

Pg = {< ⊗i;
ĝk1 (⊗i)

ĝk1 (⊗i)+ĝk2 (⊗i)+ĝk3 (⊗i)+ĝk4 (⊗i)
,

ĝk2 (⊗i)
ĝk1 (⊗i)+ĝk2 (⊗i)+ĝk3 (⊗i)+ĝk4 (⊗i)

,
ĝk3 (⊗i)

ĝk1 (⊗i)+ĝk2 (⊗i)+ĝk3 (⊗i)+ĝk4 (⊗i)
> |⊗i ∈ g±}.

(3.21)

Definition 11. For any PGPFN, Pg = (µg(⊗i), πg(⊗i), νg(⊗i)), its score function S (Pg) and
accuracy function h(Pg) can be defined as follows:

S (Pg) = µg − υg, S (Pg) ∈ [−1, 1]; (3.22)

h(Pg) = µg + πg + υg, h(Pg) ∈ [0, 1]. (3.23)
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Definition 12. Let Pg and Qg represent two PGPFNs. The rule for comparing these two
numbers is defined as follows:

(1) If s(Pg) > s(Qg), then Pg > Qg;

(2) If s(Pg) = s(Qg), then

(i) If h(Pg) > h(Qg), then Pg > Qg;

(ii) If h(Pg) > h(Qg), then Pg ∼ Qg.

3.1. Arithmetic operations with PGPFS

Let Ag and Bg be two proportional grey picture fuzzy sets (PGPFS), and some of their
algorithms are as follows:

Ag + Bg =<
ĝAk1 (⊗i)

ĝAk1 (⊗i)+ĝAk2 (⊗i)+ĝAk3 (⊗i)+ĝAk4 (⊗i)
+

ĝBk1 (⊗i)
ĝBk1 (⊗i)+ĝBk2 (⊗i)+ĝBk3 (⊗i)+ĝBk4 (⊗i)

−
ĝAk1 (⊗i)

ĝAk1 (⊗i)+ĝAk2 (⊗i)+ĝAk3 (⊗i)+ĝAk4 (⊗i)
×

ĝBk1 (⊗i)
ĝBk1 (⊗i)+ĝBk2 (⊗i)+ĝBk3 (⊗i)+ĝBk4 (⊗i)

,
ĝAk2 (⊗i)

ĝAk1 (⊗i)+ĝAk2 (⊗i)+ĝAk3 (⊗i)+ĝAk4 (⊗i)
×

ĝBk2 (⊗i)
ĝBk1 (⊗i)+ĝBk2 (⊗i)+ĝBk3 (⊗i)+ĝBk4 (⊗i)

,
ĝAk3 (⊗i)

ĝAk1 (⊗i)+ĝAk2 (⊗i)+ĝAk3 (⊗i)+ĝAk4 (⊗i)
×

ĝBk3 (⊗i)
ĝBk1 (⊗i)+ĝBk2 (⊗i)+ĝBk3 (⊗i)+ĝBk4 (⊗i)

>;

(3.24)

Ag × Bg =<
ĝAk1 (⊗i)

ĝAk1 (⊗i)+ĝAk2 (⊗i)+ĝAk3 (⊗i)+ĝAk4 (⊗i)
×

ĝBk1 (⊗i)
ĝBk1 (⊗i)+ĝBk2 (⊗i)+ĝBk3 (⊗i)+ĝBk4 (⊗i)

,
ĝAk2 (⊗i)

ĝAk1 (⊗i)+ĝAk2 (⊗i)+ĝAk3 (⊗i)+ĝAk4 (⊗i)
+

ĝBk2 (⊗i)
ĝBk1 (⊗i)+ĝBk2 (⊗i)+ĝBk3 (⊗i)+ĝBk4 (⊗i)

−

ĝAk2 (⊗i)
ĝAk1 (⊗i)+ĝAk2 (⊗i)+ĝAk3 (⊗i)+ĝAk4 (⊗i)

×
ĝBk2 (⊗i)

ĝBk1 (⊗i)+ĝBk2 (⊗i)+ĝBk3 (⊗i)+ĝBk4 (⊗i)
,

ĝAk3 (⊗i)
ĝAk1 (⊗i)+ĝAk2 (⊗i)+ĝAk3 (⊗i)+ĝAk4 (⊗i)

+
ĝBk3 (⊗i)

ĝBk1 (⊗i)+ĝBk2 (⊗i)+ĝBk3 (⊗i)+ĝBk4 (⊗i)
−

ĝAk3 (⊗i)
ĝAk1 (⊗i)+ĝAk2 (⊗i)+ĝAk3 (⊗i)+ĝAk4 (⊗i)

×
ĝBk3 (⊗i)

ĝBk1 (⊗i)+ĝBk2 (⊗i)+ĝBk3 (⊗i)+ĝBk4 (⊗i)
>;

(3.25)

λAg =< 1 − (1 − ĝAk1 (⊗i)
ĝAk1 (⊗i)+ĝAk2 (⊗i)+ĝAk3 (⊗i)+ĝAk4 (⊗i)

)λ, ( ĝAk2 (⊗i)
ĝAk1 (⊗i)+ĝAk2 (⊗i)+ĝAk3 (⊗i)+ĝAk4 (⊗i)

)λ,

(
ĝAk3 (⊗i)

ĝAk1 (⊗i)+ĝAk2 (⊗i)+ĝAk3 (⊗i)+ĝAk4 (⊗i)
)λ >;

(3.26)

Ag
λ =< ( ĝAk1 (⊗i)

ĝAk1 (⊗i)+ĝAk2 (⊗i)+ĝAk3 (⊗i)+ĝAk4 (⊗i)
)λ, 1 − (1 − ĝAk2 (⊗i)

ĝAk1 (⊗i)+ĝAk2 (⊗i)+ĝAk3 (⊗i)+ĝAk4 (⊗i)
)λ,

1 − (1 −
ĝAk3 (⊗i)

ĝAk1 (⊗i)+ĝAk2 (⊗i)+ĝAk3 (⊗i)+ĝAk4 (⊗i)
)λ >

; (3.27)

Ag
C =<

ĝAk3 (⊗i)
ĝAk1 (⊗i)+ĝAk2 (⊗i)+ĝAk3 (⊗i)+ĝAk4 (⊗i)

,
ĝAk2 (⊗i)

ĝAk1 (⊗i)+ĝAk2 (⊗i)+ĝAk3 (⊗i)+ĝAk4 (⊗i)
,

ĝAk1 (⊗i)
ĝAk1 (⊗i)+ĝAk2 (⊗i)+ĝAk3 (⊗i)+ĝAk4 (⊗i)

>
. (3.28)

3.2. Tensor-based proportional grey picture fuzzy entropy

According to Deng & Wang [30] and Xin & Ying [31], fuzziness can be used to measure
uncertainty. Fuzziness is related to the gap between the PGPFS and {0.25, 0.25, 0.25}.
Additionally, some researchers believe that the grey scale similarly conveys uncertainty, thereby
responding to the greyness of the information [32–34]. For these reasons, and inspired by Xin &
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Ying [31], we introduce the fuzziness and greyness of PGPFSs. The fuzziness is borrowed from
Thao [19]’s entropy measure, which is defined as follows:

F(Pg) = 1−
1
n

n∑
i=1

2
3

(|µg(⊗i) − 0.25| + |νg(⊗i) − 0.25| + |πg(⊗i) − 0.25| + |rg(⊗i) − 0.25|). (3.29)

G(Pg) =
(k1 − k1) + (k2 − k2) + (k3 − k3) + (k4 − k4)

4(dmax − dmin)
. (3.30)

In the scenario where the expression is “approximately k times the temporary unit e,” it is
specified that

G(Pg) = 0. (3.31)

Drawing on the axiomatic definitions of entropy by Thao [19] and Xin & Ying [31], we provide
an axiomatic definition of entropy with respect to PGPFS.

Definition 13. Let E(Pg) denote the proportional grey picture fuzzy entropy(PGPFE), which
possesses the following characteristics:

(1) E(Pg) = 0⇔ Pg is a crisp set;
(2) E(Pg) = 1⇔ µg(⊗i) = νg(⊗i) = πg(⊗i) = 0.25;
(3) If F(Pg1) < F(Pg2) and G(Pg1) < G(Pg2), then E(Pg1) < E(Pg2);
(4) E(PC

g ) = E(Pg).

3.2.1. Entropy operations

Combining the fuzzy degree and grey degree, the mathematical expression for the PGPFE is
presented in Definition 14.

Definition 14. Let E(Pg) denote the proportional grey picture fuzzy entropy, which can be
expressed as follows:

E(Pg) =
∂F(Pg) + (1 − ∂)G(Pg)
∂ + (1 − ∂)G(Pg)

. (3.32)

Proof.

Since (k1 − k1), (k2 − k2), (k3 − k3), and (k4 − k4) are all non-negative, (dmax − dmin) is also
non-negative, thus leading to the conclusion that G(Pg) ≥ 0. As 0 ≤ µ, ν, π, r ≤ 1, F(Pg) is also
non-negative. From this reasoning, it follows straight forwardly that 0 ≤ E(Pg) ≤ 1.

(1) Suppose E(Pg) = 0, since ∂ is non-zero; it follows that both F(Pg) and G(Pg) are
equal to 0: 1 − 2

3 (|(µg(⊗i) − 0.25| + |υg(⊗i) − 0.25| + |πg(⊗i) − 0.25| + |rg(⊗i) − 0.25|) = 0
(k1−k1)+(k2−k2)+(k3−k3)+(k4−k4)

4(dmax−dmin) = 0
.

Consequently,
µg(⊗i) = 1
υg(⊗i) = 0
πg(⊗i) = 0

or


µg(⊗i) = 0
υg(⊗i) = 1
πg(⊗i) = 0

or


µg(⊗i) = 0
υg(⊗i) = 0
πg(⊗i) = 1

.
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Conversely, if µg(⊗i) = 1 and υg(⊗i) = πg(⊗i) = 0, then rg(⊗i) = 0; we can deduce that

Fg = 1 − 2
3 × (|1 − 0.25| + |0 − 0.25| + |0 − 0.25| + |0 − 0.25|) = 0 .

At this point,

µg(⊗i) =
ĝk1 (⊗i)

ĝk1 (⊗i)+ĝk2 (⊗i)+ĝk3 (⊗i)+ĝk4 (⊗i)
= 1 ;

πg(⊗i) =
ĝk2 (⊗i)

ĝk1 (⊗i)+ĝk2 (⊗i)+ĝk3 (⊗i)+ĝk4 (⊗i)
= 0 ;

υg(⊗i) =
ĝk3 (⊗i)

ĝk1 (⊗i)+ĝk2 (⊗i)+ĝk3 (⊗i)+ĝk4 (⊗i)
= 0 ;

rg(⊗i) = 1 −
ĝk1 (⊗i)+ĝk2 (⊗i)+ĝk3 (⊗i)

ĝk1 (⊗i)+ĝk2 (⊗i)+ĝk3 (⊗i)+ĝk4 (⊗i)
= 0 .

Then, we can obtain the following:
ĝk1(⊗i) = k
ĝk2(⊗i) = 0
ĝk3(⊗i) = 0
ĝk4(⊗i) = 0

.

From the given conditions, it can be deduced that k1 is a specific, nonzero value, while k2–k4

are both zero. Consequently, this leads to the conclusion that G(Pg) = 0.

If υg(⊗i) = 1 and µg(⊗i) = πg(⊗i) = 0, or πg(⊗i) = 1 and µg(⊗i) = υg(⊗i) = 0, then the
reasoning applied earlier holds true under these conditions as well.

Therefore, Condition (1) holds.
(2) Suppose E(Pg) = 1:

∂F(Pg)+(1−∂)G(Pg)
∂+(1−∂)G(Pg) = 1, then, F(Pg) = 1; this implies that 1− 2

3 (|µg(⊗i)− 0.25|+ |νg(⊗i)− 0.25|+
|πg(⊗i) − 0.25| + |rg(⊗i) − 0.25|) = 1.

Furthermore, we obtain the following: (|µg(⊗i) − 0.25| + |νg(⊗i) − 0.25| + |πg(⊗i) − 0.25| +
|rg(⊗i) − 0.25|) = 0, and subsequently µg(⊗i) = πg(⊗i) = υg(⊗i) = 0.25.

Therefore, Condition (2) is satisfied.
(3) Let F(Pg) = F and G(Pg) = G; Eq (3.22) can be expressed as follows:

E(F,G) =
∂F+(1−∂)G
∂+(1−∂)G .

Calculate the partial derivatives of E(F,G) with respect to F and G, respectively.
∂E
∂F = ∂

∂+(1−∂)G ≥ 0, and thus E(F,G) is monotonically increasing with respect to F.

∂E
∂G =

a(1−a)(1−F)
[a+(1−a)G]2 ≥ 0, and thus E(F,G) is monotonically increasing with respect to G.

In summary, E(F,G) is a monotonically increasing function with respect to both F and G.
Thus, if F(P1) < F(P2) and G(P1) < G(P2), then it follows that E(P1) ≤ E(P2).

Therefore, Condition (3) holds.
(4) Since Pg

C = (νg(⊗i), πg(⊗i), µg(⊗i)), it follows that
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FC
g = 1 − 1

n

n∑
i=1

4
3 (|νg(⊗i) − 0.25| + |µg(⊗i) − 0.25| + |πg(⊗i) − 0.25| + |rg(⊗i) − 0.25|)

= 1 − 1
n

n∑
i=1

4
3 (|µg(⊗i) − 0.25| + |νg(⊗i) − 0.25| + |πg(⊗i) − 0.25| + |rg(⊗i) − 0.25|)

= Fg

.

We attain the following: E(Pg
C) = E(Pg) .

Therefore, Condition (4) holds.

3.2.2. Tensor-based entropy for PGPFS

When faced with multiple experts making decisions, the above entropy operation cannot
directly derive the entropy of a certain index. Therefore, it is necessary to introduce the “expert”
dimension. We borrow the concept of a tensor and propose the tensor-based PGPFE, which is
applicable to the characteristics of multi-dimensional data.

Definition 15. Let ÃIF = (ai1i2···im)n1×n2×···×nm be defined with elements ai1i2···im = (µi1i2···im , πi1i2···im ,

νi1i2···im), where µi1i2···im , νi1i2···im , πi1i2···im ∈ [0, 1]. Additionally, they satisfy the
following condition:

µi1i2···im + νi1i2···im + πi1i2···im ≤ 1. (3.33)

Then, ÃIF is defined as an m-order proportional grey picture fuzzy tensor(PGPFT).

Note that we denote the set of tensors of order m as TIF = (m, n1 × n2 × · · · × nm).

Definition 16. Let ÃIF = (ai1i2···im)n1×n2×···×nm ∈ TIF(m, n1 × n2 × · · · × nm); then, the expression
for the i1st component of PGPFE is as follows:

Ei1(ai11···1, · · · , ai1i2···im , · · · , ai1n2···nm) =
1
n2

n2∑
i2=1

· · ·
1

nm

nm∑
im=1

E(ai1i2···im). (3.34)

Then, ÃIF is defined as an m-order proportional grey picture fuzzy tensor.

Theorem 1. When m = 3, PPGNFE is a 3-order tensor and Eq (3.34) can be simplified
as follows:

E(P̃g) =
1
n2

n2∑
i=1

1
n3

n3∑
j=1

E(Pg)i j. (3.35)

3.3. Tensor-based aggregation operators for PGPFS

Definition 17. Let ÃIF = (ai1i2···im)n1×n2×···×nm ∈ TIF(m, n1 × n2 × · · · × nm); then, the expression
for the i1st component of the proportional grey picture fuzzy weighted aggregation (PGPFWA)
operator, which is a mapping PGPFWAIFn2×···×nm → IFn1 such that:

PGPFWAi1(ai11...1, · · · , ai1i2...im , · · · , ai1n2...nm)
= (AIF ◦W2 ◦W3 ◦ · · · ◦Wm)i1

=
n2∑

i2=1
· · ·

nm∑
im=1

ai1i2...im × w2
i2 × · · · ×wm

im

, (3.36)
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where W2 = (w2
1, ...,w

2
i2 , ...,w

2
n2

)T , · · · ,Wm = (wm
1 , ...,w

m
im
, ...,wm

nm
)T are the weight vectors

for a:i2:···:(i2 = 1, 2, ..., n2), · · · , a:···im(im = 1, 2, ..., nm), respectively, which satisfy the
following conditions:

n2∑
i2=1

w2
i2 = 1w2

i2 ≥ 0
nm∑

im=1

wm
im = 1wm

im ≥ 0. (3.37)

Based on the provided definition, we can deduce the following theorem:

Theorem 2. Let ÃIF = (ai1i2···im)n1×n2×···×nm be defined such that its elements are ai1i2···im = (µi1i2···im ,
πi1i2···im , νi1i2···im), with µi1i2···im , νi1i2···im , πi1i2···im ∈ [0, 1]. Then, the integrated value expression for
Eq (3.36) is as follows:

PGPFWAi1(ai11...1, · · · , ai1i2...im , · · · , ai1n2...nm)

= (1 −
n2∏

i2=1
· · ·

nm∏
im=1

(1 − µi1i2···im
2)w2

i2
···wm

im ,
n2∏

i2=1
· · ·

nm∏
im=1

(πi1i2···im)w2
i2
···wm

im ,
n2∏

i2=1
· · ·

nm∏
im=1

(νi1i2···im)w2
i2
···wm

im ) ,

(3.38)
where W2 = (w2

1, ...,w
2
i2 , ...,w

2
n2

)T , · · · ,Wm = (wm
1 , ...,w

m
im
, ...,wm

nm
)T are the weight vectors

for a:i2:···:(i2 = 1, 2, ..., n2), · · · , a:···im(im = 1, 2, ..., nm), respectively, which satisfy the
following conditions:

n2∑
i2=1

w2
i2 = 1,w2

i2 ≥ 0,
nm∑

im=1

wm
im = 1,wm

im ≥ 0. (3.39)

Let ÃIF = (ai1i2···im)n1×n2 ∈ TIF(2, n1 × n2) be a 2-order PGPFT; then, Eq (3.38) becomes
the following:

PGPFWAi1(a1, a2, · · · , an) = (1 −
n∏

i=1

(1 − µg
2(⊗i))

wi
,

n∏
i=1

πg(⊗i)wi

n∏
i=1

vg(⊗i)wi), (3.40)

where
n∑

i=1

wi = 1,wi ∈ [0, 1], (i = 1, 2, ..., n). (3.41)

Let ÃIF = (ai1i2···im)n1×n2×n3 ∈ TIF(3, n1 × n2 × n3) be a 3-order PGPFT; then, the
following (3.38) becomes the following:

PGPFWAi1(ai1i2i3)n1×n2×n3

= (1 −
n2∏

i2=1

n3∏
i3=1

(1 − µg
2(⊗i))

w2
i2w3

i3 ,
n2∏

i2=1

n3∏
i3=1

πg(⊗i)w2
i2w3

i3 ,
n2∏

i2=1

n3∏
i3=1

vg(⊗i)w2
i2w3

i3) , (3.42)

where
n2∑

i2=1

w2
i2 = 1,w2

i2 ≥ 0,
n3∑

i3=1

w3
i3 = 1,w3

i3 ≥ 0. (3.43)

4. Aggregation decision method with PGPFS

In this section, the algorithm will be designed using PGPFWA, thereby focusing on solving
proportional grey picture fuzzy decision making problems that involve criteria, substitution
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schemes, and experts with 3-dimensional data features. The flow chart of the proportional grey
picture fuzzy aggregation decision making method is shown in Figure 3. The specific steps of
the algorithm are as follows:
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Figure 3. Flowchart of the aggregation decision making method with PGPFS.
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Step 1. Based on the realistic problem context, a temporary unit is first established; then, the
proportional decision matrices of q experts for m alternatives over n criteria are formulated.
These matrices can be represented by (4.1):

P(k1, k2, k3, k4) j =


(k111 , k211 , k311 , k411) · · · (k11n , k21n , k31n , k41n)

...
. . .

...

(k1m1 , k2m1 , k3m1 , k4m1) · · · (k1mn , k2mn , k3mn , k4mn)

 ( j = 1, 2, ..., q). (4.1)

Step 2. The above proportional decision matrix is transformed into PGPFS matrices through
Eqs (3.16)–(3.18):

Pg(k1, k2, k3, k4) j =


(

ĝk111
(⊗i)

ĝk11
(⊗i)

,
ĝk211

(⊗i)

ĝk11
(⊗i)

,
ĝk311

(⊗i)

ĝk11
(⊗i)

) · · · (
ĝk11n

(⊗i)

ĝk1n
(⊗i)

,
ĝk21n

(⊗i)

ĝk1n (⊗i)
,

ĝk31n
(⊗i)

ĝk1n
(⊗i)

)
...

. . .
...

(
ĝk1m1

(⊗i)

ĝkm1
(⊗i)

,
ĝk2m1

(⊗i)

ĝkm1
(⊗i)

,
ĝk3m1

(⊗i)

ĝkm1
(⊗i)

) · · · (
ĝk1mn

(⊗i)

ĝkmn (⊗i)
,

ĝk2mn
(⊗i)

ĝkmn (⊗i)
,

ĝk3mn
(⊗i)

ĝkmn (⊗i)
)


( j = 1, 2, ..., q)

. (4.2)

Step 3. Following Eq (3.35), the entropy is computed, with criteria as components;
subsequently, the weight of each criterion is determined using Eq (4.3):

w j =
1 − E j

n∑
j=1

E j

, j = 1, 2, ..., n. (4.3)

Step 4. Following Eq (3.35), the entropy is computed, with experts as components;
subsequently, the weight of each attribute is determined using Eq (4.4):

wi =
1 − Ei

m −
m∑

i=1
Ei

, i = 1, 2, ...,m. (4.4)

Step 5. Aggregate all elements in accordance with Eq (3.42) to obtain the fuzzy values of
PGPFNs to the alternatives.
Step 6. Based on Definitions 11, the score function and the accuracy for each fuzzy number
are calculated.
Step 7. In accordance with Definition 12, the alternatives are ranked to identify the
optimal solution.

5. Application

In this section, we apply the PPGNFS and aggregation decision-making method to a
practical scenario that involves movie recommendations. We detail the decision-making steps
of the proposed model, conduct a sensitivity analysis of critical parameters, and compare its
performance with other models.
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5.1. Case analysis

In recent years, China’s rapid industrialization and urbanization have garnered global
attention. However, the long-standing model of rough development has exacted a substantial
environmental toll. In early 2024, extensive haze conditions emerged in North China,
Huanghuai, Jianghuai, and other regions. Haze not only threatens public health, but also
negatively impacts the economy and society, making it one of China’s most significant
environmental pollution issues since the 21st century. The frequent occurrence of haze has
raised national concern. In 2023, the State Council issued the Action Plan for Continuous
Improvement of Air Quality, thereby emphasizing the need for improved air quality, a reduction
of heavily polluted weather, and addressing prominent atmospheric environmental problems
through precise, scientific, and legal pollution control. Consequently, amidst frequent haze
pollution incidents, there is an urgent need for effective haze management.

Using the methodology of this paper, three experts E = {E1, E2, E3} from the relevant
environmental protection departments formed a decision-making group to evaluate four haze
control measures N = {N1,N2,N3,N4} based on the following four indices [35]: S 1 indicates
the effect of the control measures on the formation of secondary particulate matter (aerosol);
S 2 indicates the effect of the control measures on the particle “hygroscopicity” of particulate
matter, S 3 represents the effect of the control measures on the emission level of PM2.5; and
S 4 represents the effect of the control measures on the regional transport of dust and particulate
matter. N1 is designated as the assessment benchmark, termed the “unit”, with its PGPFN in
each criterion initially set to (1,1,1,1). The three experts assess other governance programs
in relation to N1, and the assessment matrix of the decision-making experts is displayed
in Tables 1–3.

Table 1. Initial proportional fuzzy number scoring matrix (E1).
S1 S2 S3 S4

N1 (1,1,1,1) (1,1,1,1) (1,1,1,1) (1,1,1,1)
N2 (0.5,0.75,2,0.2) ([2,3],[0,2],[0.2,0.4],[0.6,0.8]) ([2,2.5],[1.5,2],[1.3,1.6],[0.5,1]) (1,[1.2,1.5],[1.7,2],0)
N3 ([0.6,1],[0.1,1.2],0,0) ([0.5,2],[0.6,0.7],[3,5],0.75) (1,[1,1.5],[1.6,2],[0.75,1.4]) ([1,3],[0.3,0.4],[0.3,0.7].[0.5,1])
N4 ([0.3,0.6],0.8,0.2,[2,3]) ([1.3,1.5],[1,3],[0.3,1],[0.3,0.7]) ([1,3],1.5,[0.2,0.3],0) ([0.75,0.8],[0.4,0.9],[0.3,1],[0.25,0.5])

Table 2. Initial proportional fuzzy number scoring matrix (E2).
S1 S2 S3 S4

N1 (1,1,1,1) (1,1,1,1) (1,1,1,1) (1,1,1,1)
N2 (5,[2.5,3],[2,3],[0.3,0.5]) ([1,2.3],[1.2,1.5],[0.25,0.6],0) ([0.5,0.6],[0.5,2.5],[0.7,2],[0.3,0.6]) ([1.2,2],[2,4],[0.05,1],[0.5,0.9])
N3 ([3,4],[0.6,1.2],[1,3],[2,2.5]) (2,[0.8,1],[0.5,2],[0.2,0.4]) ([0.9,1],[0.75,1.5],5,0) ([0.5,0.6],[3,4],[0.1,1],[0.3,0.6])
N4 ([2,3],[0.6,1.6],[0.1,0.2],[0.4,0.7]) ([0.2,3],[0.5,0.75],[0.3,0.6],[0.85,1]) ([0.5,0.6],[0.75,2],[2,4],[0.4,1]) ([0.5,1],[1,3],0,0)

Table 3. Initial proportional fuzzy number scoring matrix (E3).
S1 S2 S3 S4

N1 (1,1,1,1) (1,1,1,1) (1,1,1,1) (1,1,1,1)
N2 ([0.7,1],[0.5,0.6],[0.5,1],[0.3,0.55]) ([4,5],[1.5,2],[0.3,1],0) (1,2,[0.3,0.4],[0.4,0.6]) ([0.7,1],[1.5,2.4],[0.3,0.4],[3.5,4])
N3 ([0.5,1],[0.5,0.7],[0.5,0.75],[0.4,0.5]) ([2,4],[1.5,2],[0.3,1],[0.2,1]) ([1.2,1.5],[1.25,1.6],[0.4,0.5],[2,3]) ([1,1.2],[1.5,2],1,0)
N4 ([0.6,1],[0.6,1],0.9,[0.25,0.4]) ([1.5,2.5],0.3,[1,2],[0.25,0.3]) ([1.2,2],[1.5,1.6],[0.25,1],[0.5,1]) ([0.25,0.3],[0.5,1],[1,1.5],[0.4,1])

These matrices were converted to the corresponding PGPFNs, as shown in Tables 4–6.
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Table 4. Proportional grey picture fuzzy set matrix (E1).
S1 S2 S3 S4

µ π ν µ π ν µ π ν µ π ν

N1 0.250000 0.250000 0.250000 0.250000 0.250000 0.250000 0.250000 0.250000 0.250000 0.250000 0.250000 0.250000
N2 0.144928 0.217391 0.579710 0.555556 0.222222 0.066667 0.362903 0.282258 0.233871 0.238095 0.321429 0.440476
N3 0.551724 0.448276 0.000000 0.187970 0.097744 0.601504 0.195122 0.243902 0.351220 0.555556 0.097222 0.138889
N4 0.113924 0.202532 0.050633 0.307692 0.439560 0.142857 0.533333 0.400000 0.066667 0.316327 0.265306 0.265306

Table 5. Proportional grey picture fuzzy set matrix (E2).
S1 S2 S3 S4

µ π ν µ π ν µ π ν µ π ν

N1 0.250000 0.250000 0.250000 0.250000 0.250000 0.250000 0.250000 0.250000 0.250000 0.250000 0.250000 0.250000
N2 0.469484 0.258216 0.234742 0.481752 0.394161 0.124088 0.142857 0.389610 0.350649 0.274678 0.515021 0.090129
N3 0.404624 0.104046 0.231214 0.449438 0.202247 0.280899 0.134276 0.159011 0.706714 0.108911 0.693069 0.108911
N4 0.588235 0.258824 0.035294 0.444444 0.173611 0.125000 0.097778 0.244444 0.533333 0.272727 0.727273 0.000000

Table 6. Proportional grey picture fuzzy set matrix (E3).
S1 S2 S3 S4

µ π ν µ π ν µ π ν µ π ν

N1 0.250000 0.250000 0.250000 0.250000 0.250000 0.250000 0.250000 0.250000 0.250000 0.250000 0.250000 0.250000
N2 0.439024 0.178862 0.243902 0.652174 0.253623 0.094203 0.259740 0.519481 0.090909 0.123188 0.282609 0.050725
N3 0.309278 0.247423 0.257732 0.500000 0.291667 0.108333 0.235808 0.248908 0.078603 0.285714 0.454545 0.259740
N4 0.283186 0.283186 0.318584 0.490798 0.073620 0.368098 0.353591 0.342541 0.138122 0.092437 0.252101 0.420168

Equation (3.35) to compute the indicator entropy and the Eq (4.3) utilized to compute the
weights, the results of which are shown in Table 7. At this point, because it involves three
vectors of governance measures-indicators-experts, the third-order tensor entropy is used, with
∂ = 0.5 in this case. Similarly, the expert weights are calculated using the Eqs (3.35) and (4.4),
as shown in Table 8.

Table 7. The criterion entropy and weight.
Entropy Weight

N1 0.636322 0.239155
N2 0.595048 0.266296
N3 0.646571 0.232415
N4 0.601378 0.262134

Table 8. The expert entropy and weight.
Entropy Weight

DM1 0.605616 0.345796
DM2 0.582513 0.366053
DM3 0.671360 0.288151

Equation (3.42) is used to calculate the aggregated PGPFN for each treatment measure, and
the final results are shown in Table 9. According to Definitions 11 and 12, the final scores are
calculated, as shown in Table 10. Therefore, the final ranking of haze management measures is
N3 > N4 > N2 > N1.
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Table 9. Computation of the final scores for alternatives.
µ π ν Score

N1 0.250000 0.257233 0.250000 -0.007233
N2 0.289051 0.165266 0.291738 0.123785
N3 0.357130 0.000000 0.269326 0.357130
N4 0.330255 0.000000 0.298762 0.330255

Table 10. Aggregated matrix.
S1 S2 S3 S4

N1 0.062500 0.250000 0.250000 0.062500 0.250000 0.250000 0.062500 0.250000 0.250000 0.062500 0.250000 0.250000
N2 0.149086 0.215732 0.321370 0.326799 0.281114 0.092024 0.074321 0.385137 0.195352 0.049435 0.360328 0.126280
N3 0.192736 0.225980 0.000000 0.167313 0.179317 0.263542 0.037358 0.212925 0.269207 0.143924 0.312877 0.157795
N4 0.159517 0.245767 0.082881 0.179937 0.177772 0.187323 0.147249 0.322343 0.169977 0.061777 0.365039 0.000000

5.2. Sensitivity analysis

In this section, a sensitivity analysis was performed on the balance parameter ∂, which was
varied from 0.1 to 1 in steps of 0.1. Then, the weights of the indicators, the expert weights,
and the scores of the haze management measures were calculated for different values of ∂. The
calculation results are shown in Figures 4–6.

Figure 4. Curve of critera weight with ∂.
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Figure 5. Curve of expert weight with ∂.

Figure 6. Curve of scores of the movies with ∂.

Figure 4 shows changes in the ordering of the criteria weights as the value of ∂ varies.
When ∂ < 0.4, the ordering of criteria weights fluctuates, while for ∂ > 0.4, the ordering
stabilizes at S 2 > S 4 > S 1 > S 3. This indicates that the entropy measure used in this study
has a low sensitivity to the balancing parameter when calculating the weights of the indicators.
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Specifically, the weights of S 2 and S 4 show an increasing trend, while the weights of S 1 and S 3
show a decreasing trend, thus suggesting that the parameters need to be set flexibly according
to the actual situation.

Figure 5 demonstrates that the ranking of the expert weights changes with the value of ∂.
When ∂ ≤ 0.2, the expert weights are ranked as E1 > E2 > E3. When ∂ > 0.2, the expert
weights are ranked as E2 > E1 > E3. This indicates that the entropy measure used in this
study is less sensitive to the balance parameter when calculating the expert weights. However,
as the value of ∂ increases, the weight values diverge more. Specifically, the value of E2 slowly
increases, while the values of E1 and E3 slowly decrease, thus underscoring the importance of
flexible parameterization.

Figure 6 shows that the final rankings of the four haze management scenarios remain
unchanged with the increase in ∂, consistently maintaining the order N3 > N4 > N2 >

N1. This indicates that the decision-making method used in this study is insensitive to the
balance parameter.

5.3. Comparative analysis

To further verify the method’s effectiveness, the outcomes of the proposed entropy measure
and the multi-criteria decision-making method are compared with those of existing methods.

Since the PGPFS proposed in this paper is an extension of PFS, the entropy measure results
are compared with those of the existing PFS [16, 19] (For ease of presentation, Nguyen’s
work [19] involves three entropy measures, referred to as WET , WEM, and WES .). For a more
authoritative validation, only the criteria weights are selected for the comparative analysis.
As the existing methods cannot simultaneously handle multiple expert decision matrices
simultaneously, we first aggregate the data from Tables 1–3 using Eq (3.40), given that this
method does not require expert weights when determining multidimensional data. All experts
are assigned equal weights during aggregation. The aggregated matrix is presented in Table 10.

Table 11 presents the results of the comparative analysis. First, despite differences in the
criteria weight assignments, S2 consistently holds the highest weight. Second, Nguyen Xuan
Thao’s WES method fails to measure the criteria weights due to its reliance on logarithmic
functions, making it incapable of handling cases with a parameter of 0 in the PFN. Third,
S3 ranks second in weight across the three methods of Sunit Kumar, Nguyen Xuan Thao
WET , and Nguyen Xuan Thao WEM. In contrast, the entropy weighting method in this paper
ranks S4 second. This difference may arise because the first three methods only account for
fuzziness, while the method in this paper considers both fuzziness and the grey degree of the
data. Therefore, the results in Table 11 demonstrate that the PGPFS entropy measurement
method proposed in this paper better captures data uncertainty compared to existing methods,
thus yielding more reasonable and effective criteria weights.

Table 11. Comparative analysis results of criteria weights.
S1 S2 S3 S4 Rank

Sunit Kumar 0.243536 0.261857 0.256314 0.238293 Ws2>Ws3>Ws1>Ws4
Nguyen Xuan Thao(WET ) 0.248658 0.273950 0.256471 0.220921 Ws2>Ws3>Ws1>Ws4
Nguyen Xuan Thao(WEM ) 0.238996 0.260573 0.259011 0.241420 Ws2>Ws3>Ws4>Ws1
Nguyen Xuan Thao(WES ) Error Error Error Error
Proposed method 0.239155 0.266296 0.232415 0.262134 Ws2>Ws4>Ws1>Ws3
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To verify the rationality and effectiveness of the MCDM method in this paper, the
method is compared with MCDM approaches based on the PFS environment. The PFS-
MCDM method [20], which also employs an aggregation operator, along with the widely
used PFS-TOPSIS [36], PFS-VIKOR methods [37], and the latest MCDM method, MEREC-
MABAC [38], are chosen for comparison. To ensure more valid comparison results, Tables 4–6
are selected as the initial data matrices for these methods, as the transformed fuzzy gray numbers
are equivalent to the Picture Fuzzy Sets. To avoid the influence of the indicator and the expert
weights on the results, both indicator weights are set to the following:

{wS 1,wS 2,wS 3,wS 4} = {0.239155, 0.266296, 0.232415, 0.262134},

and the expert weights are set to the following:

{wE1,wE2,wE3} = {0.345796, 0.366053, 0.288151}.

Additionally, other allocation parameters for the comparison methods are presented in Table 12.

Table 12. Main characteristics and parameterization of the methods.
Method Number of DMs Weight on DMs Weight on criteria Parameters

PFS-TOPSIS ≥ 1 known known -
PFS-VIKOR ≥ 1 unknown unknown The L∂ norm ∂ = 1 ; the level of uncertainty t =

2; the level of uncertainty t = 2; the weight of the
strategy with the maximum overall utility τ = 0.5.

PFS-MCDM ≥ 1 known unknown Attenuation factor of the losses q = 2.5.
MEREC-MABAC ≥ 1 known unknown Risk–benefit coefficient τ = 0.61 and risk-loss

coefficient δ = 0.69;the degree of convexity of the
gain and loss area value function ϕ = φ = 0.88; loss
aversion σ = 2.25.

Proposed method ≥ 1 unknown unknown ∂=0.5

Table 13 presents the final comparison results. Despite the differences among various
decision-making methods, the final outcomes of the best haze management programs exhibit
a high level of consistency, with the N3 management program consistently ranking first across
various assessment indicators. Second, the ranking results of the PFS-MCDM and PFS-
TOPSIS methods completely align with those of the proposed method, thus demonstrating the
reasonableness and effectiveness of this paper’s approach. Third, the ranking of the PFSB-
VIKOR method differs from that of the proposed method, likely due to its emphasis on
image fuzzy similarity in determining the ranking of alternatives. Additionally, the MEREC-
MABAC method yields results that differ from those of the other methods, as it accounts for
the decision-makers’ mental behavior regarding potential gains and losses. Different decision-
making methods serve distinct functions and should be emphasized according to the specific
context. The proposed method, which relies on the original data, consistently selects the
same optimal solution for haze management, further proving its effectiveness in addressing
MCDM problems.

Table 13. Comparison of ranking results.
N1 N2 N3 N4 RANK

PFS-TOPSIS 0.396882 0.471066 0.572785 0.534007 N3>N4>N2>N1
PFSB-VIKOR 0.439700 0.223372 0.000000 1.000000 N3>N2>N1>N4
PFS-MCDM 0.255115 0.282408 0.406632 0.377557 N3>N4>N2>N1
MEREC-MABAC -0.582886 -0.278269 -0.075692 -0.360145 N3>N2>N4>N1
Proposed method -0.007233 0.123785 0.357130 0.330255 N3>N4>N2>N1
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6. Conclusions

In this study, a simpler and more effective method to assign membership degree values
was proposed, thereby drawing on the concept of PPFS introduced by Kahraman [13]. The
PGPFS approach requires the proportional value between the membership parameters relative
to a customized unit, rather than the relative proportional value between the membership
parameters. This method addresses the defect in PPFS where the degree of hesitation cannot
be zero. The data required is the proportion of each alternative in the expert’s mind relative to
the unit program, supporting predictions such as “about 2-3 times” or “about 2 times,” thereby
reducing the difficulty of the expert’s assignment. Additionally, the concept of a fuzzy tensor
is introduced, and tensor-based entropy and aggregation operators for PGPFS were proposed
to simplify the computation of high-dimensional data. The tensor-based entropy for PGPFS
considers both the fuzziness and the greyness of the data, thus making the entropy calculation
more reasonable and accurate. Moreover, the tensor-based aggregation decision-making method
in the PGPFS environment leverages the advantages of the proportional grey picture fuzzy
tensor entropy and the proportional grey picture fuzzy tensor aggregation operator. This
approach can solve MCDM problems where both the criteria weights and the expert weights
are unknown. The application in the haze management scheme demonstrated the method’s
applicability. The proposed proportional grey picture fuzzy aggregation decision-making
method successfully calculated the criteria weights and expert weights based on proportional
data and selected the optimal haze management scheme.

Obviously, there are two shortcomings of the method in this paper that can be addressed.
One is that the complex symbolic representation may affect the reader’s reading experience.
The other is that the method requires setting a maximum threshold for the proportion of each
membership parameter relative to the unit, which may not be easy to achieve in real life, and
may even generate some errors due to this limitation.

Therefore, in future research, we will continue to optimize PGPFS and explore improved
methods for setting proportions. Additionally, by leveraging its advantages, we will investigate
other extensions such as proportional grey spherical fuzzy sets, proportional spherical fuzzy
sets, proportional complex fuzzy sets, and proportional decomposition fuzzy sets. Furthermore,
other MCDM methods such as TOPSIS, VIKOR, ELECTRE, CRADIS, and MAIRCA can be
extended using PGPFS.
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