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1. Introduction

Molecular descriptors are the numerical values that describe certain characteristics of molecules.
These numbers are essential to the creation of a number of mathematical chemistry models, such as
the QSAR/QSPR (quantitative structure activity/property relationship) models, which help forecast the
physicochemical properties and biological activities of new compounds. One specific class of these
descriptors is the class of topological indices; such descriptors depend on the graph of the structure of
the compound under consideration. There are various such indices in the literature on mathematical
chemistry, most of which are studied in relation to chemical graphs. The general Z-type index–a
topological index introduced recently by Chen and Lin [5]–is the subject of this study.

To avoid trivialities, we are explicitly only taking connected graphs into account in this study. The
notation E(G) is used to represent the edge set of a graph G, while V(G) is used to represent G’s vertex
set. To express the degree of a vertex u ∈ V(G), we use du(G) (or just du, where there is no possibility
of misunderstanding regarding the considred graph). As stated in [22], the sum-connectivity index χ− 1

2

of a graph G is the sum of the values (du + dv)−1/2 across all of G’s edges uv.
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In [21], the index χ− 1
2

was generalized under the term “general sum-connectivity index” by
substituting α for “−1/2,” that is, χα, where α is a real number that differs from zero. The relationship
between a graph’s χα and its line graph was examined by Chen [4]. Milovanović et al. [12] examined
a number of inequalities for χα. The extremum values of χα for trees with a certain maximum degree
were examined by Swartz and Vetrı́k [16]. For graphs with a fixed cyclomatic number, Ali et al. [3]
addressed a problem about extremum values of χα. Zhong and Qian [20] investigated a problem
involving trees with a given matching number and minimum χα. By fixing the diameter and girth of
unicyclic networks, Vetrı́k [19] investigated this index. Further information about certain extremal
results involving χα can be found in [17, 18]. The indices χ1, χ2, and 2χ−1 are equivalent to the
well-known first Zagreb index [15], hyper Zagreb index [10], and harmonic index [7], respectively.

The platt index [8, 14] is defined as

Pl(G) =
∑

uv∈E(G)

(du + dv − 2).

The general platt index [2] is defined as

Plα(G) =
∑

uv∈E(G)

(du + dv − 2)α.

Additional detail on the general Platt index can be found in [1, 3].
The general Z-type index [5] is defined as

Zα,β(G) =
∑

uv∈E(G)

(du + dv − β)α,

where β is a nonzero real number different from 0. Certainly, Zα,β generalizes all the abovementioned
indices, namely, the sum-connectivity index, general sum-connectivity index (and hence the first
Zagreb index, hyper Zagreb index, and harmonic index), Platt index, general Platt index (and hence
the reformulated first Zagreb index [11]).

A tree is said to be a chemical tree if the degree of each vertex is less than 5. A graph with n vertices
is called an n-order graph. A segment in a tree T is defined [6, 9] as a non-trivial path of T , indicated
by P : x1x2 . . . xr such that dx1(T ), dxr (T ) < {2}, and dxi(T ) = 2 whenever 2 ≤ i ≤ r − 1; in addition, if
min{dx1(T ), dxr (T )} = 1 and max{dx1(T ), dxr (T )} ≥ 3 then P is called a pendent path of T ; however, if
min{dx1(T ), dxr (T )} ≥ 3 and max{dx1(T ), dxr (T )} ≥ 3 then P is called an internal path of T .

In the present paper, our main aim is to study the general Z-type index (and hence the
abovementioned particular cases of this index, including the general Platt index) of n-order trees and
chemical trees with a given number of segments. Particularly, the main goal of the present paper is to
study the greatest value of Zα, β of fixed-order chemical trees with a fixed number of segments
for 1 < α ≤ 3 and β ≤ 2. Similar results for general trees are also established for α > 1 and β ≤ 2.

2. Main results

A vertex u in a tree T with du(T ) = 1 or du(T ) > 2 is called a pendent vertex of T or a branching
vertex of T , respectively. A star-like tree is a tree containing only one branching vertex. To avoid
trivialities, throughout this section, we consider trees containing not less than three segments.
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Define Θi, j(T ) := |{uv ∈ E(T ) : du(T ) = i, du(T ) = j}| and mi(T ) := |{u ∈ V(T ) : du(T ) = i}|.
For 2 ≤ j ≤ 4 and n ≥ 3, we have the following system of equations for an n-order chemical tree T :

4∑
i=1
i, j

Θ j,i(T ) + 2Θ j, j(T ) = j · m j(T ). (2.1)

∑
1≤i≤ j≤4

Θi, j(T ) = n − 1. (2.2)

For u ∈ V(T ), we define NT (u) = {u′ ∈ V(T ) : u′u ∈ E(T )}. Let 1Tn,r denote the set of n-order trees
having r segments, provided that the chain of inequalities 3 ≤ r ≤ n − 1 holds. We denote by 1Tmax a
tree having the greatest value of Zα, β in the set 1Tn,r for β ≤ 2 and α > 1.

Lemma 2.1. If Θ1,k(1Tmax) , 0 for some k with k ≥ 3, then every vertex of degree 2 (if exists) in 1Tmax

has a pendent neighbor.

Proof. We chose t1, t2 ∈ V(1Tmax) in such a way that t1t2 ∈ E(1Tmax), dt2(
1Tmax) ≥ 3 and dt1(

1Tmax) = 1.
Also, we assume contrarily that x, x1, x2 ∈ V(1Tmax), such that x1x, x2x ∈ E(1Tmax), dx(1Tmax) = 2
and dxi(

1Tmax) ≥ 2 for i = 1, 2. If T ∗ denotes the tree formed from 1Tmax by dropping the edges
t1t2, xx1, xx2 and adding the edges t1x, t2x, x1x2, then certainly T ∗ ∈ 1Tn,r. In the following, we assume
dp(1Tmax) = dp for every p ∈ V(1Tmax) = V(T ∗). The, we have

Zα, β(1Tmax) − Zα, β(T ∗) = (dt2 − β + 1)α + (dx1 − β + 2)α + (dx2 − β + 2)α (2.3)
− (3 − β)α − (dt2 − β + 2)α − (dx1 + dx2 − β)

α.

Let us define a function f of real variables a, b, c, with fixed real numbers α and β as

f (a, b, c) = (a − β + 1)α + (b − β + 2)α + (c − β + 2)α − (a − β + 2)α − (b + c − β)α − (3 − β)α,

where α > 1, β ≤ 2, a ≥ 3, b ≥ 2 and c ≥ 2. We note that the function f is strictly decreasing in each
of its variables a, b, c. Hence, (2.3) gives

Zα, β(1Tmax) − Zα, β(T ∗) ≤ (4 − β)α − (3 − β)α − ((5 − β)α − (4 − β)α) < 0,

a contradiction to the definition of the tree 1Tmax. □

Lemma 2.2. The tree 1Tmax must be a star-like tree.

Proof. Since 1Tmax has at least three segments, its number of branching vertices must be nonzero. We
chose a vertex t′ ∈ V(1Tmax) of maximum degree. Contrarily, assume that the number of branching
vertices of the tree 1Tmax is at least 2. Among all the branching vertices of 1Tmax different from t′, we
pick a branching vertex t ∈ V(1Tmax) \ {t′} such that the vertices t′ and t have the minimum distance
between them. two distinct branching vertices. Let dt′ (1Tmax) = τ′ and dt(1Tmax) = τ. Furthermore,
we assume that N1Tmax(t) = {vl, t1, . . . , tτ−1} and N1Tmax(t

′) = {y, t′1, . . . , t
′
τ′−1}, where the vertices vl and

y lie on the unique path connecting t and t′. Let T ∗ be the tree obtained from 1Tmax by removing
t1t, t2t, . . . , tτ−1t and adding t1t′, t2t′, . . . , tτ−1t′}. In the remaining proof, we assume that dγ = dγ(1Tmax)
for every γ ∈ V(1Tmax) = V(T ∗).
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Case 1: t
′

t < E(1Tmax).
We note in the present case that dy = dvl = 2 and hence

Zα, β(1Tmax) − Zα, β(T ∗) =
τ′−1∑
i=1

(τ′ + dt′i
− β)α + (τ′ + 2 − β)α +

τ−1∑
j=1

(τ + dt j − β)
α + (τ + 2 − β)α

−

τ′−1∑
i=1

((τ′ + τ − 1) − β + dt′i
)α −

τ−1∑
j=1

((τ′ + τ − 1) − β + dt j)
α

−(τ′ + τ − β + 1)α − (3 − β)α

< (τ′ − β + 2)α + (τ − β + 2)α − (τ′ + τ − β + 1)α − (3 − β)α. (2.4)

We note that there are two real numbers τ1 and τ2 satisfying the inequalities 3− β < τ1 < τ− β+ 2 and
τ′ − β + 2 < τ2 < τ

′ + τ − β + 1 such that

(τ′ − β + 2)α + (τ − β + 2)α − (τ′ + τ − β + 1)α − (3 − β)α = α(τ − 1)
(
τα−1

1 − τα−1
2

)
. (2.5)

As τ′ ≥ τ, we have τ1 < τ2 and hence from (2.4) and (2.5), we arrive at Zα, β(1Tmax) − Zα, β(T ∗) < 0, a
contradiction.

Case 2: t
′

t ∈ E(1Tmax).
In the present case, we obtain

Zα, β(1Tmax) − Zα, β(T ∗) =
τ′−1∑
i=1

(τ′ + dt′i
− β)α +

τ−1∑
j=1

(τ + dt j − β)
α

−

τ′−1∑
i=1

(τ + τ′ − β + dt′i
− 1)α −

τ−1∑
j=1

(τ + τ′ − β + dt j − 1)α < 0,

again a contradiction.
In both possible cases, we arrive at a contradiction. Therefore, the tree 1Tmax contains exactly one

branching vertex. □

Theorem 1. If the chain of inequalities ⌈(n − 1)/2⌉ ≤ r ≤ n − 1 holds then the tree 1Tmax is star-like
and Θ2,2(1Tmax) = 0.

Proof. Lemma 2.2 confirms that the tree 1Tmax is star-like. Hence, the number of segments r of 1Tmax

is equal to its maximum degree. Suppose, contrarily, that Θ2,2(1Tmax) > 0. Then, Lemma 2.1 confirms
that Θr,1(1Tmax) = 0. Consequently, we have 2r = Θ2,r(1Tmax) + Θ1,2(1Tmax) ≤ |E(1Tmax)| − 1 = n − 2, a
contradiction. □

Theorem 2. If the chain of inequalities 3 ≤ r ≤ ⌊(n − 1)/2⌋ holds then the tree 1Tmax is star-like and
Θr,1(1Tmax) = 0.

Proof. Lemma 2.2 confirms that the tree 1Tmax is star-like. Hence, the number of segments r of 1Tmax

is equal to its maximum degree. Suppose, contrarily, that Θr,1(1Tmax) > 0. Then, Lemma 2.1 confirms
that Θ2,2(1Tmax) = 0. So, we have 2r > Θ1,2(1Tmax) + r = |E(1Tmax)| = n − 1, a contradiction. □
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In the rest of this section, we focus on chemical trees. Denote by Tn,r the set ofall n-order chemical
trees possessing r segments such that 3 ≤ r ≤ n − 1. For r ∈ {3, 4}, the tree(s) maximizing Zα, β in the
set Tn,r for β ≤ 2 and α > 1 can be obtained directly by utilizing Theorem 1 and/or Theorem 2. Hence,
in the remaining part of the present section, we assume that 5 ≤ r ≤ n − 1. Denote by Tmax a tree with
the greatest value of Zα, β in the set Tn,r with the conditions 1 < α ≤ 3, β ≤ 2 and 5 ≤ r ≤ n − 1.

Lemma 2.3. It holds that m3(Tmax) ≤ 2.

Proof. Contrarily, assume that m3(Tmax) ≥ 3. We pick the vertices x, y, z ∈ V(Tmax) of degree 3 in such
a way that if all these three vertices lie on one path then the vertex y must lie on the path connecting x
and z. Let P : (x =)u1u2 . . . ul(= z) be the path connecting z and x in Tmax. Let Nz(Tmax) = {z1, z2, z3},
where z3 = ul−1. Certainly, x, y, z, must be pairwise nonadjacent when these vertices do not lie on one
path. Let T

′

denote the tree constructed from Tmax by deleting the edges zz1, zz2 and inserting xz1, yz2.
In the rest of the proof, we take dγ(Tmax) = dγ for γ ∈ V(T

′

) = V(Tmax). We may assume, without loss
of generality, that dz2 ≤ dz1 .

Case 1: The vertices x, y, z, are pairwise nonadjacent.
In this case, we obtain

Zα, β(Tmax) − Zα, β(T
′

)

=
∑

x′∈NTmax (x)

[(dx′ − β + 3)α − (dx′ − β + 4)α] +
∑

y′∈NTmax (y)

[(dy′ − β + 3)α − (dy′ − β + 4)α]

+

2∑
i=1

[(dzi − β + 3)α − (dzi − β + 4)α] + (dz3 − β + 3)α − (dz3 − β + 1)α. (2.6)

We note that each of the vertices x, y, z, may have at most two pendent neighbors; if x, y, z, lie on one
path then y may have at most one pendent neighbor. Thus, Equation (2.6) implies that

Zα, β(Tmax) − Zα, β(T
′

) ≤ 6[(4 − β)α − (5 − β)α] + 2[(5 − β)α − (6 − β)α] + (7 − β)α − (5 − β)α

= 6[(4 − β)α − (5 − β)α] + [(5 − β)α − (6 − β)α] + (7 − β)α − (6 − β)α

< 7[(4 − β)α − (5 − β)α] + (7 − β)α − (6 − β)α. (2.7)

We note that there exist two real numbers a1 and a2 which satisfy the inequalities 6 − β < a1 < 7 − β
and 4 − β < a2 < 5 − β such that

7[(4 − β)α − (5 − β)α] + (7 − β)α − (6 − β)α = α(aα−1
1 − 7aα−1

2 ). (2.8)

Since
7 − β
4 − β

≤
5
2
,

we have (
7 − β
4 − β

)α−1

≤

(
5
2

)α−1

≤ 7,

and hence
aα−1

1 < (7 − β)α−1 ≤ 7(4 − β)α−1 < 7aα−1
2 ,
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which confirms that the right-hand side of Eq (2.8) is negative; thus, (2.7) yields Zα, β(Tmax) < Zα, β(T
′

),
a contradiction.

Case 2: Vertices x, y, z, lie on one path, and only one of x, z, is a neighbor of y.
We suppose, without loss of generality, that xy < E(Tmax) and yz ∈ E(Tmax). Then y = z3. Thus, we

obtain

Zα, β(Tmax) − Zα, β(T
′

)

=
∑

x′∈NTmax (x)

(dx′ − β + 3)α +
∑

y′∈NTmax (y)\{z}

(dy′ − β + 3)α +
∑

zi∈NTmax (z)\{y}

(dzi − β + 3)α

+(6 − β)α −
∑

x′∈NTmax (x)

(dx′ − β + 4)α −
∑

y′∈NTmax (y)\{z}

(dy′ − β + 4)α

−(dz1 − β + 4)α − (dz2 − β + 4)α − (5 − β)α,

<

2∑
i=1

[(dzi − β + 3)α − (dzi − β + 4)α] + (6 − β)α − (5 − β)α + [(du2 − β + 3)α − (du2 − β + 4)α]

< (6 − β)α − (5 − β)α + (du2 − β + 3)α − (du2 − β + 4)α ≤ 0, (2.9)

a contradiction.

Case 3: Vertices x, y, z, lie on one path provided that xy ∈ E(Tmax) and yz ∈ E(Tmax).
In this case, we obtain

Zα, β(Tmax) − Zα, β(T
′

)

=
∑

x′∈NTmax (x)\{y}

(dx′ − β + 3)α +
∑

y′∈NTmax (y)\{x,z}

(dy′ − β + 3)α +
∑

zi∈NTmax (z)\{y}

(dzi − β + 3)α

+2(6 − β)α −
∑

x′∈NTmax (x)\{y}

(dx′ − β + 4)α −
∑

y′∈NTmax (y)\{x,z}

(dy′ − β + 4)α − (8 − β)α

−(dz1 − β + 4)α − (dz2 − β + 4)α − (5 − β)α

<

2∑
i=1

[(dzi − β + 3)α − (dzi − β + 4)α] + (6 − β)α − (5 − β)α + (6 − β)α − (8 − β)α

< (6 − β)α − (5 − β)α − [(8 − β)α − (6 − β)α] < 0.

Thus, we arrive at Zα, β(Tmax) < Zα, β(T
′

), a contradiction. □

Lemma 2.4. Every internal path of the tree Tmax has length 1.

Proof. Assume to the contrary that P : t1 . . . tk is an internal path of length k − 1 ≥ 2 in Tmax. Let
x ∈ V(Tmax) be a pendent vertex, and let t be its unique neighbor. Let T

′

be the tree deduced from Tmax

by dropping tx, t1t2, tk−1tk and adding t1tk, t2x, tk−1t. In the following, we use dγ to represent the degree
of a vertex γ in Tmax. It is clear that T

′

∈ Tn,r. On the other hand, we have

Zα, β(Tmax) − Zα, β(T
′

) = (dt1 − β + 2)α + (dt − β + 1)α + (dtk − β + 2)α − (dt1 + dtk − β)
α
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−(dt − β + 2)α − (3 − β)α

≤ (dt1 − β + 2)α + (3 − β)α + (5 − β)α − (dt1 + 3 − β)α − (4 − β)α − (3 − β)α

≤ (5 − β)α − (4 − β)α − [(6 − β)α − (5 − β)α] < 0,

a contradiction. □

Lemma 2.5. If Θ1,s(Tmax) , 0 for some s with s ≥ 3, then Tmax contains no pendent path of length
larger than 2.

Proof. Let t1, t2 ∈ V(Tmax) be two adjacent vertices such that dt1(Tmax) = 1 and dt2(Tmax) ≥ 3.
Contrarily, we assume that P : x1 . . . xk is a pendent path having length k ≥ 3 in Tmax, where
dxk(Tmax) = 1 and dx1(Tmax) ≥ 3. Let T ∗ be the tree formed from Tmax by deleting t1t2, xx1, xx2 and
adding t1x, t2x, x1x2. Clearly, T ∗ ∈ Tn,r. But,

Zα, β(Tmax) − Zα, β(T ∗) = (dt2(Tmax) − β + 1)α + (4 − β)α − (3 − β)α − (dt2(Tmax) − β + 2)α

≤ (4 − β)α − (3 − β)α − [(5 − β)α − (4 − β)α] < 0,

which is a contradiction. □

Lemma 2.6. If Θ1,4(Tmax) , 0 then Θ2,3(Tmax) = 0.

Proof. We assume to the contrary that Θ2,3(Tmax) , 0 as well as Θ1,4(Tmax) , 0. We consider four
vertices t2, t3, t4, t5 of Tmax such that t4t5, t2t3 ∈ E(Tmax) and (dt2(Tmax), dt3(Tmax), dt4(Tmax), dt5(Tmax)) =
(2, 3, 4, 1). Let NTmax(t2) = {t1, t3}. Then Lemmas 2.4 and 2.5 confirm that dt1(Tmax) = 1. Let T

′

be
the graph generated from Tmax by removing t1t2, t2t3, t4t5 and inserting t1t3, t2t4, t2t5. Clearly, we have
T
′

∈ Tn,r. So, we have

Zα, β(Tmax) − Zα, β(T
′

) = 2 · (5 − β)α − (4 − β)α − (6 − β)α < 0,

a contradiction. □

Lemma 2.7. If t j ∈ V(Tmax) is a vertex of degree three, then t j has at most one branching neighbor.

Proof. Contrarily, suppose that t j−1, t j+1 ∈ V(Tmax) are any two branching vertices adjacent to t j. Let
P : t1t2 . . . t j−1t jt j+1 . . . tl be the largest path in Tmax containing the aforementioned branching vertices.
Because of Lemma 2.3, the path P contains not more than two vertices having degree 3 (in Tmax)
including t j. In the case when the path P has two vertices having degree 3 (in Tmax) then without loss
of generality, we suppose that ti ∈ V(P) is a vertex with degree 3 (in Tmax) for some i with 1 ≤ i < j.
Thus, there is a vertex tk ∈ V(P) of degree 4 for some k with j + 1 ≤ k ≤ l − 1, which has only one
branching neighbor. So, dtk+1(Tmax) = 1 or 2, dt j−1(Tmax) = 3 or 4, and dt j+1(Tmax) = 4. If T ∗ is the tree
constructed from Tmax by dropping t j−1t j, t jt j+1, tktk+1 and inserting t j−1t j+1, tkt j, t jtk+1, then T ∗ ∈ Tn,r and

Zα, β(Tmax) − Zα, β(T ∗) = (dt j−1 − β + 3)α + (dtk+1 − β + 4)α − (dt j−1 − β + 4)α − (dtk+1 − β + 3)α

≤ 2 · 6α − 7α − 5α < 0.

which is a contradiction, where dt j−1 = dt j−1(Tmax) and dtk+1 = dtk+1(Tmax). □
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From Lemmas 2.4 and 2.7, next result follows.

Corollary 1. The induced subgraph of Tmax formed by its vertices of degree 4 is a tree.

For every ℓ ∈ {2, 3, 4}, denote by ℓTn,r the set of those n-order chemical trees having r segments that
has/have ℓ − 2 vertex/vertices of degree 3; so, because of [13], it holds that r ≡ 2ℓ (mod 3).

Lemma 2.8. [13] The degree sequence of T ∈ Tn,r having no more than 2 vertices of degree 3,
with 5 ≤ r ≤ n − 1, is as follow:

DS (T ) =



(4, . . . , 4︸  ︷︷  ︸
r−1

3

, 2, . . . , 2︸  ︷︷  ︸
n−r−1

, 1, . . . , 1︸  ︷︷  ︸
2(r+2)

3

) = DS 2 when r ≡ 1 (mod 3),

(4, . . . , 4︸  ︷︷  ︸
r−3

3

, 3, 2, . . . , 2︸  ︷︷  ︸
n−r−1

, 1, . . . , 1︸  ︷︷  ︸
2r+3

3

) = DS 3 when r ≡ 0 (mod 3),

(4, . . . , 4︸  ︷︷  ︸
r−5

3

, 3, 3, 2, . . . , 2︸  ︷︷  ︸
n−r−1

, 1, . . . , 1︸  ︷︷  ︸
2(r+1)

3

) = DS 4 when r ≡ 2 (mod 3).

Theorem 3. If T ∈ Tn,r with 7 ≤ r < n < 5r+7
3 and r ≡ 1 (mod 3), then

Zα, β(T ) ≤ n ((3 − β)α − (5 − β)α + (6 − β)α)

+ r
(
−(3 − β)α +

5
3

(5 − β)α − (6 − β)α +
1
3

(8 − β)α
)

− (3 − β)α −
7
3

(5 − β)α − (6 − β)α −
4
3

(8 − β)α.

Proof. We assume that 2Tmax is a tree having the maximum value of Zα, β over the set Tn,r provided
that 7 ≤ r < n < 5r+7

3 and r ≡ 1 (mod 3). Lemmas 2.3 and 2.8 confirm that DS 2 is the degree
sequence of the tree 2Tmax. Thus, Θ3,k(2Tmax) = 0 for every k ∈ {1, 2, 3, 4}. The condition r ≥ 7
confirms that m4(2Tmax) ≥ 2. Now, because of Corollary 1, it holds that Θ4,4(2Tmax) = m4 − 1 and so
Θ4,4(2Tmax) = r−4

3 . Also, the constraint n < 5r+7
3 implies that m1 > m2; hence, Lemmas 2.4 and 2.5

confirm that Θ2,2(2Tmax) = 0. Finally, Eq (2.1) gives

Θ1,4(2Tmax) =
5r − 3n + 7

3
,Θ2,4(2Tmax) = Θ1,2(2Tmax) = n − r − 1.

Hence, we calculate Zα, β(2Tmax), which is the same as the right-hand side of the desired inequality. □

Theorem 4. If T ∈ Tn,r with 7 ≤ r and n ≥ 5r+7
3 and r ≡ 1 (mod 3), then

Zα, β(T ) ≤ n(4 − β)α + r
(
2
3

(3 − β)α −
5
3

(4 − β)α +
2
3

(6 − β)α +
1
3

(8 − β)α
)

+
4
3

(3 − β)α −
7
3

(4 − β)α +
4
3

(6 − β)α −
4
3

(8 − β)α.

Proof. We assume that 2Tmax is a tree having the maximum value of Zα, β over the set Tn,r under the
given constraints. Lemmas 2.3 and 2.8 confirm that DS 2 is the degree sequence of the tree 2Tmax.
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Thus, Θ3,k(2Tmax) = 0 for every k ∈ {1, 2, 3, 4}. Now, by using Corollary 1, we obtain Θ4,4(2Tmax) = r−4
3 .

Lemmas 2.4 and 2.5 confirm that Θ1,4(2Tmax) = 0. Finally, by utilizing Eq (2.1), we obtain

Θ1,2(2Tmax) =
2r + 4

3
= Θ4,2(2Tmax),Θ2,2(2Tmax) =

3n − 5r − 7
3

.

Hence, we calculate Zα, β(2Tmax), which is the same as the right-hand side of the desired inequality. □

Theorem 5. If T ∈ Tn,r with 6 ≤ r < n < 5r+3
3 and r ≡ 0 (mod 3), then

Zα, β(T ) ≤ n ((3 − β)α − (5 − β)α + (6 − β)α)

+ r
(
−(3 − β)α +

5
3

(5 − β)α − (6 − β)α +
1
3

(8 − β)α
)

− (3 − β)α + 2(4 − β)α − (6 − β)α + (7 − β)α − 2(8 − β)α

Proof. We assume that 3Tmax is a tree having the maximum value of Zα, β over the set Tn,r under the
given constraints. Lemmas 2.3 and 2.8 confirm that DS 3 is the degree sequence of 3Tmax; hence,
Θ3,3(3Tmax) = 0. By using Corollary 1, we have Θ4,4(3Tmax) = r

3 − 2. Lemmas 2.4 and 2.7 confirm
that Θ3,4(3Tmax) = 1. Also, note that Θ2,2(3Tmax) = 0 and Θ1,4(3Tmax) , 0; so, by utilizing Lemma 2.6,
we obtain Θ2,3(3Tmax) = 0. Finally, by using Eq (2.1), we obtain Θ1,4(3Tmax) = 5r

3 − n, Θ1,2(3Tmax) =
Θ2,4(3Tmax) = n − r − 1,Θ3,1(3Tmax) = 2. Hence, we calculate Zα, β(3Tmax), which is the same as the
right-hand side of the desired inequality. □

Theorem 6. If T ∈ Tn,r with 6 ≤ r < n = 5r+3
3 and r ≡ 0 (mod 3), then

Zα, β(T ) ≤ n ((3 − β)α − (4 − β)α + (5 − β)α) − (3 − β)α

+ 2(4 − β)α − (6 − β)α + (7 − β)α − 2(8 − β)α

+ r
(
−(3 − β)α +

5
3

(4 − β)α −
5
3

(5 − β)α +
2
3

(6 − β)α +
1
3

(8 − β)α
)
.

Proof. We assume that 3Tmax is a tree having the maximum value of Zα, β over the set Tn,r under the
given constraints. Lemmas 2.3 and 2.8 confirm that DS 3 is the degree sequence of 3Tmax; hence,
Θ3,3 = 0. Now, by using Corollary 1, Lemmas 2.4 and 2.7, and Eq (2.1), we obtain

Θ4,4(3Tmax) =
r
3
− 2,Θ3,4(3Tmax) = 1,Θ2,2(3Tmax) = 0 = Θ1,4(3Tmax),Θ1,2(3Tmax) = n − r − 1 =

2r
3
,

Θ1,3(3Tmax) =
5r
3
− n + 2 = 1, Θ2,3(3Tmax) =

3n − 5r
3

= 1, and Θ2,4(3Tmax) =
2r
3
− 1.

Hence, we calculate Zα, β(3Tmax), which is the same as the right-hand side of the desired inequality. □

Theorem 7. If T ∈ Tn,r with 6 ≤ r and r ≡ 0 (mod 3) and n > 5r+3
3 , then

Zα, β(T ) ≤ n(4 − β)α + r
(
2
3

(3 − β)α −
5
3

(4 − β)α +
2
3

(6 − β)α +
1
3

(8 − β)α
)

+ (3 − β)α − 2(4 − β)α + 2(5 − β)α − (6 − β)α + (7 − β)α − 2(8 − β)α.
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Proof. We assume that 3Tmax is a tree having the maximum value of Zα, β over the set Tn,r under the
given constraints. Lemmas 2.3 and 2.8 confirm that DS 3 is the degree sequence of 3Tmax; hence,
Θ3,3(3Tmax) = 0. Now, by using Corollary 1, Lemmas 2.4, 2.5 and 2.7, and Eq (2.1), we obtain

Θ4,4(3Tmax) =
r
3
− 2, Θ3,4(3Tmax) = 1, Θ1,4(3Tmax) = 0, Θ1,3(3Tmax) = 0,

Θ1,2(3Tmax) =
2r
3
+ 1,Θ2,2(3Tmax) = −

5r
3
+ n − 2,Θ2,4(3Tmax) =

2r
3
− 1, and Θ3,2(3Tmax) = 2.

Hence, we calculate Zα, β(3Tmax), which is the same as the right-hand side of the desired inequality. □

Theorem 8. If T ∈ Tn,r with 8 ≤ r < n < 5r−4
3 and r ≡ 2 (mod 3), then

Zα, β(T ) ≤ n ((3 − β)α − (5 − β)α + (6 − β)α)

+ r
(
−(3 − β)α +

5
3

(5 − β)α − (6 − β)α +
1
3

(8 − β)α
)

− (3 − β)α + 4(4 − β)α −
7
3

(5 − β)α − (6 − β)α + 2(7 − β)α −
8
3

(8 − β)α.

Proof. We assume that 4Tmax is a tree having the maximum value of Zα, β over the set Tn,r under the
given constraints. Lemmas 2.3 and 2.8 confirm that DS 4 is the degree sequence of 4Tmax. By keeping
in mind the given constraints, using Corollary 1, Lemmas 2.4, 2.6 and 2.7, and Eq (2.1), we obtain

Θ4,4(4Tmax) =
r − 8

3
, Θ3,4(4Tmax) = 2, Θ3,3(4Tmax) = 0 = Θ2,2(4Tmax) = Θ2,3(4Tmax),

Θ1,2(4Tmax) = Θ2,4(4Tmax) = n − r − 1, Θ1,4(4Tmax) =
5r − 3n − 7

3
, and Θ3,1(4Tmax) = 4.

Hence, we calculate Zα, β(4Tmax), which is the same as the right-hand side of the desired inequality. □

Theorem 9. If T ∈ Tn,r with 8 ≤ r and r ≡ 2 (mod 3) and 5r−4
3 ≤ n ≤ 5r+2

3 , then

Zα, β(T ) ≤ n ((3 − β)α − (4 − β)α + (5 − β)α)

+ r
(
−(3 − β)α +

5
3

(4 − β)α −
5
3

(5 − β)α +
2
3

(6 − β)α +
1
3

(8 − β)α
)

− (3 − β)α +
5
3

(4 − β)α +
7
3

(5 − β)α −
10
3

(6 − β)α + 2(7 − β)α −
8
3

(8 − β)α.

Proof. We assume that 4Tmax is a tree having the maximum value of Zα, β over the set Tn,r under the
given constraints. Lemmas 2.3 and 2.8 confirm that DS 4 is the degree sequence of 4Tmax. By keeping
in mind the given constraints, using Corollary 1, Lemmas 2.4 and 2.7, and Eq (2.1), we obtain

Θ4,4(4Tmax) =
r − 8

3
,Θ3,4(4Tmax) = 2,Θ3,3(4Tmax) = Θ1,4(4Tmax) = 0 = Θ2,2(4Tmax),Θ1,2(4Tmax) = n−r−1,

Θ1,3(4Tmax) =
5r − 3n + 5

3
, Θ2,3(4Tmax) =

3n − 5r + 7
3

and Θ2,4(4Tmax) =
2(r − 5)

3
.

Hence, we calculate Zα, β(4Tmax), which is the same as the right-hand side of the desired inequality. □
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Theorem 10. If T ∈ Tn,r with 8 ≤ r and r ≡ 2 (mod 3) and n > 5r+2
3 , then

Zα, β(T ) ≤ n(4 − β)α + r
(
2
3

(3 − β)α −
5
3

(4 − β)α +
2
3

(6 − β)α +
1
3

(8 − β)α
)

+
2
3

(3 − β)α −
5
3

(4 − β)α + 4(5 − β)α −
10
3

(6 − β)α + 2(7 − β)α −
8
3

(8 − β)α.

Proof. We assume that 4Tmax is a tree having the maximum value of Zα, β over the set Tn,r under the
given constraints. Lemmas 2.3 and 2.8 confirm that DS 4 is the degree sequence of 4Tmax. By keeping
in mind the given constraints, using Corollary 1, Lemmas 2.4, 2.5 and 2.7, and Eq (2.1), we obtain

Θ4,4(4Tmax) =
r − 8

3
,Θ3,4(4Tmax) = 2,Θ3,3(4Tmax) = Θ1,4(4Tmax) = 0 = Θ1,3(4Tmax),

Θ1,2(4Tmax) =
2(r + 1)

3
,Θ2,2(4Tmax) =

3n − 5r − 5
3

, Θ2,4(4Tmax) =
2(r − 5)

3
and Θ2,3(4Tmax) = 4.

Hence, we calculate Zα, β(4Tmax), which is the same as the right-hand side of the desired inequality. □

3. Conclusions

We have characterized graphs attaining the greatest value of Zα, β in the set of all fixed-order trees
with a fixed number of segments for α > 1 and β ≤ 2 (see Theorems 1 and 2). We have also found
the largest value of Zα, β trees belonging to the aforementioned set of trees for 1 < α ≤ 3 and β ≤ 2
(see Theorems 3–10). The obtained results also hold for the general Platt index Plα because Zα, β is a
generalized version of Plα.

All the results proved in this paper hold for α > 1, except Lemma 2.3 (particularly, the desired
inequality in its Case 1). It seems to be interesting to prove this lemma (particularly, the desired
inequality in its Case 1) for α > 3 and β ≤ 2.
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