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1. Introduction

In the year 1920, Hardy [1] introduced an operator for a locally integrable function g on R, now
referred to as the Hardy operator. This operator is defined as:

¢
Hg(() = ¢ f gy, &> 0, (1.1)
0
and Hardy established the following inequality:

HSlr@ < PlIgllr®s, o0 >p>1, (1.2)

where p’ = p/(p — 1) is shown to be the optimal constant. Subsequently, Faris in [2] proposed an
n-dimensional generalization of (1.1), which in an equivalent form is expressed as:

Hg(¢) = 1B, 1D f g, (1.3)

B(0,1ZD
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where |B(0, |{])| denotes the Lebesgue measure of the ball B(0, |{|) in n-dimensional Euclidean space
R”. Recently, it has been demonstrated in [3] that H satisfies:

”Hg”LP(R”) < p’”g”LP(R")a 1 <p<oo, (1.4)

with p’ being a precise constant. Inequalities (1.2) and (1.4) have been extended to power-weighted
Lebesgue spaces in [4, 5], where the sharp constants are dependent on the weight indices. The
inequalities referenced as (1.2) and (1.4) are denominated as strong-type (p, p) Hardy inequalities,
owing to the fact that within these expressions, the Hardy operator effectively maps the space L” onto
itself, L”. In contrast, the authors in [6] have derived weak-type (p, p) Hardy inequalities, wherein the
Hardy operator instead maps L” to the weak Lebesgue space L”*. Notably, it was demonstrated that
the optimal constant for such weak-type Hardy inequalities is 1, a value that is inferior to p/(p — 1).
Furthermore, the exact or “sharp” constants for weak-type Hardy inequalities applicable to Morrey-
type spaces were subsequently determined in [7, 8]. Similarly, the precise constant for the high-
dimensional fractional Hardy operator, as described in [9],

Hye(0) = 1BO, DI f sdu,  0<p<n, (1.5)
B(0,I<)

on Lebesgue spaces remained undetermined until the year 2015. This conundrum was resolved by Zhao
and Lu [10], who extended Bliss’s results pertinent to the one-dimensional fractional Hardy operator.
In their work, the boundedness of the Hardy operator Hg was established, along with the following
inequality:

|1Hpgllomny < Allgllzrgnys (1.6)
where e i
) )
g/ \gB \gB q'B
Moreover, for functions g1, 82,...,8m € L}OC(R”) and for m € N, the multilinear Hardy operator was

introduced by Fu and Grafakos in [4], expressed as follows:

1 m
H(gl9 ceey gm) = _nm f gi(gi)d§19 eeey d§m9
1" Jia...zmi<ion l,:[

,,,,,

and they further developed the sharp bounds for the multilinear Hardy operator. The 2-linear operator,
more commonly recognized as the bilinear operator, has been the subject of considerable exploration.
In [11], the authors employed the commutator of the bilinear Hardy operator, expressed as:

[bi, H1(g1, s 8)(0) = BAOH(81, ey 80)() — H(G1y ooy 8in15 8D Git 15 s 8m)(D),

and successfully established the boundedness of bilinear commutators engendered by the bilinear
Hardy operator. For the inaugural occasion, the fractional multilinear Hardy operators were expounded
in [12], delineated as follows:

1 m
Hy(810-080) = s ﬁ ( [ [e@odz, ...z,

----- {)71)|<|79| i=1
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1 m
H*(gl,---,gm)=f p— 8i(&ddy, ... ddy,
g Groioitol 1S 1,:—1[

where { = ({1,4,...,4,). Additionally, in [12], a definition for the commutator of fractional
multilinear Hardy operators is introduced as follows:

m

[b, Hpl(81, - 8n)(&) = > [bis HyI(81, or gn)(D),

i=1

m

(b, Hy)(g1, v 8n)(Q) = > [bis Hy' (815 o0 8D,

i=1
(b, H,’;](gl, w0 8n)() = bi(OHp(81, . 8m)() — Hp(g1, ... &in1> &ibis &iv 15 -+ &) (L),
[bi’ H;i](gla (X33} gm)(g) = bl(é/)H;’(gl’ (123 gm)(é/) - H;(gl, - 8i-1s gibia &i+1s s gm)(g)

Hardy inequalities have been a focal point of interest in numerous scholarly treatises [13, 14].
The determination of optimal bounds for Hardy-type inequalities has been achieved in only a
limited number of instances, and research in this domain remains a vibrant and evolving component of
contemporary mathematical analysis. Noteworthy recent contributions to this field include [15,
16]. Furthermore, the sharp constants for Hardy-type inequalities over the product of certain
function spaces have been thoroughly elucidated in the published work [17]. We discern several
pivotal works concerning the analysis of Hardy operators across diverse function spaces, which
encompass (4,5, 18-20].

The foundational work presented in [21] catalyzed the notion of extending traditional function
spaces. The concept of variable Lebesgue spaces L") was first introduced by Rakosnik and Kovacik
in [22]. This development heralded the inception of variable exponent Lebesgue spaces, alongside
a burgeoning interest in examining the boundedness properties of various operators, with particular
attention given to the maximal operator within the variable exponent Lebesgue space L7 [23, 24].
In recent years, the theory of generalized function spaces has garnered substantial attention across
multiple branches of mathematical analysis, including but not limited to image processing [25], the
modeling of electrorheological fluids [26], and the study of partial differential equations [27].

Moreover, Izuki advanced the field by introducing variable exponent Herz spaces KZ,,,(.) in [28].
Building upon this, Drihem and Almeida [29] proposed a revised formulation of Herz spaces that
incorporated « as a variable exponent. In a further development, [30] presented Herz spaces wherein
all exponents were treated as variables, marking a significant expansion in the theory. The notion
of variable exponent Morrey-Herz spaces M K;ﬁ(.) was first articulated in [31], where the generalized
concept of Morrey-Herz spaces was proposed by replacing the exponent a with the function a(-). This
advancement is further explored in the seminal works [32,33].

The recent introduction of weighted theories based on Muckenhoupt weights [34] represents a
notable achievement in the study of variable exponent function spaces. Cruz-Uribe, in [35], established
the boundedness of the Hardy-Littlewood maximal operator M, defined as

1
Mg()= sup — f Gl
EbalzeQ 19l Jo
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on the variable exponent weighted Lebesgue space LP(w). Histd and Diening, in their work [36],
demonstrated the equivalence between the continuity criteria for M on LP®(w) and the Muckenhoupt
condition.

In this discourse, we shall explore the boundedness properties of the multilinear fractional Hardy
operator within the framework of Herz-Morrey spaces with variable exponents. Furthermore, this
article delves into the boundedness of commutators generated by the multilinear fractional Hardy
operator, also within the context of Herz-Morrey spaces and variable exponents.

In doing so, we extend several results previously introduced in [18]. To effectively manage the
continuity criteria of the multilinear fractional Hardy operator, we shall leverage the boundedness of
the fractional integral, defined as

g(w)
15(8)(&) = f —————dy.
O J T
The boundedness of the Riesz potential on variable exponent Lebesgue spaces is documented in [37],
while the boundedness of the fractional integral operator on Herz spaces was established by Noi and
Izuki [38]. The essential outcomes of our work are outlined as follows:

Theorem 1.1. Consider 0 < gq,q; < oo, where g(-) € P(R") N G(R™), and let p(-) be such that
% = [% - S, with 1% =37, p#() Furthermore, take A = Y, A;, and let a(-) € G$(R") N L*(R") be
logarithmically Holder continuous at the origin, satisfying a(0) = ;L @(0) and a() = Y7 @;(c0),

with a(0) < a(o0) < nod; + A, where 6;; € (0, 1) are constants arising from (3.3). Then, it holds that:
1Hp(f1s fos s Fulyrger gy < € 1:1[ ||ﬁ||MKZi’;z_.(f}),-(Rn)-

Theorem 1.2. Let g;(-), q, pi(-), p(-), a(:), and B retain the same definitions as those established in
Theorem 1.1. Moreover, if the condition a(co0) > a(0) > A — nd holds, where 6 € (0, 1) is the constant
introduced in Lemma 3.3, then it follows that

q;.p;i (")

m
||ng(fla fZ’ ceey fm)HMKZ(qz?(R”) < C 1_[ ”ﬁ”MK"i(')‘/li(Rn)'
i=1

Theorem 1.3. Assume 0 < g, q; < oo, fori = 1,2,...,m, where q(-) € P(R") N G$(R") and p(-) satisfies
% = 1%—% with 1% =0 p#() Let A = Y, A;, and consider a(-) € G(RMNL*(R") as a logarithmic
Holder continuous function at the origin, fulfilling a(0) = Y2, @;(0) and a(c0) = 3.1, @;(c0), with the
condition a(0) < a(o0) < Y, nd; + A, where 6; € (0, 1) are constants as described in (3.3). Under
these assumptions, the commutator [b, Hg] is bounded from the product space [];" MEK" 4R 1o

4i-pi(")
MK\ (R, where b = (by, by, ..., by) with by, by, ..., by € BMO.

Theorem 1.4. Assume that q;,q, pi(-), p(:),a(-), and B are defined in the same manner as in the
aforementioned Theorem 1.1. Moreover, if a(0) > a(0) > A — nd, where 6 € (0, 1) is the constant
that emerges in Lemma 3.3, then the commutator [b, H;] is bounded from ||, MI'(Q"(')’A‘(R”) to

= qi-pi()
MK (R, where b = (by, by, ..., by) and by, by, ..., b, € BMO.
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2. Terminology and formal definitions

The symbol C is employed throughout this manuscript to denote a constant, the value of which
may vary from one instance to another. The spaces L}OC(R”), Lfo(;)(R"), L*(R") are defined by Grafakos
in [39]. Let S be a nonempty, measurable subset of R”, and let ys represent the characteristic function
of §, where |S | designates the Lebesgue measure of the set. We shall commence by delineating variable
exponent Lebesgue spaces, drawing upon foundational works and references such as [22,24,40,41].

Definition 2.1. Consider a measurable function ¢(-) : R” — [1, co]. The Lebesgue space characterized
by a variable exponent, symbolically represented as LY”(R") constitutes the assemblage of all
measurable functions & for which the ensuing integral expression, identified as F,(£), is bounded by a
finite quantity:

Fy(&) = fR n (|§<u)|)q°”d,l < co.

The space L/“(R") is endowed with the following norm, making it a Banach space:

o = inf {0' >0 Fq(g) - fR (@)qwdp < 1}.

Definition 2.2. We denote by P(R") the collection of all measurable functions ¢g(-) : R* — (1, c0) such
that

1 <g-<q(u) <g: <o,
where

q- = essinf g(u), g, := esssup q(u).
HER" Ecy

Definition 2.3. Let g(-) be a real-valued function defined on R". We define the following:
) Q}gf(R”) denotes the set of all locally logarithmically Holder continuous functions g(-) satisfying

1 n
Iq(/u)—q(é)lslo , |{—u|<§, u,l €R

gl =2

(i) If g(-) € gg)g(R”), then it satisfies the following condition at the origin:

lg() = q(0)] < uEeR"

log(IL +el)’
(1) If g(-) € Q{f,g(R”), then it fulfills the following inequality at infinity:

lg(1) — gool < , MER"

log(|ul + e)

(iv) G'°¢ = fgf N G represents the set of all globally logarithmically Holder continuous functions
q(-).

We denote by D(R") the class of functions g(-) belonging to P(R") N G°¢(R"), which satisfy the
condition that the Hardy-Littlewood maximal operator is bounded on Li”(R"). It was demonstrated
in [42] that if ¢(-) € P(R") N G'°¢(R"), then M is bounded on LIO(R™).
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Definition 2.4. [39] Let b € L' (R"). The norm is defined as

loc
1
Ibllsmon = sup — | |b(u) — bsldu,
s ISTJs
where the supremum is taken over all balls § € R" and by = ﬁ fs f()dy. The function b is said to
have bounded mean oscillation if [|b]|gyo@rr < 00, and BMO(R") is the space consisting of all functions

b e L, (R") for which BMO(R") < 0.

Variable exponent Morrey-Herz space M Kf;(pzf
|X| < 2"} and A; = B, \ Bi_; for k € Z.
Definition 2.5. [31] Given 0 < g < o0, 0 < A < o0, a function a(-) : R"” — R with a(-) € L*(R"),

p(-) € P(R"), the space M KZ’;)(’,?(R”) is defined as

(R") is defined now. Let yx = ya,, Bx = {x € R" :

MK R = {f € Li @ \AOD < fllyygeon ey < oo},

q,p(")

where
koA = ka(-) le
pa()A = SU 2_0( E kg a )
”f”MKq,p(.) R™) koelz “ ||f/\/k”U,( )(R?)

In the special case when A = 0, this space reduces to the Herz space with variable exponent, denoted

a() n
by Kq,p(-)(R )-

3. Key theorems and findings

In this segment, we shall undertake the demonstration of the principal results enunciated in the
inaugural section. Nonetheless, it is imperative to first present certain auxiliary lemmas, which will
prove instrumental in this endeavor.

Lemma 3.1. [43] If F is a Banach function space, then the following conditions hold:
(1) The associated space F’ must also be a Banach function space.
(2) The norms || - ||r and || - ||y are equivalent.
(3) (Generalized Holder inequality) If ¢ € F' and n € F, then the inequality

N ()& < [I€ll#lInlle-

Lemma 3.2. [44] If the function q(-) belongs to the class P(R"), then for any ball S in R", there exists
a constant C > 0 such that the following inequality is satisfied:

-1 -1
C™ <IST s llzrolsllieo < C.

Lemma 3.3. [38] If Y is a Banach function space and M is bounded on Y’ , then for any E C R" and
S C E, there exists a constant § € (0, 1), such that

s ly (@)‘5'

<
Ieelly — \IE|
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Proposition 3.4. [35] Consider an open set E, and assume that p(-) € P(E) fulfills the following

conditions: |

<

log(1£ = ub)’™ 2
—C

- — | < 32

Ip({) = p()l < g+ o) 1Z1 < |l (3.2)

then it follows that p(-) € D(R"), where C denotes a positive constant that does not depend on { and p.

Ip(§) = p(z)l < 2| - pl (3.1

Lemma 3.5. [45] If q(-) € D(R"), then there exists a constant 0 < 6 < 1 and a positive constant
C such that for any ball S in R" and any measurable subset W C S, the subsequent inequalities are
satisfied:

el _ ( 1wl )6.
s [l oo ey N
Remark: Assume q(-) € P®R") and fulfills the conditions (3.1) and (3.2) as articulated in
Proposition 3.4. Consequently, q'(-) adheres to these conditions as well, indicating that both q(-)
and q'(-) are members of D(R"). By invoking Lemma 3.5 and utilizing [12], we derive the existence of

constants 6;; € (0, ﬁ) such that the inequalities

Ibewll 0 g W\
e (R)<c(U) (3.3)

“/YS ||L‘1'i(')(RYl) B |S|
are satisfied for all balls S C R" and for all subsets W C §.

Proposition 3.6. [37] Let q(-) be a member of the set P(R"), where 0 < f < —. Define ¢'(-) by the

(g1)+
11 B

70 g0 n

relation:

Then, the following inequality holds:

W flle ymmy < Cllfllzaor @ny-
Proposition 3.6 plays a crucial role in deriving the subsequent lemma (see [46]).

Lemma 3.7. Let 3, q(-), and q'(-) be defined as outlined in Proposition 3.6 . For any ball By = {x €
R" : |x| < 2%} with k € Z, the following inequality is satisfied:

—
Bl (ymny < C2 Pl g,z gn)-

Lemma 3.8. [46] Assume that q(-) is an element of P(R"). Then, for any b € BMO and for all integers
J,i € Z with j > i, the following inequalities hold:

-1
C™'||bllpmo < sup
B:Ball ”XB”L‘I(')

I = bp)x gl < C(j = DIIbllmolles |l

Here, C is a positive constant independent of the choices of j and i.

(6 = be)xslle < ClIbllsmo
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Lemma 3.9. Given that g(-) € P(R") N G"¢(R") and p(-) satisfies the condition = = -~ — § with

1
() pC)
=", - it follows that:

% Py’

ki —
b oy < €240 H sl

L7 7() (R"

Proof. Letus assume f = yp, and employ the definition of the operator Ig

Ls(xs)(x) = C2%y (),

X.(%) < C27% (x5 ) (x).

Taking the norm on both sides and applying the results from Lemmas 3.2 and 3.7, respectively, we

deduce: )
s llLo@n < C27* sy B, Loo@m

&
< C27 o,

m
K
<C2™M rl I Bl L7 )

< C2kmn=p) ﬂ sl (3.4)

Proposition 3.10. [11] If a(-) resides within the intersection of L°(R") and G"¢(R"), and let p(-)
belong to the class P(R"), with the parameters 0 < g < oo and 0 < A < oo, then

WHg(f1s fos -or i) - Xl

Ll ()(R"

M Ka( ) y 4 &)

= sup 27fo4 Z 2N Hy(fi, for oo fi) Xl

ko €Z

k=—00
ko k(0
~ max {sup2 odd Z 25O\ Hg(f1, far over fin) - Xl @y
koEZ k=—0c0
k0<0

kodgq ka(0)q
2}16};2 ( Z 2 1Hp(f15 f25 o5 Jn) - )(k|| LrO®?)
k()>0

+ Z 2kd(°°)q||Hﬂ(f1’f2, . fm) XkHLI’()(R" )}

Proof of Theorem 1.1. For each fi, f>, ..., fu € MK“(; ?)(R"), let us denote f;; = f; - x; = fi - xa, for any
Jj€Zandie€Z". Then, we express

= D 0 xi = fio.

Jj=—00 j=—o00
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Utilizing the generalized Holder inequality, we derive

1
|Hp(f1, f25 s J)(X) - Y (X)] < = f f f (A EONL@ A fuE)Ddtdts... .y, - xi(X)
|x|mn=h By JBy By

1
- — f fieldy f hb)ldr... f onltldt - ()
|x| ﬁ By, B By
k

m
—k kj
< €27 3 | Ao @bl o g 2060,

j:—oo i=1

||Hﬁ(f1, o ees fn) ')(k||Lq<->(Rn)

k m
ki —ki
< 2% 3" [ [l o g ™ eidlzso . (3.5)

j=—o0 i=1

To advance further, we substitute Lemma 3.9 into inequality (3.5):

B

k
V(A oo e fr) Xl < € 37 [ ] Iilimeontlell e il

j=—co i=1

k b1l

J Lpi()(R”)

<C > | [ Wfillwrogey———"
I'=_

)
i=1 ”Xk”LI’:()(Rn)

<C Z 2n6ii(j_k)||ﬁj||LPi(')(R”),

—oo =1

In the remainder of the proof, to evaluate || f;l|,» gn), We consider the following two distinct cases.
Case 1: For j <0,

E

4qi

IO IO 13
||fij||LPi<')(Rn) = 27/t )(2Ja( i ||fJ Lp()(Rn))

1
—Jjai(0) la;i(0)g; 9
2-J@ (ZZOZ qllflle()(Rn)

|=—c0

1
i—a;(0 i lai()qi ! !
2]( (l( ))2 J ( Z Za()q ||ﬁ ”Z!’z( )(Rn )

i=1 [=—00

IA
e

IA

m

JAi—a;0) | £
[ |2 Wl oy

i=1

IA
QA

Here, we use @(0) = 32, @;(0)and A = 372, A,

m
j(A—a(0
1fiillimereny, < €274 1—[ fillyggei gy
q;-pi"

i=1
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Case 2: For j > 0,

|3

I fisllzriorn
i=1
J

|3

IA

=1 =0

|3

IA

We use a(o0) = 3377, aj(c0) and A = 32, A; to obtain

—jai(e0) [ 5 jari(e0)gi qi
o T

1

qi

1

~jei(co) lai(e)gi | £ |19 “
2o N ey )

j
i—ai(e)y = i g | £,114
2 2 ( Z 25 il

1 [=—c0

m
<C —[ 2](/1i—ai(00))“ﬁ”MKai(-),A,-(Rn).
-1 q;-p;i()

m
i1
||ﬁj||L"i(')(Rﬂ) = Czj( @(c0)) l_[ ||ﬁ||MK”i(')’()‘)i(Rn)'
q;i-Pi

i=1

1
i

;

Utilizing the definition of variable exponent Herz-Morrey spaces and Proposition 3.10, we derive

the following inequality:

ko

”Hﬁ(fl’fé’ ’fm)”MKZ(qz;l(]R") = Ssup 2_k0/l Z zka(')q”Hﬁ(flafi’ cees f;n) 'Xkllzq(-)(Rn)

ko €z

k=—c0
ko

< max{
k()EZ
k()<0

k=—oc0

-1

k()EZ
ko>0

k=—00

ko

+| D 2" INH (£, fos

k=0
= :max{Yl, Y, + Yg},

where
ko
Y] — Supz—koxl Z ZkQ(O)q”Hﬁ(f],fz,
k()EZ k=—c0
ko<0
-1
Y = sup2 ot Z 24O Ho(f,, fo,
ko€Z k=—o00
ko=0

AIMS Mathematics

1
q

sup2 ! | 3" 2O H(fi, fo, o ) il |

supZ_k"A( ( Z 25O Hy(f1, for ooor f) Xl g

fm) .Xk“Zq(')(Rﬂ) )}

() f;n) : Xklliq(‘)(R")

q
ceey fm) ./\/k”Lq(-)(Rn)

Q=

(3.6)
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ko q
—koA ka(co
Yy = sup2 Xt | 3" 2 HL(f fo s for) Xl o
k()EZ k=0
ko>0

First, let us estimate Y;. Given that a(0) < a() < nd; + A,

ko k m q é
Y, < Csup2 4 Z 2ka<0)q( Z l_lz(—né,-ka—p” ﬁ”LPi(')(R"))
koezZ j— j=—co i=1
k()<0
ko k m q %
< Csup2 o Z zkaw)q( Z —[ D(nik=j)p fA=a )| Flly o (Ml(R"))
ko€Z k=—00 j=—c0 i=1
k0<0
m ko k q 7
n [l sup2 ko Z 2k/lq( Z 2(n6,-,-+/l—(l(0))(j—k))
4;:pi(") !
i=1 k=—;200 j=—00

k()<0
m
n ||f;||MKa()AI(R")
i=1

The estimate for Y, follows the same approach as for Y;. Finally, let us approximate Y3

ko k m q 7
—koA ka(co —ndii)(k—j
Y; = Csup2™ ZZ o )q( Z n2( i) j)”fi”LPi(‘)(R"))
]]zoi% k=0 Jj=—o i=1
0>
ko 0 m q é
—kogA ka(co —nd;i)(k—j
= Csup2™ 22 o )q( Z I—IZ( i) J)”fi”LPi(')(R"))
’;Oi% k=0 j=—oo i=1
0>
k() k m q é
+ Csupz—koxl Z 2ka(oo)q( Z l_[ 2(—n6,-,-)(k—j)”ﬁ“Lm(_)(Rn))
i()i% k=0 j=1 i=1
0=
_ v 17
=Y;+Y;
k() 0 m q 5
CSllp2 koA Z zkw(m)q( Z n 2(_n6ii)(k_])”fi”Ll’i(‘)(]R”))
koeZ k=0 Jj=—co i=1
ko=>0
k() k m q é
Yé/ — Supz—koxl Z 2ka(00)q( Z l_[ 2(_n6ii)(k_J)”ﬁ”Ll’i(')(R”))
ioi% k=0 j=1 i=1
0=
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=

ko ,
KS“Wﬂ“EPMW(Z[Tfm“W”“WWMWWW)
k()GZ =0 =0 i= i
ko=0
ko 0 g %
<C 1_[ 17l MRS ey Sup2 ko Z 2"/14( Z 2("5ii+/1—w(°°))(1—k))
piC) o =
koZO
m
< C Al g gy
. q;:pi()
i=1
ko k m . é
7S Coupato!| 3 28 3 [ |2 n 2 i
ko€Z =0 j:l i1
ko=>0
n ko k g i
<C 1—[ 1ill gt gy SUP2 ™ Z 2“4( Z 2<n6u+ﬁ—a(oo))<1—k>)
i=1 WO koeZ k=0 =1
ko=0

m
< C [ [ g g
. 9i-pi()
i=1
Hence, we obtain:
m
Yy < C | [IAllgoom

i=1 q;-pi(")

Substituting the estimates for Y, Y;, and Y3 into (3.6) results in the desired conclusion.
Proof of Theorem 1.2. By deploying Holder’s inequality, the following relation is ascertained:

Hy(f1, f2 oeos fin)(X) - Xk(x)|<f f f mn_ﬁ|f1(11)||f2(t2)| A fm(tldtidt,....dt,, - xi(x)
®\B, rng, Jang, ]

<chpMMMmmwwmmwm>

Jj=k+1 i=1
This further leads to:
[o0] m
IHE(fi, fos -eos J)(X) - Xill ooy < C Z n 27N filrier D170 g Ikl 0.
j=k+1 i=1
Taking into account the inequality in (3.4), we derive:

o) m
* -1
UH(fis fo s o)) Xl < € ) | Il Ao o Ioelloo ey

j=k+1 i=1

o m
<C > T2 Wfillpmoe,

j=k+1 i=1
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where, in the final step, the result from Lemma 3.5 has been utilized.

Following a similar approach as in Theorem 1.1, we achieve:

* q
Hﬁ(fl, f2’ .. fm)” (r()l(Rn)
Koal
where:
ko
—ko ka(0 5
Z, = sup2~U Z ko )q”Hﬁ(flafZa v

koEZ k=—co
k0<0

-1

Z, = sup2 ot Z 25O Hy (1, foo oo

ko€Z k=—o00
ko>0

Zy = sup2 ot Z LA (fy, fo .

ko€Z
ko=>0

max{Zl, Z2 + Zg},

fm)(x) : Xkllzq('>(R")'

fm)(-x) Xk”Lq( (R

fm)(-x) Xk”Lq( )(R"

The boundedness properties of Z; for I=1,2,3 mirror those of Y; for 1=1,2,3 as discussed in Theorem 1.1.

We now draw close to the final result.
Proof of Theorem 1.3.

D1, Hpl(f1, fas -oes J)(@) - x1(2)] <

By J By By

1
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; By By

< co-omp Z f f
B JB,
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j:Z—oo By J By

=I1+11,
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f |/1(00) fa(82).. fin(8) (D1 (11) — (b1)B)Id 11 dEr...dly, - x1(2)
By

k
1=cotoms N f f f i) Ht2)-- it Br(2) = (b)Y Nttty 3 (2).
By J By By

j=—

By invoking the Holder inequality, we derive the following estimate:

k m
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By applying Lemmas 3.5, 3.2, and 3.8 successively, we obtain
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j=—o0 i=1

k
U=2_k('""_ﬁ)2ffmf|f1(t1)fz(l2)~-~fm(tm)(b1(11)—(b1)3,~)|dt1dtz-.-dlm'Xk(Z)
By

By J By
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Deriving from inequalities (3.7) and (3.8), we arrive at the following expression:

I[b1, Hﬁ](fl’ S5 eees Ju)(2) 'Xk”L‘l(‘)(R")

k m
—k(mn— .
< 27D N Aol sl o g (& = Dibllsarolballzse -

j=—c0 i=1

In proceeding further, we follow the approach laid out in Theorem 1.1:

I[b1, H,B](fla Sos e (@) '/\/k”L’?(')(R”)

k m
<C )| |2k = plibillswoll fillroee-

j:—oo i=1

Utilizing the definition of the variable exponent Herz-Morrey space along with Proposition 3.10, we
establish the following inequality:
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1
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Proceeding similarly to the computations carried out in Theorem 1.1, we arrive at the ensuing
bound:
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Analogously, one can readily establish the following estimate:
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Proof of Theorem 1.4.
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By invoking Holder inequality, the following estimate is derived:
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From inequalities (3.9) and (3.10), we derive the following:
(b1, H1(f1s f2s +ves fiu)(@) - Xkl La0 )
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By invoking Proposition 3.10, we obtain the following inequality:
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k=—c0

ko q
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= max{B, B, + Bs}.

The estimates for B; (where i = 1, 2, 3) can be readily determined by employing methods analogous to
those in Theorem 1.3.

4. Conclusions

In this note, we have scrutinized the boundedness of the multilinear Hardy operator and its
commutators within the framework of variable exponent Herz-Morrey spaces, predicated on the
assumption that the symbol functions are drawn from BMO spaces. Under specific conditions,
our findings yielded affirmative results. These outcomes may incite further scholarly inquiry into
establishing analogous bounds in other function spaces characterized by variable exponents.
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