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1. Introduction

We represent C™ as the collection of matrices composed of elements from the complex field,

whereas R™" represents the collection of matrices formed by elements from the real field.

Let G= ( gij) e R™,if g,>0,then G is called a nonnegative matrix. If the strict inequality
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is true, we say that G is positive. The spectral radius p(G) is
p(G) = max{|/1| : A is an eigenvalue of G} .

If A is any eigenvalue of G, then |ﬂ| < p(G); moreover, there is at least one eigenvalue A for

which |ﬂ| = p(G). Let GeR"™, for n>2,ifno permutation matrix A4 exists such that

ATGAZ(VVH VV]Z]

0 Wy,

then G is irreducible, where W, € R™ and W,, € R"*""*  Otherwise, G is reducible.

The Schur product is an operation that is much simpler than matrix multiplication. For two

matrices G:( gij)andH =(hij)with the same dimensions, the Schur product is represented as

GoHE(gU.h )[1]. If G20 and H >0, thensois GoH.For >0, G(a)z(g;) is called the

ij
a -th Schur power of G >0. The Schur product has extensive applications in various fields, such as

trigonometric moments, integral equations, partial differential equations, probability theory, and
combinatorial theory.

Let G,>20 and G, >0. The investigation of the Schur product, particularly its spectral radius,

has emerged as a prominent research area among scholars in recent years. Some conclusions
concerning the upper bounds of the spectral radius have been given. In [1], the following classical

result was given p(G,°G,)< p(G,)p(G,). Fang [2] and Huang [3] provided improved results

respectively. Subsequently, literatures [4,5] improved the results of literatures [2,3]. Next, the
result [4] was improved in [6,7], and the result [S] was improved in [8]. Audenaert [9] gave a result

on p(G,°G,), that is, p(G,°G,)<p(GG,). However, the authors above only gave some

estimations of the upper bound for the spectral radius of the Schur product of two nonnegative
matrices by using the Gersgorin theorem and Brauer theorem, and these results were not accurate
enough.

Huang [10] generalized the above result and gave the classic result

p(G, oG,o--0 Gn) < p(Gle X ) Inspired by Reference [10], the authors of Reference [11] gave

several better results on the upper bounds for the spectral radius of the Schur product of several
nonnegative matrices, but the accuracy was not high. Therefore, it is particularly important to seek
higher precision computational methods.

Inspired by the existing research in [11], we continue our research in this specific field. We

present four novel inequalities concerning the upper limit of p(GI oG,o--0 Gn) . The obtained results
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generalize some previous conclusions, and certain findings can be regarded as specific instances of
the given results. The numerical results confirm the superior accuracy of the obtained results
compared to some existing findings.

2. Main conclusions

First, some lemmas that we use in the proof of our conclusions are given.

Lemma 2.1. [12] Let G= ( gi/‘) >0, and for any principal submatrix G of G, it holds that
G)< i o<

p(G) < p(G). In particular, max g, < p(G).

Lemma 2.2. [2] Let G>0 and y be a nonnegative nonzero vector. If Gy <Ay forsome AeR,

then p(G)<A.
Lemma 2.3. [12] Let G >0 and suppose that G is irreducible. Then
(1) p(G)>0;

(2) The eigenvalue p(G) is associated with the matrix G ;
(3) There is a vector u that is positive and satisfies Gu = p(G)u .

Lemma 2.4.[13] Let G =(g;)>0.Then

1 1/2
p(G)< maxa{gii tE&y J{(gii —&y )2 +4Zl¢igi12m¢jg.fm:| } :

i#]

D
Lemma 2.5. [14] If aq,bq,---,tq >0 and x, >0 satisfy ZK,=1, then

=1

s s /xi s Vi, s x,
Zaqbq~--tqﬁ[z]a:J (Zb(?} (zlt:p) .
9= q= q=

g=l1

Lemma 2.6. [11]If E E,,---,E, € R""and F,F,, -, F, arediagonal, then

n n n

(B, BB ) (B0 Eyorveo B,)(F, < FyF) = (FEF)o (F; ELR)oro(F,'E,F,).

The main conclusions of the upper bounds on ,D(G1 0oG,o0--0 Gn) of this study are given below.

For brevity, let B,=G"",B,=G\,---,B, =G" in Theorems 2.1 and 2.2.
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P(G,2G,0---0G, )<max{a”b” l+[(p(Bl)—al.’l.)(p(Bz)—bfl.)...(p(Bn)—r;)]w}. (2.1)

1<i<n

Proof. If G=G,°G,0---oG, is irreducible. We can see that G,,G,,---,G, are irreducible; thus, B,,
B,,---,B, are irreducible and nonnegative. According to Lemma 2.1, we have
p(B)-a;>0, p(B,)-b,>0, -, p(B,)-7,>0, i=12--n.

By Lemma 2.3, positive column vectors can be found for 6=(5,), o=(¢,), -, c=(s,),

such that

Bla(t) = p(Bl)é(t) > Bz(o(t) = p(Bz)(o(Z) > T Bng(t) = p(Bn)g(t)’ (2.2)

where 6" (5t) (ﬂ(t):((ﬂf)» T g(t):(git)'

Hence, Eq (2.2) can be expressed as follows:

11 i +Zazlé‘t 5:: (23)
1#i

byp; +Z 0% = p (B, zt ) (2.4)
1#i

g+ 76 =p(B,) (2.5)

I#i

From (2.3)-(2.5), we have
>ais) = [pwl)—a;]dm

I#i
11(01 I:p :I

1#i

Y s =[p(B,)-7]sl

1#i

Let u= (ul) = (@@i x ~gi) be a positive vector, For any i, by Lemma 2.5, we have

111

il

(Gu)[ =ab,---T.u, +Zal,bﬂ :

I#i

llbll T u +Z a 5 ll¢l) ( ilgl)

I#i
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1/t 1/t 1/t
Sab; T+ Zaflé‘;j ( billwltj . -(Zq-’,gfj
I#i

1#i 1#i

)
=ap - ma [ (p(B)-ai) (p(B)b) (o (B,) )] u

={aﬁbii..-z-iiui+|:(p(Bl)—a;)(,O(Bz)—b;,)...(p(Bn)—z'iti)T/t}ui.

According to Lemma 2.2, this shows that

p(Gl oG, °"'°Gn) :{aiibﬁ”'rii”i +[(p(Bl)_a;)(p(B2)_biti)"'(p(Bn)_T;)]l/t}ui'

If G,oG,o---oG, isreducible. We define a permutation matrix L with

the remaining/; =0 . Let £>0 be any chosen real number. Then G,+¢L, G,+&¢L,

b

G, +¢L are nonnegative irreducible. Now, we replace G,,G,,--,G, with G, +¢L, G,+¢L, -+,
G, +¢L, and then, letting ¢ — 0, the conclusion still holds by continuity.
If we suppose that #=1 in (2.1), the following Corollary 2.1 is presented below.

Corollary 2.1. [11] Let G,=(a,)>0,G,=(b,)>0,--,G,=(z,)20. Then
p(GloGzo"'oGn)

<max{a,b, 7, +(p(G)~a,)(p(G,)-b,)-(p(G,)-7,)} - (2.6)

1<i<n

Obviously, this conclusion is Theorem 2.1 in [11]. Let =1, n=2; then, the following
Corollary 2.2 is obtained, which is Theorem 4 in [2].

Corollary 2.2. [2] Let G, =(a,;)>0.,G,=(b,)>0. Then

p(G,°G,)<max{a,b,+(p(G,)-a,)(p(G,)-b,)}.

1<i<n
We obtain Corollary 2.3 by setting t=n=2.

Corollary 2.3. [7] Let G, = (ay.) >20,G, = (bij) > 0. Then

p(G0G,)< Illgiegli({aﬁb” +[('0(G1(2))_ai)(P(Géz))—b; )T/z}‘

Therefore, the results of the literature [2,7,11] are included in Theorem 2.1 of this paper.
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Theorem 2.2. Let G, =(a,)>0,G,=(b,)20,-+,G,=(z,)=0. Then
p(GloGzo"'oGn)

1 2
Ségilx 2 by Ty tayb, T+ [(a”'bii cT—aghy "TJ'J')

+4((o(B)-a)(p(B.)-8,)(p(B,)-7))

x(p(B.)—a}f)(p(Bz)—bﬁy)---(p(Bn)—r}))ﬂlﬂ}. @)

Proof. If G=G,°G,0---0G, is irreducible. Obviously, G,,G,,---,G, and B ,B,,---,B, are

irreducible. According to Lemma 2.1, we have
p(B)-a;>0, p(B,)-b;>0, -, p(B,)-7,>0, =12,

By Lemma 2.3, positive column vectors can be found for ¢ =(§l.), [

:((pi)a E C:(gi)

such that

e Bng(’) — p(Bn)g('), (2.8)

where o' (§t) (o(’):((pl.’),

Hence, Eq (2.8) can be expressed as follows:

a5 +Y a5t = p(B,)5,

(2.9)
1#i
bl + > byl = p(B,) !, (2.10)
1#i
TG +ZT11§1 = n (2.11)
1#i

From (2.9)-(2.11), we have

‘s
Zag_xlzp(Bl)_aitw
1#i i

1

bl
> gf)l = p(B,)-b;
1#i i
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t .t
Zﬁ:p(Bn)—ri’i, i=1,2,--,n.
1#i gi

Define the following nonsingular diagonal matrices:

C1=diag(5l,52,--'§n), szdiag((pla(pza'”(pn)’ s Cn:diag(glagza"'gn)'

Let
P, :(a;j) =C,'GC, :[al?‘j]’ P, :(bi'j) =C,'G,C, :[bi)jja T
P ~(7)-C G, - [g j
S
Then
P=Ro]’20---ol’n =(pii)’
where

@bt 1=17
=ab ...7 =
py=agby ;=\ 4,0, b0, 7,6,

y_J

S, o S;

Obviously, P, P,,---, P, are irreducible nonnegative matrices. From Lemma 2.6, we have

p(G)=p[(C,+C,C) ' (G2G, o2, )(C,+-C,C) |
= P[(ClilGlcl)O(Czilecz)o'”O(C;IIGnCn)} = p(P).

In addition, from Lemma 2.5, we obtain

Zpil = Za;1b5’1 . -z'i'l = z ailé; bi/(ﬂl TS

1% I#i = O, o S
t§z 1/t bt ‘ 1/t (4 1/t
a. ¢ Z'.g
< il il o1
[zsz(sz] [ZGJ

S[('D(Bl)_aiti)(p(BZ)_ iti)"'(p(Bn)_Tl’l;)]l/t' (2.12)

Similarly, we obtain
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Y b <[ (P(B)-a,)(p(B.)-5;)(p(B,)-7,)] (2.13)

m#j
According to Lemma 2.4 and inequalities (2.12)—(2.13), we obtain

IO(GIOGZO.”OGn)

I#i m#j

12
1
< nzlf}xa{p” +p,;t |:(pii —Pj )2 + 42 pilzpjm:| }

1 2
< rgag(E ab,-t,+ab, T, + (ail.bii--‘rﬁ —aﬁbﬂ.-‘-r/j)

+4((p(B,)-a)(p(B.)-8.)-(p(B,) =)

If G,oG,o---oG, is reducible. The method of proof utilized is the same as that used in the

previous Theorem 2.1.

Remark 2.1. By employing the proof methodology introduced in (2.7), we give a novel
demonstration of (2.1). By [12, Theorem 8.1.22], we obtain

p(6G 2G,o0G,)=p(G) = p(P)

n n

. g’ . !

< max Zpi, = max Zai,bﬂ 17
I=1 I=1

1<i<n 1<i<n

f oo 4 ! oo 4
- r&%} (aiibii Tt z ailbil Ti J

1#i

Thus, from (2.12), we have

p(G] °Gz°"'°Gn)

1’ ’
< f}}.aX (aiibii Tt Z ailbil Ty J
<i<n

1#i

: rlgfi?{“”bﬁ”'fﬁ +[(P(BI)—af,-)(p(Bz)—b;)“'(p(Bﬂ)—r,-i-)}w}.
Setting ¢ =1 in (2.7), Corollary 2.4 is presented below:

Corollary 2.4. [11] Let G,=(q,)20,G,=(b;)>0,+-,G, =(r,;)20. Then
p(GloGzo"'oGn)

AIMS Mathematics Volume 10, Issue 1, 97-116.
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1 2
<max—{ab.---7.+a bﬂ--‘rjj+|:(aiibii---rﬁ—aﬁbﬂ.---r/j)

1<isn Q"M i
+4(p(G1) a”)(,o(Gz)—b”) (p(Gn)—r”)
<(p(6)=a,)(p(G:)-b,)(p(G.)-7,)] ] (2.14)

This conclusion is Theorem 2.2 in [11]. Let ¢t=1, n=2; then, another Corollary 2.5 is
obtained.

Corollary 2.5. [4] Let G, =(a,;)>0,G,=(b,)>0. Then

p(GloGz)Smaxl{a.b. +ab, +[(a.b. —ab )2

1<i<n ) i Vi il yai
12
+4(p(G1 ) _aii)(p(Gz)_bii)(p(Gl ) _a_jj)(p(GZ)_bjj )] } :
This conclusion is Theorem 4 in [4]. We obtain Corollary 2.6 by setting t=n=2.

Corollary 2.6. [7] Let G, = (aij) >20,G, = (bﬂ) > 0. Then

p(GloGz)Smaxl{a..bu+a“b. +[(a..b4.—a b )2

1sisn D\ HH T i

+4((p(cf”)—a;)(p(cﬁ)—bf)(p(Gf”)—ai)(p<Gé”>-bi))mﬂ

Therefore, the results of [4,7,11] are included in Theorem 2.2.

Remark 2.2. We compare the results obtained from Theorem 2.1 with the findings derived through

Theorem 2.2. For i# j, we assume that

a7, +[(p(B)~a)(p(B.)-8)(p(B,) )]
2a,b, 1, + [ (p(B)-a) ) (p(B.) b)) (o(B,)-7))] @15)
From (2.15), we have
by agpyo, [ (p(B) - ) (p(B) -t ) (p(B,)-51) |
>[(p(B)-4,)(p(B,)-5,)(0(B,)-7,)]"
Thus, we have

a.b

il

2
STyt agby T+ [(a”.bﬁ Ty —agbyeTy, )

AIMS Mathematics Volume 10, Issue 1, 97-116.
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+4((p(B1)_a;i)(p(Bz)—bitl,)...(p(Bn)_Titi)
(p(B)-a,)(o(8) 15~ (p(8) %) |

ii V)

w4((p(B)-a;)(p(B)-0:)(p(B,) 7))

X(aiibii"'z-n‘ _ajjbjj"'fjj +((p(Bl)—a;i)(p(BZ)

1 yT
_bfi)t"‘(P(Bn)_T;)j J]

=ab,--T, +ajjbjj---rjj +[(aﬁbﬁ---rii —a

2
<ab,---t,+ab, ---rjj+[(aﬁbﬁ---rii—aj].bjj---rjl.)

1/t

b.---T

A Vi

12

(B (850 (o(8) 1)) |

= 2aiibii"'7ii + 2[(10(31)_az‘ti)(p(BZ)_biti)”'('O(Bn)_Titi)]l/t'

That is,
p(G1 oG, °"'°Gn)
< rllggi(%{aﬁbﬁmrﬁ +ajjbjj---rj.j +|:(ail.bii-~rﬁ —ajjbjju-rjj)2
al(p(B)-at) (p(B)-,)(p(B,) <)
Y2
(o)) (o (8) 1) (o (8)-5) ] |

< ma?f%{zaz‘ibﬁ”'fﬁ +2|:(p(Bl)_aiti)(p(B2)_biti)m(’D(B")_T;)]lﬂ}

<max|a,b, w5, +[((B)-ai) (p(B.) -8 (p(B.) )] .

Hence, the conclusion drawn from Theorem 2.2 exceeds that of Theorem 2.1.
We provide an illustration to further confirm the excellence of our findings. Consider four
nonnegative matrices.
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4 1 0 2 1 111
0 0.05 1 1 111
Gl = , G2 = s
0 0 4 05 1 111
1 05 0 4 1 111
2 0 1 1 2 05 05 05
1 4 05 05 1 1 1 1
G, = : G, = .
1 0 3 05 05 0 2 05
0.5 1 1 2 0 1 1 2

By direct calculation, we have p(GfZ>):18.0233, p(G§2>)=4, p(G§2>):16.0292,

p(GY)=49132. Let 4=G,2G,°G,, B=G,2G,>G,G,. Then

p(A4)=12.0014 and p(B) =24.0001.
(1) According to inequalities (2.6) and (2.14), we get

p(A) <20.8846 and p(A) <17.8268.
Setting n=3,¢f=2. From Theorems 2.1 and 2.2, we have

p(A) <18.5320 and p(A) <17.7340.
(2) By inequalities (2.6) and (2.14), we obtain

p(B)<36.6608 and p(B) <32.4451.
Setting n=4,t=2. From Theorems 2.1 and 2.2, we have

p(B)S30.2420 and p(B)£28.1835.

Next, we present several other upper bounds of the spectral radius. For G, :(al.j)ZO ,
Gzz(bU)ZO, e Gn:(T[j)ZO,wewrite
M =G-D, M,=G,-D,, -, M =G -D,,
where D, =diag(a,), D,=diag(b,), ---, D, =diag(z,). Let Jo =H 'M,, Jo, =S"'M,, ---,
Jg =Z'M, with H =diag(h,), §=diag(s,), ---, Z=diag(z,), where

AIMS Mathematics Volume 10, Issue 1, 97-116.
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a;, a,#0 b., b,#0 7., 7,#0
WENL a=00 WYL B=00 T E YL g =0
(1)

Obviously, Jo» Jg,» = Jg are nonnegative matrices. For simplicity, we set V] =Jg

Vy=Jdy), o, v, =3

n

Theorem 2.3. Let G, =(a,)>0,G,=(b,)20, --,G,=(r;)>0. Then

p(GloGzo---oGn)Smax{al.b T+ hs, zﬁ[p(Vl)p(Vz)---p(Vn)]l/t}. (2.16)

) il
1<i<n

Proof. If G=G,°G,0---oG, isirreducible. Obviously G,,G,, --,G, are irreducible, then V, V,,
.-+, V¥V are nonnegative and irreducible. According to Lemma 2.3, positive column vectors can be

found for ¢=(¢&), w=(n), -, o=(®), i=12,--,n such that
Ve =p(M)e", Vi =p)u", e, Ve =p(V,)e",

where &= (&), w=(i), -, o =(a)).

Therefore, we have

Zaﬂgl - ué:, 5

1#i

szllul - S”,Lll s

1#i

l t
zftla)l - n a)l .

I#i

Let x=(x,)=¢&opo---om=(& - @) bea positive vector. By Lemma 2.5, we have

(Gx) =a,b,---7,x, +Zal,bd TLX,

1#i

=ab, - 7,X +Z ,1981 ,1/‘1 (Tila’l)

1#i

1/t 1t 1t
< aiibii Xt (z afzflt] (zbitzﬂlt j (Z Tlla)l j

1#i 1#i I#i

—apb,rx [ p)En ] Tow) s, ] [ p(v,) otz ]"

AIMS Mathematics Volume 10, Issue 1, 97-116.
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= {aiibﬁ"'rii +hiisii"'ZiiI:p(Vl)p(VZ)“'p(Vn):Il/t}xi'

Thus, according to Lemma 2.2, this shows that

I<i<n

p(Gl oG, O”'OGn)SmaX{aiibii'“Tii +hiisii"'zii|:p(Vl)p(Vz)"'p(Vn):'l/t} .

Now, we consider that G, oG, o---oG, 1is reducible. The method of proof utilized is the same as

that used in the previous Theorem 2.1.
Setting ¢ =1 in[2.16], the following Corollary 2.7 is presented below:

Corollary 2.7. [11] Let G,=(q,)20,G,=(b;)>0,+-,G, =(r,;)20. Then

p(GlOG2O.”OGn)Smax{aiibii'“rii+hiisii”'ziip(JGl)p(JG )IO(']G)} (2.17)

1<i<n

This conclusion is Theorem 2.3 in [11]. Let ¢t=1, n=2; then, another Corollary 2.8 is
obtained.

Corollary 2.8. [3] Let G, =(a,)>0,G,=(b,)>0. Then

p(G,G,) <max{ab, +hs,0(J5 ) p(Js,)} - (2.18)

1<i<n

This conclusion is given in Theorem 6 in [3]. We obtain Theorem 2.4 by setting t=n=2.

Theorem 2.4. Let G, =(a,)>0,G,=(b,)20. Then

p(G,*G,) < max {ab +hs,| p(98)p (98 )T/z} : (2.19)

1<i<n

Remark 2.3. From [1, Lemma 5.7.8], we know that p(G(“)) < [p(G)]a . Thus, we have

(P9 (92)] < o) ()

This shows that

1/2
max {aﬁbﬁ +hs, [p(J(Gz))p(J(G2) )J } < max {aﬁbﬁ + hﬁsﬁp(JG )p(JG )} .
1<i<n ! 2 1<i<n ! 2
Therefore, the result in (2.19) is superior to the result in (2.18).

Theorem 2.5. Let G, =(a,)>0,G,=(b,)20,-+,G,=(z,)20. Then

AIMS Mathematics Volume 10, Issue 1, 97-116.
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1 2
P(G oG o0---0G, )<max— ab,--t,+ab, 7, +[(aﬁbﬁ~~rﬁ —aj/.bjjmrjj)

Isi<n D

s,z s, (0o )] L @20

i~ ii

Proof.If G=G,°G,0---oG, isirreducible. Obviously G,,G,,---,G, are irreducible, then V,, V,,

-+, V' are nonnegative and irreducible. According to Lemma 2.3, positive column vectors can be

n

found for £=(¢&), w=(y), -, o=(®), i=12,-,n such that

Vg =p()e", v =p)u, o Ve =p,)e", (2.21)
where €0=(&), w=(x). . o =(af).

Therefore, from (2.21), we have

7,0, P
Z—:p(Vn)Z i=12,---,n.

t i ?

1=

l

Now, the following nonsingular diagonal matrices are defined:

Klzdiag(§1’§2’.”§n)’ K2=diag(/’ll’/’l2"“ﬂn)’ B andiag(a)l9a)2"”a)n)'

Let
0 =(a})=K'GK, =(“§’j 0, =(b)) = K;'G.K, =£bJﬂ”J
Q,1=(r;;)=KglGnKn=( w]
Then
0=010,°°0,=(q,),
where

AIMS Mathematics Volume 10, Issue 1, 97-116.
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ab;---7;, J=1
— A
g =agbyvp=\ a¢, by, 1@ .
NES
S o

Clearly, 0,,0,,--,0, are irreducible and nonnegative matrices. From Lemma 2.6, we have

p(G)= p[(Kn"'KzKl)il(Gl °G, °"'°Gn)(Kn”'K2K1)]
= p[(KflGlKl)O(K;GzKZ)o---O(K,IIG”K”)] = ,O(Q)

In addition, from Lemma 2.5, we have

Zq _ Za”b”"'fﬂ _ Z ai/éfl billul Tila)l
il — il~il il —

= = S N
<(Zaf,sgf]l/tLzb,-’zﬂfj/t,_,[ZMJl/t
P = U = o
<hs -z (V) p (V) pW)]". (2.22)
Similarly, we obtain
;q,m ;a;'mbj',,, o, <hysyez [ (V) p (V) (V)] (223)

According to Lemma 2.4 and inequalities (2.22)—(2.23), we have

p(G1°G2°"'°Gn)

I#i m#j

12
1
<r{13x5{q +4, {(qﬁ—qj,-)z+4Zq,~12q_,m} }

1 2
Smax—{aﬁb” T, +a.b, - [(al.b T, —ab. - jj)

I<i<n D Jdi i i U]

+4(hﬁsﬁ~--zﬁ)(hj/.sj].---zl./.)(p(V])p(Vz)"'P(n))qu/z}‘

If G,oG,o---oG, is reducible. The method of proof utilized is the same as that used in the

previous Theorem 2.1.

Remark 2.4. By employing the proof methodology introduced in [2.20], we present a novel
demonstration of [2.16]. By [12, Theorem 8.1.22], we obtain
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p(GloGzo"'OG ):,O(G)Z,O(Q)

< maxz = maXZa”b”---r."
nax 9. T 9% il

_ (]
1’1r<1,2<1§ (aubu Tii + Z ailbil Til ] .

1#i

Thus, from (2.22), we have

p(G1°G2°"'°Gn)

<maX(a,,b,, T+ D anby ,','j
1<i<n

1#i

1/t
Srllglgl)f{afibll T +h11S11 Zii |:p(l/l)p(V2)p(I/n):| } .
Setting ¢ =1 in[2.20], Corollary 2.9 is obtained as follows:

Corollary 2.9. [11] Let G,=(q,)20,G,=(b,)>0,-,G, =(r,)=0. Then

n

pP(G oG oG, )<max1{aub T +ab, - z'jj+[(a..b..---z:—a“b.,---z'jj)2

1<isn Q" i J0 Zagl] ii i
12
+4(hiisii'”Zii)(hjjsjj”'ij)(p(']cl)p(JGZ)"'p(JG”))Z} } (2.24)

This conclusion is Theorem 2.4 in [11]. Let =1, n=2; then, we obtain Corollary 2.10, which
is Theorem 3 in [5]:

Corollary 2.10. [5] Let G, =(a,)20,G,=(b,)>0. Then

p(G G )<maxl{allb” +a,b, +[(aiibii —ajjbﬂ) +4h”s”hﬁsﬂp (J )p2 (JGZ)T/Z}. (2.25)

1<i<n 2

We obtain Theorem 2.6 by setting t=n=2.
Theorem 2.6. Let G, =(a,)>0,G,=(b,)>0. Then

12
(G, G, )<maxl{anb”+ajjb”+[(a”b” aby) +4hs,hys,0(98 ) o () } (2.26)

1<i<n 2
Remark 2.5. From [1, Lemma 5.7.8], we know that p(G(“)) < [p(G)]a . Thus, we have

o6 ) (1)< P* (6P (4c.).
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Therefore, the result in (2.26) is superior to the result in (2.25).

Remark 2.6. We compare the results obtained from Theorem 2.3 with the findings derived through

Theorem 2.5. For i# j, we assume that

aiibu T +hllsll Z[i [p([/l)p(VZ)p(I/n ):Il/t
2 ajjbjj Ty +hJijj Zj I:p(Vl)p(Vz)-'-p(Vn)]l/t, (2.27)
The above inequality (2.27) is equivalent to

by Ty —azb, Ty + S, Zii[p(Vl)p(Vz)”'p(V ):Il/t

i ii Nl il

2 sz, (V) p(Va)p (V)]

Thus, we have

(a,,b ‘n,—ab. - jj)z

i il jj _]j

+4(hiisii” ( S )['0 (Vn):IZ/I
s 2;) [P -p(v,)]"

S(a“bu---z'“—a“b“n'z'jj)

i ii Vi
1/t
u u ’ Il I:p (I/n)] (allb” ii af]'bjj.”rjj)
+ 12
|:aubu T _ajjbjj T +2(hu u Zu)(p(l/l)p(n)p(l/ﬂ))l/} : (228)

From (2.20) and (2.28), we obtain
p(GI oG, °"'°Gn)

1 2
Srllggiiz ab; -t +agb, jj+[(aﬁbﬁ T —agh, "Tjj)

+4(hn‘sii"'zii)(hjjsfj”'ij)(p(Vl)p(VZ)mp(Vn))Z/ZT/Z}

1
< rllgziz{aﬁb” Tytagh T+ [(aﬁbﬁ Ty —agh, T,

+2(hiisii 2y )(IO(VI )p(V2 ) ' p(V” ))l/t )z}l/z}

_max{a”b” Ty +h”S” z, I:p(Vl)p(Vz)p(Vn):Il/t}

1<i<n

Hence, the conclusion drawn from Theorem 2.5 exceeds that of Theorem 2.3.
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We provide an illustration to further confirm the excellence of our findings. Consider the
following nonnegative matrices:

4 1 1 1 1 1 00 1 05 2 05

2 511 1 320 05 1 05 0
Gl = ) Gz = 5 G3 = )

0 2 41 01 4 3 0 05 1 05

1 1 1 4 0 01 5 0 1 05 1
2 0 1 1 2 05 05 05 4 1 1 1
1 4 05 05 1 1 1 1 2 2 11

G, = , G, = , G, = .

1 0 3 05 05 O 2 05 0 2 21
05 1 1 2 0 1 1 2 1 1 11

By direct calculation, we have
p(J5)=07652,  p(J,)=07489,  p(Jg)=13343,
p(Jq,)=08182,  p(Jg)=1.1218, p(J,

(7)

p(13)=03047,  p(J5))=0.6263, p(J5))=1.1538.

5

p(15)=02287,  p(J5))=03795,  p(J))=09351,

S

p(G1 oGz) =20.7439, ,o(GI oG, oG3) =20.1878, p(G1 oG, o---oG6) =192.0010.
(1) From inequalities (2.18) and (2.25), we otain
,O(Gl oGz) <31.4611 and p(G1 o GZ) <28.4460.
According to Theorems 2.4 and 2.6, we have
p(G1 o GZ) <25.8921 and ,o(G1 o Gz) <23.6368.
(2) By inequalities (2.17) and (2.24), we obtain
,o(Gl oG, o G3) <35.2926 and p(Gl oG, o G3) <31.8240.
Setting n=3,¢f=2. From Theorems 2.3 and 2.5, we have
,o(GI oG, o G3) <25.6977 and ,o(GI oG, o G3) <23.4746.
(3) From inequalities (2.17) and (2.24), we obtain

p(G oG, o0---0G,)<4252143 and p(G,°G,o---oG,)<343.8788.
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Setting n=6,t=2. From Theorems 2.3 and 2.5, we have

p(G, oG, o0--0G,)<217.6663 and p(G,°G,o---0G,)<197.3330.

3. Conclusions

In this article, we have introduced several new inequalities regarding the maximum values of

p(G1 oG, o---oGn). These novel findings not only encompass and extend existing results but also

offer improved accuracy. The results can be used as a useful supplement in the field of nonnegative
matrix theory.
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