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1. Introduction

The starting point of research on hyperspaces was by Riemann [1] in 1868. Then, Vietories [2, 3]
studied it extensively (see [4–12] for further research). Recently, Macı́as and Nadler [13] obtained
continua where the one-fold hyperspace is a cone.

The notion of soft sets was proposed by Molodtsov [14] in 1999. Shabir and Naz [15] applied
topology and investigated separation axioms in a soft topological space. Nazmul and Samanta [16]
defined soft metrics and discussed their basic properties. Bayramov and Aras [17] introduced the new
concepts of separation axioms in a soft topological space and dealt with their properties (see [18–20]
for further research). Baek et al. [21] defined separation axioms in an interval-valued soft topological
space, studied their properties, and obtained some relationships among them (see [22, 23]). Zorlutuna
et al. [24] investigated compactness in a soft topological space as well as basic properties related to
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soft topology (see [25–27] for further research). Bayramov and Gunduz [28] discussed soft local
compactness in a soft topological space.

In 2015, Akdağ and Erol [29] initially proposed the notion of soft Vietoris topologies of soft
topological spaces and gave the relationship between Vietoris continuity of soft multifunction and
continuity of soft mapping (see [30]). Shakir [31], unlike Akdağ and Erol, defined Vietoies soft
hyperspace and studied some basic properties. Demir [32] dealt with the axiom of countabilty in
Vietoies soft hyperspace in the sense of Akdağ and Erol. Özkan [33] obtained some properties of the
continuity of soft multifunction proposed by Akdağ and Erol. Recently, Baek et al. [34] obtained
some basic properties for soft hyperspaces and discussed relationships between separation axioms in a
soft topological space and its soft hyperspace.

The relationships between compactness, local compactness, and separability between a classical
topological space and its hyperspace have been studied by many researchers. So, we believe that
research into soft settings is necessary. The purpose of our research is to discuss more diverse
relationships in soft topological space and soft hyperspace. To accomplish this, our research is
conducted as follows. First, we study the compactness relationships in soft topological space and its
soft hyperspaces. Next, we discuss the local compactness relationships. Finally, we deal with the
separability and the axiom of countability relationships.

2. Preliminaries

In this section, we recall the basic concepts and results needed for the next sections. Throughout
this paper, let X denote a non-empty universe set, E a set of parameters, and 2X the power set of X.

Definition 2.1 ( [14, 35]). Let E
′

∈ 2E. Then an FE′ is called a soft set over X, if FE′ : E → 2X is a
mapping such that FE′ (e) = ∅ for each e < E

′

. In this case, E
′

is called the support of FE′ .
For each e ∈ E

′

, FE′ (e) may be considered as the set of e-approximate elements of the soft set FE′ .

Definition 2.2 ( [36, 37]). A soft set FE′ over X is called:
(i) a null soft set or a relative null soft set (with respect to E

′

), denoted by ∅E′ , if FE′ (e) = ∅ for each
e ∈ E

′

,
(ii) an absolute soft set or a relative whole soft set (with respect to E

′

), denoted by XE′ , if FE′ (e) = X
for each e ∈ E

′

.
The empty [resp. whole] soft set over X with respect to E, denoted by ∅E [resp. XE], is a soft set

over X defined by, for each e ∈ E,

∅E(e) = ∅ [resp. XE(e) = X].

We will denote the set of all soft sets over X having all the subsets of E as the supports by S S (X),
while the set of all soft sets over X having E itself as the support by S S E(X) (see [36, 37] for the
definitions of the inclusion, the equality, the complement, the intersection, and the union on S S (X)).
Also, operations on S S E(X) can be defined similarly to those on S S (X).

Definition 2.3 ( [15]). Let A, B ∈ S S E(X). Then the difference of A and B, denoted by A \ B, is a soft
set over X defined by:

(A \ B)(e) = A(e) \ B(e) for each e ∈ E.
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Definition 2.4 ( [15]). Let A ∈ S S E(X) and x ∈ X. Then we say that x belongs to A, denoted by x ∈ A,
if x ∈ A(e) for each e ∈ E.

Definition 2.5 ( [15]). Let x ∈ X, Y be a nonempty subset of X and A ∈ S S E(X).
(i) A soft set xE over X is defined by xE (e) = {x} for each e ∈ E. In this case, xE is called a singleton

soft set of X.
(ii) A soft set YE over X is defined by YE(e) = Y for each e ∈ E.

Definition 2.6 ( [16, 38, 39]). Let A ∈ S S E(X). Then
(i) A is called a soft point in X with the value x ∈ X and the support e ∈ E or a soft element, denoted

by ex , if for each f ∈ E,

ex( f ) =


{x} if f = e

∅ otherwise.

(ii) we say that ex belongs to A, denoted by ex ∈ A, if ex(e) = {x} ⊂ A(e).
We will denote the set of all soft points over X with respect to E by S PE(X).

Definition 2.7 ( [16]). Let ex , fy ∈ S PE(X). Then we say that ex and fy are equal, denoted by ex = fy ,
if e = f and ex(e) = fy( f ), i.e., x = y.

It is obvious that ex(e) , fy( f ) if and only if x , y or e , f .

Result 2.8 (Proposition 3.5, [16]). For each A ∈ S S E(X), A =
⋃

ex∈A ex .

Result 2.9 (Proposition 3.6, [16]). Let A, B ∈ S S E(X). Then A ⊂ B if and only if ex ∈ B for each
ex ∈ A and thus A = B if and only if ex ∈ A⇔ ex ∈ B.

Result 2.10 (Proposition 3.7, [16]). Let A, B ∈ S S E(X) and ex ∈ S PE(X). Then
(1) ex ∈ A if and only if ex < Ac,

(2) ex ∈ A ∪ B if and only if ex ∈ A or ex ∈ B,
(3) ex ∈ A ∩ B if and only if ex ∈ A and ex ∈ B.

Definition 2.11 ( [15]). Let τ ⊂ S S E(X). Then τ is called a soft topology on X, if it satisfies the
following conditions:

(i) ∅E, XE ∈ τ,
(ii) A ∩ B ∈ τ for any A, B ∈ τ,
(iii)
⋃

j∈J A j ∈ τ for each (A j) j∈J ⊂ τ, where J denotes an index set.
The triple (X, τ, E) is called a soft topological space over X. Each member of τ is called a soft open

set in X and a soft set A over X is called a closed soft set in X, if Ac ∈ τ, where Ac is a soft set over X
defined by: Ac(e) = X − A(e) for each e ∈ E.

It is obvious that {∅E, XE} [resp. S S E(X)] is a soft topology on X. In this case, {∅E, XE} [resp.
S S E(X)] is called the soft indiscrete [resp. discrete] topology on X and the triple (X, {∅E, XE}, E) [resp.
(X, S S E(X), E)] is called a soft indiscrete [resp. discrete] space.

Result 2.12 (Proposition 5, [15]). Let (X, τ, E) be a soft topological space. Then the collection of
subsets of X,

τe = {A(e) ∈ 2X : A ∈ τ} for each e ∈ E,

is a topology on X.
In this case, τe is called the topology on X induced by E.
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Definition 2.13 ( [35]). Let (X, τ, E) be a soft topological space and A ∈ S S E(X). Then the soft interior
and the soft closure of A, denoted by S int(A) or A◦ and S cl(A) or A, are soft sets over X, respectively,
defined as follows:

S int(A) =
⋃
{U ∈ τ : U ⊂ A}, S cl(A) =

⋂
{F ∈ τc : A ⊂ F}.

Result 2.14 (Theorems 8 and 11, [35]). Let (X, τ, E) be a soft topological space and A, B ∈ S S E(X).
Then the following hold:

(1) S cl(A)c = S int(Ac),
(3) S int(S int(A)) = S int(A), S cl(S cl(A)) = S cl(A),
(3) if A ⊂ B, then S int(A) ⊂ S int(B), S cl(A) ⊂ S cl(B),
(4) S int(A) ∩ S int(B) = S int(A ∩ B), S cl(A) ∩ S cl(B) ⊂ S cl(A ∩ B),
(5) S int(A) ∪ S int(B) ⊂ S int(A ∪ B), S cl(A) ∪ S cl(B) = S cl(A ∪ B).

Definition 2.15 ( [39]). Let (X, τ, E) be a soft topological space, ex ∈ S PE(X), and A ∈ S S E(X). Then
A is called a soft neighborhood (briefly, soft nbd) of ex , if there is U ∈ τ such that ex ∈ U ⊂ A, i.e., ex

is a soft interior point of A. The set of all soft nbds of ex will be denoted by Ñ(ex), i.e.,

N(ex) = {A ∈ S S E(X) : there is U ∈ τ such that ex ∈ U ⊂ A}.

In particular, the family of all soft open nbds of ex , denoted by S̃N(ex),

SN(ex) = {U ∈ τ : ex ∈ U},

will be called the system of soft open neighborhoods of ex .

Result 2.16 ( [39]). Let (X, τ, E) be a soft topological space, ex ∈ S PE(X), and A, B ∈ S S E(X). Then
the following hold:

(1) if A ∈ SN(ex), then ex ∈ A,
(2) if A, B ∈ SN(ex), then A ∩ B ∈ SN(ex),
(3) if A ∈ SN(ex) and A ⊂ B, then B ∈ SN(ex),
(4) if A ∈ SN(ex), then there is U ∈ SN( fy) such that A ∈ SN(ex) for each fy ∈ S PE(X) such that

fy ∈ U,
(5) A ∈ τ if and only if A contains a soft nbd of each of its points.

Definition 2.17 (Proposition 3, [40]). Let (X, τ, E) be a soft topological space, ex ∈ S PE(X), and A,
B ∈ S S E(X). Then ex is called a soft limit point of A, if U ∩ (A \ {ex}) , ∅E. The set of all soft limit
points of A is called the derived soft set over X and will be denoted by S d(A).

Result 2.18 (Theorems 13 and 15, [35]). Let (X, τ, E) be a soft topological space and A, B ∈ S S E(X).
Then the following hold:

(1) A ∪ S d(A) = S cl(A),
(2) S d(A) ⊂ S cl(A),
(3) if A ⊂ B, then S d(A) ⊂ S d(B),
(4) S d(A ∩ B) ⊂ S d(A) ∩ S d(B),
(5) S d(A ∪ B) = S d(A) ∪ S d(B),
(6) A ∈ τc if and only if S d(A) ⊂ A.
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Definition 2.19 ( [17]). A soft topological space (X, τ, E) is called a:
(i) soft T0-space, if for any ex , fy ∈ S PE(X) with ex , fy , there are U ∈ SN(ex), V ∈ SN( fy) such

that either ex ∈ U, fy < U or fy ∈ V, ex < V ,
(ii) soft T1-space, if for any ex , fy ∈ S PE(X) with ex , fy , there are U ∈ SN(ex), V ∈ SN( fy) such

that ex ∈ U, fy < U and fy ∈ V, ex < V ,
(iii) soft T2-space, if for any ex , fy ∈ S PE(X) with ex , fy , there are U ∈ SN(ex), V ∈ SN( fy) such

that ex ∈ U, fy ∈ V and U ∩ V = ∅E,
(iv) soft regular space, if for each A ∈ τc with ex < A, there are U, V ∈ τ such that ex ∈ U, A ⊂ V

and U ∩ V = ∅E,
(v) soft T3-space, if it is both a soft regular and a soft T1-space.

From Remarks 4.1–4.3 in [17], the following implication holds:

so f t T4 ⇒ so f t T3 ⇒ so f t T2 ⇒ so f t T1 ⇒ so f t T0. (2.1)

Result 2.20 (Theorems 4.1 and 4.4, [17]). Let (X, τ, E) be a soft topological space. Then
(1) X is a soft T1-space if and only if ex ∈ τ

c for each ex ∈ S PE(X),
(2) X is a soft T3-space if and only if for each ex ∈ U ∈ τ, there is V ∈ τ such that ex ∈ V ⊂ S cl(V) ⊂

U.

Result 2.21 (Proposition 4.1 and Theorem 4.5, [17]). Let (X, τ, E) be a soft topological space. If X is
a soft Ti-space, then (X, τe) is a Ti-space for each e ∈ E, where i ∈ {0, 1, 2, 3}.

Definition 2.22 ( [15]). A soft topological space (X, τ, E) is called a:
(i) soft normal space, if for any A, B ∈ τc with A ∩ B = ∅E, there is U, V ∈ τ such that A ⊂ U,

B ⊂ V , and U ∩ V = ∅E,

(ii) soft T4-space, if it is both a soft normal space and a soft T1-space.

Result 2.23 (Theorem 4.6, [17]). Let (X, τ, E) be a soft topological space. Then X is a soft T4-space if
and only if for each A ∈ τc and each U ∈ τ with A ⊂ U, there is V ∈ τ such that A ⊂ V ⊂ S cl(V) ⊂ U.

Result 2.24 (Proposition 4.1, Theorem 4.5, [17]). Let (X, τ, E) be a soft topological space. If X is a soft
Ti-space, then (X, τe) is a Ti-space for each i ∈ {0, 1, 2, 3} and each e ∈ E. However, we can see that
(X, τ, E) is a soft T4-space but (X, τe) is not a T4-space for each e ∈ E (see Remark 5(2) and Example
10 in [15]).

Definition 2.25 ( [38]). Let (X, τ, E) be a soft topological space and β ⊂ τ. Then β is called a soft base
for τ, if every member of τ can be expressed as the union of some members of β.

Notation 2.26 ( [34]). Let (X, τ, E) be a soft topological space and A ∈ S S E(X). Then
(i) 2X

E
= {F ∈ τc : F , ∅E},

(ii) 2A
E
= {F ∈ 2X

E
: F ⊂ A},

(iii) 2X
e
= {F(e) ∈ τc

e
: F , ∅} for each e ∈ E,

(iv) 2A
e
= {F(e) ∈ 2X

e
: F(e) ⊂ A(e)} for each e ∈ E.

Result 2.27 (Proposition 3.10, [34]). Let (X, τ, E) be a soft topological space and BS v a family of the
form ⟨U1,U2, · · · ,Un⟩ such that Ui ∈ τ for each i = 1, 2, · · · , n, where

⟨U1,U2, · · · ,Un⟩ = {F ∈ 2X
E

: F ⊂
n⋃

i=1

Ui, F ∩ Ui , ∅E for each i ∈ {1, 2, · · · , n}}.
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Then BS v is a soft base for some topology TS v on 2X
E
. In fact,

TS v = {∅E} ∪ {U ∈ S S E(X) : U =
⋃
B f or some B ⊂ BS v}.

In this case, TS v is called the soft Vietories ( f inite) topology on 2X
E
. The pair (2X

E
,TS v) is called a

soft hyperspace with soft Vietories topology (briefly, soft hyperspace).

Result 2.28 (See Corollary 3.11, [34]). Let (X, τ, E) be a soft topological space and Bv,e a family of the
form ⟨U1(e),U2, · · · ,Un(e)⟩ such that Ui(e) ∈ τe for each i = 1, 2, · · · , n and each e ∈ E. Then Bv,e is
a base for some topology Tv,e on 2X

e
. In fact,

Tv,e = {∅} ∪ {U ∈ 2X : U =
⋃
B f or some B ⊂ Bv,e}.

In this case, Tv,e is called the Vietories ( f inite) topology on 2X
e

for e ∈ E. The pair (2X
e
,Tv,e) is called

a hyperspace with Vietories topology (briefly, hyperspace) for e ∈ E.

Notation 2.29 ( [34]). Let (X, τ, E) be a soft topological space and e ∈ E. Then
(i) SF n(X) = {F ∈ 2X

E
: F has at most n so f t points},

(ii) SF (X) = {F ∈ 2X
E

: F is f inite}, where F is finite if and only if F(e) is finite for each e ∈ X,
(iii) SK(X) = {F ∈ 2X

E
: F is so f t compact}, where the concept of soft compacteness is given in

Definition 3.4,
(iv) S C(X) = {F ∈ 2X

E
: F is so f t connected}, where the notion of soft connectedness is given

in [41],
(v) S CK(X) = SK(X) ∩ S C(X),
(vi) Fn,e(X) = {F(e) ∈ 2X

e
: F(e) has at most n elements},

(vii) Fe(X) = {F(e) ∈ 2X
e

: F(e) is f inite},
(viii) Ke(X) = {F(e) ∈ 2X

e
: F(e) is compact},

(ix) Ce(X) = {F(e) ∈ 2X
e

: F(e) is connected},
(x) CKe(X) = Ke(X) ∩Ce(X).
The topology on SK(X) [resp. SF (X), SF n(X), S C(X), and S CK(X)] is the subspace topology

induced by TS v. Also, the topology on Ke(X) [resp. Fe(X), Fn,e(X), Ce(X), and CKe(X)] is the subspace
topology induced by Tv,e.Moreover, SF (X) [resp. SF n(X) and S CK(X)] is a subspace of SK(X) and
Fe(X) [resp. Fn,e(X) and CKe(X)] is a subspace of Ke(X).

3. Compactness and local compactness in soft hyperspaces

First of all, we recall the concept of soft compact sets, some of their results and an example. Next,
we study some relationships between compactness in a soft topological space and its soft hyperspace.
Finally, we discuss various relationships between local compactness in a soft topological space and its
soft hyperspace.

Result 3.1 (Proposition 3.13, [38]). Let (X, τ, E) be a soft topological space and β ⊂ τ. Then β is a soft
base for τ if and only if for each A ∈ τ and each ex ∈ A, there is B ∈ β such that ex ∈ B ⊂ A.

Result 3.2 (Proposition 3.14, [38]). Let β ⊂ S S E(X). Then β is a soft base for a soft topology on X if
and only if it satisfies the following conditions:
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(1) ∅E ∈ β,

(2) XE =
⋃
β,

(3) if B1, B2 ∈ β, then there is β
′

⊂ β such that B1 ∩ B2 =
⋃
β
′

, i.e., if B1, B2 ∈ β and ex ∈ B1 ∩ B2,
then B ∈ β such that ex ∈ B ⊂ B1 ∩ B2.

Definition 3.3 ( [24, 42]). Let (X, τ, E) be a soft topological space, Ψ a family of soft sets over X, and
A ∈ S S E(X). Then Ψ is called a:

(i) soft cover of A, if A ⊂
⋃
Ψ,

(ii) soft open cover of A, if it is a soft cover of A and Ψ ⊂ τ.
If Ψ is a soft cover of A and Ω ⊂ Ψ is a soft cover of A, then Ω is called a soft subcover of Ψ.

Definition 3.4 ( [24, 42]). Let (X, τ, E) be a soft topological space, Ψ a family of soft sets over X, and
A ∈ S S E(X). Then

(i) we say that Ψ has the finite intersection property, if
⋂
Ω , ∅E for each finite Ω ⊂ Ψ,

(ii) X is said to be soft compact, if each soft open cover of XE has a finite soft subcover of XE,
(iii) A is said to be a soft compact set in X, if each soft open cover of A has a finite soft subcover of

A.

Result 3.5 (Theorem 2.23, [43]). Every soft closed set in a soft compact space (X, τ, E) is a soft
compact set in X.

Result 3.6 (Theorem 4.9, [44]). Let (X, τ, E) be a soft T2-space and A ∈ S S E(X). If A is a soft compact
set in X, then A ∈ τc.

Result 3.7 (Theorem 4.10, [44]). Every soft compact T2-space is soft regular.

Result 3.8 (Theorem 4.12, [44]). Every soft compact T2-space is soft normal.

Example 3.9 (See Examples 2.13 and 2.20, [43]). Let X = [0, 1) and E = {e1, · · · , k} be the set of
parameters. For each n ∈ N \ {0, 1}, consider the soft set An over X defined by, for each i ∈ {1, · · · , k},

An(ei) = [0, 1 −
1
n

).

Let τ = {∅E, [0, 1)E}
⋃

n∈N\{0,1} An.

Then (X, τ, E) is a soft topological space but is not soft compact.

Definition 3.10. A soft topological space (X, τ, E) is said to be soft countably compact, if every
countable soft open cover of X has a finite subcover.

It is obvious that every soft compact space is soft countably compact.

Theorem 3.11. A soft topological space (X, τ, E) is soft countably compact if and only if every
countable family of soft closed sets in X with the finite intersection property has a nonempty
intersection.

Proof. Suppose X is soft countably compact and let Ω = {Aα ∈ τc : α ∈ Λ} be a countable family
of soft closed sets in X with the finite intersection property. Assume that

⋂
α∈Λ Aα = ∅E and let

Ωc = {Ac
α ∈ τ : α ∈ Λ}. Then we have⋃

α∈Λ

Ac
α =

⋂
α∈Λ

Aα

c = ∅c
E = XE.
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Thus Ωc is a soft open cover of X. Since X is soft countably compact, there are {α1, · · · , αn} ⊂ Λ

such that {Ac
αi

: i = 1, · · · , n} ⊂ Ωc is a cover of X. So XE =
⋃n

i=1 Ac
αi
=
(⋂n

i=1 Aαi

)c . Hence⋂n
i=1 Aαi = ∅E. This is a contradiction. Therefore

⋂n
i=1 Aαi , ∅E.

Conversely, suppose the necessary condition holds and assume that X is not soft countably compact.
Then there is a countable soft open cover Ω = {Aα ∈ τ : α ∈ Λ} of X such that Ω does not have a
finite subcover. Note that Ωc = {Ac

α ∈ τ
c : α ∈ Λ} is a family of soft closed sets in X. Let Γ be a finite

subset of Λ. Since Ω does not have a finite subcover,
⋂
α∈Γ Ac

α =
(⋃
α∈Γ Aα

)c , ∅E. Thus Ωc has the
finite intersection property. So

⋂
α∈Λ Ac

α , ∅E. Since Ω is a soft open cover of X,

⋂
α∈Λ

Ac
α =

⋃
α∈Λ

Aα

c = Xc
E = ∅E.

This is a contradiction. Hence X is soft countably compact. □

Definition 3.12. A soft topological space (X, τ, E) has the Bolzano-Weierstrass property, if every
infinite soft set over X has a soft limit point.

It is well-known (Theorem F.6 in [45]) that every infinite set contains a countably infinite set. Then
we have the following.

Lemma 3.13. Every soft infinite set over X contains a soft countably infinite set over X.

Proposition 3.14. Every soft countably compact T1-space has the Bolzano-Weierstrass property.

Proof. Let (X, τ, E) be a soft countably compact T1-space and A a soft infinite set over X. Then by
Lemma 3.13, there is a soft countably infinite set B =

⋃
n∈N en xn

over X such that B ⊂ A. We may
assume that if m , n ∈ N, then em xm

, en xn
. Assume that B has no soft limit point and let Cn =

⋃
{ei xi
∈

B : i ≥ n} for each n ∈ N. Since X is T1, Cn ∈ τ
c for each n ∈ N and {Cn ∈ τ

c : n ∈ N} has the
finite intersection property. Then by Theorem 3.11,

⋂∞
n=1 Cn , ∅E. On the other hand, if ek xk

∈ B, then
ek xk
< Ck+1. Thus ek xk

<
⋂∞

n=1 Cn. So
⋂∞

n=1 Cn = ∅E. This is a contradiction. Hence B has a soft limit
point. Since B ⊂ A, A has a soft limit point. Therefore X has the Bolzano-Weierstrass property. □

Lemma 3.15. Let (X, τ, E) be a soft T1-space, A ∈ S S E(X), and ex ∈ S d(A). Then N contains an
infinite number of distinct soft points in A for each N ∈ N(ex).

Proof. Assume that the necessary condition does not hold. Then there is U ∈ SN(ex) such that U
contains only a finite number of soft points e1 x1

, · · · , en xn
of A distinct from ex . Since X is T1, there

is Ui ∈ SN(ex) such that ei xi
< Ui for each i ∈ {1, · · · , n}. Thus U ∩

(⋂n
i=1 Ui

)
∈ SN(ex) and [U ∩(⋂n

i=1 Ui
)
] ∩ A \ {ex} = ∅E. So ex < S d(A). This is a contradiction. Hence the necessary condition

holds. □

Theorem 3.16. Let (X, τ, E) be a soft T1-space. Then X is soft countably compact if and only if it has
the Bolzano-Weierstrass property.

Proof. Suppose X is soft countably compact. Then by Proposition 3.14, X has the Bolzano-Weierstrass
property.

Conversely, suppose X has the Bolzano-Weierstrass property and assume that X is not soft countably
compact. Then there is a countable soft open coverΩ = {Un ∈ τ : n ∈ N} of X having no finite subcover.
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Let Cn =
⋂n

i=1 Uc
i for each n ∈ N. Then clearly, ∅E , Cn ∈ τ

c for each n ∈ N. Let us take en xn
∈ Cn for

each n ∈ N and let A =
⋃

n∈NUn.

Case 1: Suppose A is finite. Then there is ex ∈ A such that ex = en xn
for an infinite number of n ∈ N.

Thus ex ∈ Cn for each n ∈ N. Since Ω covers XE, this is a contradiction.
Case 2: Suppose A is infinite. Then by the hypothesis, there is ex ∈ S PE(X) such that ex ∈ S d(A).

Since X is T1, by Lemma 3.15, N contains an infinite number of soft points of A for each N ∈ SN(ex).
Thus ex ∈ S d(An) for each n ∈ N, where An =

⋃
{ei xi
∈ A : i > n}. Moreover, An ⊂ Cn and Cn ∈ τ

c for
each n ∈ N. So ex ∈ Cn for each n ∈ N. Since Ω covers XE, this is a contradiction. Hence X is soft
countably compact. □

Theorem 3.17. Let (X, τ, E) be a soft T1-space. Then X is soft compact if and only if 2X
E

is compact.

Proof. Suppose X is soft compact. Then it is proved for 2X
E

to be compact by using either Theorem 5.6
in [46] or Theorem 4.25 in [45].

Conversely, suppose 2X
E

is compact and let Ω = (Uα)α∈Γ be a soft open cover, i.e.,
⋃
α∈ΓUα = XE.

Then clearly, (⟨XE,Uα⟩)α∈Γ is an open cover of 2X
E
. Thus there is a finite subcover

{⟨XE,U1⟩ , · · · , ⟨XE,Un⟩}, i.e., 2X
E
=
⋃n

i=1 ⟨XE,Ui⟩ . Let ex ∈ XE. Since X is soft T1, ex ∈ τ
c. Then

ex ∈ 2X
E
. Thus there is i ∈ {1, · · · , n} such that ex ∈ ⟨XE,Ui⟩ , i.e., ex ∈ Ui. So ex ∈

⋃n
i=1 Ui, i.e.,

XE ⊂
⋃n

i=1 Ui. Hence {U1, · · · ,Un} is a finite soft subcover of XE. Therefore X is soft compact. □

Corollary 3.18 (Theorem 4.2, [47]). Let (X, τ, E) be a soft T1-space and e ∈ E. Then (X, τe) is compact
if and only if 2X

e
is compact.

Theorem 3.19. Let (X, τ, E) be a soft topological space. Then X is soft compact T2 if and only if 2X
E

is
compact T2.

Proof. The proof follows from Theorem 3.17, Result 3.7, and Proposition 4.10 (1) in [34]. □

Corollary 3.20 (Theorem 4.9.6, [47]). Let (X, τ, E) be a soft T1-space and e ∈ E. Then (X, τe) is
compact T2 if and only if 2X

e
is compact T2.

Theorem 3.21. Let (X, τ, E) be a soft topological space. Then X is soft compact T2 if and only if
SK(X) is compact T2.

Proof. Suppose X is soft compact T2. Since X is soft T2, by Theorem 4.6 in [34], SK(X) is T2. By
the hypothesis an Theorem 3.19, 2X

E
is compact. Since SK(X) is a subspace of 2X

E
, SK(X) is compact.

Thus SK(X) is compact T2.
Conversely, suppose SK(X) is compact T2. Then clearly, SF 1(X) is compact T2. Thus X is soft

compact T2. □

Corollary 3.22 (Theorem 4.9.12, [47]). Let (X, τ, E) be a soft topological space and e ∈ E. Then
(X, τe) is compact T2 if and only if Ke(X) is compact T2.

The following is an immediate consequence of Theorem 3.21.

Corollary 3.23. Let (X, τ, E) be a soft topological space. Then the following are equivalent:
(1) X is soft compact T2,
(2) SK(X) is compact T2,
(3) S CK(X) is compact T2,
(4) Fn(X) is compact T2 for each n ∈ N.
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From Corollary 3.22, we have the following.

Corollary 3.24. Let (X, τ, E) be a soft topological space and e ∈ E. Then the following statements are
equivalent:

(1) (X, τe) is compact T2,
(2) Ke(X) is compact T2,
(3) CKe(X) is compact T2,
(4) Fn,e(X) is compact T2 for each n ∈ N.

Theorem 3.25. Let (X, τ, E) be a soft topological space. Then X is soft compact T2 if and only if S C(X)
is compact T2.

Proof. Suppose X is soft compact T2. By Result 3.8, X is soft normal. Then by Theorem 4.23 in [34],
S C(X) is closed in 2X

E
. By Theorem 3.19, 2X

E
is compact T2. Thus S C(X) is compact T2.

Conversely, suppose S C(X) is compact T2. Then clearly, SF 1(X) is a closed subspace of S C(X).
Thus SF 1(X) is compact T2. Thus X is soft compact T2. By Lemma 4.5 in [34], X is homeomorphic
to SF 1(X). So X is soft compact T2. □

Corollary 3.26 (See Proposition 3.1, [47]). Let (X, τ, E) be a soft topological space and e ∈ E. Then
(X, τe) is compact T2 if and only if Ce(X) is compact T2.

Theorem 3.27. Let (X, τ, E) be a soft topological space. Then the following are equivalent:
(1) X is soft compact T2,
(2) 2X

E
is compact T2,

(3) S C(X) is compact T2.

Proof. The proof follows from Theorems 3.19 and 3.25. □

Corollary 3.28 (See Corollary 3.1.1, [47]). Let (X, τ, E) be a soft topological space and e ∈ E. Then
the following statements are equivalent:

(1) (X, τe) is compact T2,
(2) 2X

e
is compact T2,

(3) Ce(X) is compact T2.

Remark 3.29. It is obvious that if X is soft compact T2, then 2X
E
= SK(X) and S C(X) = S CK(X).

Definition 3.30. A soft topological space (X, τ, E) is said to be:
(i) soft locally compact at ex ∈ S PE(X), if there is a U ∈ τ and a soft compact set K in X such that

ex ∈ U ⊂ K,
(ii) soft locally compact, if it is soft locally compact at ex for each ex ∈ S PE(X).

Remark 3.31. See Example 3.5 in [28].

Theorem 3.32. Let (X, τ, E) be a soft T2-space and ex ∈ S PE(X). Then X is soft locally compact at ex

if and only if for each V ∈ N(ex), there is a U ∈ τ and a soft compact set K in X such that ex ∈ U ⊂ V
and U ⊂ K ⊂ S cl(U).
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Proof. Suppose X is soft locally compact at ex and let V ∈ N(ex). Then there is a W ∈ τ and a soft
compact set C in X such that ex ∈ W ⊂ C. Let U = V ∩W and K = S cl(U). Then clearly, ex ∈ U ∈ τ
and U ⊂ K ⊂ S cl(U). Since U ⊂ W, K = S cl(U) ⊂ S cl(W). Since X is soft T2 and C is a soft compact
set in X, by Result 3.6, C ∈ τc. Since W ⊂ C, S cl(W) ⊂ C. Thus K ⊂ S cl(W) ⊂ C. So by Result 3.5, K
is soft compact in X.

The proof of the sufficient condition is straightforward. □

Theorem 3.33 (See Definition 3.4 in [28]). Let (X, τ, E) be a soft T2-space and ex ∈ S PE(X). Then X
is soft locally compact at ex if and only if there is U ∈ N(ex) such that S cl(U) is soft compact in X.

Proof. X is soft locally compact at ex . Then there is a U ∈ τ and a soft compact set K in X such
that ex ∈ U ⊂ K. Since X is soft T2 and K is a soft compact set in X, by Result 3.6, K ∈ τc. Thus
S cl(U) ⊂ K. So by Result 3.5, S cl(U) is soft compact in X. Hence the necessary condition holds.

The proof of the sufficient condition is straightforward. □

The following is an immediate consequence Definition 3.30 and Theorem 3.33.

Corollary 3.34. A soft T2-space (X, τ, E) is soft locally compact if and only if for each ex ∈ S PE(X)
and each V ∈ N(ex), there is a U ∈ N(ex) such that S cl(U) ⊂ V and S cl(U) is soft compact in X.

Lemma 3.35. If (X, τ, E) is a soft locally compact T2-space and ⟨U1, · · · ,Un⟩ is a basic open set in 2X
E
,

then cl(⟨U1, · · · ,Un⟩) is compact in 2X
E

if and only if S cl(U) =
⋃n

i=1 S cl(Ui) is soft compact in X.

Proof. Suppose S cl(U) is soft compact in X. Then by Theorem 3.17, 2S cl(U)
E

= ⟨S cl(U)⟩ is compact in
2X

E
. On the other hand, by Proposition 3.22 (2) in [34], we have

cl(⟨U1, · · · ,Un⟩) = ⟨S cl(U1), · · · , S cl(Un)⟩ ⊂ ⟨S cl(U)⟩ .

Thus cl(⟨U1, · · · ,Un⟩) is compact in 2X
E
.

The proof of the necessary condition is similar to one of Xie’s theorems in [48]. □

Theorem 3.36. Let (X, τ, E) be a soft locally compact T2-space. Then A ∈ 2X
E

has a compact
neighborhood in 2X

E
if and only if A is soft compact in X.

Proof. Suppose A is soft compact in X. Then by the hypothesis and Theorem 3.12 in [28], there is U ∈
τ such that A ⊂ U and S cl(U) is soft compact in X. Thus by Theorem 3.17, 2S cl(U)

E
= ⟨S cl(U)⟩ is

compact in 2X
E
. On the other hand, by Proposition 3.22 (2) in [34], 2S cl(U)

E
= ⟨S cl(U)⟩ = cl(⟨U⟩). Since

X is soft T2 and A is soft compact in X, by Result 3.6, A ∈ τc. Since A ⊂ U, A ∈ 2S cl(U)
E
. So 2S cl(U)

E
is a

compact neighborhood of A.
The proof of the converse follows from Lemma 3.35. □

Corollary 3.37 (See Theorem 4.3.2, [47]). Let (X, τ, E) be a soft locally compact T2-space and e ∈ E.
Then A(e) ∈ 2X

e
has a compact neighborhood in 2X

e
if and only if A(e) is soft compact in (X, τe).

Theorem 3.38. Let (X, τ, E) be a soft T1-space. Then 2X
E

is locally compact at each F ∈ SK(X) if and
only if X is a soft locally compact space.
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Proof. Suppose 2X
E

is locally compact at each F ∈ SK(X) and let ex ∈ S PE(X). Since X is soft T1,
ex ∈ 2X

E
. Then clearly, {ex} ∈ SK(X). Thus by the hypothesis and Theorem 3.33, there is ⟨U⟩ ∈ N(ex)

such that cl(⟨U⟩) = ⟨S cl(U)⟩ = 2S cl(U)
E

is compact in 2X
E
. So by Theorem 3.17, S cl(U) is soft compact

at ex . Hence X is a soft locally compact space.
The proof of the converse follows from Theorem 3.36. □

Corollary 3.39 (See Theorem 4.4.1, [47]). Let (X, τ, E) be a soft T1-space and e ∈ E. Then 2X
e

is
locally compact at each F ∈ Ke(X) if and only if (X, τe) is locally compact.

Proposition 3.40. If (X, τ, E) is a soft locally compact space, then SK(X) is open in 2X
E
.

Proof. Suppose X is soft locally compact and let F ∈ SK(X). Then by Theorem 3.33, there is U ∈ τ
such that F ⊂ U and S cl(U) is soft compact in X. Thus K ⊂ S cl(U) for each K ∈ ⟨U⟩ . Since S cl(U)
is soft compact, K is soft compact. So ⟨U⟩ ⊂ SK(X). Hence SK(X) is open in 2X

E
. □

Corollary 3.41 (See Theorem 4.4.2, [47]). Let (X, τ, E) be a soft topological space and e ∈ E. If (X, τe)
is locally compact, then Ke(X) is open in 2X

e
.

Theorem 3.42. (X, τ, E) is a soft locally compact T2-space if and only if SK(X) is locally compact T2.

Proof. Suppose X is locally compact T2. Then by Theorem 3.10 in [28], X is soft regular. Thus by
Proposition 4.10 (1) in [34], 2X

E
is T2. Since X is soft locally compact, by Proposition 3.40, SK(X) is

open in 2X
E
. So by Theorem 3.38, each F ∈ SK(X) has a compact neighborhood contained in SK(X).

Hence SK(X) is locally compact T2.
Conversely, suppose SK(X) is locally compact T2 and let ex ∈ S PE(X). Then clearly, {ex} ∈ SK(X).

Thus by the hypothesis, there is a neighborhood U of {ex} in SK(X) such that cl(U) is compact in
SK(X). By Proposition 3.25 (1) in [34], U =

⋃
U ∈ τ. SinceU ∈ SK(SK(X)), by Proposition 3.32

(2) in [34],
⋃

cl(U) ∈ SK(X), i.e.,
⋃

cl(U) is soft compact in X. It is obvious that ex ∈ U ⊂ S cl(U) ⊂⋃
cl(U). So X is soft locally compact at ex , i.e., X is soft locally compact. Since SF 1 ⊂ SK(X) and

SK(X) is T2, SF 1 is T2. By Lemma 4.5 in [34], SF 1 is homeomorphic to X. Hence X is T2. Therefore
X is locally compact T2. □

Corollary 3.43. Let (X, τ, E) be a soft T2-space and e ∈ E. Then (X, τe) is locally compact T2 if and
only if 2X

e
is locally compact T2.

Proposition 3.44. If (X, τ, E) is soft locally compact, then S CK(X) is open in S C(X).

Proof. Suppose X is soft locally compact and let F ∈ S CK(X). Let {U1, · · · ,Un} ⊂ τ such that S cl(Ui)
is soft compact in X for each i ∈ {1, · · · , n} and F ∈ ⟨U1, · · · ,Un⟩ ∩ S C(X). Let A ∈ ⟨U1, · · · ,Un⟩ ∩

S C(X). Then clearly, A ⊂
⋃n

i=1 Ui ⊂
⋃n

i=1 S cl(Ui). Since S cl(Ui) is soft compact in X for each i ∈
{1, · · · , n},

⋃n
i=1 S cl(Ui) is soft compact in X. Thus A is soft compact in X, i.e., A ∈ S CK(X). So

⟨U1, · · · ,Un⟩ ∩ S C(X) ⊂ S CK(X). Hence S CK(X) is open in S C(X). □

Corollary 3.45 (See Proposition 1.5, [49]). Let (X, τ, E) be a soft topological space and e ∈ E. If
(X, τe) is locally compact, then CKe(X) is open in Ce(X).

Theorem 3.46. Let (X, τ, E) be a soft T2-space and ex ∈ S PE(X). Then the following are equivalent:
(1) X is soft locally compact at ex ,
(2) 2X

E
is locally compact at {ex},
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(3) SK(X) is locally compact at {ex},

(4) S CK(X) is locally compact at {ex},

(5) S C(X) is locally compact at {ex}.

Proof. (1)⇒(2) Suppose X is soft locally compact at ex and let ⟨U⟩ be a basic open set in 2X
E

such that
{ex} ∈ ⟨U⟩. Then clearly, ex ∈ U ∈ τ. By the hypothesis and Corollary 3.34, there is V ∈ τ such that
S cl(V) is soft compact in X and ex ∈ V ⊂ S cl(V) ⊂ U. Thus {ex} ∈ ⟨V⟩ ⊂ ⟨S cl(V)⟩ = cl(⟨V⟩) ⊂ ⟨U⟩ .
Since ⟨S cl(V)⟩ = 2S cl(V)

E
and S cl(V) is soft compact in X, 2S cl(V)

E
is compact in 2X

E
. So ⟨S cl(V)⟩ is

compact in 2X
E
. Hence 2X

E
is locally compact at {ex}.

(2)⇒(3) Suppose the condition (2) holds and let ⟨U⟩ ∩ SK(X) be a basic open set in SK(X) such
that {ex} ∈ ⟨U⟩ ∩ SK(X). Then clearly, {ex} ∈ ⟨U⟩ . Since 2X

E
is locally compact at {ex}, there is an

open set U such that cl(U) is compact in 2X
E

and {ex} ∈ U ⊂ cl(U) ⊂ ⟨U⟩ . Now let V ∈ τ such that
{ex} ∈ ⟨V⟩ ⊂ U. Then

{ex} ∈ ⟨V⟩ ⊂ ⟨S cl(V)⟩ ⊂ cl(U) ⊂ ⟨U⟩ and ⟨S cl(V)⟩ is compact in 2X
E
.

Thus ⟨S cl(V)⟩ = 2S cl(V)
E

= SK(S cl(V)). So ⟨S cl(V)⟩ ∩ SK(X) = ⟨S cl(V)⟩ . Hence

{ex} ∈ ⟨V⟩ ∩ SK(X) ⊂ ⟨S cl(V)⟩ ∩ SK(X) = ⟨S cl(V)⟩ ⊂ ⟨U⟩ ∩ SK(X).

Therefore SK(X) is locally compact at {ex}.

(3)⇒(1) Suppose the condition (3) holds and let U ∈ τ such that ex ∈ U. Then clearly, {ex} ∈

⟨U⟩ ∩ SK(X). Thus by the hypothesis, there is a basic open setU in SK(X) such that cl(U)∩SK(X)
is compact in SK(X) and {ex} ∈ U ⊂ cl(U) ∩ SK(X) ⊂ ⟨U⟩ ∩ SK(X). Now let V ∈ τ such that
{ex} ∈ ⟨V⟩ ∩ SK(X) ⊂ U ⊂ cl(U) ∩ SK(X) ⊂ ⟨U⟩ ∩ SK(X). Then ex ∈ V ⊂

⋃
{F ∈ τc : F ∈

cl(U)SK(X)} ⊂ U. Since cl(U) ∩ SK(X) is compact in SK(X), by Proposition 3.32 (2) in [34],⋃
{F ∈ τc : F ∈ cl(U)SK(X)} is soft compact in X. Thus S cl(V) is soft compact in X and ex ∈ V ⊂

S cl(V) ⊂ U. So X is soft locally compact at ex .

(1)⇒(4) Suppose X is soft locally compact at ex and let ⟨U⟩∩S CK(X) be a basic open set in S CK(X)
such that {ex} ∈ ⟨U⟩ ∩ S CK(X). Then clearly, ex ∈ U ∈ τ. By the hypothesis and Corollary 3.34, there
is V ∈ τ such that S cl(V) is soft compact in X and ex ∈ V ⊂ S cl(V) ⊂ U. Thus we have

{ex} ∈ ⟨V⟩ ∩ S CK(X) ⊂ ⟨S cl(V)⟩ ∩ S CK(X) ⊂ ⟨U⟩ ∩ S CK(X).

Since S cl(V) is soft compact in X, by Theorem 3.17, 2S cl(V)
E

is compact in 2X
E
. Since S CK(S cl(V)) ⊂

2S cl(V)
E

, S CK(S cl(V)) is compact in 2X
E
. Since S cl(V) is a soft compact T2-subspace of X, by Proposition

4.23 in [34], S CK(S cl(V)) is closed in 2X
E
. Since ⟨V⟩ ∩ S CK(X) ⊂ S CK(S cl(V)) ⊂ S CK(X), we have

clS CK (X)(⟨V⟩ ∩ S CK(X)) = cl(⟨V⟩ ∩ S CK(X)) ∩ S CK(X)
= cl(⟨V⟩ ∩ S CK(X))
⊂ S CK(S cl(V)),

where clS CK (X) denotes the closure in the subspace S CK(X). So clS CK (X)(⟨V⟩ ∩ S CK(X)) is compact in
S CK(X). Hence S CK(X) is locally compact at {ex}.

(4)⇒(1) Suppose S CK(X) is locally compact at {ex} and let U ∈ τ such that ex ∈ U. Then {ex} ∈

⟨U⟩ ∩ S CK(X). By the hypothesis, there is a basic open setU in S CK(X) such that cl(U) ∩ S CK(X) is
compact in S CK(X) and {ex} ∈ U ⊂ cl(U) ∩ S CK(X) ⊂ ⟨U⟩ ∩ S CK(X). Let V ∈ τ such that

{ex} ∈ ⟨V⟩ ∩ S CK(X) ⊂ U ⊂ cl(U) ∩ S CK(X) ⊂ ⟨U⟩ ∩ S CK(X).
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Then ex ∈ V ⊂
⋃
{F ∈ τc : F ∈ cl(U) ∩ S CK(X)} ⊂ U. Since cl(U) ∩ S CK(X) is compact in S CK(X),

by Proposition 3.32 (2) in [34],
⋃
{F ∈ τc : F ∈ cl(U) ∩ S CK(X)} is soft compact in X. Thus S cl(V) is

soft compact in X and ex ∈ V ⊂ S cl(V) ⊂ U. So X is soft locally compact at ex .

(1)⇒(5) Suppose X is soft locally compact at ex and let ⟨U⟩ ∩ S C(X) be a basic open set in S C(X)
such that {ex} ∈ ⟨U⟩ ∩ S C(X). Then clearly, ex ∈ U ∈ τ. By the hypothesis and Corollary 3.34, there is
V ∈ τ such that S cl(V) is soft compact in X and ex ∈ V ⊂ S cl(V) ⊂ U. Thus we have

{ex} ∈ ⟨V⟩ ∩ S C(X) ⊂ ⟨S cl(V)⟩ ∩ S C(X) ⊂ ⟨U⟩ ∩ S C(X).

Since S cl(V) is soft compact in X, by Theorem 3.17, 2S cl(V)
E

is compact in 2X
E
. Since S C(S cl(V)) ⊂

2S cl(V)
E

, S C(S cl(V)) is compact in 2X
E
. Since S cl(V) is a soft compact T2-subspace of X, by Proposition

4.23 in [34], S C(S cl(V)) is closed in 2X
E
. Since ⟨V⟩ ∩ S C(X) ⊂ S C(S cl(V)) ⊂ S C(X), we have

clS C(X)(⟨V⟩ ∩ S C(X)) = cl(⟨V⟩ ∩ S C(X)) ∩ S C(X)
= cl(⟨V⟩ ∩ S C(X))
⊂ S C(S cl(V)),

where clS CX) denotes the closure in the subspace S C(X). So clS C(X)(⟨V⟩ ∩ S C(X)) is compact in S CK(X).
Hence S C(X) is locally compact at {ex}.

(5)⇒(1) Suppose S C(X) is locally compact at {ex}. Then there is a basic open setU in S C(X) such
that {ex} ∈ U and clS C(X)(U) = cl(U) ∩ S C(X) is compact in S C(X). Let V ∈ τ such that ex ∈ V and
{ex} ∈ ⟨V⟩ ∩ S C(X) ⊂ U. It is clear that SF 1(X) is closed in 2X

E
and SF 1(X) ⊂ S C(X). Then we get

clS C(X)SF 1(V) = cl(SF 1(V)) ∩ S C(X) = cl(SF 1(V)).

Since SF 1(V) ⊂ ⟨V⟩ ∩ S C(X), we have

cl(SF 1(V)) = clS C(X)SF 1(V) ⊂ clS C(X)U = cl(U) ∩ S C(X).

Since clS C(X)(U) is compact in S C(X), cl(SF 1(V)) is compact in S C(X). On the other hand,
cl(SF 1(V)) = SF 1(S cl(V)) and SF 1(S cl(V)) is homeomorphic to S cl(V). Thus S cl(V) is soft
compact in X. So X is soft locally compact at ex . □

Corollary 3.47 (See Propoisition 2.6, [49]). Let (X, τ, E) be a soft T2-space, e ∈ E, and x ∈ X. Then
the following are equivalent:

(1) (X, τe) is soft locally compact at x,
(2) 2X

e
is locally compact at {x},

(3) Ke(X) is locally compact at {x},
(4) CKe(X) is locally compact at {x},
(5) Ce(X) is locally compact at {x}.

Theorem 3.48. Let (X, τ, E) be a soft T2-space and ex ∈ S PE(X). Then X is soft locally compact at ex

if and only if SF n(X) is locally compact at {ex} for each n ∈ N.

Proof. Suppose X is soft locally compact at ex and let U be a basic open set in SF n(X) such that
{ex} ∈ U. Then there is U ∈ τ such that {ex} ∈ ⟨U⟩ ∩ SF n(X) ⊂ U. Thus by the hypothesis, there is
V ∈ τ such that ex ∈ V , S cl(V) is soft compact in X and S cl(V) ⊂ U. So ⟨S cl(V)⟩ ∩SF n(X) is compact
in SF n(X) and ⟨S cl(V)⟩ ∩ SF n(X) ⊂ ⟨U⟩ ∩ SF n(X). Hence SF n(X) is locally compact at {ex}.
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Conversely, supposeSF n(X) is locally compact at {ex} for each n ∈ N and let U ∈ τ such that ex ∈ U.
Then clearly, {ex} ∈ ⟨U⟩ ∩ SF n(X). Thus by the hypothesis, there is a basic open set U in SF n(X)
such that cl(U) ∩ SF n(X) is compact in SF n(X) and {ex} ∈ U ⊂ cl(U) ∩ SF n(X) ⊂ ⟨U⟩ ∩ SF n(X).
Let V ∈ τ such that {ex} ∈ ⟨V⟩ ∩ SF n(X) ⊂ U ⊂ cl(U) ∩ SF n(X) ⊂ ⟨U⟩ ∩ SF n(X). Then clearly,
V ⊂
⋃
{F ∈ τc : F ∈ cl(U) ∩ SF n(X)}. Since cl(U) ∩ SF n(X) is compact in SF n(X), by Proposition

3.32 (2) in [34],
⋃
{F ∈ τc : F ∈ cl(U) ∩ SF n(X)} is soft compact in X. Thus S cl(V) is soft compact

in X and ex ∈ V ⊂ S cl(V) ⊂ U. So X is soft locally compact at ex . □

Corollary 3.49. Let (X, τ, E) be a soft T2-space, e ∈ E, and x ∈ X. Then (X, τe) is locally compact at x
if and only if Fn,e(X) is locally compact at {x} for each n ∈ N.

Lemma 3.50. Let (X, τ, E) be a soft locally compact T2-space and F ∈ S CK(X). If ⟨U1, · · · ,Un⟩ is a
basic open set in 2X

E
containing F, then there is a soft compact set M in X such that F ⊂ S int(M) ⊂

M ⊂
⋃n

i=1 Ui. Furthermore, there is a basic open set ⟨W1, · · · ,Wm⟩ in 2X
E

such that S cl(Wi) is soft
compact in X for each i ∈ {1, · · · ,m} and F ∈ ⟨W1, · · · ,Wm⟩ ⊂ cl(⟨W1, · · · ,Wm⟩) ⊂ ⟨U1, · · · ,Un⟩.

Proof. Suppose ⟨U1, · · · ,Un⟩ is a basic open set in 2X
E

containing F. Then clearly, F ∩ Ui , ∅E, so
that ei xi

∈ Ui for each i ∈ {1, · · · , n}. Since X is soft locally compact, X is soft locally compact at ei xi

for each i ∈ {1, · · · , n}. Thus there is Vei xi
∈ τ such that ei xi

∈ Vei xi
, S cl(Vei xi

) is soft compact in X, and
Vei xi
⊂ Ui for each i ∈ {1, · · · , n}. LetΩ be the collection of all such Vei xi

. Since F ∈ S CK(X), F is a soft
compact set in X. Moreover, Ω covers F. So there is a finite subcollection {Ve1 x1

, · · · ,Vek xk
} of Ω such

that F ⊂
⋃k

i=1 Vei xi
. Now let fiyi

∈ F ∩ Ui for each i ∈ {1, · · · , n} and M =
(⋃k

j=1 Ve j x j

)
∩
(⋃n

i=1 V fiyi

)
.

Then M is soft compact in X and F ⊂ S int(M) ⊂ M ⊂
⋃n

i=1 Ui. Furthermore, by Proposition 3.22 (2)
in [34],

F ∈
〈
Ve1 x1
, · · · ,Vek xk

,V f1y1
, · · · ,V fnyn

〉
⊂ cl(
〈
Ve1 x1
, · · · ,Vek xk

,V f1y1
, · · · ,V fnyn

〉
)

=
〈
S cl(Ve1 x1

), · · · , S cl(Vek xk
), S cl(V f1y1

), · · · , S cl(V fnyn
)
〉

⊂ ⟨U1, · · · ,Un⟩ . □

Corollary 3.51 (See Lemma 1.7 (b), [49]). Let (X, τ, E) be a soft T2-space and e ∈ E. If (X, τe) is
locally compact, F ∈ CKe(X), and ⟨U1, · · · ,Un⟩ is a basic open set in 2X

e
containing F, then there

is a compact set M in (X, τe) such that F ⊂ int(M) ⊂ M ⊂
⋃n

i=1 Ui. Furthermore, there is a basic
open set ⟨W1, · · · ,Wm⟩ in 2X

e
such that cl(Wi) is compact in (X, τe) for each i ∈ {1, · · · ,m} and F ∈

⟨W1, · · · ,Wm⟩ ⊂ cl(⟨W1, · · · ,Wm⟩) ⊂ ⟨U1, · · · ,Un⟩.

Theorem 3.52. Let (X, τ, E) be a soft T2-space. Then the following are equivalent:
(1) X is soft locally compact,
(2) SK(X) is locally compact,
(3) S CK(X) is locally compact.

Proof. (1)⇒(2) Suppose X is soft locally compact and let F ∈ SK(X). Then clearly, F is soft compact
in X. By the hypothesis, there is U ∈ τ such that F ⊂ U and scl(U) is soft compact in X. Thus
F ∈ ⟨U⟩ ∩ SK(X). Note that A is soft compact in X for each A ∈ ⟨U⟩. So ⟨U⟩ ⊂ SK(X). On the other
hand, cl(⟨U⟩) = ⟨S cl(U)⟩ = 2S cl(U)

E
. Since S cl(U) is soft compact in X, by Theorem 3.17, ⟨S cl(U)⟩ is

compact in SK(X). So SK(X) is locally compact at F. Hence SK(X) is locally compact.

AIMS Mathematics Volume 10, Issue 1, 72–96.



87

(2)⇒(1) Suppose SK(X) is locally compact and let ex ∈ S PE(X). By the hypothesis, SK(X) is
locally compact at {ex}. Then there is a basic open set U in SK(X) such that {ex} ∈ U and cl(U) is
compact in SK(X). Since U is open in SK(X), by Proposition 3.25 (1) in [34], U =

⋃
U ∈ τ. Since

cl(U) is compact in SK(X), cl(U) ∈ SK(SK(X)). Thus by Proposition 3.32 (2) in [34],
⋃

cl(U) ∈
SK(X). So U ⊂ S cl(U) ⊂

⋃
cl(U). Hence X is soft locally compact at ex . Therefore X is soft locally

compact.
(1)⇒(3) Suppose X is soft locally compact and let F ∈ S CK(X). Let ⟨U1, · · · ,Un⟩ ∩ S CK(X) be a

basic open set in S CK(X) containing F. Then by Lemma 3.50, there is a basic open set ⟨W1, · · · ,Wm⟩

in 2X
E

such that S cl(Wi) is soft compact in X for each i ∈ {1, · · · ,m} and
F ∈ ⟨W1, · · · ,Wm⟩ ⊂ cl(⟨W1, · · · ,Wm⟩) ⊂ ⟨U1, · · · ,Un⟩. Thus we have

F ∈ ⟨W1, · · · ,Wm⟩ ∩ S CK(X) ⊂ cl(⟨W1, · · · ,Wm⟩) ∩ S CK(X)
⊂ ⟨U1, · · · ,Un⟩ ∩ S CK(X).

Let M =
⋃m

i=1 S cl(Wi). Since S cl(Wi) is soft compact in X for each i ∈ {1, · · · ,m}, M is soft compact
in X. Then by Theorem 3.25, S C(M) is compact in 2X

E
. Since ⟨W1, · · · ,Wm⟩ ∩ S CK(X) ⊂ S C(M) and

S C(M) is closed in 2X
E
, we have

cl(⟨W1, · · · ,Wm⟩ ∩ S CK(X)) ⊂ S C(M) ⊂ S CK(X)).

Thus we get
clS CK (X)(⟨W1, · · · ,Wm⟩ ∩ S CK(X))
= cl(⟨W1, · · · ,Wm⟩ ∩ S CK(X)) ∩ S CK(X)
= cl(⟨W1, · · · ,Wm⟩ ∩ S CK(X)).

So clS CK (X)(⟨W1, · · · ,Wm⟩ ∩ S CK(X)) is compact in S CK(X). Hence S CK(X) is locally compact at F.
Therefore S CK(X) is locally compact.

(3)⇒(1) Suppose S CK(X) is locally compact and let ex ∈ S PE(X). Let U ∈ τ such that ex ∈ U. Then
clearly, {ex} ∈ 2X

E
and {ex} ∈ ⟨U⟩ ∩ S CK(X). By the hypothesis, S CK(X) is locally compact at {ex}.

Thus there is a basic open set U in S CK(X) such that cl(U) is compact in S CK(X) and {ex} ∈ U ⊂

cl(U) ∩ S CK(X) ⊂ ⟨U⟩ ∩ S CK(X). Let V ∈ τ such that {ex} ∈ ⟨V⟩ ∩ S CK(X) ⊂ U. Then we have

ex ∈ V ⊂
⋃
U ⊂

⋃
{F ∈ τc : F ∈ cl(U) ∩ S CK(X)}.

By Proposition 3.32 (2) in [34],
⋃
{F ∈ τc : F ∈ cl(U)∩ S CK(X)} is soft compact in X. Thus S cl(V) is

soft compact in X. So X is soft locally compact at ex . Hence X is soft locally compact. □

Corollary 3.53 (See Proposition 3.3, [49]). Let (X, τ, E) be a soft T2-space and e ∈ E. Then the
following are equivalent:

(1) (X, τe) is locally compact,
(2) Ke(X) is locally compact,
(3) CKe(X) is locally compact.

Theorem 3.54. Let (X, τ, E) be a soft T2-space. Then X is soft locally compact if and only if SF n(X)
is locally compact for each n ∈ N.

Proof. Suppose X is soft locally compact and let F ∈ SF n(X). Then clearly, F is soft compact in X. By
the hypothesis, there is U ∈ τ such that F ⊂ U and scl(U) is soft compact in X. Thus F ∈ ⟨U⟩∩SF n(X).
On the other hand, cl(⟨U⟩) = ⟨S cl(U)⟩ = 2S cl(U)

E
. Since scl(U) is soft compact in X, by Theorem 3.17,
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⟨S cl(U)⟩ is compact in 2X
E
. Moreover, cl

SF n(X)(⟨U⟩ ∩ SF n(X) ⊂ ⟨S cl(U)⟩ . Thus cl
SF n(X((⟨U⟩ ∩ SF n(X)

is compact in F ∈ SF n(X). So SF n(X) is locally compact at F. Hence SF n(X) is locally compact.
Conversely, suppose SF n(X) is locally compact. It is obvious that SF 1(X) is closed in SF n(X).

Then SF 1(X) is locally compact. On the other hand, X is homeomorphic to SF 1(X). Thus X is soft
locally compact. □

Corollary 3.55. Let (X, τ, E) be a soft T2-space and e ∈ E. Then (X, τe) is locally compact if and only
if Fn,e(X) is locally compact for each n ∈ N.

4. Axioms of countability in soft hyperspaces

First, we discuss some of the axioms of countability and separability in soft topological spaces.
Next, we study some relationships for axioms of countability and separability in a soft topological
space and its soft hyperspace.

Definition 4.1 ( [50]). Let B(R) be the collection of all non-empty bounded subsets of R. Then a
mapping A : E → B(R) is called a soft real set. For each r ∈ R, rE is called a soft real number of R,
denoted by r, and er is called a soft real point of R, denoted by r̃.

Definition 4.2 (See [51]). Let r, s ∈ R. Then the order ≤ between soft real numbers r and s is defined
by:

(i) r ≤ s if and only if r ≤R s, i.e., r(e) ≤R s(e) for each e ∈ E,
(ii) r < s if and only if r <R s, i.e., r(e) <R s(e) for each e ∈ E,

where ≤R and <R denote the usual order on R.

By using soft real numbers, we define soft real intervals of R.

Definition 4.3. Let a, b ∈ RE such that a ≤ b. Then
(i) (Soft open interval) (a, b) = {x ∈ RE : a < x < b},
(ii) (Soft closed interval) [a, b] = {x ∈ RE : a ≤ x ≤ b},
(ii) (Soft half-open interval) (a, b] = {x ∈ RE : a < x ≤ b},

[a, b) = {x ∈ RE : a ≤ x < b},
(iv) (Soft half-real line) (a,∞) = {x ∈ RE : x < a},

[a,∞) = {x ∈ RE : x ≤ a},
(−∞, b) = {x ∈ RE : x > b},
(−∞, b] = {x ∈ RE : x ≥ b}.

Lemma 4.4. Let σ [resp. β] be the collection of all soft-real lines [resp. soft half-open intervals] of
the forms (a,∞) and (−∞, b) [resp. [a, b)]. Then σ [resp. β] is a soft subbase [resp. base] for the soft
topology τ [resp. τl] on R.

In this case, τ is called the soft usual topology [resp. soft lower-limit topology] on R. The triple
(R, τ, E) [resp. (R, τl , E)] is called a soft real space [resp. soft lower-limit real space].

Proof. The proof follows from the definition of a soft subbase and Proposition 3.14 in [38]. □

Definition 4.5 ( [16]). A ∈ S S E(X) is said to be countable [resp. f inite], if A(e) is countable [resp.
finite] for each e ∈ E.
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Definition 4.6. Let (X, τ, E) be a soft topological space and ex ∈ S PE(X). Then βex
⊂ τ is called a soft

local base at ex , provided that the following conditions hold:
(i) B ∈ βex

implies ex ∈ B,
(ii) ex ∈ U ∈ τ implies there is B ∈ βex

such that B ⊂ U.
It is clear that βex

= SN(ex).

Definition 4.7 (See [52, 53]). Let (X, τ, E) be a soft topological space. Then we say that
(i) X is first countable or satisfies the first axiom of countability, if there is a countable soft local

base at ex for each ex ∈ S PE(X),
(ii) X is second countable or satisfies the second axiom of countability, if there is a countable soft

base for τ.

Example 4.8. (1) Let (R, τ, E) be a soft real space and β = {−( 1
n ,

1
n ) : n ∈ N}. Then we can easily check

that β = SN(0). Thus (R, τ, E) is first countable.
(2) (See Proposition 4.1, [52]) Let (R, τ, E) be a soft real space and

β = {(a, b) : a, b ∈ R are rational}. Then clearly, β is a countable base for τ. Thus (R, τ, E) is second
countable.

(3) Consider the soft topological space (R, τ f , E) and assume that it is first countable, i.e., there is
a soft local base β = {Bn ∈ τ f : n ∈ N} at x ∈ RE. Let y ∈ R such that x , y. Then clearly, x , y and
R \ {y} ∈ N(x). Thus there is n ∈ N such that y < Bn. So

⋂
β = {x}. On the other hand, we have

R \ {x} = R \
⋂
n∈N

Bn =
⋃
n∈N

(R \ Bn).

Since R \ Bn is finite for each n ∈ N,
⋃

n∈N(R \ Bn) is countable. Hence R \ {x} is countable. This is
a contradiction. Therefore (R, τ f , E) is not first countable.

Proposition 4.9 (See Proposition 4.2, [52]; Theorem 4, [53]). Every second countable soft topological
space is first countable.

Proof. Let (X, τ, E) be a soft topological space and suppose X is second countable. Then there is a
countable soft base β for τ. Let ex ∈ S PE(X). Since

⋃
β = XE, ex ∈

⋃
β. Let βex

= {B ∈ S S E(X) : ex ∈

B ∈ β}. Since β ⊂ τ, βex
= SN(ex). Then βex

is a countable soft neighborhood base at ex . Thus X is first
countable. □

Remark 4.10. The converse of Proposition 4.9 is not true in general (see Example 4.11).

Example 4.11. Let (R, τl , E) be a soft lower-limit real space. Then it is first countable but not second
countable.

Definition 4.12 (See [53]). Let (X, τ, E) be a soft topological space and A ∈ S S E(X).
(i) A is called a soft dense set in X, if S cl(A) = XE.

(ii) X is said to be soft separable, if there is a countable soft dense set in X.

Theorem 4.13. Let (X, τ, E) be a soft T1-space. Then X is first countable if and only if SF (X) is first
countable.
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Proof. Suppose X is first countable and let ei xi
∈ S PE(X) for each i ∈ {1, · · · , n}, F =

⋃n
i=1 ei xi

. Since
X is T1, ei xi

∈ τc. Then F ∈ SF (X). Since X is first countable, there is a countable soft local base
βi = SN(ei xi

) for each i ∈ {1, · · · , n}. Let B be the collection of all open sets in SF (X) of the form
⟨B1, · · · , Bn⟩ ∩ SF (X), where Bi ∈ βi for each i ∈ {1, · · · , n}. Then clearly, B is countable. We will
prove that B is a base at F. Let ⟨U1, · · · ,Um⟩ ∩ SF (X) be an open neighborhood of F. Then clearly,
F ∈ ⟨U1, · · · ,Um⟩ . Thus F ⊂

⋃m
j=1 U j. Since ei xi

∈ F for each i ∈ {1, · · · , n}, ei xi
∈
⋃m

j=1 U j for each
i ∈ {1, · · · , n}, i.e., there is j ∈ {1, · · · ,m} such that ei xi

∈ U j for each i ∈ {1, · · · , n}. So we choose
Bi ∈ βi such that Bi ⊂

⋂n
j=1{U j : ei x j

∈ U j}. Hence we have

F ∈ ⟨B1, · · · , Bn⟩ ∩ SF (X) ⊂ ⟨U1, · · · ,Um⟩ ∩ SF (X).

It follows that B is a countable local base at F. Therefore SF (X) is first countable.
Conversely, suppose SF (X) is first countable. By Lemma 4.5 in [34], X is soft homeomorphic to

SF 1(X) ⊂ SF (X). Then X is first countable. □

We obtain the following consequences from Theorem 4.13.

Corollary 4.14. Let (X, τ, E) be a soft T1-space. Then X is first countable if and only if SF n(X) is first
countable for each n ∈ N.

Corollary 4.15. Let (X, τ, E) be a soft T1-space and e ∈ E. Then (X, τe) is first countable if and only if
Fe(X) is first countable.

Corollary 4.16. Let (X, τ, E) be a soft T1-space and e ∈ E. Then (X, τe) is first countable if and only if
Fn,e(X) is first countable for each n ∈ N.

It is well-known that first countability and second countability are topological properties. Then we
have:

Proposition 4.17. Let (X, τ, E) be a soft topological space. If 2X
E

is first [resp. second] countable, then
each one of the subspaces of 2X

E
is first [resp. second] countable.

Corollary 4.18. Let (X, τ, E) be a soft T1-space and e ∈ E. If 2X
e

is first [resp. second] countable, then
each one of the subspaces of 2X

e
is first [resp. second] countable.

Theorem 4.19. Let (X, τ, E) be a soft T1-space. Then X is second countable if and only if SK(X) is
second countable.

Proof. Suppose X is second countable. Then there is a countable soft base β = {Un ∈ τ : n ∈ N} for Tv.
LetU = {

〈
Uα1 , · · · ,Uαn

〉
∩SK(X) : Uαi ∈ β}. ThenU is a countable base for SK(X). Thus SK(X) is

second countable.
Suppose SK(X) is second countable. Then clearly, SF 1(X) is second countable. By Lemma 4.5

in [34], X is soft homeomorphic to SF 1(X) ⊂ SK(X). Thus X is second countable. □

Corollary 4.20 (See Proposition 4.5.2, [47]). Let (X, τ, E) be a soft T1-space and e ∈ E. Then (X, τe)
is second countable if and only if Ke(X) is second countable.

Corollary 4.21. Let (X, τ, E) be a soft T1-space. Then the following are equivalent:
(1) X is second countable,
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(2) SF n(X) is second countable for each n ∈ N,
(3) SF (X) is second countable,
(4) CK(X) is second countable,
(5) SK(X) is second countable.

Proof. It is clear that SF n(X) ⊂ SF (X) ⊂ SK(X) and CK(X) ⊂ SK(X). By Lemma 4.5 in [34], X
is soft homeomorphic to SF 1(X). Then X is second countable if and only if each of SF n(X), SF (X),
and CK(X) as a subspace is second countable. □

Corollary 4.22. Let (X, τ, E) be a soft T1-space and e ∈ E. Then the following are equivalent:
(1) (X, τe) is second countable,
(2) Fn,e(X) is second countable for each n ∈ N,
(3) Fe(X) is second countable,
(4) CKe(X) is second countable,
(5) Ke(X) is second countable.

Lemma 4.23. Let (X, τ, E) be a soft topological space, β a soft base for τ such that ∅E < β, and
D ∈ S S E(X). Then D is soft dense in X if and only if D ∩ B , ∅E for each V ∈ β.

Proof. Suppose D is soft dense in X and assume that there is B ∈ β such that D∩ B = ∅E. Then clearly,
D ⊂ Bc and Bc ∈ τc. Thus S cl(D) ⊂ Bc. So S cl(D) , XE. This is a contradiction. Hence the necessary
condition holds.

Conversely, suppose the necessary condition holds, and let ex ∈ S PE(X) and N ∈ SN(ex). Then
there is B ∈ β such that ex ∈ B ⊂ N. Since B ∩ D , ∅E, N ∩ D , ∅E. Thus by Theorem 3.3 in [17],
ex ∈ S cl(D). So XE ⊂ S cl(D), i.e., S cl(D) = XE. Hence D is soft dense in X. □

Theorem 4.24. Let (X, τ, E) be a soft T1-space. Then X is soft separable if and only if 2X
E

is separable.

Proof. Suppose X is soft separable. Then there is a countable soft dense set D in X, i.e., S cl(D) = XE

and D(e) is countable for each e ∈ E. Let D = {A ∈ S S E(X) : A ⊂ D is f inite}. Then clearly, D
is countable. Moreover, D ⊂ 2X

E
since X is T1. Let ⟨U1, · · · ,Un⟩ be a basic open set in 2X

E
. Since

S cl(D) = XE and Ui ∈ τ for each i ∈ {1, · · · , n}, there is ei xi
∈ S PE(X) such that ei xi

∈ D ∩ Ui for each
i ∈ {1, · · · , n}. Since X is soft T1, F =

⋃n
i=1 ei xi

∈ τc. Thus F ∈ 2X
E
. Furthermore, F ⊂ D, F ⊂

⋃n
i=1 Ui

and F ∩ Ui , ∅E for each i ∈ {1, · · · , n}. So F ∈ D ∩ ⟨U1, · · · ,Un⟩, i.e., D∩ ⟨U1, · · · ,Un⟩ , ∅. Hence
2X

E
is separable.
Conversely, suppose 2X

E
is separable. Then a countable dense subset D = {An : n ∈ N} of 2X

E
. For

each n ∈ N, let us take en xn
∈ An and let D =

⋃
n∈N en xn

. Let U ∈ τ. Then clearly, ⟨U⟩ is a basic open
set in 2X

E
. Since D is dense in 2X

E
, D ∩ ⟨U⟩ , ∅. Thus there is n ∈ N such that An ∈ D ∩ ⟨U⟩ . So

en xn
∈ D ∩ U, i.e., D ∩ U , ∅E. So by Lemma 4.23, D is a countable soft dense set in X. Hence X is

soft separable. □

Corollary 4.25 (Proposition 4.5.1, [47]). Let (X, τ, E) be a soft T1-space and e ∈ E. Then (X, τe) is
separable if and only if 2X

e
is separable.

Theorem 4.26. Let (X, τ, E) be a soft T1-space. Then X is soft separable if and only if SK(X) is
separable.
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Proof. Suppose X is soft separable. Then there is a countable soft dense set D in X. Let D = {A ∈
S S E(X) : A ⊂ D is f inite}. ThenD is countable. LetU = ⟨U1, · · · ,Un⟩∩SK(X), where ⟨U1, · · · ,Un⟩

is a basic open set in 2X
E
. Since D is soft dense in X and Ui ∈ τ for each i ∈ {1, · · · , n}, by Lemma

4.23, D ∩ Ui , ∅E for each i ∈ {1, · · · , n}. Let us choose ei xi
∈ D ∩ Ui for each i ∈ {1, · · · , n} and

F =
⋃n

u=1 ei xi
. Since X is soft T1, F ⊂ D. Moreover, F ⊂

⋃n
i=1 Ui. Then F ∈ D ∩U, i.e., D ∩U , ∅.

ThusD is dense in SK(X). So SK(X) is separable.
Conversely, suppose SK(X) is separable. Then there is a countable dense subset D = {An : n ∈

N} of SK(X). Let us take en xn
∈ An for each n ∈ N and let D =

⋃
n∈N en xn

. Then clearly, D is
a soft countable set in X. Let U be a nonempty basic open set in X. Since D is dense in SK(X),
D∩ (⟨U⟩ ∩ SK(X)) , ∅. Thus there is n ∈ N such that An ∈ D ∩ (⟨U⟩ ∩ SK(X)) , i.e., An ∈ D ∩ ⟨U⟩ .
So en xn

∈ An ∩U, i.e., D∩U , ∅E. Hence D is a soft dense set in X. Therefore X is soft separable. □

Corollary 4.27. Let (X, τ, E) be a soft T1-space and e ∈ E. Then (X, τe) is separable if and only if
Ke(X) is separable.

Proposition 4.28. Let (X, τ, E) be a soft T1-space. If S C(X) [resp. S CK(X)] is separable, then X is soft
separable.

Proof. Suppose S C(X) is separable. Then there is a countable dense subset D = {An : n ∈ N} of
S C(X). Let us choose en xn

∈ An for each n ∈ N and let D =
⋃

n∈N en xn
. Since X is soft T1, D ∈ τc and D

is countable. Let U be a nonempty soft basic open set X. Then clearly, ⟨U⟩ is a basic open set in 2X
E
.

Thus ⟨U⟩ ∩ S C(X) is a basic open set in S C(X). SinceD is dense in S C(X),D∩ (⟨U⟩ ∩ S C(X)) , ∅.
So there is n ∈ N such that An ∈ D ∩ (⟨U⟩ ∩ S C(X)) , i.e., An ∈ D ∩ ⟨U⟩ . Hence en xn

∈ An ⊂ U, i.e., D
is soft dense in X. Therefore X is soft separable.

The proof of the second part is similar. □

Corollary 4.29. Let (X, τ, E) be a soft T1-space and e ∈ E. If Ce(X) [resp. CKe(X)] is separable, then
X is soft separable.

5. Discussion

In this paper, we discussed various compactness, local compactness, separability, and countability
relationships in a soft topological space and its soft hyperspace.

6. Conclusions

We obtained some compactness relationships in a soft topological space and its soft hyperspace.
Also, we discussed various local compactness relationships in a soft topological space and its soft
hyperspace. Also, we studied some separability and axiom of countability relationships in a soft
topological space and its soft hyperspace. Furthermore, it was found that the properties obtained from
Sections 3 and 4 were almost similar to the classical case.

In the future, we would like to find connectedness relationships, local connectedness relationships
and local connected Klein relationships in a soft topological space and its soft hyperspace. Also, we
will study metrization relationships in a soft topological space and its soft hyperspace. Moreover,
according to the reviewers’ suggestions, we expect to be able to conduct more enriched research by
referring to references [54–58], etc.
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