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1. Introduction

Bishop and O’Neill [1] first introduced the concept of warped products within Riemannian
manifolds to develop a broad class of complete manifolds characterized by negative curvature. This
concept emerged from the study of surfaces of revolution. Subsequently, Nolker [2] extended this idea
by formulating the notion of multiply warped products, which generalizes the original concept.
Warped products hold significant relevance in differential geometry, particularly in mathematical
physics and general relativity. Many exact solutions to Einstein’s field equations and their
modifications can be represented using warped products.


https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.2025004

57

Doubly warped product manifolds (DWPMs) generalize the concept of warped products by
introducing a warping function that depends on two distinct factors, typically associated with the base
and fiber manifolds. This generalized structure has been instrumental in advancing the study of
complex geometric configurations [3-5].

Moreover, DWPMs provide a robust framework for analyzing spaces characterized by varying
curvature, enabling significant insights into their geometric properties [6,7]. These manifolds also
find extensive applications in mathematical physics and general relativity, where they serve as
effective models for describing intricate theoretical phenomena [8,9].

Further generalization is achieved with twisted warped product manifolds (TWPMs), which include
an additional twist factor to modify the warping function. This twist enriches the geometric structure,
allowing for the examination of more intricate relationships between the base and fiber manifolds.
These manifolds are particularly advantageous for investigating the curvature properties of spaces that
emerge in advanced theoretical physics, including various cosmological models [10].

The pseudo-projective curvature (PPC) tensor, originally introduced by Prasad [11], serves as an
extension of the projective curvature tensor. This tensor has been extensively investigated by
numerous researchers, reflecting its significance in mathematical and physical studies [12-14].
Further developments in this area include the work of Shenawy and Unal [15], who specifically
analyzed the W,-curvature tensor within the context of warped product manifolds. Building upon
these foundational studies, this paper focuses on the examination of the PPC in the settings of
DWPMs, TWPMs, and space-times [16].

The structure of the paper is as follows: Section 2 presents the essential concepts and definitions
related to DWPMs and TWPMs, which underpin the study. Sections 3 and 4 delve into the analysis of
the PPC within DWPMs and TWPMSs, respectively, offering a comprehensive description of the
geometric properties of the base and fiber manifolds in relation to the pseudo-projective tensor.
Section 5 applies these findings to analyze the behavior of the PPC in the context of generalized
doubly and twisted Robertson-Walker space-times.

2. Preliminaries

This section introduces the key concepts and definitions for DWPMs and TWPMs and explores the
PPC within a pseudo-Riemannian manifold (PRM).

2.1. DWPMs

Consider two Riemannian manifolds (M, g;) and (M5, g,), with positive, smooth functions f; on
M, and f, on M,. Let m; and 7, be the standard projection maps from M; X M, onto M, and M,,
respectively. The DWPM ;M Xy M, is constructed as the product manifold M; x M,, endowed with
a metric g defined by

g = (Hom)’mi(g1) + (fi o m)’ms(g2),
where the expression 77 (g;) represents the pullback of the metric g; by m;, for i = {1,2} [3,10]. The
functions f; are referred to as the warping functions of the DWPM (, M, X; M,,g). If one of the
functions f; or f, is constant, the manifold reduces to a warped product manifold. If both f; and f, are
constant, the result is a direct product manifold. A DWPM is considered non-trivial if neither f nor f,
is constant (see [12]).
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Let £(M;) represent the collection of lifted vector fields from M;, with
k=1Inf; (or [ =1nf),

and the same notation is used for the function k (or ) and its pullback k o r; (or [ o ;). The symbols 'R
(or 'Ric) and 2R (or 2Ric) represent the lifted Riemann (or Ricci) curvature tensors from (M, g;) and
(M,, g,), respectively, while R (or Ric) denotes the Riemann (or Ricci) curvature tensor of the DWPM.

Lemma 2.1. If A; € L(M,) and B; € L(M,) for j € {1,2,3}, then the Riemann curvature tensor is
given by

R(A1,A2)As = 'R(A1, A))As + g(A1, A3)H'(Ay) — (A2, A3)H'(A)),

R(A1,A2)By = Bi(D(Ax()A; — A1 (K)As),

R(B1, By)A; = A\(k)(Bo(1)B — Bi(1)By).

R(A1. B)A; = (I{(A1, Ay) + A1(K)Ay(Kk))By + Ay(k)B1(DA; + g(A1, Ay)(H'(By) + Bi(1)VI),
R(B1,A1)B, = (Ky(B1, By) + Bi(DBy())A; + Bo(DA1(k)B, + g(By, By)(H (A1) + A1 (k) Vk),
R(B1, B2)Bs = *R(B\, B2)Bs + g(Bi, W)H"(B2) — g(B2, By)H'(B).

2.1)

Here, H*, V denote the Hessian tensor of k and the Levi-Civita connection on (s, My X;, My, g), which
is defined by
HY(X) = VxVk

for any vector field X on the DWPM.

Let 'Ric and ?Ric denote the lifted Ricci curvature tensors of (M, g;) and (M>, g,), respectively,
while Ric represents the Ricci curvature tensor of the DWPM.

Lemma 2.2. IfA; € L(M,) and B; € L(M,) for j € {1,2}, then the Ricci curvature tensor is given by

Ric(A1,As) = 'Ric(Ar, Ay) — 2211 (A1, Ay) — (A ADAL
1

Ric(Ay, By) = (n; + ny — 2)A,(k)B, (D), (2.2)

Ric(By, By) = *Ric(By, By) — %hf(&, B,) — g(B1, B2)Ak.
2

Here, A denotes the Laplacian operator on DWPM, and m; represents the dimension of M,, for
ie{l,2}.
2.2. TWPMs

Let (M, g) and (M>, g,) be two Riemannian manifolds with corresponding Riemannian metrics,
and let f be a smooth positive function on M; X M,. The canonical projections from M; X M, onto
M, and M, are denoted by m; and 7, respectively. The TWPM M, X M,, as introduced in [10], is the
product manifold M; x M, equipped with the metric g, defined by

g =m(g1) + £o75(g2),
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where 77 (g;) denotes the pullback of the metric g; via &r; for i = {1, 2}. In this construction, f is termed
the twisting function of the TWPM. When f depends only on points in M, the manifold forms a
warped product, and if f is constant, the structure becomes a direct product manifold.

Let £(M;) represent the set of lifted vector fields on M;, and define

k=Inf

with Vk being the gradient of k. The Riemann curvature tensors of (M, g;) and (M,, g,) are denoted
by 'R and 2R, respectively, while R is the Riemann curvature tensor of the TWPM.

Lemma 2.3. If A; € L(M,) and B; € L(M,) for j € {1,2,3}, then the Riemann curvature tensor is
given by

R(A1,A2)A; = 'R(A1, Ar)As,

R(A1,A2)B; =0,

R(By, By)A| = B1A((k)By — B,A(k)By,

R(A1, B)A; = (K{(A1, Ay) + Ai(K)A2(K)) By,

R(B1,A1)By = —ABy(k)By + (A1(k)Vk + H'(A)))g(B1, By),

R(B\, B,)Bs = *R(B\, B,)Bs — (H5(By, Bs) — B3(k)By(k))B: + (H5(B1, Bs) — By(K)B1(K)) B,
— (H"(B\) + Bi(k)Vk)g(By, By) + (H“(By) + V(By)Vk)g(B,, Bs).

(2.3)

Here, H* denotes the Hessian tensor of k on TWPM, defined as
H*(X) = VxVk
for any vector field X on TWPM.

Let 'Ric and 2Ric represent the Ricci curvature tensors of (M1, g,) and (M>, g,), respectively, while
Ric denotes the Ricci curvature tensor of the TWPM.

Lemma 2.4. IfA; € L(M,) and B; € L(M,) for j € {1,2}, then the Ricci curvature tensor is given by
Ric(Ay, Ay) = 'Ric(Ay, Ag) = m(hf(A1, Ay) + A1 ()AL (K)),
Ric(Ay, By) = —(my — 1)A, By (k), (2.4)
Ric(B, B2) = *Ric(B\, B2) = (my = DH5(By, By) + (mz = 2)Bi(k)Ba(k) — g(B1, B2)Ak.

Here, A represents the Laplacian operator on TWPM, and m; denotes the dimension of M, fori € {1,2}.

2.3. PPC Tensor

The PPC P* on a PRM M with
dim(M) =m

is given by
P“(A,B,C,D) = a;R(A,B,C,D) + az(Ric(B, C)g(A, D) — Ric(A, C)g(B, D))

- Z(M 4 a)[g(B. Og(A, D) - g(A, C)g(B. D)

(2.5)

m
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where a; and a, (# 0) are constants, Ric represents the Ricci tensor of (0, 2)-type, and 7 denotes the
scalar curvature of the manifold. Additionally,

P“(A,B,C,D) = g(P*(A, B)C, D)

and
R(A,B,C,D) = g(R(A, BIC, D),

with R being the Riemannian curvature tensor and A, B, C, D € L(M).
When

a1:1

and
1
m—1’

the expression in Eq (2.5) simplifies to the projective curvature tensor. Furthermore, if

a) = —

P =0

for m > 3, the PRM is referred to as pseudo-projectively flat (PPF).
It is evident from Eq (2.5) that the manifold is characterized by

P*(A, B)C = aiR(A, B)C + ay(Ric(B,C)A — Ric(A, C)B)
o - +ax)[8(B.C)A — g(A. C)B].

m>m —

(2.6)

3. Properties of the PPC on the DWPM

This section explores the properties of the PPC on the DWPM manifold
M = f2M1 Xf M.

Several theorems are presented concerning the PPC for such manifolds, which shed light on the
relationship between the warped geometry and its underlying base and fiber manifolds. We use the
notation P* and P* for the PPC and the tensor P* on M, and P} and P; for their counterparts on M;.

Theorem 3.1. If
Mg = f81® flg

is a DWPM and the vector fields A; € L(M,) and B; € L(M>) for j € {1,2,3}, then the non-zero
components of PPC are given by

P*(A1,A2)As = Pi(A,A)As + alfzz(gl(AlaA3)Hl(A2) - gl(Az,A3)Hl(A1))
a,my l’l’lz(l”l’l +m; — 1) )
- !

fi
Al

(22 - 2)|g1(Az. ADA, — g1(Ar1, ADAL),
-

mn

(hf (Ao A)AL = (A1, A)As) + £

3.1)

mm(m; — 1)(m — 1)
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P*(A1, A2)B) = (a1 + (m = 2)ax)| Aa(k)A; = A1(K)A2|B1(D)

3.2)
- (- + a)lg(An BA| — g(Ar B))AL],
m-m— 1
P*(By, B)A = (a1 + (m = 2)ay)| Ba(DB1 — Bi(D)Ba A1 (k) .
- (= + @)[g(Ba ADB) — g(B1. A)B). '
m-m— 1

P*(A1, B)Ay = ai[(H5(A1, A2) + A1(K)Ax(k)) By + Ay(K)Bi(DA: + g(Ay, Ag)(H'(By)

+ Bi(DVI)| + aa| (m = 2)A2(k)B (DA, — ('Ric(Ay, Ay) - m—]zh{' A1LA) (34

T a
= (AL ADALBI | = —(——— + ) g(B1. AA| — g(A1, A B,

P*(A1, B1)B, = ai[(H5(B1, By) + Bi()By(D)As + Bo(DA(K)By + g(By, By)(H (A1)
+ A1 (K)VK)| + az|(*Ric(By, By) - ’%@2(31, By) — g(B1, By)Ak)A, (3.5)

a

- (m = A0 B(DB] - (== + @) [g(B1. B)A - (A1, BBy,

P*(By, By)Bs = Py(B1, By)Bs + a1 f7(g2(B1, By)H"(By) - g2(B1, Bs)H"(B)))

amy (. ¢ f ) ml(m +my — 1)
— h’(B,, B3)B; — hy*(B;, B3)B
% ( » (B2, B3)By — Iy (B, B3) 2) +7f; [mmz(mz “DHm-n™ (3.6)
m Ak
+ (—1 - —)azl[gz(Bz, B3)B| — g2(B1, B3)Bs].
mm, T

Proof. If
M.g=f;8®fe

is a DWPM. Assume that

dim(M) =m
and

dlm(M,) =m;
for i € 1,2. For vector fields A; € L(M,) and B; € L(M,) for j € {1,2, 3}, applying Eq (2.6) yields

P*(A1, A2)A3 = a1R(A, A))As + ay(Ric(Az, A3)A| — Ric(Ar, A3)A,)
T, a
= —(——= + a2)[g(A2, A3)A) — g(A1, A3)A)]

m-\m—1
= al[lR(A1,A2)A3 + f581(A1, A3)H! (As) — fzzgl(AZaA3)H[(Al)]

. myp . ¢
+ 0o (Ric(Az, A3) = Z2h] (42, 43) = fig1 (A2, ADADA,
1

. mp . 4
- (Ric(41. A3) = Z=hi' (A1, 49) - f281(A1, AADA, |
1

e

m ‘m —

1 + Clz)[g(Az’AﬁAl — 81(A1,A3)A;]
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. . Tf3 a
= a1'R(A1, Ap)A; + ay('Ric(Ay, A3)A; - 'Ric(Ar, A3)Ay) — =2 (—————)
my-m —1+a

[91(A2, A3)A; — g1(A1, A3)As] + a) f2(h] (Ay, A3)A| — h] (A, A3)A,)
sz
[g1(Az,A3)A| — g1(A1, A3)AL]AL + [—2(

mi

anmy

fi
T a
- 22— + @) |lg1(A2, AA| - g1(A1, A3)A7],
m ‘m—1
Pi(A1, A)As + a1 f3(g1(A1, A3)H'(A2) — g1(Az, A H'(A)))
_ army
h
( my Al

+(— - —)][gl(Az,A3)A1 - 81(A1,A3)As],
mm; T

a;
m1—1

+ 612)

P'(A1, A2)A;

(hf (A, A)A, — W (A, Ay + fro (2t =Dy,

mm; (my — 1)(m — 1)

P*(A1,A2)B1 = a1R(A1, A2)By + ao(Ric(Ay, B1)A; — Ric(A,, B1)Ay)

T, a
- —( L4 ag)[g(Az, B1)A| — g(Ay, B))A;]
m-m—1

a1Bi(D|A2()A| = Ai(k)Az| + ax(m — 2)| Ax(k)B1 (DA, = Ai(K)Bi(DA; |
T ( a

1+ @)g(Ax BA) — g(Ar. BI)A,]

m*m

(a1 + (m = 2)a2)| Ax()A| = A1(R)AL | By (D)
T aq
- _(m -1

— + @)[g(Az, B)A — (A1, B))Ay),

a\R(By, By)A, + ay(Ric(By, A)By — Ric(B1, A1)B,)

P*(B;, By)A,

T, a
- —( 1 +a2)[g(Bz,A1)Bl - 8(B1,A1)B,],
m 1

P*(B1, By)A1 = a\Ai(K)| Bo(D)B1 — Bi(DBy| + ax(m — 2)| A1 (k)Bo() B — A1 (k)Bi()B, |

- (== + )[g(B2. AB — g(B1. A)B)]

m m—1

(a1 + (m = 2)a2)| Ba())B) - Bi(DBa] A (k)

_ 1( a
m-m

P*(A1, B))A; = aiR(A1, B))A; + ay(Ric(B1, Ay)A; - Ric(A1, A2)B))

T a
- —(=——= + a)Ig(B1, A)A| - g(A1, Ay)B)]
m-m—1

= ai|(H(A1, A)) + A1 ()AL (k) By + Ay(K)Bi(DA, + g(Ar, A2)(H'(By) + Bi()VI))

1 + az)[g(Ab By)B, — g(By,A1)B],

+ | (m = DA (K)B1 (DA, — (' Ric(Ar, As) - %h{l (A1, A2) — g(Ay, A)AL)B) |

T, a
- —( S— az)[g(Bl,Az)Al - 8(A1,A2)B],
m-\m—1

P*(Ay,B1)B; = aiR(A,, B1)B, + az(RiC(Bl, B>)A; — Ric(Ay, BZ)BI)
T a
m(m

1 + az)[g(Bl, By)A| — g(Ay, By)B]
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= a1|(K5(B1, By) + Bi)By(D)A + Bo(DAL(K)By + g(B1, By)(H (A1) + A1 (k) VK|
+ | (*Ric(B), By) - %hg’zwl, By) - g(B1, By)AK)A| — (m — 2)A(k)By() B |

T, a
- —( 1 + Clz)[g(Bl,Bz)Al - g(Ay, By)B,],
m-m-—1

P*(BI,BZ)B3 = a;R(By, By)Bs + Clz(RiC(Bz, B3)B, — Ric(B,, 33)32)

T, a
- —( S az)[g(Bz, B3)B; — g(B1, B3)Bs]
m-m—1

= a)|R(B1, B,)Bs + g(B1, By)H"(By) — g(Ba, By)H (B))|

. m
+ az[(leC(Bz,B3) - 7‘1112‘2(32, B;3) — g(132,133)Ak)B1
2

~ (*Ric(By, Bs) ~ L h(B1, By) — ¢(B1. By)AK))|
g

T a
= (=== +a)lg(B2, By)B1 ~ g(By. By)By]
m-m—1

= a\R(B1, B2)Bs + ay(*Ric(B,, B3)B) - *Ric(By, B3)B,)

sz a
- _1( — + az)[gz(Bz, B3)B; — g2(By, B3)B;]
nmyp ‘nyp — 1

+ a1 f7(g2(B1, BY)H"(B2) - g2((Ba, B3)H'B))

arm 3
_ 2f [15(Bo, By)By — hf} (By. B3)Bo| — af?(g2(B2. B3)B: — g(Bi. By)By)Ak
2
sz a Tf2 a
+ [—1( L+ dz) - —1( — az)][gz(Bz,B3)Bl — 82(B1, B3)Bs],
my “\m, — 1 m'\m-1

P*(B1, B,)B; = Py(B1, B2)B; + i f}(22(B1, By)H'(By) — g2(B1, B)H (B)))

- %(h?(Bz, B3)B; — h?(Bl, 33)32)

p

or mi(m+my—1) my _A_k _
o D= T+ (s — )2 [820B2 BOB: = 2(B1, BBa)

This concludes the proof. O

Theorem 3.2. If
M.g=f781@fig

is a PPF DWPM, then pseudo-curvature tensor is given by

Pj(A1, A2, A3, 0) = a1 £3(1(A2, A3)gi(H'(A1), §) = g1(Ar, As)gi (H'(42), )

+ SR (4 4y, Aa)g (A1 ) — (AL A1 (A2, )

fi
> my(m +my — 1) my Al

G =) * Gy = 7))

[1(A41,49)1 (42, ) = §1(A2, A)g1 (A1, ).

Here, Aj,{ € L(M,) for j € {1,2,3}.
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Proof. 1If M is a PPF DWPM. Consequently, according to Theorem 3.1, we obtain

Pi(A1, A)As = a1 £3(81(A2, A)H'(A)) — g1(A1, A3)H'(42))

amy ;s 1 my(m +m; — 1)
B zfl 2(h! (A1, A3)Az — b (As, A3)A ) + ng[(mmlz(ml - 1)l(m - 1))al
Al
+ (ﬂ - —)][gl(Al,A3)A2 — 81(A2, A3)A4].
mm, T

As a result, we derive

pT(Al,Az,Ag,{) = gl(PT(Al’AZ)A?:v 4)
= a1 £5(81(A2, A1 (H' (A1), 0) - 1(A1, A3)gi (H'(A2), £))
+ dam o (h{1 (A2, A3)g1(A1, Q) — h]' (A1, A3)gi (A, {))

S
5 my(m+m; —1) my _g
* f“T[(mml(ml - D(m - 1)) 1 (mml T )]
[g1(A1,A3)g1(A2, ) — g1(A2, A3)g1(A1, D]

This concludes the proof.

Theorem 3.3. If
M.g=f;6® fig

is a PPF DWPM with the metric, then the base manifold M, is PPF if and only if

a1 13 (g1(A2, A)gi (H'(A)), ) = g1(A1, A3)gi (H'(4),0))

+ az’;:fz (h{‘ (A2,A3)g1(A1,0) — h{l (A1, A3)81(As, 4))

my(m+m; — 1) my Al
Jrf“ZT[(mml(m1 “DHm - 1))"1 * (G ™ 7))

[81(A1, A3)81(A2, ) — 81(A2, A3)81(A1, )] = 0.

Here A;,{ € L(M,) for j € {1,2,3}.

Proof. Let the base manifold M; be PPF. Then
PT(AI’AZ’ A3» {) =0.
It is clear that the proof can be derived from Theorem 3.2.

Theorem 3.4. If
Mg = f781© fig
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is a PPF DWPM, then the PPC of M, is expressed as

Py(B1, By, B3, 1) = a1 £}(82(B1, By)ga(H'(B1), 1) = g2(B1, B2)ga(H (), 1))

2
_ az’;—zlfl(hgz(Bb B3)g2(Ba, 1) = (B, B3)ga(B1, 77))
g milm+my = 1) m_ Ak
At~ = 5 Gy ~ )

[g2(B1, B3)g2(B2, 1) — g2(Ba, B3)g2(B1,1m)],
where Bj,n € L(M>) for j € {1,2,3}.
Proof. 1f M is a PPF DWPM. Thus, according to Theorem 3.1, we obtain

am;

0 = P;(B1, By)Bs + a1 f7(g2(B1, By)H"(Bo) - g2(B1, By)H"(B1)) — ——(hy(Bo, B3)B — h}}(B), B3)B,)

2

my(m+my — 1) ( m; Ak

+ Tf12[ - 7)612][82(32, B3)B| — g2(By, B3)B].

mmy(my — 1)(m — 1) : mm;
Hence, we derive
P(By, By, B3, 1) = g:(P3(B1, B2)Bs, 1))

= a1 f}(g2(B1, B3)g2(H"(B1),n) — g2(B\, B2)ga(H' (By). )

a,m f>
= 21 1 (h§2(31,33)82(32,77) —13(Bs, B3)g2(31’n))
s mm+my — 1) m__ Ak
+7f; [mmz(m2 - D(m - 1)611 " (mmz T )az]

[g2(B1, B3)g2(B2,n) — g2(Ba, B3)g2(B1, )],

and this concludes the proof. O

Theorem 3.5. If
Mg = 1819 fig
is a PPF DWPM, then the fiber manifold M, is considered PPF if and only if

a1/} (g2(B1, B3)ga(H' (B1), 1) = &2(B1, B2)ga(H (B), 1))

2
_ az}?c—zlfl(hf(Bl, B3)g:(By, 1) — hy’ (B, B3)ga(B, 77))
A mim+my—1) m__ Ak
ot — D= 0 * Gy = 7 )

[82(B1, B3)g2(Ba, 1) — g2(Ba, B3)g2(B1,1m)] = 0,
where Bj,n € L(M,) for j € {1,2,3}.
Proof. Assuming that the fiber manifold M, is PPF, it follows that
pT(Bla BZa BSa 77) =0.

This result directly follows from Theorem 3.4. O
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4. Properties of the PPC on the TWPM

In this section, we analyze the PPC for the TWPM
M = M, Xg M.

We present the following theorems related to the PPC of TWPMs, which clarify the relationship
between the warped geometry and its base and fiber manifolds. The PPC and the tensor P* on M and
M; are represented by P, P*, and P}, P;, respectively.

Theorem 4.1. If
Mz=g9 [
isa TWPM with A; € L(M,) and B; € L(M,) for j € {1,2,3}, then the PPC is given by

P*(A1,A)As = Pj(A1,A)A; — myar(h(Ar, A3A| — (A1, A3)A,)

— ax(A (A (A1 + A (KA (K)A,) (4.1)
+ ( mz(m+m1 - 1)

mmy(m — 1)(m; — 1))[81(A2,A3)A1 —g1(A1,A3)A],

P (A1 ADB1 = axim = D(41Bi(0A2 = A B1(0)AY) = — (== + ay) W)
[3(A2, BDA - (A1, B1)Ay),
P*(By, Bo)A1 = a(BiA1(K)By — ByA(K)B1) + ax(my — 1)(A1Bi(K)Ba — A1 By(k)B) ) s
- (= + @,)[3(B2 ADB) — §(B1. A)B). '
m-m—1
P*(Ay, B))Ay = (a; + azmz)(h/f(Al,Az) + A1(k)A2(k))Bl = (my — DaxA2 B (k)A, )
aq .

. T -
- 1RlC(A1’A2)Bl - %( 1 + 612)[8(31,A2)A1 - 81(A1,A2)B],

P*(A1, B1)By = (my — 1 = a)A1By(k)By + f*|ar(A(K)Vk + HY(A)) — azA1 Ak|g2(By, Bo)
+ a|*Ric(By, By)A; — (my — 2)(HA(By, B2) — Bi(k)Ba(k))A, | (4.5)

T, a _
- —( . +az)[f282(Bl,Bz)A1 - 8(A1, By)By],
m-m—1

P*(B1, B,)Bs = Py(B1, B2)Bs + (a1 + ax(my — 2))|(W(B1, Bs) — Bi(k)Bs(K))B,

— (W(Bs, B3) — Ba(k)B3(k))B: | + f*(H'(Ba) + B>(k)Vk)ga(By, Bs) (4.6)
m(m+m,—1) m Ak
2 (mm;(m - 1)(2m2 i (m—n; = " Jaz)l82(B2. B3)B1 — 2(B1. B3)Ba].

Theorem 4.2. If
M.g=2gfg
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is a PPF TWPM, then the PPC is given by

P}(A1,A)As =myar(f(Aq, A3)A| = Hi(A1, A3)Ay) + ao( Aa()As(K)A + A1(R)A3(K)A,)

( my(m+m; — 1)

mm;(m — 1)(m; — 1))[5’1(‘41"43)‘42 — 81(A2, A3)A4],

where Aj,{ € L(M,) for j € {1,2,3}.
Theorem 4.3. If
Mg=g @f%g
is a PPF TWPM, then the PPC of M, is given by
myay((Az, A3)AL = Hi(A1, A3AL) + ax( Ax()A3()A, + A1(K)A3(K)A,)

my(m+m; — 1)
* = Do = )

where A;,{ € L(M,) for j €{1,2,3}.
Theorem 4.4. If

[g1(A1,A3)Ar — g1(Ar,A3)A], =0,

Mg=2f
is a PPF TWPM, then the fiber manifold M, is PPF if and only if
P3(By, By, Bs, 1) = f*(ar + ax(my = 2))|(W5(B2, Bs) = Ba(k)B3(k))ga(B1, 1)
— (K(B1, Bs) = B1(K)B3(K))ga(Ba, m)| = £*(H (B2) + Ba(k)Vk)ga(g2(B1, B3), m)

+ 4 ( m(m+m, —1) (mm—n/llz Ak)az)

mmy(m — 1)(my — 1) T

[82(B1, B3)g2(B2, 1) — §2(Ba, B3)g2(B1, n)l,
where Bj,n € L(M>) for j € {1,2,3}.
Theorem 4.5. If

M, =g @[
is a PPF DWPM, then the fiber manifold M, is PPF if and only if
F(ar + ax(my = 2))|(W(B, Bs) = Ba(k)Bs(K))ga(By, 1) = (H5(B1, Bs) = Bi(k)B3(k))g2(B2, )]
my(m+my — 1) m; Ak
- f4(Hk(Bz) + Bz(k)Vk)gz(gz(Bl ,B3),m) + f4T(mm2(m Do - DY ( )az)
[82(B1, B3)82(B2, ) — 82(Ba, B3)ga(B1,m] = 0,

where Bj,n € L(M>) for j € {1,2,3}.

5. Applications

In this section, we utilize the findings presented in this paper to compute the PPCs for both doubly
and twisted generalized Robertson-Walker space-times.
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5.1. Doubly generalized Robertson-Walker space-times

Let (M, g) be an n-dimensional Riemannian manifold, and let f; and f, be smooth functions defined
on I and M, respectively, where I ¢ R. The DWPM
M= IXx;, M,
which has dimension (m + 1) with metric
g=-fdr'e fig
is called a doubly generalized Robertson-Walker space-times. In this context, the term dt? represents

the standard Euclidean metric defined on the interval /. This model generalizes the concept of doubly
generalized Robertson-Walker space-times. For simplicity, we denote

0
3_t e L(I)

by 0, in the following results.
Employing Lemmas 2.1 and 2.2, Theorem 3.1, we derive the following theorem:
Theorem 5.1. If
M’g = _f22dt2 69flzg
is a doubly generalized Robertson-Walker space-times, then the PPC P* on M is expressed as
p*(ata 01)0; = P*(ata 0)B, =0

P(Bl,Bz)a,—j; (a1 + axm - 2)(BoDB: - By(DB)

T a
—_ _( L 4 az)[g(Bg, 8,)B; — g(B1,0,)B],
m-m—1

P*(8,, B3, = ai|(1§(8,.0,) + (?) )B: + ?Bl(l)x f(H'(By) + Bi(DVDdr|

+ | (m - 2)%81(1)8, — ("Ric(d,. 9,) — fh{' (0, 0,) + £y AldE)B, |

T a
- —(=—— +@)(2(B1,8))0, + f3 B1dr’],
m-m-—1

PGB0 = (181 )+ OB+ 08, + e B0 ()]
+ ax|(*Ric(By. By) - %hgz(Bl,Bz) ~ fif182(B1, B))d, — (m — 2)? BB

- (== + @) f25(B1. B, — 83, BB,
m-m—1

P*(By, By)Bs = Py(B1, By)Bs + a1 f1(g2(B1, BYH (V) — g2(B1, B H (B))
a2m1

g
m Ak

+ ( L —)az][gz(Bz, B3)B; — g2(By, B3)Bs],
mmy T

for Bj € L(M) for j € {1,2,3} and 0, € L(I).

mi(m+m, —1)

(/’lfz(V B3)B, — h;z(Bl’ B3)V) * Tﬁ2[mm2(m2 — Dim -1
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5.2. Twisted generalized Robertson-Walker space-times

Let (M, g) be an n-dimensional Riemannian manifold, and let
f:IxM—(0,1)
be a smooth function, where I C R. The manifold
M=1x;M,g=—df* ® f’g

with dimension (m + 1) is called a twisted generalized Robertson-Walker space-times. In this context,
the term df* represents the standard Euclidean metric defined on the interval /. This construction
generalizes the notion of twisted generalized Robertson-Walker space-times. For simplicity, in the
following results, we will use d, to represent

0

Employing Lemmas 2.1 and 2.2, Theorem 3.1, we derive the following theorem.

Theorem 5.2. If
M,g=-fldf ® f’g

is a twisted generalized generalized Robertson-Walker space-times, then, the PPC P* on M is expressed
as

P*(at’ at)at = P*(at’ 5t)Bl =0,

P*(By, B,), = m%(Ble — ByBy) + ax(my — 1)3,(B1(k)B, - By(k)B,)

T a
- —(=—= +)[2(B2,8,)B\ — §(B1,0,)B1],
m-m— 1

12
%) )Bl — (my — 1)ax8; B, (k) — 'Ric(0;,0,)B,
_1( = +az)[f2§(Bl,Y)6,+Bldt2],

m 1

P*(8,, B)Y = (a1 + aymy)(W{(X, ) + (

P*(8,, B))B, = (my = 1 = a1)d,(By(k)B)) + f* [al(;iwc + H(0))) - 0, Ak|f3(B1, By)

1
+ as|"Ric(B1, B2)d, — (my — 2)(H5(By, By) — Bi(k)B(k))d)]

~ (= + @) 24(B1. B)d, — #(X. BB .
m-m—1
P*(By, By)Bs = Py(B1, By)Bs + (a1 + ax(my - 2))|(W5(B1. Bs) - Bi(k)B3(k))B,
— (W5(B2, Bs) = Ba(k)B3(K))B: | + f2(H“(B2) + Ba(k)Vk)ga(By, B3)

my(m+my —1) m, Ak
+ f? (mmz(m v 1)(11 + (m_mz - ?)02)[8(32, B3)B| — g(By, B3)B;],

for Bj € L(M) for j € {1,2,3} and 0, € L(I).
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6. Conclusions

This study focused on the pseudo-projective curvature tensor in relation to doubly and twisted
warped product manifolds. Key findings demonstrated how the pseudo-projective curvature tensor
interacted with both the base and fiber manifolds. Additionally, the study emphasized the geometric
characteristics of the base and fiber manifolds as shaped by the pseudo-projective tensor. The
investigation was also expanded to include an analysis of the pseudo-projective curvature tensor in
generalized doubly and twisted generalized Robertson-Walker space-times.

An important avenue for future research would be to explore further properties, including a
detailed analysis of the relationship between the pseudo-projective curvature tensor and Killing vector
fields, which encapsulate the manifold’s symmetries, and to examine how these symmetries impact
the curvature.
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