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1. Introduction

Impulsive differential equations arise in the real world, such as in biology, physics, population
dynamics and economics [1–3]. It is a basic mathematical tool for studying evolution processes that
suddenly change their states at certain moments. For the theory and application of the impulsive
differential equation, readers can refer to references [4–8].

To the best of our knowledge, to obtain solution sequences that uniformly converge to the minimal
and maximal solutions of the impulsive differential equation, the upper and lower solutions coupled
with the monotone iterative technique are common methods [9–11]. The basic idea is that by using
the upper and lower solutions as an initial iteration, one can construct monotone sequences from a
corresponding linear system, and these monotone sequences can monotonically converge to the
minimal and maximal solutions of the nonlinear system [9–11]. Moreover, in order to obtain a faster
convergent solution sequence, such as quadratic convergence, many scholars use the
quasilinearization (QLM) method [12]. The quasilinearization method is a very powerful
approximation technique, whose iterations are constructed to yield monotonically and rapidly
convergent solution sequences, which has given many excellent results [13–16]. For the application of
the QLM method in ordinary differential equations, one can see [17]. For the application of the QLM

https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.2025002


22

method in functional differential equations, readers can see reference [18].

Note that, traditionally, the form of the impulsive condition is usually supposed as
△y(tk) = Ik(y(tk)), i.e., the state at impulse point tk depends only on the left side of limit of y(tk) [1–3].
Many non-instantaneous impulse conditions are proposed [19–21]. For example, Tariboon develop an
impulsive integral condition in the form of △y(tk) = Ik

(∫ tk
tk−τk

y(s)ds −
∫ tk−1+σk−1

tk−1
y(s)ds

)
and use the

monotonic iteration technique to discuss the solutions of a class of delay differential equations under
this condition [22]. In fact, the non-instantaneous integral impulse condition is not abrupt and is
dependent on past states and evolution processes; the non-instantaneous integral impulse condition
takes into account that the time of pulse action cannot be ignored relative to the development process,
which is closer to the physical process and improves the accuracy and applicability of the
model [19–22]. Therefore, non-instantaneous pulse differential equations are an extension of classical
pulse differential equations, which can handle more complex pulse phenomena and has more practical
applications in many fields [19–22]. However, we note that there is limited study on using the QLM
method to consider the high-order convergence of solutions for differential equations under
non-instantaneous integral impulse conditions.

Based on the above background, we propose an impulsive integral condition in the form of
△y(tk) = Ik

(∫ tk−pk

tk−1+qk−1
y(s)ds

)
. Under this condition, we discuss the existence, uniformly convergence

and quadratic convergence of solution sequences for a class of nonlinear first order ordinary
differential equations with anti-periodic boundary values. Interestingly, we can effectively obtain a
quadratic convergence solution sequence in this impulsive ordinary differential equation. More
importantly, the new results are more abundant than those in other studies, which cannot be obtained
in functional differential equations. The specific differential equations are described as follows:


y′(t) = f (t, y(t)), t , tk, t ∈ J = [0,T ],
△y(tk) = Ik

(∫ tk−pk

tk−1+qk−1
y(s)ds

)
, k = 1, 2, · · · ,m,

y(0) = −y(T ),
(1)

where f ∈ C(J × R,R), 0 < t1 < t2 < · · · < tm < T, Ik ∈ C(R,R), 0 < qk−1 ≤ (tk − tk−1)/2, 0 ≤ pk ≤

(tk − tk−1)/2, △y(tk) = y(t+k ) − y(t−k ), k = 1, 2, · · · ,m.We denote a = maxk=1,2,··· ,m{tk − tk−1}.

In order to define the solution for (1), we introduce the following spaces [23–26]: Let
J− = J+\{t1, t2, · · · , tm}; PC(J+,R) = {y : J+ → R; y(t) is continuous everywhere except for some tk, at
which y(t+k ) and y(t−k ) exist and y(t−k ) = y(tk), k = 1, · · · ,m

}
; PC′(J+,R) = {y ∈ PC(J+,R); y′ is

continuous on J−, where y′(0+), y′(T−), y′(t+k ) and y′(t−k ) exist, k = 1, 2, · · · ,m};
E0 = {y ∈ PC(J+,R) : y(t) = y(0), t ∈ [−r, 0]}, then E0 is a Banach space with the norm
∥y∥E0 = sup

t∈J+
|y(t)|; E = PC(J+,R)

⋂
PC′(J+,R). Then a function y ∈ E is called a solution of boundary

value problem (BVP) (1) if it satisfies (1).

In Section 2, we discuss the existence and uniqueness of the solution for a linear problem, and a key
comparison principle is established. In Section 3, we obtain the monotonic convergence and quadratic
convergence of solution sequences for BVP(1) by using the QLM method and the monotone iterative
technique. In Section 4, we give a series of corollaries for the major results.
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2. Some key lemmas for a linear system

Now, we consider the following linear system:
y′(t) + My(t) = σ(t), t , tk, t ∈ J = [0,T ],
△y(tk) = −Lk

(∫ tk−pk

tk−1+qk−1
y(s)ds

)
+ Ik

(∫ tk−pk

tk−1+qk−1
η(s)ds

)
+Lk

(∫ tk−pk

tk−1+qk−1
η(s)ds

)
, k = 1, 2, · · · ,m,

y(0) = −y(T ),

(2)

where M > 0, Lk ≤ 0, and σ(t) ∈ E0, η(t) ∈ E.
Below, we provide the expression and uniqueness proofs for the solution of system (2) in

Lemmas 2.1 and 2.2, respectively. An important comparative principle about system (2) is given in
Lemma 2.3. These three lemmas are the key conclusions that prove the main results in Section 3.
Lemma 2.1. y ∈ E is a solution of (2) if and only if y ∈ E0 satisfying:

y(t) =
∫ T

0
G(t, s)σ(s)ds +

m∑
k=1

G(t, tk)
[
−Lk

(∫ tk−pk

tk−1+qk−1

y(s)ds
)

+ Ik

(∫ tk−pk

tk−1+qk−1

η(s)ds
)
+ Lk

(∫ tk−pk

tk−1+qk−1

η(s)ds
)]
, (3)

where

G (t, s) =
1

eMT + 1

{
eM(T−t+s), 0 ≤ s ≤ t ≤ T,
−eM(s−t), 0 ≤ t < s ≤ T.

Proof. Setting y(t) is a solution of (2). Letting u(t) = eMty(t), then

∆u(tk) = eMtk∆y(tk),

and
u′(t) = eMtσ(t). (4)

Integrating (4) from 0 to t1, we obtain:

u(t1) − u(0) =
∫ t1

0
eMsσ(s)ds.

Once more integrating (4) from t1 to t, where t ∈ (t1, t2], then

u(t) = u(t+1 ) +
∫ t

t1
eMsσ(s)ds = u(0) +

∫ t

0
eMsσ(s)ds

+ eMt1

[
−L1

(∫ t1−p1

t0+q0

y(s)ds
)
+ I1

(∫ t1−p1

t0+q0

η(s)ds
)
+ L1

(∫ t1−p1

t0+q0

η(s)ds
)]
.

Repeating the above process, then for all t ∈ J, we have

u(t) = u(0) +
∫ t

0
eMsσ(s)ds +

∑
0<tk<t

eMtk

[
−Lk

(∫ tk−pk

tk−1+qk−1

y(s)ds
)
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+ Ik

(∫ tk−pk

tk−1+qk−1

η(s)ds
)
+ Lk

(∫ tk−pk

tk−1+qk−1

η(s)ds
)]
.

Since u(0) = y(0), so

eMty(t) = y(0) +
∫ t

0
eMsσ(s)ds +

∑
0<tk<t

eMtk

[
−Lk

(∫ tk−pk

tk−1+qk−1

y(s)ds
)

+ Ik

(∫ tk−pk

tk−1+qk−1

η(s)ds
)
+ Lk

(∫ tk−pk

tk−1+qk−1

η(s)ds
)]
.

Therefore, by the boundary value condition y(0) = −y(T ), we have

y(0) = −(eMT + 1)−1
{∫ T

0
eMsσ(s)ds +

∑
0<tk<T

eMtk

[
−Lk

(∫ tk−pk

tk−1+qk−1

y(s)ds
)

+ Ik

(∫ tk−pk

tk−1+qk−1

η(s)ds
)
+ Lk

(∫ tk−pk

tk−1+qk−1

η(s)ds
)]}
.

Then,

y(t) = −(eMT + 1)−1


∫ T

0
eM(s−t)σ(s)ds +

∑
0≤tk<T

eM(tk−t)
[
−Lk

(∫ tk−pk

tk−1+qk−1

y(s)ds
)

+ Ik

(∫ tk−pk

tk−1+qk−1

η(s)ds
)
+ Lk

(∫ tk−pk

tk−1+qk−1

η(s)ds
)]

− (eMT + 1)

∫ t

0
eM(s−t)σ(s)ds −

∑
0<tk<t

eM(tk−t)
[
−Lk

(∫ tk−pk

tk−1+qk−1

y(s)ds
)

+ Ik

(∫ tk−pk

tk−1+qk−1

η(s)ds
)
+ Lk

(∫ tk−pk

tk−1+qk−1

η(s)ds
)]]}

= −(eMT + 1)−1


∫ T

t
eM(s−t)σ(s)ds +

∑
t≤tk<T

eM(tk−t)
[
−Lk

(∫ tk−pk

tk−1+qk−1

y(s)ds
)

+ Ik

(∫ tk−pk

tk−1+qk−1

η(s)ds
)
+ Lk

(∫ tk−pk

tk−1+qk−1

η(s)ds
)]

−

∫ t

0
eM(T+s−t)σ(s)ds −

∑
0<tk<t

eM(T+tk−t)
[
−Lk

(∫ tk−pk

tk−1+qk−1

y(s)ds
)

+ Ik

(∫ tk−pk

tk−1+qk−1

η(s)ds
)
+ Lk

(∫ tk−pk

tk−1+qk−1

η(s)ds
)]}
.

Since,
m∑

k=1

G(t, tk)
[
−Lk

(∫ tk−pk

tk−1+qk−1

y(s)ds
)
+ Ik

(∫ tk−pk

tk−1+qk−1

η(s)ds
)

+ Lk

(∫ tk−pk

tk−1+qk−1

η(s)ds
)]
=

∑
0<tk<T

G(t, tk)
[
−Lk

(∫ tk−pk

tk−1+qk−1

y(s)ds
)
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+ Ik

(∫ tk−pk

tk−1+qk−1

η(s)ds
)
+ Lk

(∫ tk−pk

tk−1+qk−1

η(s)ds
)]

=
∑

t≤tk<T

G(t, tk)
[
−Lk

(∫ tk−pk

tk−1+qk−1

y(s)ds
)
+ Ik

(∫ tk−pk

tk−1+qk−1

η(s)ds
)

+ Lk

(∫ tk−pk

tk−1+qk−1

η(s)ds
)]

+
∑

0<tk<t

G(t, tk)
[
−Lk

(∫ tk−pk

tk−1+qk−1

y(s)ds
)
+ Ik

(∫ tk−pk

tk−1+qk−1

η(s)ds
)

+ Lk

(∫ tk−pk

tk−1+qk−1

η(s)ds
)]
.

Finally, we obtain that

y(t) =
∫ T

0
G(t, s)σ(s)ds +

m∑
k=1

G(t, tk)
[
−Lk

(∫ tk−pk

tk−1+qk−1

y(s)ds
)

+ Ik

(∫ tk−pk

tk−1+qk−1

η(s)ds
)
+ Lk

(∫ tk−pk

tk−1+qk−1

η(s)ds
)]
, t ∈ J.

I.e., y(t) is also a solution of (3).
On the other hand, we suppose that y(t) is a solution of (3), then obviously y(t) ∈ E. By direct

computation, we have 
y′(t) + My(t) = σ(t), t , tk, t ∈ J,
△y(tk) = −Lk

(∫ tk−pk

tk−1+qk−1
y(s)ds

)
+ Ik

(∫ tk−pk

tk−1+qk−1
η(s)ds

)
+Lk

(∫ tk−pk

tk−1+qk−1
η(s)ds

)
, k = 1, 2, · · · ,m.

Because of G(0, s) = −G(T, s), s ∈ J, thus y(0) = −y(T ). Therefore, y(t) is also a solution of (2). The
proof is complete. □
Lemma 2.2. Suppose that there exist constants M > 0, Lk ≤ 0,0 < qk−1 ≤ (tk − tk−1)/2, 0 ≤ pk ≤

(tk − tk−1)/2, k = 1, 2, · · · ,m, such that:

eMT

eMT + 1

m∑
k=1

|Lk|(a − (pk + qk−1)) < 1. (5)

Then (2) has a unique solution.
Proof. For any y ∈ E0, we define an operator F:

(Fy)(t) =
∫ T

0
G(t, s)σ(s)ds +

m∑
k=1

G(t, tk)
[
−Lk

(∫ tk−pk

tk−1+qk−1

y(s)ds
)

+ Ik

(∫ tk−pk

tk−1+qk−1

η(s)ds
)
+ Lk

(∫ tk−pk

tk−1+qk−1

η(s)ds
)]
.

Clearly, (Fy) ∈ E0. Since,

max
t∈[0,T ],s∈[0,T ]

|G(t, s)| =
eMT

(eMT + 1)
,
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then for any x, y ∈ E0, we have

∥Fx − Fy∥E0 = sup
t∈J

∣∣∣∣∣∣∣
m∑

k=1

G(t, tk)
[
−Lk

(∫ tk−pk

tk−1+qk−1

x(s)ds
)]

−

m∑
k=1

G(t, tk)
[
−Lk

(∫ tk−pk

tk−1+qk−1

y(s)ds
)]∣∣∣∣∣∣∣

≤

sup
t∈J
|G(t, tk)|

m∑
k=1

|Lk|(a − (pk + qk−1)

 ∥x − y∥E0

=

 eMT

eMT + 1

m∑
k=1

|Lk|(a − (pk + qk−1))

 ∥x − y∥E0 .

So by the condition (5) and Banach fixed point theorem, we know that F has an unique fixed point
y∗ ∈ E0. Then, by Lemma 2.1, y∗ is also a unique solution of (2). The proof is complete. □
Lemma 2.3. (Comparison principle) Suppose that there exist constants M > 0, Lk ≤ 0,0 < qk−1 ≤

(tk − tk−1)/2, 0 ≤ pk ≤ (tk − tk−1)/2, k = 1, 2, · · · ,m, such that y ∈ E satisfying:
y′(t) + My(t) ≤ 0, t , tk, t ∈ J = [0,T ],
△y(tk) ≤ −Lk

(∫ tk−pk

tk−1+qk−1
y(s)ds

)
, k = 1, 2, · · · ,m,

y(0) ≤ 0.

Then y(t) ≤ 0 for all t ∈ J.
Proof. Set u(t) = eMty(t), then

u′(t) ≤ 0, t , tk, t ∈ J = [0,T ],
△u(tk) ≤ −Lk

(∫ tk−pk

tk−1+qk−1
e−M(s−tk)u(s)ds

)
, k = 1, 2, · · · ,m,

u(0) ≤ 0.

Clearly, u(t) is a non-increasing function, so u(t) ≤ 0. Since u(t) and y(t) have the same sign, thus
y(t) ≤ 0. The proof is complete. □

3. Major results

First, we give the definition of upper and lower solutions. Then, we prove our major results by
using the upper and lower solutions coupled with the monotone iterative technique and the method of
quasilinearization.
Definition 3.1. A function α0 ∈ E

⋂
E0 is called a lower solution of BVP(1) if

α0
′(t) ≤ f (t, α0(t)), t , tk, t ∈ J = [0,T ],
△α0(tk) ≤ Ik

(∫ tk−pk

tk−1+qk−1
α0(s)ds

)
, k = 1, 2, · · · ,m,

α0(0) ≤ −β0(T ).

Definition 3.2. A function β0 ∈ E
⋂

E0 is called an upper solution of BVP (1) if
β0
′(t) ≥ f (t, β0(t)), t , tk, t ∈ J = [0,T ],
△β0(tk) ≥ Ik

(∫ tk−pk

tk−1+qk−1
β0(s)ds

)
, k = 1, 2, · · · ,m,

β0(0) ≥ −α0(T ).
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Theorem 3.1. Suppose that the following assumptions hold:
(A1): The functions α0(t), β0(t) are lower and upper solutions of the BVP (1) respectively, such that

α0(t) ≤ β0(t) on J+;
(A2): The function f satisfies fy(t, y(t)) < 0 and the quadratic form is given by

K( f (t, y)) = (y − u)2 fyy(t, y1) ≤ 0,

where α0 ≤ u ≤ y1 ≤ y ≤ β0, t , tk, t ∈ J;
(A3): For k = 1, 2, · · · ,m, all functions Ik satisfy I

′

k(.) ≥ 0 and I
′′

k (.) ≥ 0.
Then, there are two monotone sequences {αn(t)} and {βn(t)} of lower and upper solutions

respectively, which uniformly and quadratically converge to the extreme solutions of the BVP (1) in
[α0, β0].
Proof. Using the Taylor′s theorem and (A2), we have

f (t, y(t)) ≤ Q(t, y(t),U(t)),

where Q(t, y(t),U(t)) = f (t, u(t))+ fy(t, u(t))(y(t)−u(t)). Similarly, using the Taylor′s theorem together
with (A3), we get that

Ik
( ∫ tk−pk

tk−1+qk−1

x(s)ds
)
− Ik

(∫ tk−pk

tk−1+qk−1

y(s)ds
)

≥ I
′

k

(∫ tk−pk

tk−1+qk−1

y(s)ds
) (∫ tk−pk

tk−1+qk−1

(x(s) − y(s))ds
)
,

where α0(tk) ≤ y(tk) ≤ x(tk) ≤ β0(tk).
Now, we give two sequences αi(t) and βi(t) satisfying:

αi
′(t) − fy(t, αi−1(t))αi(t) = f (t, αi−1(t)) − fy(t, αi−1(t))αi−1(t), t , tk, t ∈ J = [0,T ],
△αi(tk) = Ik

(∫ tk−pk

tk−1+qk−1
αi−1(s)ds

)
+ I

′

k

(∫ tk−pk

tk−1+qk−1
αi−1(s)ds

) (∫ tk−pk

tk−1+qk−1
(αi(s) − αi−1(s))ds

)
,

k = 1, 2, · · · ,m,
αi(0) = −βi−1(T ).

(6)


βi
′(t) − fy(t, αi−1(t))βi(t) = f (t, βi−1(t)) − fy(t, αi−1(t))βi−1(t), t , tk, t ∈ J = [0,T ],
△βi(tk) = Ik

(∫ tk−pk

tk−1+qk−1
βi−1(s)ds

)
+ I

′

k

(∫ tk−pk

tk−1+qk−1
αi−1(s)ds

) (∫ tk−pk

tk−1+qk−1
(βi(s) − βi−1(s))ds

)
,

k = 1, 2, · · · ,m,
βi(0) = −αi−1(T ).

(7)

From Lemmas 2.1 and 2.2, we can see that both (6) and (7) have a unique solution. We complete our
proof in five steps.
Step 1. We proof that αi ≤ αi+1 and βi ≤ βi−1, i = 0, 1, 2, · · · .

Let i = 1 in (6), then α1 satisfies:
α1
′(t) − fy(t, α0(t))α1(t) = f (t, α0(t)) − fy(t, α0(t))α0(t), t , tk, t ∈ J = [0,T ],
△α1(tk) = Ik

(∫ tk−pk

tk−1+qk−1
α0(s)ds

)
+ I

′

k

(∫ tk−pk

tk−1+qk−1
α0(s)ds

) (∫ tk−pk

tk−1+qk−1
(α1(s) − α0(s))ds

)
,

k = 1, 2, · · · ,m,
α1(0) = −β0(T ).
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To prove, we set p(t) = α0(t) − α1(t), then

p
′

(t) − fy(t, α0(t))p(t) = α
′

0(t) − α
′

1(t) − fy(t, α0(t))α0(t) + fy(t, α0(t))α1(t)
≤ f (t, α0(t)) − fy(t, α0(t))α1(t) − f (t, α0(t)) + fy(t, α0(t))α0(t) − fy(t, α0(t))α0(t) + fy(t, α0(t))α1(t)
= 0,

∆p(tk) = ∆α0(tk) − ∆α1(tk)

≤ Ik

(∫ tk−pk

tk−1+qk−1

α0(s)ds
)
− Ik

(∫ tk−pk

tk−1+qk−1

α0(s)ds
)

− I
′

k

(∫ tk−pk

tk−1+qk−1

α0(s)ds
) (∫ tk−pk

tk−1+qk−1

(α1(s) − α0(s))ds
)

= I
′

k

(∫ tk−pk

tk−1+qk−1

α0(s)ds
) (∫ tk−pk

tk−1+qk−1

p(s)ds
)
,

p(0) ≤ 0.

Thus, by Lemma 2.3, we know that p(t) ≤ 0, i.e., α0 ≤ α1. By the same way, we can show that β1 ≤ β0.
Then by the mathematic induction, we get that αi ≤ αi+1 and βi ≤ βi−1, i = 0, 1, 2, · · · .
Step 2. We show that for all t ∈ J, α1 ≤ β1.

Letting p(t) = α1(t) − β1(t), then by (A1) − (A3), we obtain

p
′

(t) − fy(t, α0(t))p(t) = α
′

1(t) − β
′

1(t) − fy(t, α0(t))α1(t) + fy(t, α0(t))β1(t)
= f (t, α0(t)) − fy(t, α0(t))α0(t) − f (t, β0(t)) + fy(t, α0(t))α1(t) + fy(t, α0(t))β0(t)
− fy(t, α0(t))β1(t) − fy(t, α0(t))α1(t) + fy(t, α0(t))β1(t)
= f (t, α0(t)) − f (t, β0(t)) + fy(t, α0(t))(β0(t) − α0(t)) ≤ 0,

∆p(tk) = ∆α1(tk) − ∆β1(tk)

= Ik

(∫ tk−pk

tk−1+qk−1

α0(s)ds
)
− Ik

(∫ tk−pk

tk−1+qk−1

β0(s)ds
)

+ I
′

k

(∫ tk−pk

tk−1+qk−1

α0(s)ds
) (∫ tk−pk

tk−1+qk−1

(α1(s) − α0(s))ds
)

− I
′

k

(∫ tk−pk

tk−1+qk−1

α0(s)ds
) (∫ tk−pk

tk−1+qk−1

(β1(s) − β0(s))ds
)

≤ I
′

k

(∫ tk−pk

tk−1+qk−1

α0(s)ds
) (∫ tk−pk

tk−1+qk−1

p(s)ds
)
,

p(0) ≤ 0.

Thus, we have p(t) ≤ 0 by Lemma 2.3, i.e., α1 ≤ β1.
Step 3. From the above two steps, we get two monotone sequences αi(t) and βi(t), such that

α0(t) ≤ α1(t) ≤ · · · ≤ αn(t) ≤ · · · ≤ βn(t) ≤ · · · ≤ β1(t) ≤ β0(t), t ∈ J,

where αi(t), βi(t) ∈ E
⋂

E0 and satisfies (6) and (7), respectively.
Because it is easy to prove that αn(t), βn(t) are uniformly bounded and equi-continuous, so by the

Ascoli-Arzela criterion [27], we know that there exist two functions r(t),ρ(t) such that the following
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expression holds for all t ∈ J:

limn→∞αn(t) = r(t), limn→∞βn(t) = ρ(t), uniformly on J.

Clearly, by letting i→ ∞ in (6) and (7), we know that r(t) and ρ(t) are two solutions of (1).
Step 4. We prove that r(t) and ρ(t) are the minimal solution and maximal solution of (1), respectively.

Set x(t) is an any solution of (1), and α0(t) ≤ x(t) ≤ β0(t). We suppose that αn(t) ≤ x(t) ≤ βn(t)
holds for a positive integer n, then we prove that αn+1(t) ≤ x(t) ≤ βn+1(t).

Let p(t) = αn+1(t) − x(t), then

p
′

(t) − fy(t, αn(t))p(t) = α
′

n+1(t) − x′(t) − fy(t, αn(t))αn+1(t) + fy(t, αn(t))x(t)
= f (t, αn(t)) − fy(t, αn(t))αn(t) − f (t, x(t)) − fy(t, αn(t))αn+1(t) + fy(t, αn(t))αn+1(t)
+ fy(t, αn(t))x(t) ≤ 0,

∆p(tk) = ∆αn+1(tk) − ∆x(tk)

= Ik

(∫ tk−pk

tk−1+qk−1

αn(s)ds
)
− Ik

(∫ tk−pk

tk−1+qk−1

x(s)ds
)

+ I
′

k

(∫ tk−pk

tk−1+qk−1

αn(s)ds
) (∫ tk−pk

tk−1+qk−1

(αn+1(s) − αn(s))ds
)

= Ik

(∫ tk−pk

tk−1+qk−1

αn(s)ds
)
− Ik

(∫ tk−pk

tk−1+qk−1

x(s)ds
)

+ I
′

k

(∫ tk−pk

tk−1+qk−1

αn(s)ds
) (∫ tk−pk

tk−1+qk−1

(x(s) − αn(s))ds
)

+ I
′

k

(∫ tk−pk

tk−1+qk−1

αn(s)ds
) (∫ tk−pk

tk−1+qk−1

p(s)ds
)

≤ I
′

k

(∫ tk−pk

tk−1+qk−1

αn(s)ds
) (∫ tk−pk

tk−1+qk−1

p(s)ds
)
,

p(0) ≤ 0.

Thus, by Lemma 2.3, we get that p(t) ≤ 0, i.e., αn+1 ≤ x. Similarly, we know that x ≤ βn+1. Therefore,
αn+1(t) ≤ x(t) ≤ βn+1(t) holds. Finally, by letting n→ ∞, we can see that r(t) ≤ x(t) ≤ ρ(t).
Step 5. We show that the two above monotone sequences satisfy quadratic convergence.

No lose generally, we show only that αn satisfies quadratic convergence.
Letting pn(t) = r(t) − αn(t) ≥ 0, we consider the following problem:

p
′

n(t) − fy(t, αn−1(t))pn(t) = r′(t) − α
′

n(t) − fy(t, αn−1(t))r(t) + fy(t, αn−1(t))αn(t)
= f (t, r(t)) − fy(t, αn−1(t))αn(t) − f (t, αn−1(t)) + fy(t, αn−1(t))αn−1(t)
− fy(t, αn−1(t))r(t) + fy(t, αn−1(t))αn(t)

=
1
2

p2
n−1(t) fyy(t, y1),

where αn−1(t) ≤ y1 ≤ r(t),

∆pn(tk) = ∆r(tk) − ∆αn(tk)
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= Ik

(∫ tk−pk

tk−1+qk−1

r(s)ds
)
− Ik

(∫ tk−pk

tk−1+qk−1

αn−1(s)ds
)

− I
′

k

(∫ tk−pk

tk−1+qk−1

αn−1(s)ds
) (∫ tk−pk

tk−1+qk−1

(r(s) − αn−1(s))ds
)

+ I
′

k

(∫ tk−pk

tk−1+qk−1

αn−1(s)ds
) (∫ tk−pk

tk−1+qk−1

pn(s)ds
)

= I
′

k

(∫ tk−pk

tk−1+qk−1

αn−1(s)ds
) (∫ tk−pk

tk−1+qk−1

pn(s)ds
)

+
1
2

I
′′

k (ξ)
(∫ tk−pk

tk−1+qk−1

pn−1(s)ds
)2

,

pn(0) = −pn(T ) + η, η = pn−1(T ) − αn(T ),

where
∫ tk−pk

tk−1+qk−1
αn−1(s)ds < ξ <

∫ tk−pk

tk−1+qk−1
r(s)ds.

Then, by Lemma 2.1, the solution of the above problem is:

pn(t) =
∫ T

0
G(t, s)[

1
2

p2
n−1(s) fyy(s, y1)]ds +

eM(T )−M(t)

1 + eM(T ) η

+

m∑
k=1

G(t, tk)
[
I
′

k

(∫ tk−pk

tk−1+qk−1

αn−1(s)ds
) (∫ tk−pk

tk−1+qk−1

(pn(s))ds
)

+
1
2

I
′′

k (ξ)
(∫ tk−pk

tk−1+qk−1

pn−1(s)ds
)2 ,

where M(t) = −
∫ t

0
fy(u, αn−1(u))du. Letting | fyy| ≤ δ1 and we take the norm of pn−1 on J by ∥pn−1∥E0 =

maxt∈J{pn−1(t)}. Since (
∫ tk−pk

tk−1+qk−1
pn−1(s)ds)2 ≤ (a− (pk+qk−1))2∥pn−1∥

2
E0

, then by the expression of pn(t),
we know that there is a constant λ such that

∥pn∥E0 ≤ λ∥pn−1∥
2
E0
.

Thus, pi is quadratic convergence. This completes the proof. □

4. Several corollaries

In this section, we provide a series of corollaries about the existence and convergence of solutions
for system (1). It is interesting to note that it is difficult to obtain similar corollaries for the solution
sequence of functional differential equations [18]. Therefore, the major results we obtained regarding
system (1) may have broader applicability. Since the proof approaches are similar to that in Sections 2
and 3, we provide only relevant results and omit proof processes.

AIMS Mathematics Volume 10, Issue 1, 21–37.



31

4.1. Corollary 1

We consider the following linear problem:
y′(t) + My(t) = σ(t), t , tk, t ∈ J = [0,T ],
△y(tk) = Lk

(∫ tk−pk

tk−1+qk−1
y(s)ds

)
+ Ik

(∫ tk−pk

tk−1+qk−1
η(s)ds

)
−Lk

(∫ tk−pk

tk−1+qk−1
η(s)ds

)
, k = 1, 2, · · · ,m,

y(0) = −y(T ),

(8)

where M > 0, Lk ≥ 0, and σ(t) ∈ E0, η(t) ∈ E.
Lemma 4.1. y ∈ E is a solution of (8) if and only if y ∈ E0 satisfying:

y(t) =
∫ T

0
G(t, s)σ(s)ds +

m∑
k=1

G(t, tk)
[
Lk

(∫ tk−pk

tk−1+qk−1

y(s)ds
)

+ Ik

(∫ tk−pk

tk−1+qk−1

η(s)ds
)
− Lk

(∫ tk−pk

tk−1+qk−1

η(s)ds
)]
,

where

G (t, s) =
1

eMT + 1

{
eM(T−t+s), 0 ≤ s ≤ t ≤ T,
−eM(s−t), 0 ≤ t < s ≤ T.

Lemma 4.2. Suppose that there exist constants M > 0, Lk ≥ 0,0 < qk−1 ≤ (tk − tk−1)/2, 0 ≤ pk ≤

(tk − tk−1)/2, k = 1, 2, · · · ,m, such that:

eMT

eMT + 1

m∑
k=1

Lk(a − (pk + qk−1)) < 1.

Then (8) has a unique solution.
Lemma 4.3. Suppose that there exist constants M > 0, Lk ≥ 0,0 < qk−1 ≤ (tk − tk−1)/2, 0 ≤ pk ≤

(tk − tk−1)/2, k = 1, 2, · · · ,m, such that y ∈ E satisfying:
y′(t) + My(t) ≤ 0, t , tk, t ∈ J = [0,T ],
△y(tk) ≤ Lk

(∫ tk−pk

tk−1+qk−1
y(s)ds

)
, k = 1, 2, · · · ,m,

y(0) ≤ 0.

Then y(t) ≤ 0 for all t ∈ J.
Theorem 4.1. Suppose that the following assumptions hold:

(A1): The functions α0(t), β0(t) are lower and upper solutions of the BVP (1) respectively, such that
α0(t) ≤ β0(t) on J+;

(A2): The function f satisfies fy(t, y(t)) < 0 and the quadratic form is given by

K( f (t, y)) = (y − u)2 fyy(t, y1) ≤ 0,

where α0 ≤ u ≤ y1 ≤ y ≤ β0, t , tk, t ∈ J.
(A3): For k = 1, 2, · · · ,m, all functions Ik satisfies I

′

k(.) ≤ 0 and I
′′

k (.) ≥ 0.
Then, there exist two monotone sequences {αn(t)} and {βn(t)} of lower and upper solutions

respectively, which uniformly and quadratically converge to the extreme solutions of the BVP (1) in
[α0, β0].
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4.2. Corollary 2

We consider the following linear problem:
y′(t) − My(t) = σ(t), t , tk, t ∈ J = [0,T ],
△y(tk) = −Lk

(∫ tk−pk

tk−1+qk−1
y(s)ds

)
+ Ik

(∫ tk−pk

tk−1+qk−1
η(s)ds

)
+Lk

(∫ tk−pk

tk−1+qk−1
η(s)ds

)
, k = 1, 2, · · · ,m,

y(0) = −y(T ),

(9)

where M > 0, Lk ≤ 0, and σ(t) ∈ E0, η(t) ∈ E.
Lemma 4.4. y ∈ E is a solution of (9) if and only if y ∈ E0 satisfies:

y(t) =
∫ T

0
G(t, s)σ(s)ds +

m∑
k=1

G(t, tk)
[
−Lk

(∫ tk−pk

tk−1+qk−1

y(s)ds
)

+ Ik

(∫ tk−pk

tk−1+qk−1

η(s)ds
)
+ Lk

(∫ tk−pk

tk−1+qk−1

η(s)ds
)]
,

where

G (t, s) =
1

e−MT + 1

{
e−M(T−t+s), 0 ≤ s ≤ t ≤ T,
−e−M(s−t), 0 ≤ t < s ≤ T.

Lemma 4.5. Suppose that there exist constants M > 0, Lk ≤ 0,0 < qk−1 ≤ (tk − tk−1)/2, 0 ≤ pk ≤

(tk − tk−1)/2, k = 1, 2, · · · ,m, such that:

e−MT

e−MT + 1

m∑
k=1

|Lk|(a − (pk + qk−1)) < 1.

Then, (9) has a unique solution.
Lemma 4.6. Suppose that there exist constants M > 0, Lk ≤ 0,0 < qk−1 ≤ (tk − tk−1)/2, 0 ≤ pk ≤

(tk − tk−1)/2, k = 1, 2, · · · ,m, such that y ∈ E satisfying:
y′(t) − My(t) ≤ 0, t , tk, t ∈ J = [0,T ],
△y(tk) ≤ −Lk

(∫ tk−pk

tk−1+qk−1
y(s)ds

)
, k = 1, 2, · · · ,m,

y(0) ≤ 0.

Then y(t) ≤ 0 for all t ∈ J.
Theorem 4.2. Suppose that the following assumptions hold:

(A1): The functions α0(t), β0(t) are lower and upper solutions of the BVP(1) respectively, such that
α0(t) ≤ β0(t) on J+;

(A2): The function f satisfies fy(t, y(t)) > 0 and the quadratic form is given by

K( f (t, y)) = (y − u)2 fyy(t, y1) ≤ 0,

where α0 ≤ u ≤ y1 ≤ y ≤ β0, t , tk, t ∈ J.
(A3): For k = 1, 2, · · · ,m, all functions Ik satisfies I

′

k(.) ≥ 0 and I
′′

k (.) ≥ 0.
Then, there exist two monotone sequences {αn(t)} and {βn(t)} of lower and upper solutions

respectively, which uniformly and quadratically converge to the extreme solutions of the BVP (1) in
[α0, β0].
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4.3. Corollary 3

We consider the following linear problem:
y′(t) − My(t) = σ(t), t , tk, t ∈ J = [0,T ],
△y(tk) = Lk

(∫ tk−pk

tk−1+qk−1
y(s)ds

)
+ Ik

(∫ tk−pk

tk−1+qk−1
η(s)ds

)
−Lk

(∫ tk−pk

tk−1+qk−1
η(s)ds

)
, k = 1, 2, · · · ,m,

y(0) = −y(T ),

(10)

where M > 0, Lk ≥ 0, and σ(t) ∈ E0, η(t) ∈ E.
Lemma 4.7. y ∈ E is a solution of (10) if and only if y ∈ E0 satisfying:

y(t) =
∫ T

0
G(t, s)σ(s)ds +

m∑
k=1

G(t, tk)
[
Lk

(∫ tk−pk

tk−1+qk−1

y(s)ds
)

+ Ik

(∫ tk−pk

tk−1+qk−1

η(s)ds
)
− Lk

(∫ tk−pk

tk−1+qk−1

η(s)ds
)]
,

where

G (t, s) =
1

e−MT + 1

{
e−M(T−t+s), 0 ≤ s ≤ t ≤ T,
−e−M(s−t), 0 ≤ t < s ≤ T.

Lemma 4.8. Suppose that there exist constants M > 0, Lk ≥ 0,0 < qk−1 ≤ (tk − tk−1)/2, 0 ≤ pk ≤

(tk − tk−1)/2, k = 1, 2, · · · ,m, such that:

e−MT

e−MT + 1

m∑
k=1

Lk(a − (pk + qk−1)) < 1.

Then, (10) has a unique solution.
Lemma 4.9. Suppose that there exist constants M > 0, Lk ≥ 0,0 < qk−1 ≤ (tk − tk−1)/2, 0 ≤ pk ≤

(tk − tk−1)/2, k = 1, 2, · · · ,m, such that y ∈ E satisfying:
y′(t) − My(t) ≤ 0, t , tk, t ∈ J = [0,T ],
△y(tk) ≤ Lk

(∫ tk−pk

tk−1+qk−1
y(s)ds

)
, k = 1, 2, · · · ,m,

y(0) ≤ 0,

then y(t) ≤ 0 for all t ∈ J.
Theorem 4.3. Suppose that the following assumptions hold:

(A1): The functions α0(t), β0(t) are lower and upper solutions of the BVP (1) respectively, such that
α0(t) ≤ β0(t) on J+;

(A2): The function f satisfies fy(t, y(t)) > 0 and the quadratic form is given by

K( f (t, y)) = (y − u)2 fyy(t, y1) ≤ 0,

where α0 ≤ u ≤ y1 ≤ y ≤ β0, t , tk, t ∈ J.
(A3): For k = 1, 2, · · · ,m, all functions Ik satisfies I

′

k(.) ≤ 0 and I
′′

k (.) ≥ 0.
Then, there exist two monotone sequences {αn(t)} and {βn(t)} of lower and upper solutions

respectively, which uniformly and quadratically converge to the extreme solutions of the BVP (1) in
[α0, β0].
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5. Conclusions

In this paper, we systematically explore the existence conditions of extreme solutions for an
impulsive ordinary differential equation with an anti-periodic boundary value. Unlike traditional
discrete impulsive conditions, the impulsive condition in this equation is in integral form. On the one
hand, the impulsive integration condition depends on past states, which is more reasonable in
describing the impulsive effects of many natural phenomena. On the other hand, we note that the
impulsive integration condition proposed in previous studies (such as [22]) depends on the states near
the impulsive point tk−1 and tk. The impulsive integration condition used in this paper is dependent on
the states within the interval (tk−1,tk). Therefore, the impulsive integration condition in this paper
might have a stronger dependence on past states than previous studies.

In this paper, we mostly use the monotonic iteration technique and quasilinearization method to
study the existence and convergence of solutions for the impulsive equation. For impulsive differential
equation systems, monotonic iteration techniques generally can ensure only the uniform convergence
of the solution sequence (i.e., first-order convergence). In order to obtain higher-order convergence of
the solution sequence, we need to use quasilinearization methods. Therefore, in general, in impulsive
differential equations, the sequences constructed by the quasilinearization technique have higher order
convergence than the sequences constructed by the monotonic iteration technique. In this paper, by
combining these two methods, we can obtain both first-order and second-order (quadratic) convergence
conditions for the solution sequence of the integral impulsive differential system. Through rigorous
argumentation, we find that the impulsive differential equation cannot obtain the condition for second-
order convergence of the solution sequence under the previous integral impulsive condition ([22]).
Therefore, from the perspective of convergence of the solution sequence, the impulsive integration
condition used in this paper might be an improvement of previous research. Interestingly, we can
also derive a series of corollaries regarding the impulsive ordinary differential equation proposed in
this paper (Section 4), which provide richer conclusions than functional differential equations (such
as [18]).

Of course, there are many types of impulsive differential equations. For example, delayed
impulsive differential equations, impulsive integral-differential equations, stochastic, or fractional
impulsive differential equations have wide applications in practice. Our methods and results may also
be applicable to research in these fields in the future.
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