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Abstract: U-statistics represent a fundamental class of statistics used to model quantities derived
from responses of multiple subjects. These statistics extend the concept of the empirical mean of a d-
variate random variable X by considering sums over all distinct m-tuples of observations of X. Within
this realm, W. Stute [134] introduced conditional U-statistics, a generalization of the Nadaraya-Watson
estimators for regression functions, and demonstrated their strong point-wise consistency. This paper
presented a first theoretical examination of the Dirichlet kernel estimator for conditional U-statistics
on the dm-dimensional simplex. This estimator, being an extension of the univariate beta kernel
estimator, effectively addressed boundary biases. Our analysis established its asymptotic normality and
uniform strong consistency. Additionally, we introduced a beta kernel estimator specifically tailored for
conditional U-statistics, demonstrating both weak and strong uniform convergence. Our investigation
considered the expansion of compact sets and various sequences of smoothing parameters. For the
first time, we examined conditional U-statistics based on mixed categorical and continuous regressors.
We presented new findings on conditional U-statistics smoothed by multivariate Bernstein kernels,
previously unexplored in the literature. These results are derived under sufficiently broad conditions on
the underlying distributions. The main ingredients used in our proof were truncation methods and sharp
exponential inequalities tailored to the U-statistics in connection with the empirical processes theory.
Our theoretical advancements significantly contributed to the field of asymmetric kernel estimation,
with potential applications in areas such as discrimination problems, `-sample conditional U-statistics,
and the Kendall rank correlation coefficient. Finally, we conducted some simulations to demonstrate
the small sample performances of the estimators.
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1. Introduction

Motivated by numerous applications, the theory of U-statistics (introduced in the seminal work
by [80] and [71]) and U-processes has garnered considerable attention over the past decades.
U-statistics are instrumental in solving complex statistical problems such as density estimation,
nonparametric regression tests, and goodness-of-fit tests. Specifically, U-statistics are essential in
analyzing estimators (including function estimators) with varying degrees of smoothness. For instance,
Stute in [135] applied almost sure uniform bounds for P-canonical U-processes to analyze the product
limit estimator for truncated data. In [8], Arcones and Wang presented two novel tests for normality
based on U-processes. Leveraging results from [68], Schick et al. in [126] introduced new normality
tests using weighted L1-distances between the standard normal density and local U-statistics based on
standardized observations. In [87], Joly and Lugosi discussed estimating the mean of multivariate
functions under possibly heavy-tailed distributions and introduced the median-of-means approach
based on U-statistics. U-processes are crucial tools in various statistical applications, including
testing for qualitative features of functions in nonparametric statistics [67], cross-validation for density
estimation, and establishing the limiting distributions of M-estimators (see, e.g., [7]). Foundational
asymptotic results for U-statistics under the assumption of independent and identically distributed
(i.i.d.) random variables were provided by [71,80,146] and [59]. Under weak dependency assumptions,
asymptotic results were demonstrated in [18,48]. For a comprehensive resource on U-statistics and U-
processes, readers may refer to [7, 19, 92, 98, 100], and [46]. Recent advancements and references
can be found in [30, 31]. U-statistics also appear naturally in other contexts, such as counting
occurrences of certain subgraphs (e.g., triangles) in random graph theory [85]. In machine learning,
U-statistics are utilized in a wide range of problems, including clustering, image recognition, ranking,
and learning on graphs, where risk estimates often take the form of U-statistics. For instance, the
ranking problem can be framed as pairwise classification, with the empirical ranking error being a
U-statistic of order 2 [37]. For U-statistics with random kernels of diverging orders, see [60, 75, 131].
Infinite-order U-statistics are valuable for constructing simultaneous prediction intervals that quantify
the uncertainty of ensemble methods such as sub-bagging and random forests [118]. The Mean nearest-
neighbors approach for differential entropy estimation introduced by [58] is a specific application of
U-statistics. Using U-statistics, [107] proposed a new test statistic for goodness-of-fit tests. In [45],
Cybis et al. explored a model-free approach for clustering and classifying genetic data using U-
statistics, offering alternative perspectives on these problems. In [103], Lim and Stojanovic proposed
employing U-statistics for analyzing random compressed sensing matrices in the non-asymptotic
regime. In [13], Bello et al. introduced a comprehensive framework for clustering within multiple
groups using a U-statistics-based approach designed for high-dimensional datasets. In a related
context in [91], Kim and Ramdas focused on dimension-agnostic inference, developing methods whose
validity remains independent of assumptions regarding dimension versus sample size. Their approach
utilized variational representations of the existing test statistics, incorporating sample splitting and
self-normalization to yield a refined test statistic with a Gaussian limiting distribution. This involved
modifying degenerate U-statistics by dropping diagonal blocks and retaining off-diagonal blocks.
Further exploration by [39] involved U-statistics-based empirical risk minimization, while in [86],
Janson examined asymmetric U-statistics based on a stationary sequence of m-dependent variables,
with applications motivated by pattern matching in random strings and permutations. Additionally
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in [139], Sudheesh et al. developed innovative U-statistics considering left truncation and right
censoring, proposing a straightforward nonparametric test for assessing independence between time
to failure and cause of failure in competing risks under such censoring conditions. In [95], Le Minh
investigated the quadruplet U-statistic with applications in network analysis statistical inference.
In [102], Li et al. introduced a learning framework utilizing pairwise loss and minimizing empirical
risk through U-processes and Rademacher complexity. In [66], Ghannadpour et al. demonstrated
the high efficacy of using U-statistics to identify modification zones, accounting for the structural
characteristics of the data and neighboring samples. In [44], Cintra et al. presented a model-free
technique using U-statistics to construct control charts for effectively monitoring batch processes,
considering multiple sources of variability. In [81], Huang et al. examined distributed inference for
two-sample U-statistics in the context of large datasets, proposing blockwise linear two-sample U-
statistics to reduce computational complexity. Finally in [122], Randles proposed a general method for
obtaining asymptotic distribution theory for U-statistics with estimated parameters, extended recently
by [50].

In this paper, we consider the conditional U-statistics introduced by [134]. These statistics
generalize the Nadaraya-Watson estimators of a regression function by [112] and [150]. Specifically,
let {(Xi,Yi), i ∈ N∗} be a sequence of i.i.d. random elements with Xi ∈ R

d and Yi ∈ R
q, where d, q ≥ 1.

Let ϕ : Rqm → R be a measurable function. We focus on estimating the conditional expectation or
regression function

r(m)(ϕ, t) = E (ϕ(Y1, . . . ,Ym) | (X1, . . . ,Xm) = t) , for t ∈ Rdm, (1.1)

whenever it exists, i.e., E(|ϕ(Y1, . . . ,Ym)|) < ∞. We introduce a kernel function K : Rd → R with
support contained in [−B, B]d, B > 0, satisfying

sup
x∈Rd
|K(x)| =: κ < ∞ and

∫
K(x) dx = 1. (1.2)

In [134], Stute introduced a class of estimators for r(m)(ϕ, t), called conditional U-statistics, defined for
each t ∈ Rdm as

̂̂r(m)

n (ϕ, t; hn) =

∑
(i1,...,im)∈I(m,n) ϕ(Yi1 , . . . ,Yim)K

( t1−Xi1
hn

)
· · ·K

( tm−Xim
hn

)
∑

(i1,...,im)∈I(m,n) K
( x1−Xi1

hn

)
· · ·K

(xm−Xim
hn

) , (1.3)

where
I(m, n) =

{
i = (i1, . . . , im) : 1 ≤ i j ≤ n and i j , ir if j , r

}
is the set of all m-tuples of distinct integers between 1 and n, and {hn}n≥1 is a sequence of positive
constants converging to zero at the rate nhdm

n → ∞. For m = 1, r(m)(ϕ, t) reduces to r(1)(ϕ, t) = E(ϕ(Y) |
X = t), and Stute’s estimator becomes the Nadaraya-Watson estimator of r(1)(ϕ, t) given by

̂̂r(1)

n (ϕ, t, hn) =

∑n
i=1 ϕ(Yi)K

(
Xi−t

hn

)
∑n

i=1 K
(

Xi−t
hn

) .

In [128], Sen gave the rate of uniform convergence in t of ̂̂r(m)

n (ϕ, t; hn) to r(m)(ϕ, t). In [121], Rao

and Sen discussed the limit distributions of ̂̂r(m)

n (ϕ, t; hn) and compared them with those obtained by
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Stute. In [74], Harel and Puri extended the results of [134] to weakly dependent data under appropriate
mixing conditions and applied their findings to verify the Bayes risk consistency of the corresponding
discrimination rules. In [138], Stute proposed symmetrized nearest-neighbors conditional U-statistics
as alternatives to the usual kernel-type estimators. In [53], Dony and Mason established a much
stronger form of consistency, namely, uniform in t and bandwidth consistency (i.e., hn ∈ [an, bn] where

an < bn → 0 at a specific rate) of ̂̂r(m)

n (ϕ, t; hn). Additionally, they demonstrated uniform consistency
over ϕ ∈ F for a suitably restricted class of functions F , extended in [24,25,30,31,33,35]. The main
tool in their results was the use of the local conditional U-process investigated in [68]. [6], Arcones
examined the distributional and almost sure point-wise Bahadur-Kiefer representation for U-quantiles,
demonstrating that the order of this representation is contingent on the local variance of the empirical
process of the U-statistic structure at the U-quantile. Additionally in [4], Arcones explored the order of
the Kolmogorov-Smirnov distance for the bootstrap of U-quantiles. For further details on U-quantile
estimation, readers are referred to the works of [47, 76, 145, 151, 156–158].

It is well-known that using standard symmetric kernels to estimate unknown curves on a bounded
support, such as on a half-real line or a compact set, leads to boundary bias near the boundary
(refer to [51, 55, 73, 110, 113, 119, 124, 140, 147, 152]). Despite various boundary correction methods
proposed since the early works of [111] and [88] on boundary-adapted kernel estimation, smoothing
with a nonstandard asymmetric kernel function has emerged as a viable alternative (see [62]). An
asymmetric kernel, based on a probability density function (pdf) with the same support as the curves,
inherently avoids boundary bias. Additionally, the kernel shape varies according to the position where
smoothing is performed, allowing for adaptive smoothing. Over two decades have passed since the
introduction of asymmetric kernels, and numerous studies have reported favorable evidence from their
application to empirical models in economics and finance. For instance in [40], Chen considered
kernel estimators using nonnegative kernels to estimate pdfs with compact supports. In [41], Chen
examined regression estimation, comparing a beta smoother with a local linear smoother. In [20],
Bouezmarni and Rolin studied the asymptotic properties of the beta kernel density estimator proposed
by [40], deriving the exact asymptotic behavior of the expected L1-loss and demonstrating uniform
weak consistency for continuous underlying density functions. In [155], Zhang and Karunamuni
showed that the performance of beta kernel estimator is very similar to that of the reflection estimator,
which avoids the boundary problem only for densities with a shoulder at the support endpoints. In [16],
Bertin and Klutchnikoff analyzed the beta kernel density estimator from an asymptotic minimax
perspective, and this was later corrected and extended to the general setting of the Dirichlet kernel
by [17]. When the underlying density has a fourth-order derivative, in [82], Igarashi improved the beta
kernel estimator using bias correction techniques based on two beta kernel estimators with different
smoothing parameters (see [77] for more details on asymmetric kernels and their applications). Various
other statistical topics related to beta kernels are addressed in [38,83,94,154]. Additionally, Bernstein
polynomial density and distribution estimators have gained popularity and have been discussed in
several works. In [144], Vitale first proposed the Bernstein estimator for estimating a density function
for an i.i.d. sample {Xn}n≥1. The asymptotic normality of the resulting density estimator, such as the
uniform weak law of large numbers, the central limit theorem, and uniform strong consistency are
studied in [133] and [64]. In [141], Tenbusch investigated the Bernstein estimation in the multivariate
context, obtaining the bias, variance, and Mean Squared Error (MSE) for the Bernstein estimator,
focusing on the two-dimensional unit simplex and the unit square [0, 1]2. Several extensions have been
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provided by [2, 9, 12, 15, 89, 120, 142, 149]. In [96], Leblanc demonstrated that Bernstein estimators of
distribution functions have excellent boundary properties, including the absence of boundary bias (see
also [97]). The latest results were generalized in [116].

However, little is known about the uniform consistency and convergence rates of asymmetric
nonlinear kernel estimators. This paper aims to fill this gap by considering a general framework for
conditional U-statistics. This study examines the uniform convergence and the asymptotic normality
of nonparametric estimators on a compact set smoothed using an asymmetric kernel. The compactness
of the support frequently emerges due to the data’s nature or as a theoretical concept in econometrics.
Economic and financial variables described as shares or proportions are typically constrained within
a specific range, with an upper bound for the former and a lower bound for the latter. Examples
include the allocation of funds, the distribution of budget resources, the percentage of unemployed
individuals, desired exchange rate ranges, and failure-to-repay and recovery rates. Compactness
is required for certain aspects, such as the support of nonparametric copulas (see, e.g., [125]), the
nonparametric part of partial linear regressions (see, e.g., [153]), and the covariates used for nearest-
neighbor matching (see, e.g., [1]). Additionally, the fully nonparametric estimator for first-price
auctions relies on the compactness of the supports of the distributions of private values and observed
bids (see [70] for more information). In [3], Aitchison first defined the Dirichlet kernel estimator
for density estimation and compared their performance empirically with an alternative approach, the
logistic-normal kernel method, where the data on the simplex is first transformed to Rd via an additive
log-ratio transformation, followed by multivariate Gaussian kernel smoothing. In [36], Brown and
Chen first studied beta kernel (d = 1) theoretically in the context of smoothing for regression curves
with equally spaced and fixed design points. The asymptotics of the point-wise bias, the integrated
variance, and the mean integrated squared error (MISE) for the estimator of the regression function
were found, with the optimal MISE shown to be O(n−4/5). These results extended to the beta kernel
estimator some findings from [133], who worked with the closely related Bernstein estimator. In [40],
Chen first studied the beta kernel estimator theoretically in the context of density estimation. In [41],
Chen generalized the results of [36] to arbitrary collections of fixed design points using a [63] type
estimator. In [20], Bouezmarni and Rolin computed the asymptotics of the expected average absolute
error for the beta kernel estimator, extending analogous results for traditional kernel estimators found
in Theorem 2 of [52]. In [123], Renault and Scaillet first used a beta kernel to estimate recovery rate
densities of defaulted bonds. In [21], Bouezmarni and Rombouts generalized the results of [40, 42]
to the multidimensional setting, considering the products of one-dimensional asymmetric kernels.
In [155], Zhang and Karunamuni showed that the performance of the beta kernel estimator is similar
to that of the reflection estimator of [127], which avoids the boundary problem only for densities
exhibiting a shoulder condition at the support endpoints. It should be noted that Bernstein density
estimators, studied theoretically by authors such as [11,61,65,69,78,84,105,108,109,148], share many
of the same asymptotic properties with proper reparameterization. For an overview of the extensive
literature on Bernstein estimators, see [115].

This paper presents a first exploration into establishing a rigorous theoretical foundation for
asymmetric kernel-type estimators applied to conditional U-statistics, including Dirichlet kernels,
multivariate beta kernels, and Bernstein polynomials. However, as we elucidate later, this challenge
goes beyond merely combining ideas from existing literature. It necessitates intricate mathematical
derivations to address the inherent nonlinearity characterizing conditional U-statistics. To the best
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of our knowledge, this broader contextualization remains unexplored within the scholarly domain,
presenting a more formidable task compared to the Nadaraya-Watson estimator or the density
estimator. Our analysis leverages Hoeffding’s decomposition, a fundamental tool in the analysis of
U-statistics. Specifically, we offer novel insights into the Dirichlet kernel regression estimator within
the framework of Hoeffding’s decomposition. We encounter a challenge concerning the applicability
of the martingale structure to the nonlinear terms in Hoeffding’s decomposition within our context.
To address this, we employ exponential inequality principles drawn from the intricate theory of U-
processes. By exploring the conditional U-statistics smoothed by Dirichlet kernels and Bernstein
polynomial, we present several interesting new results regarding the Nadaraya-Watson estimators that
are of independent interest. Furthermore, we broaden the scope of our investigation to beta kernel
estimation by exploring the realm of mixed-type vectors.

The remainder of the paper is structured as follows. In Section 3, we introduce the conditional
U-statistics estimator using Dirichlet kernel for the first time in the literature. We commence
by establishing uniform convergence for the regression estimator in Section 3.1, specifically in
Theorem 3.1, which holds independent significance. Extensions of this result are then presented
in Section 3.2, as shown in Corollary 3.5. The asymptotic normality of the proposed estimators
is explored in Section 3.3, wherein Theorem 3.6 and Corollary 3.7 are discussed. In Section 4,
we consider the conditional U-statistics using Bernstein polynomials. Section 4.1 is devoted to the
Nadaraya-Watason estimator (see Theorem 4.2 and Corollary 4.3) while Section 4.2 investigates the
conditional U-statistics presenting the main results in Theorem 4.5 and Corollary 4.7. Moving forward,
Section 5 unveils the estimator of conditional U-statistics through beta kernel smoothing. Section 5.1
outlines our findings regarding weak uniform convergence, detailed in Corollary 5.4. In Section 5.3,
we establish the strong uniform convergence of the beta conditional U-statistics estimator, as presented
in Corollary 5.8. Furthermore, in Section 5.4, we introduce the conditional U-statistics estimators for
mixed categorical and continuous data for the first time. The main result regarding weak uniform
convergence is stated in Corollary 5.9. Section 9 provides numerical experiments that illustrate the
favorable small-sample properties of the proposed method. Finally, we provide concluding remarks
and discuss potential future developments in Section 10. All proofs are consolidated in Section A to
maintain the coherence of the presentation, while a selection of pertinent technical results is provided
in the Appendix.

2. Preliminaries and estimation procedure

Let us consider a sequence of i.i.d. random vectors {(Xi,Yi), i ∈ N∗}, where Xi ∈ X ⊆ [0, 1]d, and
the Yi ∈ Y := Rq. Let ϕ : Ym → R be a measurable function. In this paper, we are primarily concerned
with the estimation of the conditional expectation, or regression function of ϕ(Y1, . . . ,Ym) evaluated
at (X1, . . . ,Xm) = x̃, given by

r(m)(ϕ, x̃) = E (ϕ(Y1, . . . ,Ym) | (X1, . . . ,Xm) = x̃) , for x̃ ∈ Xm, (2.1)
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whenever it exists, i.e., E (|ϕ(Y1, . . . ,Ym)|) < ∞. [134] presented a class of estimators for r(m)(ϕ, x̃),
called the conditional U-statistics, which is defined for each x̃ ∈ Xm and ` ∈ {1, 2, 3} to be:

r̂(m)
n,` (ϕ, x̃; Λ̄n,`(x̃)) =

∑
(i1,...,im)∈I(m,n)

ϕ(Yi1 , . . . ,Yim)KΛn,`(x1)(Xi1) . . .KΛn,`(xm)(Xim)∑
(i1,...,im)∈I(m,n)

KΛn,`(x1)(Xi1) . . .KΛn,`(xm)(Xim)
, (2.2)

where Λ̄n,`(x̃) = (Λn,`(x1), . . . ,Λn,`(xm)) will be specified later in the sections below. In the particular
case m = 1, the r(m)(ϕ, x̃) is reduced to r(1)(ϕ, x̃) = E(ϕ(Y)|X = x) and Stute’s estimator becomes the
Nadaraya-Watson estimator of r(1)(ϕ, x̃) is given by

r̂(1)
n,`(ϕ, x) :=

n∑
i=1

ϕ(Yi)KΛn,`(x)(Xi)

n∑
i=1

KΛn,`(x)(Xi)

. (2.3)

Throughout this paper, any multivariate point will be written in bold. To avoid confusion, we note
x = (x1, . . . , xd) for x ∈ X and we denote x̃ := (x1, . . . , xm) an m-tuple of multivariate points xi ∈ X,
1 ≤ i ≤ m. Accordingly, we denote 1 = (1, . . . , 1) is a d-dimensional vector whose components are all
equal to 1, and 1̃ = (1, . . . , 1) an m-tuple of points 1. From now on, we shall use the following notation:

X̃ := (X1, . . . ,Xm) ∈ Xm, and X̃i := (Xi1 , . . . ,Xim) ∈ Xm, i ∈ I(m, n),

Ỹ := (Y1, . . . ,Ym) ∈ Rqm, and Ỹi := (Yi1 , . . . ,Yim) ∈ Rqm, i ∈ I(m, n).

We also define for all x̃ = (x1, . . . , xm) ∈ Xm and ` ∈ {1, 2, 3}

Gϕ,x̃,`(t̃, ỹ) = ϕ(ỹ)K̃Λ̄n,`(x̃)(t̃), (t̃, ỹ) ∈ Xm
d × R

qm,

where K̃Λ̄n,`(x̃)(t̃) :=
m∏

i=1

KΛn,`(xi)(ti). For ` ∈ {1, 2, 3}, we now define

un,`(ϕ, x̃) := u(m)
n,` (Gϕ,x̃,`) =

(n − m)!
n!

∑
i ∈I(m,n)

Gϕ,x̃,`(X̃i, Ỹi).

We can see that
r̂(m)

n,` (ϕ, x̃, Λ̄n,`(x̃)) =
un,`(ϕ, x̃)
un,`(1, x̃)

. (2.4)

In establishing the uniform consistency of r̂(m)
n,` (ϕ, x̃, Λ̄n,`(x̃)) with respect to r(m)(ϕ, x̃), an alternative and

more suitable centering factor will be considered instead of the expectation E
[̂
r(m)

n,` (ϕ, x̃, Λ̄n,`(x̃))
]
, which

may either be non-existing or computationally challenging to determine. This alternative centering is
defined as

Ê
[̂
r(m)

n,` (ϕ, x̃, Λ̄n,`(x̃))
]

=
E

[
un,`(ϕ, x̃)

]
E

[
un,`(1, x̃)

] . (2.5)
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The notation and facts presented below should be included in the continuation of this discussion. For
a kernel L of m ≥ 1 variables we define

U (m)
n,` (L) =

(n − m)!
n!

∑
i∈I(m,n)

L
(
Xi1 , . . . ,Xim

)
.

Suppose that L is a function of k ≥ 1 variables, symmetric in its entries. Then, the Hoeffding projections
(see [80] and [46]) with respect to P, for 1 ≤ m ≤ k, are defined as

πm,kL (x1, . . . , xm) =
(
∆x1 − P

)
× · · · ×

(
∆xm − P

)
× Pk−m(L),

and
π0,kL = EL (X1, . . . ,Xk) .

For some measures Qi on S , we denote

Q1 · · ·QmL =

∫
S m

L(x1, . . . , xm)dQ1(x1) · · · dQm(xm),

and ∆x denotes the Dirac measure at point x ∈ X. Then, the decomposition of [80] gives

U (m)
n,` (L) − EL =

m∑
k=1

(
k
m

)
U (k)

n,`

(
πm,kL

)
,

which is easy to check. For L ∈ L2

(
Pk

)
this denotes an orthogonal decomposition and E(πmL |

X2, . . . ,Xm) = 0 for m ≥ 1; then, the kernels πm,kL are canonical for P. Also, πm,k,m ≥ 1, are nested
projections, that is, πm,k ◦ πm′,k = πm,k if m ≤ m′, and

E
(
πm,kL

)2
≤ E(L − EL)2 ≤ EL2.

For example,
π1,kh(x) = E(h(X1, . . . ,Xk) | X1 = x) − Eh(X1, . . . ,Xk).

Remark 2.1. The functions Gϕ,x̃,` are not necessarily symmetric; when we need to symmetrize them,
we have

Gϕ,x̃,`(t̃, ỹ) :=
1

m!

∑
σ∈Im

m

Gϕ,x̃,`(t̃σ, ỹσ) =
1

m!

∑
σ∈Im

m

ϕ(ỹσ)K̃Λ̄n,`(x̃)(t̃σ),

where t̃σ = (tσ1 , . . . , tσm) and ỹσ = (yσ1 , . . . , yσm). After symmetrization, the expectation

E
[
Gϕ,x̃,`(t̃, ỹ)

]
= E

[
Gϕ,x̃,`(t̃, ỹ)

]
and the U-statistic

u(m)
n,` (Gϕ,x̃,`) = u(m)

n,` (Gϕ,x̃,`) := un,`(ϕ, x̃)

do not change.
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Before presenting the conditions and primary results, let’s delve into the following notation. For
a > 0,

Γ(a) =

∫ ∞

0
ta−1 exp(−t)dt

is the gamma function; for z ∈ Rd,∇{h(z)} signifies a d-column vector of the first-order partial
derivatives of a function h(z);

f̃ (x̃) := f (x1) × · · · × f (xm), x̃ ∈ Xm,

where fX(·) is the marginal pdf of X ∈ X and we denote

R(ϕ, x̃) := f̃ (x̃)r(m)(ϕ, x̃).

The expression “X D
= Y” denotes that the random variable X has the same distribution as Y , while “a.s.”

stands for “almost surely”. Moreover, ‖A‖ represents the Frobenius norm of the matrix A, defined as
‖A‖ =

{
tr

(
A>A

)}1/2.

2.1. Conditions and comments

(C.1) The function R(ϕ, ·) is Lipschitz continuous with respect to x̃ ∈ Xm;

(C.2) The second-order partial derivatives of f̃ (x̃) and R(ϕ, x̃) are continuous on x̃ ∈ (0, 1)dm;

(C.3) There are some constants γ > 0 and C1 ∈ [1,∞) such that E|ϕ(Ỹ)|2+γ < ∞ and

sup
x̃∈(0,1)dm

E
(
|ϕ(Ỹ)|2+γ | X̃ = x̃

)
f̃ (x̃) ≤ C1. (2.6)

Comments:

Notice that (C.2) implies that there is some constant C0 ∈ [1,∞) such that

sup
x̃∈(0,1)dm

f̃ (x̃) ≤ C0. (2.7)

The uniform boundedness condition (2.6) in (C.3) implies that E
(
|ϕ(Ỹ)|2+γ | X̃ = x̃

)
is allowed to

diverge at boundaries but no faster than { f (x1) · · · f (xm)}−1. A similar condition can be found, for
instance, in [72, Assumption 2] and [94, Assumption A3]. Notice that (C.3) is important to the
truncation method. Note that (C.3) may be replaced by more general hypotheses upon moments of
Ỹ as in [14], that is

(C.3)′′ We denote by {M(x) : x ≥ 0} a nonnegative continuous function, increasing on [0,∞) such that,
for some s > 2, ultimately as x ↑ ∞,

(i) x−sM(x) ↓; (ii) x−1M(x) ↑ . (2.8)

For each t ≥ M(0), we defineMinv(t) ≥ 0 byM(Minv(t)) = t. We assume further that:

E
(
M

(∣∣∣ϕ(Ỹ)
∣∣∣)) f̃ (x̃) < ∞.

The following choices ofM(·) are of particular interest:

(i) M(x) = xp for some p > 2 or
(ii) M(x) = exp(sx) for some s > 0.
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3. Conditional U-statistics using Dirichlet kernels

In this section, we consider X = Sd,1, a d-dimensional simplex, defined by

Sd,1 :=
{
x ∈ [0, 1]d : ‖x‖1 ≤ 1

}
,

and its interior
Int

(
Sd,1

)
:=

{
x ∈ (0, 1)d : ‖x‖1 < 1

}
,

where ‖x‖1 :=
d∑

i=1

|xi| and d ∈ N. For α1, . . . , αd, β > 0, the density of the Dirichlet(α, β) distribution is

Kα,β(x) :=
Γ (‖α‖1 + β)

Γ(β)
d∏

i=1

Γ (αi)

(1 − ‖x‖1)β−1
d∏

i=1

xαi−1
i , x ∈ Sd,1.

We refer to [93, Chapter 49] and [114]. In [3], Aitchison and Lauder introduced a significant aspect
wherein the kernel Kα,β(·) form alters with the position x within the simplex. This adaptation mitigates
the boundary bias issue prevalent in conventional estimators, where the kernel remains constant across
all points. Throughout this section, for each j = 1, . . . ,m, we set

Λn,1(x j) = (α j, β j) :=
(
x j

b̆
+ 1,

1 − ‖x j‖1

b̆
+ 1

)
for x j ∈ Sd,1, b̆ > 0. (3.1)

The smoothing parameter b̆, denoted as b̆(n), inherently depends on the sample size n. Now,
we can introduce a new conditional U-statistic regression estimator using the Dirichlet kernel by
replacing (3.1) in (2.2), that is,

r̂(m)
n,1 (ϕ, x̃; Λ̄n,1(x̃)) =

∑
(i1,...,im)∈I(m,n)

ϕ(Yi1 , . . . ,Yim)
m∏

j=1

K(α j,β j)

(
Xi j

)
∑

(i1,...,im)∈I(m,n)

m∏
j=1

K(α j,β j)

(
Xi j

) . (3.2)

Below, we will present key findings regarding the regression function in the scenario where m = 1.
These findings are essential for examining the estimator (3.2).

3.1. Nonparametric regression estimation

We consider the following quantities:

ĝn(ϕ, x,Λn,1) :=
1
n

n∑
i=1

ϕ(Yi)K(α,β) (Xi)

and

f̂n(x,Λn,1) :=
1
n

n∑
i=1

K(α,β) (Xi) .
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In this section, we establish uniform strong consistency of the estimator defined by

r̂(1)
n,1(ϕ, x) =

ĝn(ϕ, x,Λn,1)

f̂n(x,Λn,1)
. (3.3)

Finally, we represent the expectation of ĝn(ϕ, x,Λn,1) as

E
[̂
gn(ϕ, x,Λn,1)

]
= E

[
ϕ(Y)K(α,β) (X)

]
=

∫
Sd,1

r(1)(ϕ,u) f (u)K(α,β) (u) du= E
[
R (ϕ, ξx)

]
,

where ξx ∼ Dirichlet (α, β) and R(ϕ, x) = f (x)r(1)(ϕ, x). To derive uniform consistency results, as
usual, we rewrite

r̂(1)
n,1(ϕ, x) − r(1)(ϕ, x) =

1

f̂n(x,Λn,1)

(̂
gn(ϕ, x,Λn,1) − E[̂gn(ϕ, x,Λn,1)]

)
−

E[̂gn(ϕ, x,Λn,1)]

f̂n(x,Λn,1)E[ f̂n(x,Λn,1)]

(
f̂n(x,Λn,1) − E[ f̂n(x,Λn,1)]

)
−

E(ϕ(Y)|X = x) −
E[̂gn(ϕ, x,Λn,1)]

E[ f̂n(x,Λn,1)]

 .
For δ > 0, define

Sd,1(δ) :=
{
x ∈ Sd,1 : 1 − ‖x‖1 ≥ δ and xi ≥ δ, ∀i = 1, . . . , d

}
. (3.4)

The Dirichlet Nadaraya-Watson kernel estimators have not yet been proven to yield the following
result.

Theorem 3.1. Assume that (C.1) and (C.3) hold. If, in addition, b̆−d ≤ n as n→ ∞, then, as n→ ∞,

sup
x∈Sd,1(b̆d)

∣∣∣̂r(1)
n,1(ϕ, x) − r(1)(ϕ, x)

∣∣∣ = O
(
b̆1/2

)
+ O

(
| log b̆|(log n)3/2

b̆d+1/2
√

n

)
a.s. (3.5)

In particular, if | log b̆|2b̆−2d−1 = o
(
n/(log n)3

)
as n→ ∞, then

sup
x∈Sd,1(b̆d)

∣∣∣̂r(1)
n,1(ϕ, x) − r(1)(ϕ, x)

∣∣∣→ 0 a.s.

3.2. Uniform convergence of conditional U-statistics

In this section, we unveil our principal findings regarding the uniform almost sure consistency for
the conditional U-statistics. Below, we state the uniform consistency of conditional U-statistics when
the function ϕ is not necessarily bounded.

Theorem 3.2. If (C.2.) and (C.3.) hold, then as n→ ∞, we have

sup
x̃∈Sm

d,1

∣∣∣un,1(ϕ, x̃) − E
[
un,1(ϕ, x̃)

]∣∣∣ = O
(
| log b̆|m(log n)3/2

b̆m(d+1/2)
√

n

)
a.s. (3.6)
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Theorem 3.3. If (C.2) and (C.3.) hold, then as n→ ∞, we have

sup
x̃∈Sm

d,1

∣∣∣∣̂r(m)
n,1 (ϕ, x̃; Λ̄n,1(x̃)) − Ê

[̂
r(m)

n,1 (ϕ, x̃; Λ̄n,1(x̃))
]∣∣∣∣ = O

(
| log b̆|m(log n)3/2

b̆m(d+1/2)
√

n

)
a.s. (3.7)

Theorem 3.4. If (C.2) holds, then, we have

sup
x̃∈Sm

d,1

∣∣∣∣r(m)(ϕ, x̃) − Ê
[̂
r(m)

n,1 (ϕ, x̃; Λ̄n,1(x̃))
]∣∣∣∣ = O

(
b̆1/2

)
. (3.8)

Corollary 3.5. Under the assumptions of Theorems 3.3 and 3.4, we have, as n→ ∞,

sup
x̃∈Sm

d,1

∣∣∣̂r(m)
n,1 (ϕ, x̃; Λ̄n,1(x̃)) − r(m)(ϕ, x̃)

∣∣∣ = O
(
b̆1/2

)
+ O

(
| log b̆|m(log n)3/2

b̆m(d+1/2)
√

n

)
a.s. (3.9)

3.3. Asymptotic normality

Within this section, we establish the asymptotic normality for the estimator defined in (3.2). To
achieve this, we rely on the following set of assumptions:

(A.1) Let x̃ = (x1, . . . , xm) be a point of continuity for each

r jl(x̃) =

{
0 if x j , xl,

E j,l(x̃) if x j = xl,

where

E j,l(x̃) = E
[
ϕ
(
Y1, . . . ,Y j−1,Y,Y j+1, . . . ,Ym

)
ϕ
(
Ym+1, . . . ,Ym+ j−1,Y,Ym+ j+1, . . . ,Y2m

)
| Xi = xi for i , j,Xm+r = xr for r , l and X = x j = xl

]
;

(A.2) The density function f (·) is continuous at each x j, 1 ≤ j ≤ m, with f (x j) > 0;

(A.3) r j,l,s(·, ·, ·) is bounded in a neighborhood of (x̃, x̃, x̃) ∈ S3m
d,1, where, for all 1 ≤ j, l, s ≤ m

r j,l,s (z̃m, z̃2m, z̃3m) = E
[
ϕ
(
Y1, . . . ,Y j−1,Y,Y j+1 . . . ,Ym

)
×ϕ

(
Ym+1, . . . ,Ym+ j−1,Y,Ym+ j+1 . . . ,Y2m

)
×ϕ

(
Y2m+1, . . . ,Y2m+ j−1,Y,Y2m+ j+1 . . . ,Y3m

)
| Xi = zi; 1 ≤ i ≤ 3m, i , j,m + 1, 2m + s,X = z

]
,

and for 1 ≤ s ≤ 3, z̃sm = (z(s−1)m+1, . . . , z(s−1)m+ j−1, z, z(s−1)m+ j+1, . . . , zsm);

(A.4) r(m)
1,2 (·, ·) is bounded in a neighborhood of (x̃, x̃), where

r(m)
1,2 (x̃1, x̃2) = E

[
ϕ(Yi1 , . . . ,Yim)ϕ(Y j1 , . . . ,Y jm) | (Xi1 , . . . ,Xim) = x̃1, (X j1 , . . . ,X jm) = x̃2

]
;
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(A.5) r(m)(ϕ, ·) admits an expansion

r(m)(ϕ, t + ∆) = r(m)(ϕ, t) +

{
∂

∂t
r(m)(ϕ, t)

}>
∆ +

1
2
∆>

{
∂2

∂t2 r(m)(ϕ, t)
}

∆ + o
(
∆>∆

)
as ∆→ 0, for all t in a neighborhood of x̃.

Below, we write Z D
= N(µ, σ2) whenever the random variable Z follows a normal law with expectation

µ and variance σ2,
D
→ denotes convergence in distribution. We also denote

Un,1(ϕ, x̃) =
un,1(ϕ, x̃)

N
,

where

N =

m∏
j=1

E
[
K(α,β)

(
X j

)]
.

Our main result in this section is summarized as follows.

Theorem 3.6. If (A.1)–(A.4) and (C.2.) hold and if r(m)(·, ·) is continuous at x̃, then√
nb̆d/2

(̂
r(m)

n,1 (ϕ, x̃; Λ̄n,1(x̃))) − E[Un,1(ϕ, x̃)]
) D
−→ N

(
0, ρ2

)
,

where

ρ2 :=
m∑

i=1

m∑
j=1

1{xi=x j}

[
ri j(x̃) − (r(m)(x̃))2

] ∫
K2
α,β(u)du/ f (xi). (3.10)

The proof of Theorem 3.6 is postponed to Appendix-1 A.

Corollary 3.7. If, in addition to the assumptions of Theorem 3.6, (A.5) holds, then

b̆−d/2
(
E

[
Un,1(ϕ, x̃)

]
− r(m)(ϕ, x̃)

)
=

∫ m∏
j=1

Kα,β(t j)
{
R(m)′(ϕ, t̃)

}>
t · dt/ f̃ (x̃) −

∫ m∏
j=1

Kα,β(t j)t>
{
f̃ ′(x̃)

}
t · dt

r(m)(ϕ, x̃)
f̃ (x̃)


+

b̆d/2

2

∫ m∏
j=1

Kα,β(t j)t>
{
R(m)′′(ϕ, t̃)

}
t · dt/ f̃ (x̃)

−

∫ m∏
j=1

Kα,β(t j)t>
{
f̃ ′′(x̃)

}
t · dt

r(m)(ϕ, x̃)
f̃ (x̃)

 + o(1).

In addition, we have (
nb̆d/2

)1/2 [̂
r(m)

n,1

(
ϕ, x̃; Λ̄n,1(x̃)

)
− r(m)(ϕ, x̃)

]
→ N

(
0, ρ2

)
,

provided that nb̆(d+2)/4 → 0.
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Remark 3.8. [117] According to Theorem 3.1.15 in [119], the convergence rate for the conventional
d-dimensional kernel density estimator for i.i.d. data, using bandwidth h, is O

(
n−1/2h−d/2

)
. In contrast,

the estimator f̂n(x,Λn,1) achieves a convergence rate of O
(
n−1/2b̆−d/4

)
. Consequently, the relationship

between the bandwidths of f̂n(x,Λn,1) and the traditional multivariate kernel density estimator is
expressed as b̆ ≈ h2.

Remark 3.9. In their work, [117] demonstrated that for all x ∈ Int(Sd,1) and as n tends to infinity, the
MSE of the estimator f̂n(x,Λn,1) with respect to the density function f (·) can be expressed as:

MSE
[
f̂n(x,Λn,1)

]
:= E

[∣∣∣∣ f̂n(x,Λn,1) − f (x)
∣∣∣∣2]

= Var
[
f̂n(x,Λn,1)

]
+

{
Bias

[
f̂n(x,Λn,1)

]}2

= n−1b̆−d/2ψ(x) f (x) + b̆2g2(x) + Ox
(
n−1b̆−d/2+1/2

)
+ o

(
b̆2

)
,

where ψ(·) is defined in Eq (B.1) in Lemma B.4, and

g(x) :=
d∑

i=1

(1 − (d + 1)xi)
∂

∂xi
f (x) +

1
2

d∑
i, j=1

xi

(
1{i= j} − x j

) ∂2

∂xi∂x j
f (x).

In particular, if f (x) · g(x) , 0, the asymptotically optimal choice of b̆, concerning MSE, is given by:

b̆opt(x) = n−2/(d+4)
[
d
4
·
ψ(x) f (x)

g2(x)

]2/(d+4)

,

with

MSE
[
f̂n(x,Λn,1); b̆opt

]
= n−4/(d+4)

 1 + d
4(

d
4

) d
d+4

 (ψ(x) f (x))4/(d+4)(
g2(x)

)−d/(d+4) + ox
(
n−4/(d+4)

)
.

Furthermore, if n2/(d+4)b̆ tends to λ for some λ > 0 as n approaches infinity, then

MSE
[
f̂n(x,Λn,1)

]
= n−4/(d+4)

[
λ−d/2ψ(x) f (x) + λ2g2(x)

]
+ ox

(
n−4/(d+4)

)
.

4. Conditional U-statistics using Bernstein polynomials

This section delves into the asymptotic properties of the conditional U-statistics using Bernstein
polynomials. Let F(·) represent any joint cumulative distribution function on Sd,1, where values outside
Sd,1 are either 0 or 1. Following [115, 116], we define the Bernstein polynomial of order ϑ for F(·) as
follows

F?
ϑ (x) =

∑
k∈Nd

0∩ϑSd,1

F(k/ϑ)Pk,ϑ(x), x ∈ Sd,1, ϑ ∈ N,

where the weights are probabilities from the multinomial(ϑ, x) distribution

Pk,ϑ(x) =
ϑ!

(ϑ − ‖k‖1)!
∏d

i=1 ki!
(1 − ‖x‖1)ϑ−‖k‖1

d∏
i=1

xki
i , k ∈ Nd

0 ∩ ϑSd,1.
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The Bernstein estimator of F(·), denoted by F?
n,ϑ(·), is the Bernstein polynomial of order ϑ for the

empirical cumulative distribution function

Fn(x) := n−1
n∑

i=1

1(−∞,x] (Xi) ,

where X1, . . . ,Xn are i.i.d according to F(·) and 1{A} denotes as usual the indicator function of the set
A. Precisely, we define

F?
n,ϑ(x) =

∑
k∈Nd

0∩ϑSd,1

Fn(k/ϑ)Pk,ϑ(x), x ∈ Sd,1, ϑ, n ∈ N.

For a density f (·) supported on Sd,1, we define the Bernstein density estimator of f (·) as

f̂n,ϑ(x) =
∑

k∈Nd
0∩(ϑ−1)Sd,1

(ϑ − 1 + d)!
(ϑ − 1)!

1
n

n∑
i=1

1( k
ϑ ,

k+1
ϑ ](xi)

 Pk,ϑ−1(x), x ∈ Sd,1, ϑ, n ∈ N. (4.1)

In this expression, we let

Kx,ϑ(Xi) =
∑

k∈Nd
0∩(ϑ−1)Sd,1

(ϑ − 1 + d)!
(ϑ − 1)!

{
1( k

ϑ ,
k+1
ϑ ](Xi)

}
Pk,ϑ−1(x),

and (ϑ − 1 + d)!/(ϑ − 1)! serves as a scaling factor proportional to the inverse of the volume of the
hypercube (k/ϑ, (k + 1)/ϑ]. It’s worth noting that replacing this scaling factor by ϑd in (4.1) maintains
f̂n,ϑ(·) as an asymptotic density function. The asymptotic results presented in this paper remain largely
unchanged under both definitions of the density estimator.

Remark 4.1. [115] A different expression for the Bernstein density estimator (4.1) can be formulated
as a specific finite mixture of Dirichlet densities, that is,

f̂n,ϑ(x) =
∑

k∈Nd
0∩(ϑ−1)Sd,1

1
n

n∑
i=1

1( k
ϑ ,

k+1
ϑ ] (xi)

 K(k+1,ϑ−‖k‖1)(x),

where the density value of the Dirichlet(α, β) distribution at x ∈ Sd,1 is given by

K(α,β)(x) =
(β + ‖α‖1 − 1)!

(β − 1)!
∏d

i=1 (αi − 1)!
(1 − ‖x‖1)β−1

d∏
i=1

xαi−1
i , αi, β > 0.

For further insights, refer to [115].

The conditional U-statistics smoothed by the Bernstein polynomials are defined as, for each x̃ ∈ Sm
d,1

r̂(m)
n,2 (ϕ, x̃; Λ̄n,2(x̃)) =

∑
(i1,...,im)∈I(m,n)

ϕ(Yi1 , . . . ,Yim)Kx1,ϑ(Xi1) . . .Kxm,ϑ(Xim)∑
(i1,...,im)∈I(m,n)

Kx1,ϑ(Xi1) . . .Kxm,ϑ(Xim)
. (4.2)
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In the particular case m = 1, the r(m)(ϕ, x̃) is reduced to r(1)(ϕ, x) = E(ϕ(Y)|X = x) and Stute’s estimator
becomes the Nadaraya-Watson estimator of r(1)(ϕ, x)

r̂(1)
n,2(ϕ, x) :=

n∑
i=1

ϕ(Yi)Kx,ϑ(Xi)

n∑
i=1

Kx,ϑ(Xi)

=
ĝn,ϑ(ϕ, x)

f̂n,ϑ(x)
.

4.1. Nonparametric regression estimation

In this section, we prove the uniform strong consistency of the regression estimator for m = 1.

Theorem 4.2. Assume that (C.1)–(C.3) hold. If 2 ≤ ϑ ≤
n

log n
, as n −→ ∞, then

sup
x∈Sd,1

∣∣∣E[̂r(1)
n,2(ϕ, x)] − r(1)(ϕ, x)

∣∣∣ = O(ϑ−1/2) (4.3)

and
sup

x∈Sd,1

∣∣∣̂r(1)
n,2(ϕ, x) − E[̂r(1)

n,2(ϕ, x)]
∣∣∣ = O(ϑd−1/2(n−1 log n)1/2) a.s. (4.4)

Corollary 4.3. Under the assumptions of Theorem 4.2, we have as n −→ ∞

sup
x∈Sd,1

∣∣∣̂r(1)
n,2(ϕ, x) − r(1)(ϕ, x)

∣∣∣ = O(ϑd−1/2(n−1 log n)1/2) + O(ϑ−1/2) a.s. (4.5)

In addition, if ϑ2d−1 = o(n/ log n), then

sup
x∈Sd,1

∣∣∣̂r(1)
n,2(ϕ, x) − r(1)(ϕ, x)

∣∣∣ −→ 0 a.s. (4.6)

4.2. Conditional U-statistics

In this section, we study the uniform strong consistency of the conditional U-statistics using
Bernstein polynomials.

Theorem 4.4. Assume that (C.2) and (C.3) hold. If 2 ≤ ϑ ≤
n

log n
, as n −→ ∞, then

sup
x̃∈Sm

d,1

∣∣∣un,2(ϕ, x̃) − E
[
un,2(ϕ, x̃)

]∣∣∣ = O(ϑm(d−1/2)(n−1 log n)1/2) a.s. (4.7)

Theorem 4.5. Assume that (C.2) and (C.3) hold. If 2 ≤ ϑ ≤
n

log n
, as n −→ ∞, then

sup
x̃∈Sm

d,1

∣∣∣∣̂r(m)
n,2 (ϕ, x̃; Λ̄n,2(x̃)) − Ê

[̂
r(m)

n,2 (ϕ, x̃; Λ̄n,2(x̃))
]∣∣∣∣ = O(ϑm(d−1/2)(n−1 log n)1/2) a.s. (4.8)

Theorem 4.6. Assume that (C.1) and (C.2) hold. If 2 ≤ ϑ ≤
n

log n
, as n −→ ∞, then

sup
x̃∈Sm

d,1

∣∣∣∣r(m)(ϕ, x̃) − Ê
[̂
r(m)

n,2 (ϕ, x̃; Λ̄n,2(x̃))
]∣∣∣∣ = O

(
ϑ−m/2

)
. (4.9)
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Corollary 4.7. Under the assumptions of Theorems 4.5 and 4.6, as n −→ ∞, we have

sup
x̃∈Sm

d,1

∣∣∣̂r(m)
n,2 (ϕ, x̃; Λ̄n,2(x̃)) − r(m)(ϕ, x̃)

∣∣∣ = O
(
ϑ−m/2

)
+ O(ϑm(d−1/2)(n−1 log n)1/2) a.s. (4.10)

In addition, if ϑ2d−1 = o(n/ log n), then

sup
x̃∈Sm

d,1

∣∣∣̂r(m)
n,2 (ϕ, x̃; Λ̄n,2(x̃)) − r(m)(ϕ, x̃)

∣∣∣ −→ 0 a.s. (4.11)

Remark 4.8. [115] It is worth mentioning that, similar to Remark 3.8, the convergence rate
for the conventional d-dimensional kernel density estimator for i.i.d. data, using bandwidth h,
is O

(
n−1/2h−d/2

)
. However, the estimator f̂n(x, ϑ) achieves a convergence rate of O

(
n−1/2ϑd/4

)
.

Consequently, the relationship between the bandwidths of f̂n(x, ϑ) and the traditional multivariate
kernel density estimator is expressed as ϑ ≈ h−2.

Remark 4.9. [115] demonstrated that the Mean Squared Error (MSE) of the density estimator f̂n(x, ϑ)
satisfies for all x ∈ Int(Sd,1) and as n tends to infinity:

MSE
(

f̂n(x, ϑ)
)

= n−1ϑd/2ψ(x) f (x) + ϑ−2b2(x) + ox
(
n−1ϑd/2

)
+ o

(
ϑ−2

)
,

where

b(x) :=
d(d − 1)

2
f (x) +

d∑
i=1

(
1
2
− xi

)
∂

∂xi
f (x) +

1
2

d∑
i, j=1

(
xi1{i= j} − xix j

) ∂2

∂xi∂x j
f (x),

and

ψ(x) :=

(4π)d (1 − ‖x‖1)
d∏

i=1

xi

−1/2

.

In particular, when f (x) · b(x) , 0, the asymptotically optimal choice for ϑ, minimizing MSE, is:

ϑopt (x) = n2/(d+4)
[
4
d
·

b2(x)
ψ(x) f (x)

]2/(d+4)

,

with corresponding MSE:

MSE
[
f̂n(x, ϑ);ϑopt

]
= n−4/(d+4)


4
d + 1(
4
d

) 4
d+4

 (ψ(x) f (x))4/(d+4)(
b2(x)

)−d/(d+4) + ox
(
n−4/(d+4)

)
.

Moreover, in the more general case where n2/(d+4)ϑ−1 → λ > 0, as n→ ∞, the MSE becomes:

MSE
[
f̂n(x, ϑ)

]
= n−4/(d+4)

[
λ−d/2ψ(x) f (x) + λ2b2(x)

]
+ ox

(
n−4/(d+4)

)
.

AIMS Mathematics Volume 9, Issue 9, 26195–26282.



26212

5. Conditional U-statistics estimators using beta kernel

Throughout this section, it is assumed, as in [79], without loss of generality, that the compact set is
a d-dimensional unit hypercube [0, 1]d. Among all asymmetric kernels, our particular focus is on the
beta kernel by [40]. The kernel takes the form

Kᾰ,β̆(u) =
ux/b(1 − u)(1−x)/b

B{x/b + 1, (1 − x)/b + 1}
1[0,1](u),

where
ᾰ :=

x
b

+ 1 and β̆ :=
1 − x

b
+ 1, x ∈ [0, 1], b > 0,

and B(ᾰ, β̆) =
∫ 1

0
yᾰ−1(1− y)β̆−1dy for ᾰ, β̆ > 0 is the beta function. To cope with multivariate problems,

we construct a product kernel for ᾰ = (ᾰ1, . . . , ᾰd) and β̆ = (β̆1, . . . , β̆d)

Kᾰ,β̆(u) =

d∏
i=1

Kᾰi,β̆i
(ui) =

d∏
i=1

uxi/bi
i (1 − ui)(1−xi)/bi

B {xi/bi + 1, (1 − xi) /bi + 1}
1 {ui ∈ [0, 1]} ,

where u := (u1, . . . , ud) ∈ [0, 1]d, x := (x1, . . . , xd) ∈ [0, 1]d, and b := (b1, . . . , bd) ∈ Rd
+ are d-

dimensional vectors of data points, design points, and the smoothing parameter. We consider

r̂(m)
n,3 (ϕ, x̃; Λ̄n,3(x̃)) =

∑
(i1,...,im)∈I(m,n)

ϕ(Yi1 , . . . ,Yim)Kᾰ1,β̆1

(
Xi1

)
. . .Kᾰm,β̆m

(
Xim

)
∑

(i1,...,im)∈I(m,n)

KB(x1,b)
(
Xi1

)
. . .Kᾰm,β̆m

(
Xim

) , (5.1)

where

ᾰ j :=
x j

b̆ j
+ 1 and β̆ j :=

1 − x j

b̆ j
+ 1.

In the particular case m = 1, the Nadaraya-Watson estimator of r(1)(ϕ, x̃) of [79] is given by

r̂(1)
n (ϕ, x) :=

n∑
i=1

ϕ(Yi)Kᾰ,β̆ (Xi)

n∑
i=1

Kᾰ,β̆ (Xi)

.

5.1. Conditions and comments

Our analysis starts from demonstrating weak uniform consistency with rates of the sample average
estimator (5.1) for (2.1) on a dm-hyper-rectangle

SX = SX(η) :=
d∏

j=1

[
η j, 1 − η j

]
⊆ [0, 1]d,

where the boundary parameters η := (η1, . . . , ηd) are either fixed or shrunk to zero at a suitable rate. To
deliver the results, we impose the following conditions.
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(C.4) b j := b j(n) =
(
b j1 , . . . , b jd

)
> 0 and η j := η j(n) =

(
η j1 , . . . , η jd

)
> 0, j = 1, . . . ,m, satisfy for

i = 1, . . . , d, b ji , η ji → 0,
b ji

η ji
→ 0, and

log n

n
m∏

j=1

 d∏
i=1

b jiη ji


−→ 0 as n→ ∞.

The conditions on η ji in (C.4) are intended for the case of an expanding set. In particular, the condition
b ji/η ji → 0 means that the boundary parameter η ji must shrink to zero at a slower rate than b ji , this is
crucial for Stirling’s approximation to the gamma function. This condition was used [79] for the novel
proof of the convergence results that we have extended to our setting.

5.2. Weak uniform convergence of conditional U-statistics

In the following theorem, we state that the weak uniform convergence of conditional U-statistics, in
the particular case of m = 1, reduces to the results obtained in [79].

Theorem 5.1. If (C.2)–(C.4) hold, then, as n→ ∞,

sup
x̃∈Sm

X

∣∣∣un,3(ϕ, x̃) − E
[
un,3(ϕ, x̃)

]∣∣∣ = OP


√√√√√√√√√ (log n/n)

m∏
j=1

 d∏
i=1

b jiη ji




. (5.2)

Theorem 5.2. If (C.2)–(C.4) hold, then, as n→ ∞,

sup
x̃∈Sm

X

∣∣∣∣̂r(m)
n,3 (ϕ, x̃; Λ̄n,3(x̃)) − Ê

[̂
r(m)

n,3 (ϕ, x̃; Λ̄n,3(x̃))
]∣∣∣∣ = OP


√√√√√√√√√ (log n/n)

m∏
j=1

 d∏
i=1

b jiη ji




. (5.3)

Theorem 5.3. If (C.2) holds, then, as n→ ∞,

sup
x̃∈Sm

X

∣∣∣∣r(m)(ϕ, x̃) − Ê
[̂
r(m)

n,3 (ϕ, x̃; Λ̄n,3(x̃))
]∣∣∣∣ = O

 m∑
j=1

d∑
i=1

b ji

 . (5.4)

Corollary 5.4. Under the assumptions of Theorem 5.2 and Theorem 5.3, as n→ ∞,

sup
x̃∈Sm

X

∣∣∣̂r(m)
n,3 (ϕ, x̃; Λ̄n,3(x̃)) − r(m)(ϕ, x̃)

∣∣∣ = OP


m∑

j=1

d∑
i=1

b ji +

√√√√√√√√√ (log n/n)
m∏

j=1

 d∏
i=1

b jiη ji




. (5.5)
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5.3. Strong uniform convergence of conditional U-statistics

In this section, we establish strong uniform consistency with rates of r̂(m)
n,3 (ϕ, x̃; Λ̄n,3(x̃)). However, to

do so, the assumption on smoothing parameters must be suitably strengthened.

(C.4’) b j := b j(n) =
(
b j1 , . . . , b jd

)
> 0 and η j := η j(n) =

(
η j1 , . . . , η jd

)
> 0, j = 1, . . . ,m, satisfy for

i = 1, . . . , d, b ji , η ji → 0,
b ji

η ji
→ 0 and

log n

n
m∏

j=1

 d∏
i=1

b jiη ji


 m∑

j=1

d∑
i=1

1
b2

ji


1−κ

= O(1), (5.6)

for some constant κ ∈ [0, 1), as n→ ∞.

The condition (5.6) is stronger than log n/

n
√√√ m∏

j=1

 d∏
i=1

b jiη ji


 −→ 0 in (C.4) in that the former

implies the latter. Under this condition, the statement in Corollary 5.4 can be strengthened to almost
sure convergence. The following theorems generalize the results of [79] that are given for m = 1.

Theorem 5.5. If (C.2)–(C.3) and (C.4’) hold, then, as n→ ∞,

sup
x̃∈Sm

X

∣∣∣un,3(ϕ, x̃) − E
[
un,3(ϕ, x̃)

]∣∣∣ = O


√√√√√√√√√ (log n/n)

m∏
j=1

 d∏
i=1

b jiη ji




a.s. (5.7)

Theorem 5.6. If (C.2)–(C.3) and (C.4’) hold, then, as n→ ∞,

sup
x̃∈Sm

X

∣∣∣∣̂r(m)
n,3 (ϕ, x̃; Λ̄n,3(x̃)) − Ê

[̂
r(m)

n,3 (ϕ, x̃; Λ̄n,3(x̃))
]∣∣∣∣ = O


√√√√√√√√√ (log n/n)

m∏
j=1

 d∏
i=1

b jiη ji




a.s. (5.8)

Theorem 5.7. If (C.2) holds, then

sup
x̃∈Sm

X

∣∣∣∣r(m)(ϕ, x̃) − Ê
[̂
r(m)

n,3 (ϕ, x̃; Λ̄n,3(x̃))
]∣∣∣∣ = O

 m∑
j=1

d∑
i=1

b ji

 . (5.9)

Corollary 5.8. Under the assumptions of Theorems 5.6 and 5.9, as n→ ∞,

sup
x̃∈Sm

X

∣∣∣̂r(m)
n,3 (ϕ, x̃; Λ̄n,3(x̃)) − r(m)(ϕ, x̃)

∣∣∣ = O


m∑

j=1

d∑
i=1

b ji +

√√√√√√√√√ (log n/n)
m∏

j=1

 d∏
i=1

b jiη ji




a.s. (5.10)
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5.4. Conditional U-statistics estimators for mixed categorical and continuous data

Let’s delve into the methodology for handling a discrete random variable Z, which can assume c
distinct values, {0, 1, . . . , c − 1}, where c ≥ 2; we refer to [43, 101, 104, 106, 132]. We categorize this
variable as either unordered or ordered, as the kernels utilized for these two types differ slightly. For
an unordered variable, the univariate discrete kernel takes the form

l(v; z, λ) =

1 − λ, if v = z,

λ/(c − 1), if v , z.

Here, v represents the data point, z denotes the design point, and λ ∈ (0, 1) denotes the bandwidth.
Conversely, the univariate discrete kernel for an ordered variable is given by

`(v; z, λ) =

(
c
|v − z|

)
(1 − λ)c−|v−z|λ|v−z|.

Moving on to the product discrete kernel, when q1(≤ q) out of q discrete variables are unordered, it
becomes

L(v; z, λ) =

 q1∏
k=1

l(vk; zk, λk)




q∏
k=q1+1

`(vk; zk, λk)

 .
Here, v :=

(
v1, . . . , vq

)
, z :=

(
z1, . . . , zq

)
, and λ :=

(
λ1, . . . , λq

)
. Combining this with the product beta

kernel Kᾰ,β̆(u) yields the product kernel for mixed categorical and continuous data

W(u, v; x, z,b, λ) = Kᾰ,β̆(u)L(v; z, λ).

Given this kernel and n i.i.d. observations {(Yi,Xi,Zi)}ni=1 ∈ R × [0, 1]d × SZ, where SZ :=∏q
k=1 {0, 1, . . . , ck − 1}, we turn to a regression estimator of the conditional mean

r(m)(ϕ, x̃, z̃) = E (ϕ(Y1, . . . ,Ym) | (X1, . . . ,Xm) = x̃, (Z1, . . . ,Zm) = z̃) .

This estimator, denoted as r̂(m)
n,3 (ϕ, x̃; Λ̄n,3(x̃)), is expressed as

r̂(m)
n,3 (ϕ, x̃; Λ̄n,3(x̃)) =

∑
(i1,...,im)∈I(m,n)

ϕ(Yi1 , . . . ,Yim)W
(
Xi1 ,Zi1; x1, z1,b, λ

)
· · ·W

(
Xim ,Zim; xm, zm,b, λ

)
∑

(i1,...,im)∈I(m,n)

W
(
Xi1 ,Zi1 ; x1, z1,b, λ

)
· · ·W

(
Xim ,Zim; xm, zm,b, λ

) .(5.11)

5.4.1. Weak uniform convergence

Before we state the uniform convergence results of the estimator, we assume

(C.1’) {(Yi,Xi,Zi)}ni=1 ∈ R × [0, 1]d × SZ are i.i.d. random variables;

(C.2’) Let f̃ (x̃, ỹ) be the joint pdf of (X̃, Ỹ). Then, the second-order derivatives of f̃ (x̃, ỹ) and g̃(x̃, ỹ) :=
r(m)(ϕ, x̃, z̃) f̃ (x̃, ỹ), with respect to x̃, are continuous on x̃ ∈ (0, 1)dm;
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(C.3’) There are some constants γ > 0 and C1 ∈ [1,∞) such that E|ϕ(Y)|2+γ < ∞ and

sup
x̃∈(0,1)dm×Sm

Z

E
(
|ϕ(Y)|2+γ | X̃ = x̃, Z̃ = z̃

)
f̃ (x̃, ỹ) ≤ C1; (5.12)

(C.4”) b j := b j(n) =
(
b j1 , . . . , b jd

)
> 0, η j := η j(n) =

(
η j1 , . . . , η jd

)
> 0, j = 1, . . . ,m, and λk := λk ∈

(0, 1), k = 1, . . . , q, satisfy for i = 1, . . . , d, b ji , η ji → 0,
b ji

η ji
→ 0, λk → 0, and

log n

n
m∏

j=1

 d∏
i=1

b jiη ji


−→ 0 as n→ ∞;

(C.4”’) b j := b j(n) =
(
b j1 , . . . , b jd

)
> 0, η j := η j(n) =

(
η j1 , . . . , η jd

)
> 0, j = 1, . . . ,m, and λk := λk ∈

(0, 1), k = 1, . . . , q satisfy, for i = 1, . . . , d, b ji , η ji → 0,
b ji

η ji
→ 0, λk → 0, and

log n

n
m∏

j=1

 d∏
i=1

b jiη ji


 m∑

j=1

d∑
i=1

1
b2

ji


1−κ

= O(1) (5.13)

for some constant κ ∈ [0, 1), as n→ ∞;

(C.5) Let f m
n := inf

x̃∈Sm
X

f̃ (x̃) > 0, f m
n tends to zero as n −→ ∞, and

f m
n


m∑

j=1

d∑
i=1

b ji +

q∑
k=1

λk +

√√√√√√√√√ (log n/n)
m∏

j=1

 d∏
i=1

b jiη ji




→ 0. (5.14)

Corollary 5.9. If (C.1’)–(C.3’), (C.4”) and (C.5) hold, then, as n→ ∞,

sup
(x̃,z̃)∈Sm

X×S
m
Z

∣∣∣̂r(m)
n,3 (ϕ, x̃, z̃,bn) − r(m)(ϕ, x̃, z̃)

∣∣∣ = OP


f m
n


m∑

j=1

d∑
i=1

b ji +

q∑
k=1

λk +

√√√√√√√√√ (log n/n)
m∏

j=1

 d∏
i=1

b jiη ji






. (5.15)

6. Applications

6.1. Discrimination problems

Now, we apply the results of the problem of discrimination described in Section 3 of [137], referring
also to [136]. We will use a similar notation and setting. Let ϕ(·) be any function taking at most finitely
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many values, say, 1, . . . ,M. The sets

A j = {(y1, . . . , yk) : ϕ(y1, . . . , yk) = j} , 1 ≤ j ≤ M,

then yield a partition of the feature space. Predicting the value of ϕ(Y1, . . . ,Yk) is tantamount to
predicting the set in the partition to which (Y1, . . . ,Yk) belongs. For any discrimination rule g, we
have

P(g(X) = ϕ(Y)) ≤
M∑
j=1

∫
{x̃:g(x̃)= j}

max
1≤ j≤M

M
j(x̃)dP(x̃),

where
M

j(x̃) = P(ϕ(Y) = j | X = x̃), x̃ ∈ Rd.

The above inequality becomes an equality if

g0(x̃) = arg max
1≤ j≤M

M
j(x̃).

g0(·) is called the Bayes rule, and the pertaining probability of error

L∗ = 1 − P(g0(X) = ϕ(Y)) = 1 − E
{

max
1≤ j≤M

M
j(x̃)

}
is called the Bayes risk. Each of the above unknown function M j’s can be consistently estimated by
one of the methods discussed in the preceding sections. Let, for 1 ≤ j ≤ M and ` ∈ {1, 2, 3},

M
j
n,`(x̃) =

∑
(i1,...,ik)∈I(k,n)

1{ϕ(Yi1 , . . . ,Yik) = j}KΛn,`(x1)(Xi1) . . .KΛn,`(xm)(Xim)∑
(i1,...,ik)∈I(k,n)

KΛn,`(x1)(Xi1) . . .KΛn,`(xm)(Xim)
. (6.1)

Set
g0,n,`(x̃) = arg max

1≤ j≤M
M

j
n,`(x̃).

Let us introduce
L∗n,` = P(g0,n,`(X) , ϕ(Y)).

The discrimination rule g0,n,`(·) is asymptotically Bayes’ risk consistent

L∗n,` → L∗.

This follows from Corollaries 3.5, 4.7, or 5.8 and the obvious relation

∣∣∣L∗ − L∗n,`
∣∣∣ ≤ 2E

[
max

1≤ j≤M

∣∣∣M j
n,`(x) −M j(x)

∣∣∣] .
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6.2. Generalized U-statistics

The extension to the case of several samples is straightforward. Consider ˜̀ independent collections
of independent observations{(

X(1)
1 ,Y(1)

1

)
,
(
X(1)

2 ,Y(1)
2

)
, . . .

}
, . . . ,

{(
X( ˜̀)

1 ,Y
( ˜̀)
1

)
,
(
X( ˜̀)

2 ,Y
( ˜̀)
1

)
, . . .

}
.

Let, for t ∈ Rd(k1+···+k`),

r(k, ˜̀)(ϕ, t) =r(k, ˜̀)(ϕ, t1, . . . , t`)

=E
(
ϕ
(
Y(1)

1 , . . . ,Y(1)
k1

; . . . ; Y( ˜̀)
1 , . . . ,Y

( ˜̀)
k ˜̀

)
|
(
X( j)

1 , . . . ,X
( j)
m j

)
= t j, j = 1, . . . , ˜̀

)
,

where ϕ is assumed, without loss of generality, to be symmetric within each of its ˜̀ blocks of
arguments. Corresponding to the ”kernel” ϕ and assuming n1 ≥ k1, . . . , nk ≥ k ˜̀, the conditional U-
statistic for estimation of r(k, ˜̀)(ϕ, t) is defined, for ` ∈ {1, 2, 3}, by

r̂(k, ˜̀)
n,` (ϕ, t) =

∑
c

ϕ
(
Y(1)

i11
. . . ,Y(1)

i1k1
; . . . ; Y( ˜̀)

ik1
, . . . ,Y( ˜̀)

ikk ˜̀

)
K`

(
X(1)

i11
. . . ,X(1)

i1k1
; . . . ; X( ˜̀)

ik1
, . . . ,X( ˜̀)

i ˜̀k ˜̀

)
∑

c

K`

(
X(1)

i11
. . . ,X(1)

i1k1
; . . . ; X( ˜̀)

ik1
, . . . ,X( ˜̀)

i ˜̀k ˜̀

) ,

where

K`

(
X(1)

i11
. . . ,X(1)

i1k1
; . . . ; X(`)

ik1
, . . . ,X(`)

i`k`

)
=

˜̀∏
j=1

KΛn,`(t1)(X( j)
i1

) . . .KΛn,`(tm)(X( j)
im

).

Here
{
i j1, . . . , i jm j

}
denotes a set of k j distinct elements of the set {1, 2, . . . , n j

}
1 ≤ j ≤ ˜̀, and

∑
c

denotes summation over all such combinations. The extension of [80] treatment of one-sample U -
statistics to the ˜̀ sample case is due to [99] and [54]. One can use Corollaries 3.5, 4.7, or 5.8 to infer
that ∣∣∣∣̂r(k, ˜̀)

n,` (ϕ, t) − r(k, ˜̀)(ϕ, t)
∣∣∣∣ −→ 0 a.s. (6.2)

6.3. Kendall rank correlation coefficient

To test the independence of one-dimensional random variables Y1 and Y2, [90] proposed a method
based on the U-statistic Kn with the kernel function:

ϕ ((s1, t1) , (s2, t2)) = 1{(s2−s1)(t2−t1)>0} − 1{(s2−s1)(t2−t1)60}. (6.3)

Its rejection region is of the form
{√

nKn > γ
}
. In this example, we consider a multivariate case. To

test the conditional independence of ξ, η : Y = (ξ, η) given X, we propose a method based on the
conditional U-statistic, for ` ∈ {1, 2, 3},

r̂(2)
n,`(ϕ, t) =

n∑
i, j

ϕ
(
Yi,Y j

)
KΛn,`(t1)(Xi)KΛn,`(t2)(X j)

n∑
i, j

KΛn,`(t1)(Xi)KΛn,`(t2)(X j)

,
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where t = (t1, t2) ∈ I ⊂ R2 and ϕ(·) is Kendall’s kernel (6.3). Suppose that ξ and η are d1 and d2-
dimensional random vectors, respectively, and d1 + d2 = d. Furthermore, suppose that Y1, . . . ,Yn are
observations of (ξ, η), and we are interested in testing :

H0 : ξ and η are conditionally independent given X. vs Ha : H0 is not true. (6.4)

Let a = (a1, a2) ∈ Rd such as ‖a‖ = 1 and a1 ∈ R
d1 , a2 ∈ R

d2 , and F(·),G(·) be the distribution functions
of ξ and η respectively. Suppose Fa1(·) and Ga2(·) to be continuous for any unit vector a = (a1, a2) where
Fa1(t) = P (a1ξ < t) and Ga2(t) = P

(
a2η < t

)
and a>1 means the transpose of the vector ai, 1 6 i 6 2. For

n = 2, let Y (1) =
(
ξ(1), η(1)

)
and Y (2) =

(
ξ(2), η(2)

)
such as ξ(i) ∈ Rd1 and η(i) ∈ Rd2 for i = 1, 2, and:

ϕa
(
Y(1),Y(2)

)
= ϕ

((
a1ξ

(1), a2η
(1)

)
,
(
a1ξ

(2), a2η
(2)

))
.

An application of Corollaries 3.5, 4.7, or 5.8 gives∣∣∣̂r(2)
n,`(ϕ

a, x; mn) − r(2)(ϕa, x)
∣∣∣ −→ 0 a.s. (6.5)

7. Examples

Generally speaking, we may take for h any function that has been found interesting in the
unconditional setup; cf. [129]. As mentioned before, the case m = 1 leads to the Nadaraya-Watson
estimator if we set ϕ(·) = id;ϕ(·) = 1(−∞,x](·) yields the empirical conditional d.f. evaluated at x. We
now discuss several examples for m = 2.

Example 7.1. [134] For

h (y1, y2) =
1
2

(y1 − y2)2 ,

we obtain
m (x1, x1) = Var (Y1 | X1 = x1) .

In this case,

ρ2 =
{
E

[
(Y − Y2)2 (Y − Y3)2

| X = X2 = X3 = x1

]
− 4r(2)2 (x1, x1)

} ∫
K2(u)du/ f (x1) .

Compare ρ2 with ζ1 in [129], page 182.

Example 7.2. [134] Assume Yi = (Yi1,Yi2)>, and define h by

h
[[

y11

y12

]
,

[
y21

y22

]]
=

1
2

(y11y12 + y21y22 − y11y22 − y12y21) ,

that is, m = 2, and

r(2) (x1, x2) =
1
2

[E (Y11Y12 | X1 = x1) + E (Y21Y22 | X2 = x2)

−E (Y11Y22 | X1 = x1, X2 = x2) − E (Y12Y21 | X1 = x1, X2 = x2)] .

In particular,

r(2) (x1, x1) = E (Y11Y12 | X1 = x1) − E (Y11 | X1 = x1)E (Y12 | X1 = x1) ,

the conditional covariance of Y1 given X1 = x1.
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8. The bandwidth selection criterion

Following [53] and [30], the leave-one-out cross validation procedure allows us to define, for any
fixed i = (i1, . . . , im) ∈ I(m, n) and ` ∈ {1, 2, 3},

r̂(m)
n,`,i(ϕ, x̃; Λ̄n,`(x̃)) =

∑
( j1,..., jm)∈I(m,n)\{i}

ϕ(Y j1 , . . . ,Y jm)KΛn,`(x1)(X j1) . . .KΛn,`(xm)(X jm)∑
(i1,...,im)∈I(m,n)

KΛn,`(x1)(X j1) . . .KΛn,`(xm)(X jm)
. (8.1)

To minimize the quadratic loss function, we introduce the following criterion, we have for some
(known) nonnegative weight functionW(·), for ` ∈ {1, 2, 3},

CV` (ϕ, h) :=
(n − m)!

n!

∑
i∈I(m,n)

(
ϕ(Ỹi) − r̂(m)

n,`,i(ϕ, X̃i; h)
)2
W̃(X̃i), (8.2)

where

W̃ (x̃) :=
m∏

i=1

W(xi).

A natural way for choosing the bandwidth is to minimize the preceding criterion, so let’s choose ĥn,`

minimizing
CV` (ϕ, h) .

One can replace (8.2) by

CV`

(
ϕ, ĥn,`

)
:=

(n − m)!
n!

∑
i∈I(m,n)

(
ϕ(Ỹi) − r̂(m)

n,`,i(ϕ, X̃i; ĥn,`)
)2
Ŵ(X̃i, x̃), (8.3)

where

Ŵ (s̃, x̃) :=
m∏

i=1

Ŵ(si, xi).

In practice, one takes for i ∈ I(m, n), the uniform global weights W̃(X̃i) = 1, and the local weights

Ŵ(X̃i, t̃) =

{
1 if ‖X̃i − x̃‖ ≤ h,
0 otherwise.

For the sake of brevity, we have just considered the most popular method, that is, the cross-validated
selected bandwidth. This may be extended to any other bandwidth selector, such as the bandwidth
based on Bayesian ideas [32, 33].

9. Monte Carlo experiments

The program codes are implemented in R. Our simulation setup closely follows that of [49] and
[23, 32]. Specifically, we consider drawing i.i.d. random samples (Xi,Yi,1,Yi,2) for i = 1, . . . , n, with
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univariate explanatory variables. We assume that the underlying distribution is continuous. Note that
the conditional Kendall-τ, as described in [90], can be defined as follows:

τ1,2|X=u = 4P
(
Y1,1 > Y2,1,Y1,2 > Y2,2

∣∣∣X1 = X2 = u
)
− 1

= 1 − 4P
(
Y1,1 > Y2,1,Y1,2 < Y2,2

∣∣∣X1 = X2 = u
)

= P
(
(Y1,1 − Y2,1)(Y1,2 − Y2,2) > 0

∣∣∣X1 = X2 = u
)

−P
(
(Y1,1 − Y2,1)(Y1,2 − Y2,2) < 0

∣∣∣X1 = X2 = u
)
.

Motivated by these expressions, [49] introduced several kernel-based estimators of τ1,2|X=u:

τ̂(1)
1,2|X=u := 4

n∑
i=1

n∑
j=1

wi,n(u)w j,n(u)1
{
Yi,1 < Y j,1,Yi,2 < Y j,2

}
− 1,

τ̂(2)
1,2|X=u :=

n∑
i=1

n∑
j=1

wi,n(u)w j,n(u)
(
1
{
(Yi,1 − Y j,1) · (Yi,2 − Y j,2) > 0

}
−1

{
(Yi,1 − Y j,1) · (Yi,2 − Y j,2) < 0

})
,

τ̂(3)
1,2|X=u := 1 − 4

n∑
i=1

n∑
j=1

wi,n(u)w j,n(u)1
{
Yi,1 < Y j,1,Yi,2 > Y j,2

}
,

where wi,n(·) is a sequence of Nadaraya-Watson weights defined by

wi,n(u) =
Kh(Xi − u)

n∑
j=1

Kh(X j − u)

, (9.1)

with the notation Kh(·) := h−1K(·/h) for some kernel K(·) on R, and h = h(n) denotes a usual bandwidth
sequence that tends to zero as n → ∞. In the simulation study, we consider the following simple case
of bounded explanatory variables, as follows:

- The variable X is uniformly on (0, 1). Conditionally on X = u, Y1|X = u and Y2|X = u both
follow a Gaussian distribution N(u, 1). Their associated conditional copula is Gaussian, and their
conditional Kendall-τ is given by

τ1,2|X=u = 2u − 1.

We make use of the following kernels:

• The tricube kernel:
K(x) =

70
81

(
1 − |x|3

)3
1|x|≤1,

• the Gaussian kernel:
K(x) =

1
√

2π
e−x2/2,

• the Epanechnikov kernel [57]:

K(x) =
3
4

(1 − x2)1{|x| ≤ 1},
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• the beta kernel:

Kα1,α2(x) =
1

B(α1, α2)
xα1−1(1 − x)α2−11{0 ≤ x ≤ 1},

with the weight

wi,n(u) =
Kα1,α2(Xi)

n∑
j=1

Kα1,α2(X j)

, (9.2)

where α1 = u/h + 1 and α2 = (1 − u)/h + 1,

• the Bernstein polynomials: For x ∈ [0, 1], ϑ ∈ N, k = 0, . . . , ϑ, set bk,ϑ(x) :=
(
ϑ

k

)
xk (1 − x)ϑ−k,

and

Ku,ϑ(x) = ϑ

ϑ−1∑
k=0

1
(

k
ϑ
< x ≤

k + 1
ϑ

)
bk,ϑ−1(u).

For the estimators based on the tricube kernel, the Gaussian kernel, and the Epanechnikov kernel,
we use the “normal scale rule” or the rule-of-thumb method; for instance, see [130], to select the
bandwidth. Specifically, we set h to be αhσ̂(X1, . . . , Xn)n−1/5, where αh is some positive constant and
σ̂(X1, . . . , Xn) is the empirical standard deviation of X. The parameter αh is calculated by minimizing
the L2 distance between the kernel density estimator and the theoretical density. The choice of αh is
not the optimal one, since we are choosing this in order to minimize the distance between the densities
rather than between the regression functions. This choice is sufficient for our needs. The flexibility of
this choice is due to the rule-of-thumb method. For the sake of effective calculations of these measures,
the theoretical density can be replaced by the empirical counterparts based, for example, on 10000
simulations. Corollary 4.7 clearly shows that the choice of ϑ is critical for accurately estimating the
Kendall-τ. According to [10], it is noted that for the distribution function, ϑ can be as large as n/ log n,
whereas for density estimation, it is preferable to have ϑ = o(n/ log n). In our simulations, we choose
ϑ = dn/ log ne, where dxe denotes the ceiling of x. This framework allows us to examine the small
sample performances of the estimators τ̂(`)

1,2|X=u for ` = 1, 2, 3. Consequently, we compute our estimators
for each of the kernels mentioned above and for each n ∈ {500, 1000, 2000}. We consider three local
measures of goodness-of-fit: for a given u and for any Kendall-τ estimate (say τ̂1,2|X=u), let

• the (local) bias: Bias(u) := E[̂τ1,2|X=u] − τ̂1,2|X=u,

• the (local) standard deviation: Sd(u) := E
[(̂
τ1,2|X=u − E[̂τ1,2|X=u]

)2
]1/2

,

• the (local) MSE: MSE(u) := E
[(̂
τ1,2|X=u − τ1,2|X=u

)2
]
.

We also consider the integrated versions of these measures with respect to the usual Lebesgue
measure over the entire support of t, denoted as IBias, IS d, and IMS E. For effective computation, we
replace the theoretical expectations with their empirical counterparts based on 1000 simulations.
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Figure 1. Fitting of τ̂(1)
1,2|X=·

curves based on 1000 simulations for n = 2000.
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Figure 2. Fitting of τ̂(2)
1,2|X=·

curves based on 1000 simulations for n = 2000.
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Figure 3. Fitting of τ̂(3)
1,2|X=·

curves based on 1000 simulations for n = 2000.
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Figure 4. The local bias of τ̂(i)
1,2|X=·

, i = 1, 2, 3 estimator for n = 2000. The used kernel and
αh are: the Gaussian kernel with αh = 1.25 in (a), the Epanechnikov kernel with αh = 2.5 in
(b), and the beta kernel with αh = 1.5 in (c).
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(c) Epanechnikov kernel.
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(d) Beta kernel.
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Figure 5. The local standard deviation of τ̂(2)
1,2|X=·

estimator for n = 2000 in Setting 1. The
used kernel and αh are: the Gaussian kernel with αh = 1.25 in (a), the Epanechnikov kernel
with αh = 2.5 in (b), and the beta kernel with αh = 1.5 in (c).
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(b) Tricube kernel.
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(c) Epanechnikov kernel.
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(d) Beta kernel.
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(e) Bernstein kernel.

Figure 6. The local MSE τ̂(2)
1,2|X=·

estimator for n = 2000 in Setting 1. The used kernel and αh

are: the Gaussian kernel with αh = 1.25 in (a), the Epanechnikov kernel with αh = 2.5 in (b),
and the beta kernel with αh = 1.5 in (c).
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As is common in inferential contexts, larger sample sizes generally yield better performance, see
Figures 1–6. Simple inspection of the results in Table 1 shows that larger sample sizes n lead to
smaller IBias, IS d, and IMS E. The parameters of the beta kernel and Bernstein polynomial can be
adjusted such that the mode, median, or mean aligns with the point x. This variable smoothing enables
these asymmetric kernel estimators to outperform traditional kernel estimators near the boundary of
the support by reducing bias. Additionally, because variable smoothing is directly integrated into
the parameterization of the kernel function, asymmetric kernel estimators are generally simpler to
implement compared to boundary kernel methods. It is important to note that for m = 2, the tendency
for larger variance when x1 = x2 occurs because only data from the single neighborhood of x1 is used.
In contrast, when x1 , x2, data from two potentially disjoint sets are incorporated. Specifically, for
Kendall’s tau, the case x1 = x2 = u is not ideal for minimizing variance. To provide methodological
recommendations for using the proposed estimators, it would be beneficial to conduct extensive Monte
Carlo experiments comparing our procedures with other alternatives in the literature. However, this is
beyond the scope of the present paper.

10. Concluding remarks

Our study initiated exploration into the theoretical aspects of the Dirichlet kernel estimator,
as initially proposed by [3], when applied to conditional U-statistics within the dm-dimensional
simplex. By extending the unidimensional beta kernel estimator introduced by [40], the Dirichlet
kernel estimator effectively mitigates boundary bias. Our comprehensive analysis established both
its asymptotic normality and uniform strong consistency. Furthermore, we have considered the
estimation of conditional U-statistics using Bernstein polynomials. In deriving our results for these
estimators, we also presented novel insights into the Nadaraya-Watson estimators employing Bernstein
polynomials, which are of independent interest. Additionally, we introduce a beta kernel estimator
specifically designed for conditional U-statistics, providing an extensive suite of uniform consistency
results along with associated rates. Our rigorous analysis demonstrated both weak and strong uniform
convergence, leveraging the expansion of compact sets and general sequences of smoothing parameters
as the analytical foundation. Also, we conducted some simulations to illustrate the small sample
performances of the estimators. One aspect that remains unexplored in this paper is the optimal
selection of smoothing parameters, a topic of significant importance warranting dedicated research
effort, which we defer to a forthcoming investigation.

Several avenues exist for further development of our approach. Extending our results to encompass
k-nearest-neighbors estimators is of notable interest, although achieving this goal necessitates the
development of new technical arguments, as it currently lies beyond reasonable expectations.
Exploring the realm of k-nearest-neighbors estimators would broaden the scope of our research and
yield valuable insights into their performance and properties (see [31, 56]). The literature concerning
asymmetric kernels for dependent data remains underdeveloped. Extending our results to account for
dependence poses a more formidable challenge compared to previous extensions, as it necessitates
the formulation of new probabilistic results, given that those employed in our present analysis are
tailored specifically to i.i.d. samples (refer to [26, 34]). Change-point detection has become an
essential tool for identifying points in a data sequence where a stochastic system undergoes sudden
external influences. This can significantly enhance our understanding of the underlying processes.
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While change-point analysis has been widely applied to various stochastic processes across numerous
scientific fields (refer to [27–29]), its application to conditional U-statistics constitutes an unexplored
and challenging research topic that warrants further investigation. Missing data are prevalent in modern
statistics, presenting significant challenges across various applications. For example, missing data
can occur when information is gathered from sources that measure different variables, such as in
healthcare, where patient data may vary between clinics or hospitals. Additional causes of missing
data include sensor failure, data censoring, and privacy concerns, among many others. It would be
interesting to extend the results of the present paper to the missing data or censored data framework
as in [22]. Spatial data, gathered from measurement sites across various disciplines, frequently
appears in research fields such as econometrics, epidemiology, environmental science, image analysis,
oceanography, meteorology, geostatistics, and many others. Extending this paper to effectively handle
spatial data is a challenging task. Our results will be expanded in future investigations by examining
the weak convergence of the conditional U-processes. This will require additional effort and advanced
techniques to establish tightness.
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A. Appendix-1

This section is dedicated to proving our results. We will continue to use the previously established
notation. A crucial element in our proofs involves the truncation of the U-statistics. Specifically, we
represent the U-statistics un,`(ϕ, x̃) for ` ∈ {1, 2, 3} as follows:

un,`(ϕ, x̃) = un,`

(
G

(T )
ϕ,x̃,`

)
+ un,`

(
G

(R)
ϕ,x̃,`

)
=: u(T )

n,` (ϕ, x̃) + u(R)
n,` (ϕ, x̃), (A.1)

where for ` ∈ {1, 2, 3} and some ωn,` (to be specified later in the proof of each section), we have:

Gϕ,x̃,`(x, y) = G
(T )
ϕ,x̃,`(x, y) + G

(R)
ϕ,x̃,`(x, y)

= Gϕ,x̃,`(x, y)1{|ϕ(y)|≤ωn,`} + Gϕ,x̃,`(x, y)1{|ϕ(y)|>ωn,`}.

Here, u(T )
n,` (ϕ, x̃) is the truncated part, and u(R)

n,` (ϕ, x̃) is the remainder part. We establish the uniform
convergence rates of un,`(ϕ, x̃) to E[un,`(ϕ, x̃)] based on the convergence rates of un,`

(
G

(T )
ϕ,x̃,`

)
to

E[un,`

(
G

(T )
ϕ,x̃,`

)
], while demonstrating that the remainder part is asymptotically negligible. Next,

we can use these results to deduce the convergence rates of the stochastic part of the estimators
r̂(m)

n,` (ϕ, x̃; Λ̄n,`(x̃)). Indeed, we can clearly see that based on the classical decomposition, for ` ∈ {1, 2, 3}:∣∣∣∣̂r(m)
n,` (ϕ, x̃; Λ̄n,`(x̃)) − Ê

(̂
r(m)

n,` (ϕ, x̃; Λ̄n,`(x̃))
)∣∣∣∣

≤

∣∣∣un,`(ϕ, x̃) − E
(
un,`(ϕ, x̃)

)∣∣∣∣∣∣un,`(1, x̃)
∣∣∣ +

∣∣∣E (
un,`(ϕ, x̃)

)∣∣∣ · ∣∣∣un,`(1, x̃) − E
(
un,`(1, x̃)

)∣∣∣∣∣∣un,`(1, x̃)
∣∣∣ · ∣∣∣E (

un,`(1, x̃)
)∣∣∣

=: I`,1 + I`,2. (A.2)

Later, based on the imposed regularity conditions in each section, we can easily control the terms∣∣∣un,`(ϕ, x̃)
∣∣∣ and

∣∣∣E [
un,`(ϕ, x̃)

]∣∣∣ (including the particular case when ϕ ≡ 1), uniformly in x̃ to obtain the
desired rates of convergence. Lastly, we need to study the bias of each estimator. It is worth noting
that the proof of the bias term for the three estimators proposed in this paper is based on the following
decomposition for ` ∈ {1, 2, 3}. We have

∣∣∣∣̂E [̂
r(m)

n,` (ϕ, x̃; Λ̄n,`(x̃))
]
− r(m)(ϕ, x̃)

∣∣∣∣ =

∣∣∣E (
un,`(ϕ, x̃)

)
− r(m)(ϕ, x̃)E

(
un,`(1, x̃)

)∣∣∣∣∣∣E (
un,`(1, x̃)

)∣∣∣ . (A.3)

As a matter of fact, (A.3) implies that it suffices to control the term
∣∣∣E (

un,`(ϕ, x̃)
)
− R(ϕ, x̃)

∣∣∣ uniformly
in x̃, to establish the desired results, as we can see in the sequel.
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A.1. Proofs of Section 3: Dirichlet kernels

A.1.1. Proofs of Section 3.1

The regression proof for the case where m = 1 closely resembles the one given in [117]. We include
it here in full detail for the reader’s convenience and to ensure it is self-contained. However, the result
concerning the regression function smoothed by the Dirichlet kernel has not been addressed in the
literature, providing the primary motivation for presenting it in this paper.

Proof of Theorem 3.1. Observe that

sup
x∈Sd,1

∣∣∣̂gn(ϕ, x,Λn,1) − R(ϕ, x)
∣∣∣ ≤ sup

x∈Sd,1

∣∣∣̂gn(ϕ, x,Λn,1) − E
[̂
gn(ϕ, x,Λn,1)

]∣∣∣
+ sup

x∈Sd,1

∣∣∣∣E [̂
gn(ϕ(T ), x,Λn,1)

]
− R(ϕ, x)

∣∣∣∣ .
Keep in mind the definition of the set Sd,1(δ) given in (3.4). To begin, we need to prove the following
result:

sup
x∈Sd,1(b̆d)

∣∣∣̂gn(ϕ, x,Λn,1) − E
[̂
gn(ϕ, x,Λn,1)

]∣∣∣ = O
(
| log b̆|(log n)3/2

b̆d+1/2
√

n

)
a.s. (A.4)

The proof of (A.4) follows the same analogy as in [117] while applying the necessary changes to fit
our context. We have

ĝn(ϕ, x,Λn,1) − E
[̂
gn(ϕ, x,Λn,1)

]
=

1
n

n∑
i=1

{
ϕ(Yi)K(α,β) (Xi) − E[ϕ(Yi)K(α,β) (Xi)]

}
=

1
n

n∑
i=1

Zi,b(x),

where, for i = 1, . . . , n,

Zi,b(x) := ϕ(Yi)K(α,β) (Xi) − E[ϕ(Yi)K(α,β) (Xi)].

For some sequence ωn,1 tending to infinity, we also consider the following notation:

ϕ(T )(y) : = ϕ(y)1{|ϕ(y)|≤ωn,1},

ϕ(R)(y) : = ϕ(y)1{|ϕ(y)|>ωn,1}.

This allows us to write

ĝn(ϕ, x,Λn,1) − E
[̂
gn(ϕ, x,Λn,1)

]
=

1
n

n∑
i=1

{
Z(T )

i,b (x) + Z(R)
i,b (x)

}
,

where

Z(T )
i,b (x) := ϕ(T )(Yi)K(α,β) (Xi) − E[ϕ(T )(Yi)K(α,β) (Xi)], (A.5)

Z(R)
i,b (x) := ϕ(R)(Yi)K(α,β) (Xi) − E[ϕ(R)(Yi)K(α,β) (Xi)]. (A.6)

We also denote
Wi,b(x) := K(α,β) (Xi) − E[K(α,β) (Xi)]. (A.7)

The following proposition, that is close to Proposition 1 of [117], will play an instrumental role in the
sequel.
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Proposition A.1. Let x ∈ Sd,1(b̆(d + 1)), n ≥ 1, 0 < b̆ <
(
e−16

√
2 ∧ d−1

)
, 0 < a ≤ e−1‖ f ‖∞| log b̆|/b̆d+1/2,

and take the unique

δ ∈
(
0, e−1

]
that satisfies δ| log δ| =

b̆d+1/2a

‖ f ‖∞| log b̆|
. (A.8)

Then, for all h ∈ R,

P

 sup
x′∈x+[−b̆,b̆]d

∣∣∣∣∣∣∣1n
n∑

i=1

Z(T )
i,b

(
x′

)∣∣∣∣∣∣∣ ≥ h + 2aωn,1,

∣∣∣∣∣∣∣1n
n∑

i=1

Z(T )
i,b (x)

∣∣∣∣∣∣∣ ≤ h

 (A.9)

≤Cϕ,d exp

− 1
1002d4‖ f ‖2∞

·

(
n1/2b̆d+1/2a

| log δ|| log b̆|

)2 ,
where Cϕ,d > 0 is a constant that depends only on the function ϕ(·) and the dimension d.

Proof of Proposition A.1. Following a similar approach to the proof in [117], we apply a union bound
to show that the probability in (A.9) can be bounded as follows:

≤ P


 sup

x′∈x+[−b̆,b̆]d

∣∣∣∣∣∣∣1n
n∑

i=1

(
Z(T )

i,b (x′) − Z(T )
i,b (x)

)
1{xi∈Sd,1\Sd,1(δ)}

∣∣∣∣∣∣∣ ≥ aωn,1


∩

 n∑
i=1

1{xi∈Sd,1\Sd,1(δ)} ≤ n · 4‖ f ‖∞δ


 (A.10)

+P

 n∑
i=1

1{xi∈Sd,1\Sd,1(δ)} ≥ n · 4‖ f ‖∞δ

 (A.11)

+P

 sup
x′∈x+[−b̆,b̆]d

∣∣∣∣∣∣∣1n
n∑

i=1

(
Z(T )

i,b (x′) − Z(T )
i,b (x)

)
1{xi∈Sd,1(δ)}

∣∣∣∣∣∣∣ ≥ aωn,1

 (A.12)

=: (A) + (B) + (C). (A.13)

To clarify our notation, for any subset A ⊂ Rd and any point x ∈ Rd, we define x +A = {x + y : y ∈ A}.
To bound term (A.10), consider the assumption x ∈ Sd,1(b̆(d + 1)) and x′ = x + [−b̆, b̆]d. This implies
that both x and x′ are in Sd,1(b̆), leading to the following relations:

α1 =
x1

b̆
+ 1, . . . , αd =

xd

b̆
+ 1, β =

1 − ‖x‖1
b̆

+ 1 ≥ 2,

and for x′,

α′1 =
x′1
b̆

+ 1, . . . , α′d =
x′d
b̆

+ 1, β′ =
1 − ‖x′‖1

b̆
+ 1 ≥ 2.

Consequently, we have: √
‖α‖1 + β − 1

(β − 1)
∏d

i=1(αi − 1)
≤

√
‖α‖1 + β − 1 =

√
b̆−1 + d, (A.14)√

‖α′‖1 + β′ − 1
(β′ − 1)

∏d
i=1(α′i − 1)

≤
√
‖α′‖1 + β′ − 1 =

√
b̆−1 + d. (A.15)
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Combining these results with our assumption in (A.8) and the upper bound on the Dirichlet density
from Lemma 2 in [117], we obtain: n∑

i=1

1{Xi∈Sd,1\Sd,1(δ)} ≤ 4n‖ f ‖∞δ

 ,
∣∣∣∣∣∣∣1n

n∑
i=1

(
Z(T )

i,b (x′) − Z(T )
i,b (x)

)
1{Xi∈Sd,1\Sd,1(δ)}

∣∣∣∣∣∣∣ ≤ 4 · 4ωn,1‖ f ‖∞δ · b̆−d
√

b̆−1 + d

≤
16
√

1 + bd

| log δ|| log b̆|
aωn,1. (A.16)

Given the assumptions 0 < δ ≤ e−1 and 0 < b̆ <
(
e−16

√
2 ∧ d−1

)
, it follows that:

(A) = 0. (A.17)

Term (A.11) represents the probability of encountering “too many bad observations”, meaning too
many xis near the boundary of the simplex where the partial derivatives of the Dirichlet density with
respect to α1, . . . , αd, and β diverge. We can control this term using a concentration bound. To begin,
note that the volume of Sd,1 \ Sd,1(δ) is at most 2dδ/d!. Specifically, Sd,1(δ) forms a simplex of side-
length 1 − 2δ within Sd,1, so:

d! · Volume
(
Sd,1 \ Sd,1(δ)

)
= 1 − (1 − 2δ)d ≤ 1 − (1 + d · (−2δ)) = 2dδ, (A.18)

where we used the inequality (1 + x)n ≥ 1 + nx, which holds for all n ∈ N and x ≥ −1. From (A.18)
and knowing that ‖ f ‖∞ is finite (since f (·) is continuous by assumption and Sd,1 is compact), we get:

E
[
1{Xi∈Sd,1\Sd,1(δ)}

]
≤

2‖ f ‖∞
(d − 1)!

δ.

Applying Hoeffding’s inequality and condition (A.8), we obtain:

(B) ≤ exp
−2n

(
(2(d − 1)! − 1) ·

2‖ f ‖∞
(d − 1)!

δ

)2 ≤ exp

−2
(

n1/2b̆d+1/2a

| log δ|| log b̆|

)2 . (A.19)

To bound the third probability in (A.13), the main idea is to decompose the supremum using a chaining
argument and apply concentration bounds on the increments at each level of the d-dimensional tree.
With the notationHk := 2−k · b̆Zd, we have the following embedded sequence of lattice points:

H0 ⊆ H1 ⊆ · · · ⊆ Hk ⊆ · · · ⊆ R
d.

Hence, for x ∈ Sd,1(b̆(d +1)) fixed, and for any x′ ∈ x+ [−b̆, b̆]d, let (xk)k∈N0 be a sequence that satisfies:

x0 = x, xk − x ∈ Hk ∩ [−b̆, b̆]d, lim
k→∞
‖xk − x′‖∞ = 0,

and
(xk+1)i = (xk)i ± 2−k−1b, for all i = 1, . . . , d.
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26245

Since the map x 7→ 1
n

∑n
i=1 Z(T )

i,b (x) is almost surely continuous,∣∣∣∣∣∣∣1n
n∑

i=1

(
Z(T )

i,b (x′) − Z(T )
i,b (x)

)
1{xi∈Sd,1(δ)}

∣∣∣∣∣∣∣ ≤
∞∑

k=0

∣∣∣∣∣∣∣1n
n∑

i=1

(
Z(T )

i,b (xk+1) − Z(T )
i,b (xk)

)
1{xi∈Sd,1(δ)}

∣∣∣∣∣∣∣ ,
and since

∑∞
k=0

1
2(k+1)2 ≤ 1, we have the inclusion of events, sup

x′∈x+[−b̆,b̆]d

∣∣∣∣∣∣∣1n
n∑

i=1

(
Z(T )

i,b (x′) − Z(T )
i,b (x)

)
1{xi∈Sd,1(δ)}

∣∣∣∣∣∣∣ ≥ aωn,1


⊆

∞⋃
k=0

⋃
xk∈x+Hk∩[−b̆,b̆]d

(xk+1)i=(xk)i±2−k−1b,∀i∈[d]


∣∣∣∣∣∣∣1n

n∑
i=1

(
Z(T )

i,b (xk+1) − Z(T )
i,b (xk)

)
1{xi∈Sd,1(δ)}

∣∣∣∣∣∣∣ ≥ aωn,1

2(k + 1)2

 .
By a union bound and the fact that

∣∣∣Hk ∩ [−b̆, b̆]d
∣∣∣ ≤ 2(k+2)d,

(C) ≤
∞∑

k=0

2(k+2)d2d sup
xk∈x+Hk∩[−b̆,b̆]d

(xk+1)i=(xk)i±2−k−1b,∀i∈[d]

P


∣∣∣∣∣∣∣1n

n∑
i=1

(
Z(T )

i,b (xk+1) − Z(T )
i,b (xk)

)
1{xi∈Sd,1(δ)}

∣∣∣∣∣∣∣ ≥ aωn,1

2(k + 1)2


≤

∞∑
k=0

2(k+2)d2d sup
xk∈x+Hk∩[−b̆,b̆]d

(xk+1)i=(xk)i±2−k−1b,∀i∈[d]

P


∣∣∣∣∣∣∣1n

n∑
i=1

(
Wi,b (xk+1) −Wi,b (xk)

)
1{xi∈Sd,1(δ)}

∣∣∣∣∣∣∣ ≥ a
2(k + 1)2

 .
(A.20)

Using Azuma’s inequality and Lemma 4 [117] (note that x ∈ Sd,1(b̆(d +1)) and x′ ∈ x+ [−b̆, b̆]d implies
xk ∈ Sd,1(b̆) for all k ∈ N0, so that α1 = (xk)1 /b̆ + 1, . . . , αd = (xk)d /b̆ + 1, β = (1 − ‖xk‖1) /b̆ + 1 ≥ 2
for all k ∈ N0) and (A.7), the above is

≤

∞∑
k=0

2(k+3)d · 2 exp

− na2

8(k + 1)4 ·

(
25d2‖ f ‖∞

| log δ|| log b̆|

b̆d+1/22k+1

)−2
≤

∞∑
k=0

2(k+3)d · 2 exp

− 22k−1

252d4‖ f ‖2∞(k + 1)4 ·

(
n1/2b̆d+1/2a

| log δ|| log b̆|

)2 .
The minimum of k 7→ 0.99 · 22k−1(k + 1)−4 on N0 is larger than, say, 1/16, so we deduce

(C) ≤ C f ,d exp

− 1
1002d4‖ f ‖2∞

·

(
n1/2b̆d+1/2a

| log δ|| log b̆|

)2 , (A.21)

for some large constant C f ,d > 0. Putting (A.17), (A.19), and (A.21) together in (A.13) concludes the
proof of Proposition A.1. �

The following corollary is very similar to Corollary 2 of [117].
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Corollary A.2 (Large deviation estimates). Recall Z(T )
i,b (x) defined in (A.5). Let x ∈ Sd,1(b̆(d + 1)), n ≥

1006d6, n−1/d ≤ b̆ ≤
(
e−16

√
2 ∧ d−1

)
0 < a ≤ e−1‖ f ‖∞| log b̆|/b̆d+1/2, and take the unique

δ ∈
(
0, e−1

]
that satisfies δ| log δ| =

b̆d+1/2a

‖ f ‖∞| log b̆|
.

Then, we have

P

 sup
x′∈x+[−b̆,b̆]d

∣∣∣∣∣∣∣1n
n∑

i=1

Z(T )
i,b

(
x′

)∣∣∣∣∣∣∣ ≥ 3aωn,1

 ≤ C f ,d exp

− 1
1002d4‖ f ‖2∞

·

(
n1/2b̆d+1/2a

| log δ|| log b̆|

)2 , (A.22)

where C f ,d > 0 is a constant that depends only on the density f (·) and the dimension d.

Proof of Corollary A.2. By applying a union bound, we find that the probability in Eq (A.22) can be
bounded as follows:

≤ P

 sup
x′∈x+[−b̆,b̆]d

∣∣∣∣∣∣∣1n
n∑

i=1

Z(T )
i,b

(
x′

)∣∣∣∣∣∣∣ ≥ 3aωn,1,

∣∣∣∣∣∣∣1n
n∑

i=1

Z(T )
i,b (x)

∣∣∣∣∣∣∣ ≤ aωn,1

 + P


∣∣∣∣∣∣∣1n

n∑
i=1

Z(T )
i,b (x)

∣∣∣∣∣∣∣ ≥ aωn,1

 .
The first probability can be bounded using Proposition A.1, and the second probability can be similarly
bounded by applying Azuma’s inequality and Lemma 4 from [117], as was done in Eq (A.20). Now,
we turn to the proof of (A.4). We start by noting:

ĝn(ϕ, x,Λn,1) =
1
n

n∑
i=1

ϕ(Yi)K(α,β) (Xi)

=
1
n

n∑
i=1

ϕ(T )(Yi)K(α,β) (Xi) +
1
n

n∑
i=1

ϕ(R)(Yi)K(α,β) (Xi)

= ĝn(ϕ(T ), x,Λn,1) + ĝn(ϕ(R), x,Λn,1).

To prove (A.4), we need to show that the remainder term is asymptotically negligible, i.e.,

sup
x∈Sd,1(b̆d)

∣∣∣∣̂gn(ϕ(R), x,Λn,1) − E
[̂
gn(ϕ(R), x,Λn,1)

]∣∣∣∣ = o(1) a.s..

This follows directly from the proof of the remainder term for the U-statistics developed subsequently.
Additionally, we need to prove:

sup
x∈Sd,1(b̆d)

∣∣∣∣̂gn(ϕ(T ), x,Λn,1) − E
[̂
gn(ϕ(T ), x,Λn,1)

]∣∣∣∣ = O
(
| log b̆|(log n)3/2

b̆d+1/2
√

n

)
a.s.. (A.23)

This equation is obtained by a union bound over the suprema on hypercubes of width 2b̆ centered at
each x ∈ 2b̆Zd ∩ Sd,1(b̆(d + 1)), using the large deviation estimates in Corollary A.2, and choosing

a = 100d2 (log n)3/2

√
n

·
‖ f ‖∞| log b̆|

b̆d+1/2
. (A.24)
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The upper bound condition on a is satisfied as long as 100d2(log n)3/2/(
√

n) ≤ e−1, which is valid if
n ≥ 1006d6. For the unique δ ∈ (0, e−1] that satisfies

δ| log δ| =
b̆d+1/2a

‖ f ‖∞| log b̆|
(A.24)

= 100d2 (log n)3/2

√
n

, (A.25)

we obtain:

P

 sup
x∈Sd,1(b̆d)

∣∣∣∣̂gn(ϕ(T ), x,Λn,1) − E
[̂
gn(ϕ(T ), x,Λn,1)

]∣∣∣∣ ≥ 3aωn,1


≤

∑
x∈2b̆Zd∩Sd,1(b̆(d+1))

P

 sup
x′∈x+[−b̆,b̆]d

∣∣∣∣∣∣∣1n
n∑

i=1

Z(T )
i,b (x′)

∣∣∣∣∣∣∣ ≥ 3aωn,1


≤b̆−d ·C f ,d exp

− 1
1002d4‖ f ‖2∞

(
n1/2b̆d+1/2a

| log δ|| log b̆|

)2
≤b̆−d ·C f ,d exp

(
−

(log n)3

| log δ|2

)
.

The condition on δ in (A.25) implies:

n−1/2 ≤ δ ≤ e−1, (thus | log δ| ≤
1
2

log n), (A.26)

since the function x 7→ x| log x| is increasing on (0, e−1]. Using (A.26) in (A.25), we get:

P

 sup
x∈Sd,1(b̆d)

∣∣∣∣̂gn(ϕ(T ), x,Λn,1) − E
[̂
gn(ϕ(T ), x,Λn,1)

]∣∣∣∣ ≥ 3aωn,1

 ≤ C f ,d exp(d| log b̆| − 4 log n).

Since we assumed that b̆ ≥ n−1/d, the above is ≤ C f ,dn−3, which is summable. By our choice of a
in (A.24) and the Borel-Cantelli lemma, we obtain

sup
x∈Sd,1(b̆d)

∣∣∣∣̂gn(ϕ(T ), x,Λn,1) − E
[̂
gn(ϕ(T ), x,Λn,1)

]∣∣∣∣ = O
(
| log b̆|(log n)3/2

b̆d+1/2
√

n

)
a.s.

Now, we only need to study the bias term,∣∣∣∣E [̂
gn(ϕ(T ), x,Λn,1)

]
− R(ϕ, x)

∣∣∣∣ = O(b̆1/2). (A.27)

Using the same reasoning as [79], we have

E
[̂
gn(ϕ(T ), x,Λn,1)

]
=

∫
Sd,1

r(1)(ϕ,u) f (u)Kα,β(u)du

= E
[
R(ϕ, ζx)

]
,

where ζx = (ζx1 , . . . , ζxd ) ∼ Dirichlet (α, β). By a second-order Taylor expansion around ζx = x, we
have

E
[
R(ϕ, ζx)

]
= R(ϕ, x) +

d∑
j=1

∂R(ϕ, x)
∂x j

E
(
ζx j − x j

)
+

1
2

d∑
j=1

∂2R(ϕ, x)
∂x2

j

E
(
ζx j − x j

)2
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+

d∑
j=1

d∑
k=1,k, j

∂2R(ϕ, x)
∂x j∂xk

E
{(
ζx j − x j

) (
ζxk − xk

)}
,

for some x joining ζx and x. In addition, for all j, k ∈ {1, . . . , d}, straightforward calculations yield (for
instance, see [117]):

E
[
ζ j

]
=

x j

b̆
+ 1

1
b̆

+ d + 1
=

x j + b̆

1 + b̆(d + 1)
= x j + b̆

(
1 − (d + 1)x j

)
+ O

(
b̆2

)
,

Cov
(
ζ j, ζk

)
=

( x j

b̆
+ 1

) ((
1
b̆

+ d + 1
)

1{ j=k} −
(

xk

b̆
+ 1

))
(

1
b̆

+ d + 1
)2 (

1
b̆

+ d + 2
)

=
b
(
x j + b̆

) (
1{ j=k} − xk + b̆(d + 1)1{ j=k} − b̆

)
(1 + b̆(d + 1))2(1 + b̆(d + 2))

= b̆x j

(
1{ j=k} − xk

)
+ O

(
b̆2

)
, (A.28)

E
[(
ζ j − x j

)
(ζk − xk)

]
= Cov

(
ζ j, ζk

)
+

(
E

[
ζ j

]
− x j

) (
E

[
ζk

]
− xk

)
= b̆x j

(
1{ j=k} − xk

)
+ O

(
b̆2

)
. (A.29)

Then, the Cauchy-Schwartz inequality, (A.28), and (A.29) yields:∣∣∣E [
R(ϕ, ζx)

]
− R(ϕ, x)

∣∣∣
=

d∑
j=1

O
(
E

(
ζx j − x j

))
+

1
2

d∑
j=1

O
(
E

(
ζx j − x j

)2
)

+

d∑
j=1

d∑
k=1,k, j

O
(
E

[(
ζx j − x j

) (
ζxk − xk

)])
≤

d∑
j=1

O
√E (∣∣∣ζx j − x j

∣∣∣2) + O(b̆) + O(b̆2)

≤O(b̆1/2) + O(b̆) + O(b̆2) ≤ O(b̆1/2)(1 + o(1)).

Finally, we obtain

sup
x∈Sd,1

∣∣∣∣∣∣ ĝn(ϕ, x,Λn,1)
f (x)

− r(1)(ϕ, x)

∣∣∣∣∣∣ ≤ supx∈Sd,1

∣∣∣̂gn(ϕ, x,Λn,1) − R(ϕ, x)
∣∣∣

infx∈Sd,1 f (x)
, (A.30)

and

sup
x∈Sd,1

∣∣∣∣∣∣∣ f̂n(x,Λn,1)
f (x)

− 1

∣∣∣∣∣∣∣ ≤ supx∈Sd,1

∣∣∣ f̂n(x, b) − f (x)
∣∣∣

infx∈Sd,1 f (x)
. (A.31)

By integrating the acquired findings with the given information,

r(1)(ϕ, x) =
ĝn(ϕ, x,Λn,1)

f (x)
·

f (x)

f̂n(x,Λn,1)
,

gives us the desired result. Therefore, the proof is conclusive. �

�
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A.1.2. Proofs of Section 3.2

Proof of Theorem 3.2. Let x ∈ Sd,1(b̆(d + 1)), n ≥ 1, 0 < b̆ <
(
e−16

√
2 ∧ d−1

)
, 0 < a ≤

e−1‖ f ‖∞| log b̆|/b̆d+1/2, and take the unique

δ ∈
(
0, e−1

]
that satisfies δ| log δ| =

b̆d+1/2a

2‖ f ‖∞| log b̆|
.

Define x̃′ = (x′1, . . . , x
′
m) such that x̃′ ∈ x̃ + [−b̆, b̆]m, where x̃ = (x1, . . . , xm) ∈ Sm

d,1(b̆(d + 1)), and
b̆ := (b, . . . , b) is a d-dimensional vector, then we have:∣∣∣un,1(ϕ, x̃) − E[un,1(ϕ, x̃)]

∣∣∣ ≤ ∣∣∣un,1(ϕ, x̃) − un,1(ϕ, x̃′)
∣∣∣ +

∣∣∣E[un,1(ϕ, x̃′)] − E[un,1(ϕ, x̃)]
∣∣∣

+
∣∣∣un,1(ϕ, x̃′) − E[un,1(ϕ, x̃′)]

∣∣∣ .
As we explained before, to establish uniform convergence rates, we will be studying the

convergence of the truncated part and the remainder part of un,1(ϕ, x̃) respectively.
Truncated Part:

Notice that ∣∣∣∣u(T )
n,1 (ϕ, x̃) − E

(
u(T )

n,1 (ϕ, x̃)
)∣∣∣∣ =

(n − m)!
n!

∣∣∣∣∣∣∣ ∑
i∈I(m,n)

W(T )(X̃i, Ỹi)

∣∣∣∣∣∣∣ ,
where

W(T )(X̃, Ỹ) := G(T )
ϕ,x̃,1(X̃, Ỹ) − E

[
G

(T )
ϕ,x̃,1(X̃, Ỹ)

]
.

Mirroring the approach used in the proof of Theorem 3.1, we begin by establishing continuity estimates
for the random fields z̃ 7→ W(T )(z̃) so that we get to control the probability that W(T )(z̃) and
W(T )(z̃′) are too far apart when z̃ = (x̃, ỹ) and z̃′ = (x̃′, ỹ) are close. Building on the framework
established in Proposition 1 of [117], we present the following proposition to determine the behavior
of

(
u(m)

n,1 (W(T )(x̃′, ỹ)) − u(m)
n,1 (W(T )(x̃, ỹ))

)
.

Proposition A.3. Let x ∈ Sd,1(b̆(d + 1)), n ≥ 1, 0 < b̆ <
(
e−16

√
2 ∧ d−1

)
, 0 < a ≤ e−1‖ f ‖∞| log b̆|/b̆d+1/2,

and take the unique

δ ∈
(
0, e−1

]
that satisfies δ| log δ| =

b̆d+1/2a

2‖ f ‖∞| log b̆|
. (A.32)

Then, for all h ∈ R, we have

P

 sup
x̃′∈x̃+[−b̆,b̆]m

∣∣∣u(m)
n,1 (W(T )(x̃′, ỹ))

∣∣∣ ≥ h + 2am,
∣∣∣u(m)

n,1 (W(T )(x̃, ỹ))
∣∣∣ ≤ h


≤ Cϕ,dm exp

− 1
1002d4‖ f ‖2∞

·

(
n1/2b̆d+1/2am

| log δ|| log b̆|

)2 , (A.33)

where Cϕ,dm > 0 is a constant that depends only on the function ϕ(·), the dimension d, and the degree
m.
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Proof of Proposition A.3. Similar to the proof of Proposition A.1, by a union bound the probability in
(A.33) is

≤ P


 sup

x̃′∈x̃+[−b̆,b̆]m

∣∣∣∣(u(m)
n,1 (W(T )(x̃′, ỹ)) − u(m)

n,1 (W(T )(x̃, ỹ))
)

1{
x̃i∈S

m
d,1\S

m
d,1(δ)

}∣∣∣∣ ≥ am


∩

 ∑
i∈I(m,n)

1{
x̃i∈S

m
d,1\S

m
d,1(δ)

} ≤ 2 · 2mCm
n ‖ f ‖

m
∞δ

m


 (A.34)

+P

 ∑
i∈I(m,n)

1{
x̃i∈S

m
d,1\S

m
d,1(δ)

} ≥ 2 · 2mCm
n ‖ f ‖

m
∞δ

m

 (A.35)

+P

 sup
x̃′∈x̃+[−b̆,b̆]m

∣∣∣∣(u(m)
n,1 (W(T )(x̃′, ỹ)) − u(m)

n,1 (W(T )(x̃, ỹ))
)

1{
x̃i∈S

m
d,1(δ)

}∣∣∣∣ ≥ am

 , (A.36)

where Cn
m as usual is equal to n!/{m!(n−m)!}. Let us begin with (A.34). Following the same reasoning

as Proposition A.1, on the event(Cm
n )−1

∑
i∈I(m,n)

1{
x̃i∈S

m
d,1\S

m
d,1(δ)

} ≤ 2 · 2m‖ f ‖m∞δ
m

 ,
we have ∣∣∣∣(u(m)

n,1 (W(T )(x̃′, ỹ)) − u(m)
n,1 (W(T )(x̃, ỹ))

)
1{

x̃i∈S
m
d,1\S

m
d,1(δ)

}∣∣∣∣
≤ sup

(x̃,x̃′)∈S2m
d,1(b)

∣∣∣W(T )(x̃, ỹ) −W(T )(x̃′, ỹ)
∣∣∣ (Cm

n )−1
∑

i∈I(m,n)

1{
x̃i∈S

m
d,1\S

m
d,1(δ)

}
≤4 · 2 · 2mωn,1 sup

x̃∈Sm
d,1

K̃Λ̄n,1(x̃)(x̃, X̃) · ‖ f ‖m∞δ
m

≤4 · 2 · 2mωn,1 · b̆−dm(b̆−1 + d)m/2‖ f ‖m∞δ
m.

The latter equation is obtained by (A.14), (A.15), and Lemma 2 ( [117]). Therefore, we have∣∣∣∣(u(m)
n,1 (W(T )(x̃′, ỹ)) − u(m)

n,1 (W(T )(x̃, ỹ))
)

1{
x̃i∈S

m
d,1\S

m
d,1(δ)

}∣∣∣∣ ≤ 8ωn,1(1 + b̆d)m/2

| log(δ)|m| log(b̆)|m
am< am. (A.37)

Note that 0 < δ ≤ e−1 and 0 < b̆ <
(
e−8

√
2 ∧ d−1

)
by assumption. This implies that the probability in

(A.34) equals zero. Next, we apply Hoeffding’s inequality to control the probability in (A.35). Since
0 ≤ 1{

x̃∈Sm
d,1\S

m
d,1(δ)

} ≤ 1 and

µ = E
[
1{

x̃∈Sm
d,1\S

m
d,1(δ)

}] ≤ m∏
j=1

E
[
1{x j∈Sd,1\Sd,1(δ)}

]
≤

2m‖ f ‖m∞δ
m

((d − 1)!)m ,

we have, for t = 2 · 2m‖ f ‖m∞δ
m − µ, by considering (A.32)

P

 ∑
i∈I(m,n)

1{
x̃i∈S

m
d,1\S

m
d,1(δ)

} − µ ≥ t

 ≤ exp

−2[n/m]
(
(2((d − 1)!)m − 1) ·

2m‖ f ‖m∞
((d − 1)!)m δ

m

)2
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≤ exp

−2[n/m]
(

b̆d+1/2a

| log δ|| log b̆|

)2m .
Moving on to (A.36), then

u(m)
n,1

(
W(T )(x̃′, ỹ) −W(T )(x̃, ỹ)1{

x̃i∈S
m
d,1\S

m
d,1(δ)

})
= mu(1)

n,1

(
π1,m

[(
G

(T )
ϕ,x̃′,1 − G

(T )
ϕ,x̃,1

)
1{

x̃i∈S
m
d,1\S

m
d,1(δ)

}])
+

m∑
q=2

m!
(m − q)!

u(q)
n,1

(
πq,m

[(
G

(T )
ϕ,x̃′,1 − G

(T )
ϕ,x̃,1

)
1{

x̃i∈S
m
d,1\S

m
d,1(δ)

}]) , (A.38)

where the linear term

mu(1)
n,1

(
π1,m

[(
G

(T )
ϕ,x̃′,1 − G

(T )
ϕ,x̃,1

)
1{

x̃i∈S
m
d,1\S

m
d,1(δ)

}])
=

m
n

n∑
i=1

π1,m

[(
G

(T )
ϕ,x̃′,1 − G

(T )
ϕ,x̃,1

)
1{

x̃i∈S
m
d,1\S

m
d,1(δ)

}] (X̃i, Ỹi) (A.39)

can be treated similarly to the proof of Proposition A.1. Now, for the nonlinear term, let us first
introduce the following class of functions:

F :=
{
G(ϕ, x̃′) − G(ϕ, x̃) : x̃ ∈ Sm

d,1(b̆(d + 1) and x̃′ ∈ x̃ + [−b̆, b̆]m
}
,

then we have for all ε > 0

P

 sup
x̃′∈x̃+[−b̆,b̆]m

∣∣∣∣∣∣∣
m∑

q=2

m!
(m − q)!

u(q)
n,1

(
πq,m

[(
G

(T )
ϕ,x̃′,1 − G

(T )
ϕ,x̃,1

)
1{

x̃i∈S
m
d,1\S

m
d,1(δ)

}])∣∣∣∣∣∣∣ ≥ ε


≡ P


∥∥∥∥∥∥∥

m∑
q=2

m!
(m − q)!

u(q)
n,1

(
πq,m

[(
G

(T )
ϕ,x̃′,1 − G

(T )
ϕ,x̃,1

)
1{

x̃i∈S
m
d,1\S

m
d,1(δ)

}])∥∥∥∥∥∥∥
F

≥ ε

 .
We have

E


∥∥∥∥∥∥∥∥n1−m

∑
In
m

ε(1)
i1
ε(2)

i2

[(
G

(T )
ϕ,x̃′,1 − G

(T )
ϕ,x̃,1

)
1{

x̃i∈S
m
d,1\S

m
d,1(δ)

}]∥∥∥∥∥∥∥∥
F


≤ 2CE


∣∣∣∣∣∣∣∣n1−m

∑
In
m

ε(1)
i1
ε(2)

i2

[
ϕ(Yi1 , . . . ,Yim)

]∣∣∣∣∣∣∣∣
 .

Using the same reasoning as in [5], one can find a positive constant c0 > 0 such that

E


∣∣∣∣∣∣∣∣n1−m

∑
In
m

ε(1)
i1
ε(2)

i2

[
ϕ(Yi1 , . . . ,Yim)

]∣∣∣∣∣∣∣∣
 < c0.
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Now, making use of (A.32) and applying Proposition 4 of [5] gives us, for ε = amn−1/2,

P


∥∥∥∥∥∥∥

m∑
q=2

m!
(m − q)!

u(q)
n,1

(
πq,m

[(
G

(T )
ϕ,x̃′,1 − G

(T )
ϕ,x̃,1

)
1{

x̃i∈S
m
d,1\S

m
d,1(δ)

}])∥∥∥∥∥∥∥
F

> amn−1/2


≤ 2 exp

(
−

amn1/2

2m+5mm+12ωn,1b̆−dm(b̆−1 + d)m/2c0

)
≤ 2 exp

− (2δ
∣∣∣log δ

∣∣∣ ‖ f ‖∞ ∣∣∣log b̆
∣∣∣)mn1/2

2m+5mm+12ωn,1b̆m(d+1/2)b̆−dm(b̆−1 + d)m/2c0


≤ 2 exp

− (δ
∣∣∣log δ

∣∣∣ ‖ f ‖∞ ∣∣∣log b̆
∣∣∣)mn1/2

26mm+1ωn,1(1 + b̆d)m/2c0

 .
We can find a constant C1 > 0, such that

(δ
∣∣∣log δ

∣∣∣ ‖ f ‖∞)m

26mm+1(1 + b̆d)m/2c0
≥ C1,

which implies

exp

− (δ
∣∣∣log δ

∣∣∣ ‖ f ‖∞ ∣∣∣log b̆
∣∣∣)mn1/2

26mm+1ωn,1(1 + b̆d)m/2c0

 ≤ exp
(
−C1

∣∣∣log b̆
∣∣∣m n1/2−1/p

)
≤ exp

(
−C1m

∣∣∣log b̆
∣∣∣ n1/2−1/p

)
.

Therefore, we readily infer that

∞∑
n=1

P


∥∥∥∥∥∥∥

m∑
q=2

m!
(m − q)!

u(q)
n,1

(
πq,m

[(
G

(T )
ϕ,x̃′,1 − G

(T )
ϕ,x̃,1

)
1{

x̃i∈S
m
d,1\S

m
d,1(δ)

}])∥∥∥∥∥∥∥
F

> amn−1/2

 < ∞.
Hence, the proof of the proposition is complete by an application of the Borel-Cantelli lemma. �

Remainder Part:
We now consider the remaining part. Recall that the U-statistic u(R)

n,1(ϕ, x̃) is related to the unbounded
kernel given by

G
(R)
ϕ,x̃,1(x̃, ỹ) = Gϕ,x̃,1(x̃, ỹ)1

{ϕ(y)>λξ1/(1+γ))
n }

.

We have to establish that it is negligible, meaning that

sup
x̃∈Sm

d,1

√
nb̆m(d+1/2)

∣∣∣∣u(m)
n,1 (G(R)

ϕ,x̃,1) − E
(
u(m)

n,1 (G(R)
ϕ,x̃,1)

)∣∣∣∣∣∣∣log b̆
∣∣∣m (log n)3/2

= oa.s(1). (A.40)

For x̃, ỹ ∈ Sm
d,1, observe that∣∣∣Gϕ,x̃,1(x̃, ỹ)

∣∣∣ ≤ b̆−dm(b̆−1 + d)m/2 |ϕ(ỹ)| =: F̃(ỹ).
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Taking into account that F̃ is symmetric, we have∣∣∣∣u(m)
n,1

(
G

(R)
ϕ,x̃,1

)∣∣∣∣ ≤ u(m)
n,1

(
F̃1
{F̃>λξ1/(1+γ)

n }

)
,

where u(m)
n,1

(
F̃(y)1

{ϕ(y)>λξ1/(1+γ)
n }

)
is a U-statistic based on the U- kernel F̃1

{ϕ>λξ
1/(1+γ)
n }

,

sup
x̃∈Sm

d,1

√
nb̆m(d+1/2)

∣∣∣∣u(m)
n,1 (G(R)

ϕ,x̃,1)
∣∣∣∣∣∣∣log b̆

∣∣∣m (log n)3/2
≤

√
n(1 + b̆d)m/2∣∣∣log b̆

∣∣∣m (log n)3/2
u(m)

n,1

(
F̃1
{F̃>λξ1/(1+γ)

n }

)
≤ C7ξnu(m)

n,1

(
F̃1
{F̃>λξ1/(1+γ)

n }

)
(A.41)

and

sup
x̃∈Sm

d,1

√
nb̆m(d+1/2)

∣∣∣∣u(m)
n,1 (G(R)

ϕ,x̃,1)
∣∣∣∣∣∣∣log b̆

∣∣∣m (log n)3/2
≤ C7ξnE

(
u(m)

n,1

(
F̃1
{ϕ(Y)>λξ1/(1+γ)

n }

))
≤ C7E

(
F̃2+γ1

{ϕ(Y)>λξ1/(1+γ)
n }

)
.

Therefore, as n −→ ∞, we have, almost surely,

sup
x̃∈Sm

d,1

√
nb̆m(d+1/2)

∣∣∣∣u(m)
n,1 (G(R)

ϕ,x̃,1)
∣∣∣∣∣∣∣log b̆

∣∣∣m (log n)3/2
= o(1). (A.42)

Hence, to achieve the proof, it remains to establish that

u(m)
n,1

(
F̃1
{ϕ(y)>λξ1/(1+γ)

n }

)
= oa.s

((
s−1

m ξn

)−1/2
)
. (A.43)

An application of the Chebyshev’s inequality, for any η > 0, gives

P
{∣∣∣∣u(m)

n,1

(
F̃1
{ϕ(Y)>λξ1/(1+γ)

n }

)
− E

(
u(m)

n,1

(
F̃1
{ϕ(Y)>λξ1/(1+γ)

n }

))∣∣∣∣ ≥ η(s−1
m ξn)−1/2

}
≤ η−2(s−1

m ξn)Var
(
u(m)

n,1

(
F̃1
{ϕ(Y)>λξ1/(1+γ)

n }

))
≤ mη−2ξnE

(
F̃21

{ϕ(Y)>λξ1/(1+γ)
n }

)
≤

m
n2η

−2(ξn)1+γE
(
F̃21

{ϕ(Y)>λξ1/(1+γ)
n }

)
≤ η′E

(
F̃31

{ϕ(Y)>λξ1/(1+γ)
n }

) 1
n2 = o(1),

so by using the fact that

η′E
(
F̃31

{ϕ(y)>λξ1/(1+γ)
n }

)∑
n≥1

1
n2 < ∞,

we deduce that∑
n≥1

P
{∣∣∣∣u(m)

n,1

(
F̃1
{ϕ(y)>λξ1/(1+γ)

n }

)
− E

(
u(m)

n,1

(
F̃1
{ϕ(y)>λξ1/(1+γ)

n }

))∣∣∣∣ ≥ η(s−1
m ξn)−1/2

}
< ∞.

Finally, note that (A.41) implies

E
(
u(m)

n,1

(
F̃1
{ϕ(y)>λξ1/(1+γ)

n }

))
= o

(
s−1

m ξ
−1/2
n

)
.
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The preceding results of the arbitrary choice of λ > 0 show that (A.43) holds, which, by combining
with (A.42) and (A.41), completes the proof of (A.40). We finally obtain

sup
x̃∈Sm

d,1

∣∣∣un,1(ϕ, x̃) − E[un,1(ϕ, x̃)]
∣∣∣ = O

(
| log b̆|m(log n)3/2

b̆m(d+1/2)
√

n

)
a.s.

Hence, the proof is complete. �

Proof of Theorem 3.3. Recall (A.2), and we have:∣∣∣∣̂r(m)
n,1 (ϕ, x̃; Λ̄n,1(x̃)) − Ê

(̂
r(m)

n,1 (ϕ, x̃; Λ̄n,1(x̃))
)∣∣∣∣ ≤ I1,1 + I1,2, (A.44)

where

I1,1 =

∣∣∣un,1(ϕ, x̃) − E
(
un,1(ϕ, x̃)

)∣∣∣∣∣∣un,1(1, x̃)
∣∣∣ ,

I1,2 =

∣∣∣E (
un,1(ϕ, x̃)

)∣∣∣ · ∣∣∣un,`(1, x̃) − E
(
un,1(1, x̃)

)∣∣∣∣∣∣un,1(1, x̃)
∣∣∣ · ∣∣∣E (

un,1(1, x̃)
)∣∣∣ .

Notice that, given the imposed hypothesis and previously obtained results, and for some positive
constants c1, c2 > 0, we readily infer

sup
x̃∈Sm

d,1

∣∣∣un,1(1, x̃)
∣∣∣ = c1 a.s.,

sup
x̃∈Sm

d,1

∣∣∣E (
un,1(1, x̃)

)∣∣∣ = c2,

sup
x̃∈Sm

d,1

∣∣∣E (
un,1(ϕ, x̃)

)∣∣∣ = O(1).

Hence by Theorem 3.2, for some c′′ > 0, we get with probability 1:

sup
x̃∈Sm

d,1

b̆m(d+1/2)√n
∣∣∣∣̂r(m)

n,1 (ϕ, x̃; Λ̄n,1(x̃)) − Ê
(̂
r(m)

n,1 (ϕ, x̃; Λ̄n,1(x̃)
)∣∣∣∣

| log b̆|m(log n)3/2

≤ sup
x̃∈Sm

d,1

b̆m(d+1/2)√n
(
I1,1

)
| log b̆|m(log n)3/2

+ sup
x̃∈Sm

d,1

b̆m(d+1/2)√n
(
I1,2

)
| log b̆|m(log n)3/2

≤ c′′.

Hence, the proof is complete. �

Proof of Theorem 3.4. By (A.3), it suffices to establish

sup
x̃∈Sm

d,1

∣∣∣E (
un,1(ϕ, x̃)

)
− R(ϕ, x̃)

∣∣∣ = O
(
b̆1/2

)
, (A.45)

and

sup
x̃∈Sm

d,1

∣∣∣E (
un,1(1, x̃)

)
− f̃ (x̃)

∣∣∣ = O
(
b̆1/2

)
. (A.46)
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Let us start with (A.45). We have

E
[
un,1(ϕ, x̃)

]
=

(n − m)!
n!

∑
i ∈I(m,n)

E
[
Gϕ,x̃,1(X̃i, Ỹi)

]
= E

[
ϕ(Ỹ)K̃Λ̄n,1(x̃)(X̃)

]
= E

[
K̃Λ̄n,1(x̃)E

[
ϕ(Y1, . . . ,Ym) | (X1, . . . ,Xm) = x̃

]]
=

∫
Sm

d,1

r(m)(ϕ, ũ) f̃ (ũ)K̃Λ̄n,1(x̃)(ũ)dũ

=

∫
Sm

d,1

R(ϕ, ũ)
m∏

j=1

K(α j,β j)

(
ui j

)
dũ

= E[R(ϕ, ξ̃x̃)],

where ξ̃x̃ = (ξx1 , . . . , ξxm) such that ξx j =
(
ξx j1

, . . . , ξx jd

)
∼ Dirichlet(α j, β j); j = 1, . . . ,m. By a second-

order Taylor expansion around ξ̃x̃ = x̃, we get

E
[
R(ϕ, ξ̃x̃)

]
= R(ϕ, x̃) +

m∑
i=1

d∑
`=1

∂R(ϕ, x̃)
∂xi`

E(ξxi` − xi`) +
1
2

m∑
i=1

d∑
`=1

∂2R(ϕ, x̃)
∂x2

i`

E(ξxi` − xi`)
2

+

m∑
i, j=1,i, j

d∑
`,r=1,`,r

∂2R(ϕ, x̃)
∂xi`∂x jr

E
{
(ξxi` − xi`)(ξx jr − x jr )

}
,

for some x̃ joining ξ̃x̃ and x̃. Keep in mind that ξx j are vectors whose components are beta-distributed,
which implies that

E
[
ξxi`

]
= xi` + b̆

(
1 − (d + 1)xi`

)
+ O

(
b̆2

)
,

Cov
(
ξxi`

, ξx jr

)
= b̆xi`

(
1{i`= jr} − x jr

)
+ O

(
b̆2

)
, (A.47)

E
[(
ξxi`
− xi`

) (
ξx jr
− x jr

)]
= b̆xi`

(
1{i`= jr} − xk

)
+ O

(
b̆2

)
. (A.48)

Then, the Cauchy-Schwartz inequality, (A.47), and (A.48) yields uniformly on x̃ ∈ Sm
d,1∣∣∣E [

un,1(ϕ, x̃)
]
− R(ϕ, x̃)

∣∣∣ =

m∑
i=1

d∑
`=1

O
(
E

∣∣∣ξxi` − xi`

∣∣∣) +
1
2

m∑
i=1

d∑
`=1

O
(
E

∣∣∣ξxi` − xi`

∣∣∣2)
+

m∑
i, j=1,i, j

d∑
`,r=1,`,r

O
(
E

∣∣∣(ξxi` − xi`)(ξx jr − x jr )
∣∣∣)

≤

m∑
i=1

d∑
`=1

O
(√
E

∣∣∣ξxi` − xi`

∣∣∣2) +

m∑
i=1

∑
`=1

O(b̆) +

m∑
i=1

∑
`=1

O(b̆2)

≤ O(b̆1/2) + O(b̆) + O(b̆2)
≤ O(b̆1/2)(1 + o(1)).

Consequently, we deduce that

sup
x̃∈Sm

d,1

∣∣∣E (
un,1(ϕ, x̃)

)
− R(ϕ, x̃)

∣∣∣ = O
(
b̆1/2

)
, (A.49)
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which implies that for ϕ ≡ 1,

sup
x̃∈Sm

d,1

∣∣∣E (
un,1(1, x̃)

)
− f̃ (x̃)

∣∣∣ = O
(
b̆1/2

)
. (A.50)

As an immediate consequence of the last two equations, we infer that

sup
x̃∈Sm

d,1

∣∣∣E (
un,1(ϕ, x̃)

)
− r(m)(ϕ, x̃)E

(
un,1(1, x̃)

)∣∣∣ = O
(
b̆1/2

)
. (A.51)

This completes the proof of the theorem. �

A.1.3. Proofs of the results of Section 3.3

Before we start the proofs, we will state some lemmas that are necessary to obtain the desired
results. It is worth mentioning that we will follow the steps of [134] while making the appropriate
changes to fit our general setting.

Lemma A.4. Under assumptions (A.1)–(A.4), and if Eϕ2 < ∞, the Hájek projection Ûn,1 of U satisfies,
as n→ ∞:

(i)

lim
n→∞
E

[ √
nb̆d/2

(
Ûn,1 − θn

)]2
= σ2(ϕ),

where

σ2(ϕ) :=
m∑

i=1

m∑
j=1

1{xi=x j}ri j(x̃)
∫
Sd,1

K2
α,β(x, t)dt/ f (xi) > 0, (A.52)

(ii) and if, in addition, assumption (A.5) is verified, we have√
nb̆d/2

(
Ûn,1 − θn

) D
−→ N

(
0, σ2(ϕ)

)
. (A.53)

In the following lemma, we show that U has the same asymptotic distribution as Ûn,1.

Lemma A.5. Under assumption (A.1)–(A.6), we have, as n→ ∞,√
nb̆d/2 (

Un,1 − θn
) D
−→ N

(
0, σ2(ϕ)

)
. (A.54)

Specification of σ2(ϕ) leads to the following lemma.

Lemma A.6. [134] Under assumptions (A.1)–(A.6), we have, as n→ ∞,(
nb̆d/2

)1/2 [
Un,1(ϕ1, x̃) − θn (ϕ1) ,Un,1(ϕ2, x̃) − θn (ϕ2)

] D
−→ N (0,Σ),

with

Σ =

[
σ2 (ϕ1, ϕ1) σ2 (ϕ1, ϕ2)
σ2 (ϕ1, ϕ2) σ2 (ϕ2, ϕ2)

]
,
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and where for two functions g1(·) and g2(·),

σ2(g1, g2) =

m∑
j=1

m∑
l=1

1{x j−xl}r
g1g2
jl (x̃)

∫
K2
α,β(x, t)dt/ fX

(
x j

)
,

rg1g2
jl (x̃) = E

[
g1 (Y1, . . . ,Y, . . . ,Ym) g2 (Ym+1, . . . ,Y, . . . ,Y2m) | · · ·

]
,

with Y entering in the jth and lth positions.

Proof of Lemma A.4. We write

θn = E[Un,1(ϕ, x̃)]

= N−1
∫
Sm

d,1

r(m)(ϕ, t̃) f̃ (t̃)K̃Λ̄n,1(x̃)(t̃)dt̃ (A.55)

= N−1
∫
Sm

d,1

r(m)(ϕ, t̃) f̃ (t̃)
m∏

i=1

K(αi,βi) (ti) dt̃.

The Hájek projection Ûn,1(ϕ, x̃) of Un,1(ϕ, x̃) satisfies

Ûn,1 − θn = n−1
n∑

i=1

ϕ̄n(Xi,Yi),

with

ϕ̄n(x, y) =

m∑
j=1

[
ϕn, j(x̃, ỹ) − θn

]
,

and ϕn, j(x, y) is defined by

ϕn, j(x, y) = N−1
∫
Sm

d,1×R
qm
ϕ(Y1, . . . ,Y j−1, y,Y j+1, . . . ,Ym)

m∏
r=1
r, j

K(αr ,βr) (Xr) K(α j,β j) (x) dP,

where P represents the underlying probability measure. By independence, we get

nE
(
Ûn,1 − θn

)2
= E

[
ϕ̄n

2(X,Y)
]

=

m∑
j=1

m∑
l=1

E
[
ϕn, j(X,Y) − θn

] [
ϕn,l(X,Y) − θn

]
.

Using the fact that (X,Y), (Xi,Yi)1≤i≤2m are i.i.d, we get

E
[
ϕn, j(X,Y)ϕn,l(X,Y)

]
=N−2

∫
S2m

d,1×R
2qm
ϕ(Y1, . . . ,Y j−1,Y,Y j+1, . . . ,Ym)ϕ(Ym+1, . . . ,Ym+l−1,Y,Ym+l+1, . . . ,Y2m)

×

m∏
r=1
r, j

K(αr ,βr) (Xr)
m∏

s=1
s,l

K(αs,βs) (Xm+s) K(α j,β j) (X) K(αl,βl) (X) dP.
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By condition (A.2), we have, for x j , xl

K(α j,β j) (X) K(αl,βl) (X) −→ 0.

Consequently,
E

[
ϕn, j(X,Y)ϕn,l(X,Y)

]
= 0 for all x j , xl.

In the case of x j = xl and x̃ = (x1, . . . , xm) being a point of continuity for r(m)
j,l , we have

E2
[
K(α j,β j) (X1)

]
E

[
K2

(α j,β j)
(X1)

] E [
ϕn, j(X,Y)ϕn,l(X,Y)

]
−→ r j,l(x̃), (A.56)

by a differentiation argument. Now, provided that the density function f (·) is continuous and f (x j) =

f (xl) > 0, by the fact that
E

[
K(α j,β j) (X1)

]
= E[ f (ξx j)],

where

ξx j = (ξ1, . . . , ξd) ∼ Dirichlet

x j

b̆
+ 1,

(
1 − ‖x j‖1

)
b̆

+ 1

 , x j ∈ Sd,1,

and if γx ∼ Dirichlet

2x j

b̆
+ 1,

2
(
1 − ‖x j‖1

)
b̆

+ 1

, then

E
[
K2

(α j,β j) (X1)
]

= Ab(x j)E
[
f
(
γx j

)]
= Ab(x j)

(
f (x j) + O

(
b̆1/2

))
,

where

Ab(x) :=

Γ
(
2 (1 − ‖x‖1) /b̆ + 1

) d∏
i=1

Γ
(
2xi/b̆ + 1

)
Γ2

(
(1 − ‖x‖1) /b̆ + 1

) d∏
i=1

Γ2
(
xi/b̆ + 1

) · Γ
2(1/b̆ + d + 1)

Γ(2/b̆ + d + 1)
.

We readily infer that
E2

[
K(α j,β j) (X1)

]
E

[
K2

(α j,β j)
(X1)

] ∼ E[ f (ξx j)]

Ab(x j)
(

f (x j) + o (1)
) .

Hence, by Lemma B.4, we have

b̆1/2E
[
ϕn, j(X,Y)ϕn,l(X,Y)

]
= r j,l(x̃)

Ab(x j)
(

f (x j) + o (1)
)

f (x j)
.

Using the fact that r(m)(ϕ, x̃) is bounded in the neighborhood of x̃, then θn, n ≥ 1 is bounded, therefore
we have b̆1/2θ2

n → 0, from which we have

lim
n→∞
E

[ √
nb̆d/2

(
Ûn,1 − θn

)]2
= σ2(ϕ), (A.57)
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where σ2(ϕ) is defined in (A.52), which yields the assertion (i). Now, to prove (A.53), we only need to
verify Lyapunov’s condition for third moments, i.e.,

n−1/2(b̆d/2)3/2E |ϕ̄n(X,Y)|3 → 0. (A.58)

Using the fact that
|a − b|3 ≤ 3(|a|3 + |a|2 |b| + |a| |b|2 + |b|3),

an upper bound for the absolute third moment of ϕ̄n(X,Y) is dominated by sums of the form

E
∣∣∣ϕn,i(X,Y)ϕn, j(X,Y)ϕn,l(X,Y)

∣∣∣ .
Following the same steps as in [134], we may restrict ourselves to triples (i, j, l) such that xi = x j = xl.
Under (A.5), we have

E
∣∣∣ϕn,i(X,Y)ϕn, j(X,Y)ϕn,l(X,Y)

∣∣∣ = O(nb̆−d),

taking into account (A.1), which gives us the desired result. This concludes the proof. �

Proof of Lemma A.5. To study the asymptotic distribution of Un, we need to bound the variance of
Un − Ûn,1. To do that, it is sufficient to show that

(nb̆d/2)1/2
[
Un,1 − Ûn,1

]
→ 0 in L2.

As in [134], using the centered variance formula for a centered, or zero mean U-statistic of degree m,
for Zi, i ≥ 1 i.i.d., we have

Vn =
(n − m)!

n!

∑
i∈I(m,n)

G̃(Zi1 , . . . ,Zim)
N

,

with a non-necessary symmetric U-Kernel G̃(·), that is square-integrable, which gives us

Var(Vn)
[
(n − m)!

n!

]2 m∑
r=1

(n − r)!
(n − 2m + r)!

(r)∑ I (∆1,∆2)
N2 ,

where ∆1 and ∆2 represent positions of some length 1 ≤ r ≤ m, and

I
(
∆̃1, ∆̃2

)
=

∫
G̃ (z1, . . . , zm) G̃ (y1, . . . , ym) F (dz1) · · · F (dz2m−r) ,

with the y ’s in position ∆̃2 coincide with the z ’s in position ∆̃1 and are taken from zm+1, . . . , z2m−r

otherwise. Moreover, Σ(r) represents the summation over all positions ∆̃1, ∆̃2 with a cardinality of r,
and F(·) denotes the common distribution function of the Z’s. When considering Vn = Un − Ûn and
recalling G̃ from [129] (in the symmetric case), we obtain

Σ(1)I
(
∆̃1, ∆̃2

)
= 0.

Furthermore, by (A.6), we infer that

N−2I
(
∆̃1, ∆̃2

)
= O

(
b̆−dr/2

)
for each 2 ≤ r ≤ m.
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In conclusion, we have

nb̆d/2 Var
(
Un − Ûn

)
= O

nb̆d/2
m∑

r=2

[
n
m

]−1 [
m
r

] [
n − m
m − r

]
(b̆d/2)−r


= O

 m∑
r=2

(
nb̆d/2

)1−r
 = O

[(
nb̆d/2

)−1
]

= o(1).

Hence, the proof is complete. �

Proof of Theorem 3.6. To obtain the desired result, we shall first apply the Cramér-Wold device to
investigate the asymptotic behavior of the two-dimensional vector(

Un,1(ϕ1, x̃) − θn (ϕ1) ,Un,1(ϕ2, x̃) − θn (ϕ2)
)
,

where Un,1(ϕ1, x̃) and Un,1(ϕ2, x̃) are U-statistics with U kernels Gϕ1,x̃,1(·) and Gϕ2,x̃,1(·) respectively,
satisfying the smoothness assumptions of Lemma A.5. Let c1 and c2 be any two real numbers. We can
see that

c1Un,1(ϕ1, x̃) + c2Un,1(ϕ2, x̃) = Un,1 (c1ϕ1 + c2ϕ2, x̃) ≡ Un,1 (ϕ, x̃) ,

which means we can apply Lemma A.5. The limit distribution of r̂(m)
n (ϕ, x̃,bn) may now be easily

deduced from Lemma A.6. We have

r̂(m)
n,1 (ϕ, x̃; Λ̄n,1(x̃)) =

Un,1(ϕ, x̃)
Un,1(1, x̃)

.

Let us define, as in [134],
g (x1, x2) = x1/x2 for x2 , 0,

which means

D =

[
∂g
∂x1

,
∂g
∂x2

]
=

[
x−1

2 ,−x1x−2
2

]
.

Since, by continuity of r(m)(ϕ, x̃), we have

E
[
Un,1(ϕ, x̃)

]
→ r(m)(ϕ, x̃),

and
E

[
Un,1(1, x̃)

]
= 1.

From Lemma A.6, we deduce that(
nb̆d/2

)1/2 [̂
r(m)

n,1 (ϕ, x̃; Λ̄n,1(x̃)) − E
[
Un,1(ϕ, x̃)

]]
→ N

(
0, ρ2

)
,

where

ρ2 = (1,−r(m)(ϕ, x̃))Σ
[

1
−r(m)(ϕ, x̃)

]
,

and ρ2 is defined in (3.10). This concludes the proof of Theorem 3.6. �
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A.2. Proof of Section 4: Bernstein polynomials

Proof of Theorem 4.2. In order to prove Theorem 4.2, we need

sup
x∈Sd,1

∣∣∣E[̂r(1)
n,2(ϕ, x)] − r(1)(ϕ, x)

∣∣∣ = O(ϑ−1/2), (A.59)

and
sup

x∈Sd,1

∣∣∣̂r(1)
n,2(ϕ, x) − E[̂r(1)

n,2(ϕ, x)]
∣∣∣ = O(ϑd−1/2(n−1 log n)1/2) a.s. (A.60)

The result in (A.59) is established in the following proposition.

Proposition A.7. Assume that condition (C.2) holds. We have, uniformly for x ∈ Sd,1,

E[̂gn,ϑ(ϕ, x)] = R(ϕ, x) + ϑ−1L(x) + o(ϑ−1), ϑ −→ ∞,

where

L(x) :=
(
d(d − 1)

2ϑ

)
R(ϕ, x) +

d∑
i=1

(
1
2
− xi

)
∂

∂xi
R(ϕ, x) +

1
2

d∑
i, j=1

(
xi1{i= j} − xix j

) ∂2

∂xi∂x j
R(ϕ, x).

It is important to mention that this proposition closely follows Proposition 2 in [115]. However, it
offers greater generality as it holds for any function ϕ(·) that satisfies condition (C.3), thereby extending
its range of applications.

Proof of Proposition A.7. We first remark that

E[̂gn,ϑ(ϕ, x)] = E

1
n

n∑
i=1

ϕ(Yi)Kx,ϑ(Xi)


=

∫
Sd,1

r(1)(ϕ,u)Kx,ϑ(u) f (u)du

=
∑

k∈Nd
0∩(ϑ−1)Sd,1

(ϑ − 1 + d)!
(ϑ − 1)!

∫
1( k

ϑ
, k+1
ϑ ]

r(1)(ϕ,u) f (u)duPk,ϑ−1(x)

=
∑

k∈Nd
0∩(ϑ−1)Sd,1

(ϑ − 1 + d)!
(ϑ − 1)!

∫
1( k

ϑ
, k+1
ϑ ]
R(ϕ,u)duPk,ϑ−1(x).

For all ε > 0, there exists a decreasing sequence (δn,ε)n, 0 < δn,ε ≤ 1 such that for all x, y ∈ Sd,1,
‖x − y‖ ≤ δn,ε. By a Taylor’s expansion for any k such that ‖k/ϑ − x‖1 = o(1), we obtain

ϑd
∫

1( k
ϑ
, k+1
ϑ ]
R(ϕ,u)du − R(ϕ, x) =R(ϕ,k/ϑ) − R(ϕ, x) +

1
2ϑ

d∑
i=1

∂

∂xi
R(ϕ,k/ϑ) + O

(
ϑ−2

)
=

1
ϑ

d∑
i=1

(ki − ϑxi)
∂

∂xi
R(ϕ, x) +

1
2ϑ

d∑
i=1

∂

∂xi
R(ϕ, x)

+ o
(
ϑ−1

)
+

1
2ϑ2

d∑
i, j=1

(ki − ϑxi)
(
k j − ϑx j

) ∂2

∂xi∂x j
R(ϕ, x)(1 + o(1))
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=
1
ϑ

d∑
i=1

(ki − (ϑ − 1)xi)
∂

∂xi
R(ϕ, x) +

1
ϑ

d∑
i=1

(
1
2
− xi

)
∂

∂xi
R(ϕ, x)

+
1
2

d∑
i, j=1

(
ki

ϑ
− xi

) (
k j

ϑ
− x j

)
∂2

∂xi∂x j
R(ϕ, x)(1 + o(1)) + o

(
ϑ−1

)
.

If we multiply the last expression by ϑ−d ·
(ϑ−1+d)!

(ϑ−1)! Pk,ϑ−1(x) and sum over all k ∈ Nd
0 ∩ (ϑ − 1)Sd,1, then

considering the well-known identities ∑
k∈Nd

0∩ϑSd,1

(
ki

ϑ
− xi

)
Pk,ϑ(x) = 0, (A.61)

and the fact that ∑
k∈Nd

0∩ϑSd,1

(
ki

ϑ
− xi

) (
k j

ϑ
− x j

)
Pk,ϑ(x) =

1
ϑ

(
xi1{i= j} − xix j

)
, (A.62)

it yields

E[̂gn,ϑ(ϕ, x)] −
(
1 +

d(d − 1)
2ϑ

)
R(ϕ, x)

=0 +
1
ϑ

d∑
i=1

(
1
2
− xi

)
∂

∂xi
R(ϕ, x) +

1
2ϑ

d∑
i, j=1

(
xi1{i= j} − xix j

) ∂2

∂xi∂x j
R(ϕ, x) + o

(
ϑ−1

)
,

assuming that ‖k/ϑ− x‖1 = o(1) decays slowly enough to 0 that the contributions coming from outside
the bulk are negligible. Hence, the proof of the proposition is complete. �

Next, based on the results of Proposition A.7, we can see that

ϑd
∫

1( k
ϑ
, k+1
ϑ ]
R(ϕ,u)du = R(ϕ,k/ϑ) + O

(
ϑ−1

)
,

which implies considering the Lipschitz continuity of R(ϕ, ·) uniformly for x ∈ Sd,1

E[̂gn,ϑ(ϕ, x)] − R(ϕ, x) =

d∑
i=1

O

 ∑
k∈Nd

0∩ϑSd,1

∣∣∣∣∣ki

ϑ
− xi

∣∣∣∣∣ Pk,ϑ(x)

 + O
(
ϑ−1

)
.

Finally, all it takes to get the bias term is to apply the Cauchy-Schwarz inequality in the last expression,
followed by an application of (A.62), and we obtain

sup
x∈Sd,1

∣∣∣E[̂gn,ϑ(ϕ, x)] − R(ϕ, x)
∣∣∣ = O

(
ϑ−d/2

)
+ O

(
ϑ−1

)
= O

(
ϑ−1

)
. (A.63)

Use the fact that

sup
x∈Sd,1

∣∣∣∣∣∣ ĝn,ϑ(ϕ, x)
f (x)

− r(1)(ϕ, x)

∣∣∣∣∣∣ ≤ supx∈Sd,1

∣∣∣̂gn,ϑ(ϕ, x) − R(ϕ, x)
∣∣∣

infx∈Sd,1 f (x)
,

and
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sup
x∈Sd,1

∣∣∣∣∣∣∣ f̂n,ϑ(x)
f (x)

− 1

∣∣∣∣∣∣∣ ≤ supx∈Sd,1

∣∣∣∣ f̂n,ϑ(x) − f (x)
∣∣∣∣

infx∈Sd,1 f (x)
.

Combining (A.63) with the fact that r(1)(ϕ, x) =
ĝn,ϑ(ϕ, x)

f (x)
·

f (x)

f̂n,ϑ(x)
, completes the proof of (A.59).

Now, we only need to prove (A.60), noticing that

ĝn,ϑ(ϕ, x) − E[̂gn,ϑ(ϕ, x)] =
(ϑ − 1 + d)!

(ϑ − 1)!
1
n

n∑
i=1

Zi,ϑ,

where

Zi,ϑ :=
∑

k∈Nd
0∩(ϑ−1)Sd,1

ϕ(Yi)1( k
ϑ ,

k+1
ϑ ] (Xi) −

∫
( k
ϑ ,

k+1
ϑ ]
R(ϕ,u)du

 Pk,ϑ−1(x), i ∈ {1, . . . , n}. (A.64)

For every ϑ, the random variables Y1,ϑ, . . . ,Yn,ϑ are i.i.d. and centered. Set

ϕ(T )(y) := ϕ(y)1{|ϕ(y)|≤ωn,2},

ϕ(R)(y) := ϕ(y)1{|ϕ(y)|>ωn,2},

then, we have
Zi,ϑ = Z

(T )
i,ϑ +Z

(R)
i,ϑ ,

where

Z
(T )
i,ϑ :=

∑
k∈Nd

0∩(ϑ−1)Sd,1

ϕ(Yi)1{|ϕ(Y)|≤ωn,2}1( k
ϑ ,

k+1
ϑ ] (Xi) −

∫
( k
ϑ ,

k+1
ϑ ]
R(ϕ(T ),u)du

 Pk,ϑ−1(x),

Z
(R)
i,ϑ :=

∑
k∈Nd

0∩(ϑ−1)Sd,1

ϕ(Yi)1{|ϕ(Y)|>ωn,2}1( k
ϑ ,

k+1
ϑ ] (Xi) −

∫
( k
ϑ ,

k+1
ϑ ]
R(ϕ(R),u)du

 Pk,ϑ−1(x).

So we can write

ĝn,ϑ(ϕ, x) − E[̂gn,ϑ(ϕ, x)] =
(ϑ − 1 + d)!

(ϑ − 1)!
1
n

n∑
i=1

(
Z

(T )
i,ϑ +Z

(R)
i,ϑ

)
=

{̂
gn,ϑ(ϕ(T ), x) − E[̂gn,ϑ(ϕ(T ), x)]

}
+

{̂
gn,ϑ(ϕ(R), x) − E[̂gn,ϑ(ϕ(R), x)]

}
:= T1 + T2.

To obtain the desired result, we need to prove that

sup
x∈Sd,1

|T1| = O(ϑd−1/2(n−1 log n)1/2) a.s, (A.65)

and
sup

x∈Sd,1

|T2| = o(1). (A.66)
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Note that the proof of T2 can be derived directly from the proof of the remainder part of the conditional
U-statistics in the following section. Moving on to T1, we have

Var
[̂
gn,ϑ(ϕ(T ), x)

]
= n−1

(
(ϑ − 1 + d)!

(ϑ − 1)!

)2

E
[
(Z(T )

1,ϑ)2
]
,

where

E
[
(Z(T )

1,ϑ)2
]

=
∑

k∈Nd
0∩(ϑ−1)Sd,1

∫
( k
ϑ ,

k+1
ϑ ]
E[(ϕ(T )(Y))2 | X = u] f (u)duP2

k,ϑ−1(x) −
(

(ϑ − 1)!
(ϑ − 1 + d)!

E[̂gn,ϑ(ϕ(T ), x)]
)2

≤ω2
n,2

 ∑
k∈Nd

0∩(ϑ−1)Sd,1

∫
( k
ϑ ,

k+1
ϑ ]

f (u)duP2
k,ϑ−1(x) −

(
(ϑ − 1)!

(ϑ − 1 + d)!
E[ f̂n,ϑ(x)]

)2
 .

Set ςn :=

√
log n

n
, and

Ln,ϑ := max
k∈Nd

0∩(ϑ−1)Sd,1

1
n

n∑
i=1

ϕ(Yi)1{|ϕ(Y)|≤ωn,2}1( k
ϑ ,

k+1
ϑ ] (Xi) −

∫
( k
ϑ ,

k+1
ϑ ]
R(ϕ(T ),u)du

 .
By a union bound on k ∈ Nd

0 ∩ (ϑ− 1)Sd,1 (there are at most ϑd such points) and Bernstein’s inequality,
we have, for all ρ > 0,

P
(∣∣∣Ln,ϑ

∣∣∣ > ρϑ−1/2ςn

)
≤ ϑd · 2 exp

− n2ρ2ϑ−1ς2
n/2

ncω2
n,2ϑ

−1 + 1
3ωn,2nρϑ−1/2ςn

 ≤ ϑd · 2n−ρ
2/(4c), (A.67)

where the second inequality assumes that ϑ ≤ n/ log n (equivalently, ςn ≤ ϑ−1/2 ), and c ≥ ρ is
a Lipschitz constant for f (·). If we choose ρ = ρ(c, d) > 0 large enough, then the righthand side
of (A.67) is summable in n, and the Borel-Cantelli lemma implies

sup
x∈Sd,1

|T1| ≤ O
(
ϑd−1/2ςn

)
a.s. as n→ ∞.

Hence, the proof of Theorem 4.2 is complete. �

Proof of Theorem 4.4. Recall the notation (A.1). We will start by investigating the term u(T )
n,2 (ϕ, x̃).

Truncated Part:
Notice that∣∣∣∣u(T )

n,2 (ϕ, x̃) − E
(
u(T )

n,2 (ϕ, x̃)
)∣∣∣∣ =

(n − m)!
n!

∣∣∣∣∣∣∣ ∑
i∈I(m,n)

{
ϕ(T )(ỸiK̃x̃,ϑ(X̃i) − E

[
ϕ(T )(ỸiK̃x̃,ϑ(X̃i)

]}∣∣∣∣∣∣∣
=

(n − m)!
n!

∣∣∣∣∣∣∣ ∑
i∈I(m,n)

{
G

(T )
ϕ,x̃,2(X̃i, Ỹi) − E

[
G

(T )
ϕ,x̃,2(X̃i, Ỹi)

]}∣∣∣∣∣∣∣
=

(n − m)!
n!

∣∣∣∣∣∣∣ ∑
i∈I(m,n)

H(T )
ϑ (X̃i, Ỹi)

∣∣∣∣∣∣∣ ,
where
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H(T )
ϑ (X̃i, Ỹi) = G

(T )
ϕ,x̃,2(X̃i, Ỹi) − E

[
G

(T )
ϕ,x̃,2(X̃i, Ỹi)

]
=

(
(ϑ − 1 + d)!

(ϑ − 1)!

)m ∑
(k1,...,km)∈(Nd

0∩(ϑ−1)Sd,1)m

ϕ(T )(Yi1 , . . . ,Yim)
m∏

j=1

1( k j
ϑ ,

k j+1
ϑ

](Xi j)

−

∫
(

k1
ϑ ,

k1+1
ϑ

] · · ·
∫

( km
ϑ ,

km+1
ϑ

] ϕ(T )(ỹ) f̃ (ũ, ỹ)dũdỹ

 m∏
j=1

Pk j,ϑ−1(x j).

It suffices to consider

Lϑ,n := max
k̃∈(Nd

0∩(ϑ−1)Sd,1)m

(n − m)!
n!

∑
i∈I(m,n)

ωn,2

 m∏
j=1

1( k j
ϑ ,

k j+1
ϑ

](Xi j) −
∫

(
k1
ϑ ,

k1+1
ϑ

] · · ·
∫

( km
ϑ ,

km+1
ϑ

] f̃ (ũ)dũ


= max

k̃∈(Nd
0∩(ϑ−1)Sd,1)m

(n − m)!
n!

∑
i∈I(m,n)

Zi.

We have E(Zi) = 0, and by condition (C.2),

Var(Zi) = E(Z2
i )

= ω2
n,2

∫
(

k1
ϑ ,

k1+1
ϑ

] · · ·
∫

( km
ϑ ,

km+1
ϑ

] f̃ (ũ)dũ − ω2
n,2

∫(
k1
ϑ ,

k1+1
ϑ

] · · ·
∫

( km
ϑ ,

km+1
ϑ

] f̃ (ũ)dũ


2

≤ ω2
n,2C0

∫
(

k1
ϑ ,

k1+1
ϑ

] · · ·
∫

( km
ϑ ,

km+1
ϑ

] 1 · dũ − ω2
n,2C

2
0

∫(
k1
ϑ ,

k1+1
ϑ

] · · ·
∫

( km
ϑ ,

km+1
ϑ

] 1 · dũ


2

≤ ω2
n,2C0

(
ϑ−dm −C0ϑ

−2dm
)

≤ ω2
n,2C0ϑ

−dm.

Applying Bernstein’s inequality on

H(X̃) = ωn,2

m∏
i=1

1( k j
ϑ ,

k j+1
ϑ

](X j),

we have
‖H(X̃)‖∞ ≤ ωn,2,

σ2 = Var[H(X̃)] ≤ ω2
n,2C0ϑ

−dm,

where Cδ,dm is a Lipschitz constant of the cumulative distribution function of X̃. We obtain, for κ > 0,

P

 max
k̃∈(Nd

0∩(ϑ−1)Sd,1)m

∣∣∣un,2(ϕ, x̃) − E
[
un,2(ϕ, x̃)

]∣∣∣ > ε0ϑ
−m/2ςn


≤2ϑmd exp

− [n/m]ε2
0ϑ
−mς2

n

2ω2
n,2C0ϑ−dm − 2

32ωn,2ε0ϑ−m/2ςn
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≤2ϑmdn−1−κ.

Remainder Part:
Recall that

u(R)
n,2(ϕ, x̃) − E

[
u(R)

n,2(ϕ, x̃)
]

=
(n − m)!

n!

∑
i∈I(m,n)

G
(R)
ϕ,x̃,2(X̃i, Ỹi) − E

[
G

(R)
ϕ,x̃,2(X̃i, Ỹi)

]
.

Now, using the fact that for
∣∣∣ϕ(Ỹi)

∣∣∣ > ωn,2, we have (
∣∣∣ϕ(Ỹi)

∣∣∣ /ωn,2)1+γ > 1, which implies that∣∣∣E[u(R)
n,2(ϕ, x̃)]

∣∣∣ ≤ E[
∣∣∣ϕ(Ỹi)

∣∣∣ 1{|ϕ(Ỹi)|>ωn,2}K̃x̃,ϑ(X̃i)]

≤ E[
∣∣∣ϕ(Ỹi)

∣∣∣ 
∣∣∣ϕ(Ỹi)

∣∣∣
ωn,2

1+γ

1{|ϕ(Ỹi)|>ωn,2}K̃x̃,ϑ(X̃i)]

≤ ω
−(1+γ)
n,2 E[

∣∣∣ϕ(Ỹi)
∣∣∣2+γ
K̃x̃,ϑ(X̃i)], (A.68)

where, by Assumption (C.3), we have

E
[∣∣∣ϕ(Ỹi)

∣∣∣2+γ
K̃x̃,ϑ(X̃i)

]
= E

{
E

(∣∣∣ϕ(Ỹi)
∣∣∣2+γ
| X̃i

)
K̃x̃,ϑ(X̃i)

}
=

∫
Sm

d,1

E
(∣∣∣ϕ(Ỹ)

∣∣∣2+γ
| X̃ = ũ

)
f̃ (ũ)K̃x̃,ϑ(ũ)dũ ≤ C1. (A.69)

Therefore, if we set of ωn,2 = (ϑ−m/2ςn)−1/(1+γ), it follows that
∣∣∣∣E [

u(R)
n,2(ϕ, x̃)

]∣∣∣∣ ≤ O(ϑ−m/2ςn) uniformly
on x̃ ∈ Sm

d,1. Consequently, Markov’s inequality gives us

sup
x̃∈Sm

d,1

∣∣∣∣u(R)
n,2(ϕ, x̃) − E

[
u(R)

n,2(ϕ, x̃)
]∣∣∣∣ = OP(ϑ−m/2ςn). (A.70)

Hence, the proof is complete. �

Proof of Theorem 4.5. The proof of Theorem 4.5 is similar to the proof of Theorem 3.3. Using the
decomposition (A.2) and the fact that for some positive constants c1, c2 > 0, we readily infer

sup
x̃∈Sm

d,1

∣∣∣un,2(1, x̃)
∣∣∣ = c1 a.s.,

sup
x̃∈Sm

d,1

∣∣∣E (
un,2(1, x̃)

)∣∣∣ = c2,

sup
x̃∈Sm

d,1

∣∣∣E (
un,2(ϕ, x̃)

)∣∣∣ = O(1).

Set ςn,2 := ϑm(d−1/2)(n−1 log n)1/2. By Theorem 4.4, for some c′′ > 0, we get with probability 1:

sup
x̃∈Sm

d,1

∣∣∣∣̂r(m)
n,2 (ϕ, x̃; Λ̄n,2(x̃)) − Ê

(̂
r(m)

n,2 (ϕ, x̃; Λ̄n,2(x̃)
)∣∣∣∣

ςn,2
≤ sup

x̃∈Sm
d,1

(
I2,1

)
ςn,2

+ sup
x̃∈Sm

d,1

(
I2,2

)
ςn,2

≤ c′′.

Hence, the proof is complete. �
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Proof of Theorem 4.6. We have∣∣∣∣̂E [̂
r(m)

n,2 (ϕ, x̃; Λ̄n,2(x̃))
]
− r(m)(ϕ, x̃)

∣∣∣∣ =

∣∣∣∣∣∣E
(
un,2(ϕ, x̃)

)
E

(
un,2(1, x̃)

) − r(m)(ϕ, x̃)

∣∣∣∣∣∣
=

1∣∣∣E (
un,2(1, x̃)

)∣∣∣ ∣∣∣E (
un,2(ϕ, x̃)

)
− r(m)(ϕ, x̃)E

(
un,2(1, x̃)

)∣∣∣ .
It suffices to control

sup
x̃∈Sm

d,1

∣∣∣E (
un,2(ϕ, x̃)

)
− R(ϕ, x̃)

∣∣∣ = O
(
ϑ−m/2

)
, (A.71)

and that
sup

x̃∈Sm
d,1

∣∣∣E (
un,2(1, x̃)

)
− f̃ (x̃)

∣∣∣ = O
(
ϑ−m/2

)
. (A.72)

Let us start with (A.71), and we have the following

Proposition A.8. Assume that condition (C.2) holds. We have, uniformly for x̃ ∈ Sm
d,1,

E
[
un,2(ϕ, x̃)

]
= R(ϕ, x̃) + ϑ−mLm(x̃) + o(ϑ−m), ϑ −→ ∞,

where

Lm(x̃) :=
(
d(d − 1)

2ϑ

)m

R(ϕ, x̃) +

m∑
i=1

d∑
`=1

(
1
2
− xi`

)
∂R(ϕ, x̃)
∂xi`

+
1
2

m∑
i, j=1

d∑
`,r=1

(
xi`1{i`= jr} − xi` x jr

) ∂2R(ϕ, x̃)
∂xi`∂x jr

.

Proof of Proposition A.8. Let us start with

E
[
un,2(ϕ, x̃)

]
=

∫
Sm

d,1

r(m)(ϕ, ũ) f̃ (ũ)K̃x̃,ϑ(ũ)dũ

=

∫
Sm

d,1

R(ϕ, ũ)K̃x̃,ϑ(ũ)dũ

=

(
(ϑ − 1 + d)!

(ϑ − 1)!

)m ∑
(k1,...,km)∈(Nd

0∩(ϑ−1)Sd,1)m

∫
(

k1
ϑ ,

k1+1
ϑ

] · · ·
∫

( km
ϑ ,

km+1
ϑ

] R(ϕ, ũ)dũ
m∏

j=1

Pk j,ϑ−1(x j).

By a Taylor’s expansion for any k̃ such that ‖ k̃
ϑ
− x̃‖1 = o(1), we obtain

ϑdm
∫

(
k̃
ϑ ,

k̃+1̃
ϑ

] R(ϕ, ũ)dũ − R(ϕ, x̃) (A.73)

=R(ϕ, k̃/ϑ) − R(ϕ, x̃) +
1

2ϑd

m∑
i=1

d∑
`=1

∂R(ϕ, k̃/ϑ)
∂xi`

+ O(ϑ−2d)

=
1
ϑd

m∑
i=1

d∑
`=1

(ki` − ϑxi`)
∂R(ϕ, x̃)
∂xi`

+
1

2ϑd

m∑
i=1

d∑
`=1

∂R(ϕ, x̃)
∂xi`

+ o(ϑ−d)
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+
1

2ϑ2d

m∑
i, j=1

d∑
`,r=1

(ki` − ϑxi`)(k jr − ϑx jr )
∂2R(ϕ, x̃)
∂xi`∂x jr

(1 + o(1))

=
1
ϑd

m∑
i=1

d∑
`=1

(ki` − (ϑ − 1)xi`)
∂R(ϕ, x̃)
∂xi`

+
1
ϑd

m∑
i=1

d∑
`=1

(
1
2
− xi`)

∂R(ϕ, x̃)
∂xi`

+
1
2

m∑
i, j=1

d∑
`,r=1

(
ki`

ϑ
− xi`

) (
k jr

ϑ
− x jr

)
∂2R(ϕ, x̃)
∂xi`∂x jr

(1 + o(1)) + o(ϑ−d).

Multiplying the last expression by ϑ−dm ·

(
(ϑ − 1 + d)!

(ϑ − 1)!

)m m∏
j=1

Pk j,ϑ−1(x j), summing over all k̃ ∈ (Nd
0 ∩

(ϑ − 1)Sd,1)m, and using the same principle as the identities (A.61) and (A.62) leads to

E
[
un,2(ϕ, x̃)

]
−

(
1 +

d(d − 1)
2ϑ

)m

R(ϕ, x̃)

=0 +
1
ϑm

m∑
i=1

d∑
`=1

(
1
2
− xi`)

∂R(ϕ, x̃)
∂xi`

+
1

2ϑ

m∑
i, j=1

d∑
`,r=1

(
xi`1{i`= jr} − xi` x jr

) ∂2R(ϕ, x̃)
∂xi`∂x jr

+ o
(
ϑ−m)

,

assuming that ‖ k̃
ϑ
− x̃‖1 = o(1) decays slowly enough to 0 so that the contributions coming from outside

the bulk are negligible. Hence, the proof of the proposition is complete. �

Now, recall that based on (A.73), we get that

ϑdm
∫

(
k̃
ϑ ,

k̃+1̃
ϑ

] R(ϕ, ũ)dũ = R(ϕ, k̃/ϑ) +
1

2ϑd

m∑
i=1

d∑
`=1

∂R(ϕ, k̃/ϑ)
∂xi`

+ O(ϑ−2d)

= R(ϕ, k̃/ϑ) + O(ϑ−d),

and multiplying the last expression by

ϑ−dm ·

(
(ϑ − 1 + d)!

(ϑ − 1)!

)m m∏
j=1

Pk j,ϑ−1(x j)

and summing over all
k̃ ∈ (Nd

0 ∩ (ϑ − 1)Sd,1)m,

we obtain

E
[
un,2(ϕ, x̃)

]
= ϑ−dm

(
(ϑ − 1 + d)!

(ϑ − 1)!

)m ∑
k̃∈(Nd

0∩(ϑ−1)Sd,1)m

R(ϕ, k̃/ϑ)
m∏

j=1

Pk j,ϑ−1(x j) + O(ϑ−d(m+1)),

which implies that together with the fact that the function R(ϕ, ·) is Lipscitz continuous

E
[
un,2(ϕ, x̃)

]
− R(ϕ, x̃)

=ϑ−dm

(
(ϑ − 1 + d)!

(ϑ − 1)!

)m ∑
k̃∈(Nd

0∩(ϑ−1)Sd,1)m

R(ϕ, k̃/ϑ)
m∏

j=1

Pk j,ϑ−1(x j) − R(ϕ, x̃) + O(ϑ−d(m+1))
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≤ϑ−dm

(
(ϑ − 1 + d)!

(ϑ − 1)!

)m ∑
k̃∈(Nd

0∩(ϑ−1)Sd,1)m

{
R(ϕ, k̃/ϑ) − R(ϕ, x̃)

} m∏
j=1

Pk j,ϑ−1(x j) + O(ϑ−d(m+1))

≤ϑ−dm

(
(ϑ − 1 + d)!

(ϑ − 1)!

)m ∑
k̃∈(Nd

0∩(ϑ−1)Sd,1)m

‖
k̃
ϑ
− x̃‖1

m∏
j=1

Pk j,ϑ−1(x j) + O(ϑ−d(m+1))

≤ϑ−dm

(
(ϑ − 1 + d)!

(ϑ − 1)!

)m ∑
k̃∈(Nd

0∩(ϑ−1)Sd,1)m

m∑
j=1

d∑
`=1

∣∣∣k j` − ϑx j`

∣∣∣ m∏
j=1

Pk j,ϑ−1(x j) + O(ϑ−d(m+1))

=O

 m∑
j=1

d∑
`=1

∑
k̃∈(Nd

0∩(ϑ−1)Sd,1)m

∣∣∣k j` − ϑx j`

∣∣∣ m∏
j=1

Pk j,ϑ−1(x j)

 + O(ϑ−d(m+1)).

Finally, an application of the Cauchy-Schwarz inequality combined with the identity (A.62) gives us
uniformly for x̃ ∈ Sm

d,1,

E
[
un,2(ϕ, x̃)

]
− R(ϕ, x̃)

=O


m∑

j=1

d∑
`=1

√√√ ∑
k̃∈(Nd

0∩(ϑ−1)Sd,1)m

∣∣∣k j` − ϑx j`

∣∣∣2 m∏
j=1

Pk j,ϑ−1(x j)
√ ∑

k̃∈(Nd
0∩(ϑ−1)Sd,1)m

m∏
j=1

Pk j,ϑ−1(x j)

 + O(ϑ−d(m+1))

=O(ϑ−dm/2) + O(ϑ−d(m+1)) = O(ϑ−dm/2).

Therefore, we obtain
sup

x̃∈Sm
d,1

∣∣∣E (
un,2(ϕ, x̃)

)
− R(ϕ, x̃)

∣∣∣ = O
(
ϑ−md/2

)
.

It remains to prove (A.72), which can easily be verified by simply taking ϕ ≡ 1 in the above equation.
Combining the previously obtained results,

sup
x̃∈Sm

d,1

∣∣∣E (
un,2(ϕ, x̃)

)
− r(m)(ϕ, x̃)E

(
un,2(1, x̃)

)∣∣∣ = O
(
ϑ−md/2

)
, (A.74)

and if we suppose that inf
x̃∈Sm

d,1

f̃ (x̃) > 0, we can infer that

sup
x̃∈Sm

d,1

∣∣∣∣̂E [̂
r(m)

n,2 (ϕ, x̃; Λ̄n,2(x̃))
]
− r(m)(ϕ, x̃)

∣∣∣∣ = O
(
ϑ−md/2

)
.

Hence, the proof is complete. �

A.3. Proof of Section 5: Beta kernels

Let Ah, h = 1, . . . ,Nd
n be the h-th sub-hyper-rectangle. Also let xh be the most distant point in

Ah from the origin, that is, xh := arg maxx∈Ah ‖x‖. Suppose that the design point x falls into Ah.
Then, for all x̃ = (x1, . . . , xm), we denote x̃h = (x1,h, . . . , xm,h) such that x̃h := arg maxx̃∈Am

h
‖x̃‖. For

x̃ = (x1, . . . , xm) ∈ Sx̃ :=
m∏

i=1

SXi , where

SXi = SXi(ηi) :=
d∏

j=1

[
η j, 1 − η j

]
⊆ [0, 1]d,

AIMS Mathematics Volume 9, Issue 9, 26195–26282.
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the boundary parameters ηi :=
(
ηi1 , . . . , ηid

)
either are fixed or shrink to zero at a suitable rate. For each

1 ≤ i ≤ m, we divide every edge of the d-hyper-rectangles SXi into Nn evenly spaced grids, resulting in
Nd

n identical sub-hyper-rectangles. For any x̃ = (x1, . . . , xm) ∈ Sm
X, there exists `(x̃) = (`(x1), . . . , `(xm))

such that for all 1 ≤ i ≤ m, 1 ≤ `(xi) ≤ Nd
n , and

x̃ ∈
m∏

i=1

A(x`(xi)) such that x`(xi) := arg max
x∈A(x`(xi))

‖x‖.

For each x̃ ∈ Sm
X, we consider the U-statistic as∣∣∣un,3(ϕ, x̃) − E[un,3(ϕ, x̃)]

∣∣∣ ≤ ∣∣∣un,3(ϕ, x̃) − un,3(ϕ, x̃`(x))
∣∣∣ +

∣∣∣E[un,3(ϕ, x̃`(x))] − E[un,3(ϕ, x̃)]
∣∣∣

+
∣∣∣un,3(ϕ, x̃`(x)) − E[un,3(ϕ, x̃`(x))]

∣∣∣ .
Before proceeding, we borrow a few lemmas from [79], all of which are key building blocks for the
technical proofs below. Throughout, θx j denotes a beta random variable so that

θx j

D
= Beta

{
x j/b j + 1,

(
1 − x j

)
/b j + 1

}
.

Lemma A.9. Let θx j and θxk be independent for j , k. Then, as n→ ∞, we have

sup
x j∈(0,1)

E
(
θx j − x j

)
= O

(
b j

)
, and

sup
x j,xk∈(0,1)

E
{(
θx j − x j

) (
θxk − xk

)}
=

 O
(
b j

)
, for j = k,

O
(
b jbk

)
, for j , k.

Lemma A.10. Suppose that b(= b(n) > 0) and η(= η(n) > 0 ) satisfy b, η→ 0 and b/η→ 0 as n→ ∞.
Then, as n→ ∞, we have

sup
(x,u)∈[η,1−η]×[0,1]

KB(x,b)(u) ≤
(

9
4
√
π

)
b−1/2η−1/2.

Lemma A.11. Under the same condition as in Lemma A.10, as n→ ∞, we have

sup
(x,u)∈[η,1−η]×[0,1]

∣∣∣∣∣∂KB(x,b)(u)
∂x

∣∣∣∣∣ ≤ {(
9

4
√
π

) (
γ +

π2

6

)
+ 1

}
b−(2+1/2)η−1/2,

where γ = 0.5772 . . . is Euler’s constant.

A.3.1. Proof of Theorem 5.1

Proof of Theorem 5.1. To establish this theorem, we’ll have to truncate the conditional U-statistic.
First, let’s introduce the following notation:

φn =

√√√√√√√√√ (log n/n)
m∏

j=1

 d∏
i=1

b jiη ji


,
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ωn,3 = φ−1/(1+γ)
n ,

Nn = φ
−(1+ 1

1+γ )
n

 m∏
j=1

 d∏
i=1

b jiη ji



− 1

2
 m∑

j=1

d∑
i=1

1
b2

ji

 .
From (A.1), we know that we can write

un,3(ϕ, x̃) = u(m)
n,`

(
G

(T )
ϕ,x̃,3

)
+ u(m)

n,`

(
G

(R)
ϕ,x̃,3

)
= u(T )

n,3 (ϕ, x̃) + u(R)
n,3(ϕ, x̃).

Using the same truncation technique we used in the previous sections’ proof, we need to establish the
results for the truncated and remainder parts.
Truncated Part:

Let us remark that∣∣∣∣u(T )
n,3 (ϕ, x̃) − E

(
u(T )

n,3 (ϕ, x̃)
)∣∣∣∣ =

(n − m)!
n!

∣∣∣∣∣∣∣ ∑
i∈I(m,n)

{
G

(T )
ϕ,x̃,3(X̃i, Ỹi) − E

[
G

(T )
ϕ,x̃,3(X̃i, Ỹi)

]}∣∣∣∣∣∣∣
=

(n − m)!
n!

∣∣∣∣∣∣∣ ∑
i∈I(m,n)

H(T )(X̃i, Ỹi)

∣∣∣∣∣∣∣ ,
where

H(T )(X̃, Ỹ) = G
(T )
ϕ,x̃,3(X̃, Ỹ) − E

[
G

(T )
ϕ,x̃,3(X̃, Ỹ)

]
.

We apply Lemma B.2 on the function H(T )(·, ·). Throughout the rest of the proof, we suppose that the
function G(T )

ϕ,x̃,3 is symmetric. Moreover, by Lemma A.10, for a sufficiently large n, we readily infer

∣∣∣H(T )(X̃, Ỹ)
∣∣∣ ≤ 2ωn,3

(
9

4
√
π

)dm m∏
j=1


 d∏

i=1

b jiη ji

−
1
2


≤ 2
(

9
4
√
π

)dm
φ

2−1/(1+γ)
n

log(n)
:= CH.

We also remark that
θ = E[H(T )(X̃, Ỹ)] = 0.

One can easily derive

σ2 = Var(H(T )(X̃, Ỹ)) ≤ E[H(T )(X̃, Ỹ)2]

≤

∫
[0,1]dm

E
[∣∣∣ϕ(T )(Ỹ)

∣∣∣2 | X̃ = ũ
]

f̃ (ũ)K̃2
Λ̄n,3(x̃)(ũ)dũ.

Using Lyapunov’s inequality (2.7), and condition (C.3), for C0,C1 ≥ 1, we have

E
[∣∣∣ϕ(T )(Ỹ)

∣∣∣2 | X̃ = ũ
]

f̃ (ũ) ≤
{
E

[∣∣∣ϕ(T )(Ỹ)
∣∣∣2+γ
| X̃ = ũ

]
f̃ (ũ)

}2/(2+γ) {
f̃ (ũ)

}γ/(2+γ)

≤ C2/(2+γ)
1 Cγ/(2+γ)

0 ≤ C0C1.
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In addition, recall that

K2
α,β(u) =

B{2x/b + 1, 2(1 − x)/b + 1}
b2{x/b + 1, (1 − x)/b + 1}

u2x/b(1 − u)2(1−x)/b

B{2x/b + 1, 2(1 − x)/b + 1}
1{u∈[0,1]}.

By Lemma of [40], the first term is bounded by b−1/2(1 + b)3/2/{2
√
π
√

x(1 − x)} for a sufficiently large
n. The second term is the pdf of Beta {2x/b + 1, 2(1 − x)/b + 1}. Therefore, we derive

σ2 ≤ C0C1

m∏
j=1


d∏

i=1

b−1/2
ji

(
1 + b ji

)3/2

2
√
π
√

x ji

(
1 − x ji

)
 ≤ C0C1

m∏
j=1


d∏

i=1

b−1/2
ji

(
1 + b ji

)3/2

2
√
π
√
η ji

(
1 − η ji

)
 .

For a sufficiently large n, b j1 , . . . , b jd and η j1 , . . . , η jd ,1 ≤ j ≤ m are no greater than 1/2, and thus

σ2 ≤

m∏
j=1

√√√ d∏
j=1

b jiη jiC0C1

3
4

√
3
π

dm

≤ n
m∏

j=1

√√√ d∏
j=1

b jiη jiC0C1

3
4

√
3
π

dm

≤
φ2

n

log(n)
C0C1

3
4

√
3
π

dm

≤
φ2

n

log(n)
ρ2,

where ρ2 := C0C1

(
3
4

√
3
π

)dm

. For any ε > 0 and n large enough, we get that

P
(∣∣∣∣u(T )

n,3 (ϕ, x̃) − E
(
u(T )

n,3 (ϕ, x̃)
)∣∣∣∣ > ερφn

)
≤2 exp

− [n/m]ρ2φ2
nε

2

2σ2 + 2
3CHρεφn


≤2 exp


−

ε2 log(n)

2

1 +
2
3

(
9

4
√
π

)dm
εφ

1−1/(1+γ)
n

ρ




.

Taking into account φn = o(1) and
2
3

(
9

4
√
π

)dm
εφ

1−1/(1+γ)
n

ρ
≤ 1 for sufficiently large n, it follows that

P
(∣∣∣∣u(T )

n,3 (ϕ, x̃) − E
(
u(T )

n,3 (ϕ, x̃)
)∣∣∣∣ > ερφn

)
≤ 2 exp

[
−
ε2 log(n)
2(1 + 1)

]
= 2n

−ε
2

4 . (A.75)

On the other hand, we have

P

sup
x̃∈Sm

X

∣∣∣∣u(T )
n,3 (ϕ, x̃) − E

(
u(T )

n,3 (ϕ, x̃)
)∣∣∣∣ > 2ερφn
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≤ P

sup
x̃∈Sm

X

∣∣∣u(T )
n,3 (ϕ, x̃) − u(T )

n,3 (ϕ, x̃`(x))

+E[u(T )
n,3 (ϕ, x̃`(x̃))] − E[u(T )

n,3 (ϕ, x̃)]
∣∣∣ > ερφn

)
+P

sup
x̃∈Sm

X

∣∣∣u(T )
n,3 (ϕ, x̃`(x̃)) − E[u(T )

n,3 (ϕ, x̃`(x̃))]
∣∣∣ > ερφn

 . (A.76)

We highlight that

∣∣∣u(T )
n,3 (ϕ, x̃) − u(T )

n,3 (ϕ, x̃`(x̃))
∣∣∣ ≤ (n − m)!

n!

∑
i∈I(m,n)

∣∣∣∣G(T )
ϕ,x̃,3(X̃i, Ỹi) − Gϕ,x̃`(x̃),3(X̃i, Ỹi)

∣∣∣∣
≤

(n − m)!
n!

∑
i∈I(m,n)

∣∣∣ϕ(T )(Ỹi)K̃Λ̄n,3(x̃)(X̃i) − ϕ(T )(Ỹi)K̃Λ̄n,3(x̃`(x̃))(X̃i)
∣∣∣

≤
(n − m)!

n!

∑
i∈I(m,n)

∣∣∣ϕ(T )(Ỹi)
∣∣∣ ∣∣∣K̃Λ̄n,3(x̃)(X̃i) − K̃Λ̄n,3(x̃`(x̃))(X̃i)

∣∣∣ .
Hence, the rate of

sup
x̃∈Am

h

∣∣∣∣u(T )
n,3 (ϕ, x̃) − E

[
u(T )

n,3 (ϕ, x̃`(x̃))
]∣∣∣∣

is determined by ∣∣∣ϕ(T )(Ỹi)
∣∣∣ ∣∣∣K̃Λ̄n,3(x̃)(X̃i) − K̃Λ̄n,3(x̃`(x̃))(X̃i)

∣∣∣ .
By the mean-value theorem, we have∣∣∣K̃Λ̄n,3(x̃)(X̃i) − K̃Λ̄n,3(x̃`(x̃))(X̃i)

∣∣∣ ≤ sup
(x̃,ũ)∈Am

h ×[0,1]dm

∥∥∥∥∇ {
K̃Λ̄n,3(x̃)(u)

}∥∥∥∥ sup
x̃∈Am

h

∥∥∥x̃ − x̃`(x̃)

∥∥∥ ,
for some x̃ joining x̃ and x̃`(x̃). For k = 1, . . . ,m, observe that∣∣∣∣∣∣∣∂K̃Λ̄n,3(x̃)(u)

∂xk

∣∣∣∣∣∣∣ ≤


m∏
j=1, j,k

KΛn,3(x j)(u j)


∣∣∣∣∣∣∂KΛn,3(xk)(uk)

∂xk

∣∣∣∣∣∣
≤


m∏

j=1, j,k

 d∏
i=1

Kᾰ ji ,β̆ ji

(
u ji

)

∣∣∣∣∣∣∂KΛn,3(xk)(uk)

∂xk

∣∣∣∣∣∣
≤

m∏
j=1, j,k

O


 d∏

i=1

b jiη ji

−
1
2

∣∣∣∣∣∣∂KΛn,3(xk)(uk)

∂xk

∣∣∣∣∣∣ ,
where, by Lemmas A.10 and A.11, for ` = 1, . . . , d, we have

∣∣∣∣∣∣∂KΛn,3(xk)(uk)
∂xk`

∣∣∣∣∣∣ ≤
 d∏

i=1,i,`

Kᾰki ,β̆ki

(
uki

)
∣∣∣∣∣∣∣∂Kᾰk` ,β̆k`

(
uk`

)
∂xk`

∣∣∣∣∣∣∣ = O


 d∏

i=1

bkiηki

−
1
2

1
b2

k`

 ,
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uniformly on (x̃, ũ) ∈ Am
h × [0, 1]dm and

m∏
j=1, j,k

KΛn,3(x j)(u j) =

m∏
j=1, j,k

 d∏
i=1

Kᾰ ji ,β̆ ji

(
u ji

)
≤

m∏
j=1, j,k

O


 d∏

i=1

b jiη ji

−
1
2
 ,

which implies

sup
(x̃,ũ)∈Am

h ×[0,1]dm

∥∥∥∥∇ {
K̃Λ̄n,3(x̃)(ũ)

}∥∥∥∥ = O


m∏

j=1


 d∏

i=1

b jiη ji

−
1
2

 m∑

j=1

d∑
i=1

1
b2

ji


 . (A.77)

Using the fact that sup
x̃∈Am

h

∥∥∥x̃ − x̃`(x̃)

∥∥∥ = O(N−m
n ), it follows that

∣∣∣ϕ(T )(Ỹi)
∣∣∣ ∣∣∣K̃Λ̄n,3(x̃)(X̃i) − K̃Λ̄n,3(x̃`(x̃))(X̃i)

∣∣∣ ≤ O

ωn,3N−m
n

m∏
j=1


 d∏

i=1

b jiη ji

−
1
2

 m∑

j=1

d∑
i=1

1
b2

ji




= O(φn), (A.78)

uniformly on (x̃, ũ) ∈ Am
h × [0, 1]dm. Next, making use of (A.78), we have∣∣∣E[u(T )
n,3 (ϕ, x̃`(x̃))] − E[u(T )

n,3 (ϕ, x̃)]
∣∣∣ =

∣∣∣∣E [
u(T )

n,3 (ϕ, x̃`(x̃)) − u(T )
n,3 (ϕ, x̃)

]∣∣∣∣ (A.79)

≤E
∣∣∣∣[u(T )

n,3 (ϕ, x̃`(x̃)) − u(T )
n,3 (ϕ, x̃)

]∣∣∣∣ . (A.80)

Just like in the bounded scenario, the progression from (A.79) to (A.80) arises from Jensen’s inequality
and certain properties of the absolute value function. We can deduce that

sup
x̃∈Sm

X

∣∣∣E[u(T )
n,3 (ϕ, x̃`(x̃))] − E[u(T )

n,3 (ϕ, x̃)]
∣∣∣ = O(φn).

For sufficiently large n and each m ≥ 2, for some ε > 0, we infer that

P

sup
x̃∈Sm

X

∣∣∣u(T )
n,3 (ϕ, x̃) − u(T )

n,3 (ϕ, x̃`(x)) +E[u(T )
n,3 (ϕ, x̃`(x̃))] − E[u(T )

n,3 (ϕ, x̃)]
∣∣∣ > ερφn

)
= 0.

Continue, now, with (A.76), by imposing that the kernel function G(T )
ϕ,x̃`,3(·) is symmetric and the U-

statistic is decomposed according to [80] decomposition, that is,

u(T )
n,3 (ϕ, x̃`(x̃)) − E[u(T )

n,3 (ϕ, x̃`(x̃))] =

m∑
q=1

m!
(m − q)!

u(q)
n,3

(
πq,m(G(T )

ϕ,x̃`,3)
)

=mu(1)
n,3

(
π1,m(G(T )

ϕ,x̃`,3)
)

+

m∑
q=2

m!
(m − q)!

u(q)
n,3

(
πq,m(G(T )

ϕ,x̃`,3)
)
. (A.81)
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Let us first start with the linear term. We have

mu(1)
n,3

(
π1,m(G(T )

ϕ,x̃`,3)
)

=
m
n

n∑
j=1

π1,m(G(T )
ϕ,x̃`,3)(X̃i, Ỹi).

From Hoeffding’s projection (A.81), we have

π1,m(G(T )
ϕ,x̃`,3)(x, y) =

{
E

[
G

(T )
ϕ,x̃`,3 ((x,X2, . . . ,Xm), (y,Y2, . . . ,Ym))

]
− E[G(T )

ϕ,x̃`,3

(
X̃, Ỹ

)
]
}

=
{
E[G(T )

ϕ,x̃`,3

(
X̃, Ỹ

)
|(X1,Y1) = (x, y)] − E[G(T )

ϕ,x̃`,3

(
X̃, Ỹ

)
]
}
.

Set
Z(T )

i = π1,m(G(T )
ϕ,x̃`,3)(X̃i, Ỹi).

It’s evident that Z(T )
i are independent and identically distributed random variables with a mean of zero,

and

σ2 ≤
φ2

n

log(n)
ρ2.

Making use of (A.75) and an application of Bernstein’s inequality, for some ε > 0, yields

P

sup
x̃∈Sm

X

∣∣∣∣u(1)
n,3

(
π1,m(G(T )

ϕ,x̃`,3)
)∣∣∣∣ > ερφn

 ≤ Nd
n∑

i=1

P

(
max

1≤`i≤Nd
n

∣∣∣∣u(1)
n,3

(
π1,m(G(T )

ϕ,x̃`,3)
)∣∣∣∣ > ερφn

)
≤Nd

n max
1≤`i≤Nd

n

P
(∣∣∣∣u(1)

n,3

(
π1,m(G(T )

ϕ,x̃`,3)
)∣∣∣∣ > ερφn

)
=O

Nd
n n
−ε

2

4
 . (A.82)

Moving to the nonlinear term, we will prove that for 2 ≤ q ≤ m:

sup
x̃∈Sm

X

(
m
q

) ∣∣∣∣u(q)
n,3

(
πq,mG

(T )
ϕ,x̃`,3

)∣∣∣∣
φn

= oP(1),

which implies that, for 1 ≤ i ≤ m and ` = (`1, . . . , `m):

max
1≤`i≤Nd

n

(
m
q

) ∣∣∣∣u(q)
n

(
πq,mG

(T )
ϕ,x̃`,3

)∣∣∣∣
φn

= oP(1).

To prove the abovementioned equation, we need to apply Proposition 1 of [5] (see Lemma B.3). We

can see that G(T )
ϕ,x̃`,3 is bounded by

(
9

4
√
π

)dm
φ

2−1/(1+γ)
n

log(n)
, hence for ε > 0, we have

P

n1/2

∣∣∣∣∣∣∣
m∑

q=2

m!
(m − q)!

u(q)
n,3

(
πq,m(G(T )

ϕ,x̃`,3)
)∣∣∣∣∣∣∣ > ερφn
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=P


∣∣∣∣∣∣∣

m∑
q=2

m!
(m − q)!

u(q)
n,3

(
πq,m(G(T )

ϕ,x̃`,3)
)∣∣∣∣∣∣∣ > n−1/2ερφn


=P


∣∣∣∣∣∣∣

m∑
q=2

m!
(m − q)!

u(q)
n,3

(
πq,m(G(T )

ϕ,x̃`,3)
)∣∣∣∣∣∣∣ > ε0ρφn

 ,
where ε0 =

ε
√

n
. Now for t = ερφn, Lemma B.3 gives

P


∣∣∣∣∣∣∣

m∑
q=2

m!
(m − q)!

u(q)
n,3

(
πq,m(G(T )

ϕ,x̃`,3)
)∣∣∣∣∣∣∣ > ε0ρφn

 ≤2 exp
− t(n − 1)1/2

2m+2mm+1 1
2CH


≤2 exp

−ερφn(n − 1)1/2

2m+2mm+1 1
2CH


≤2 exp

− ε(n − 1)1/2 log(n)

2m+2mm+1( 1
√

3
)dmφ

1−1/(1+γ)
n

 .
By the last result, it follows that there exists ε > 0 in such a way that

P


∣∣∣∣∣∣∣

m∑
q=2

(
m
q

)
u(q)

n,3

(
πq,m(G(T )

ϕ,x̃`,3)
)∣∣∣∣∣∣∣ > ε0ρφn

 ≤ n−ε0/2C6 ,

where

C6 = 2m+2mm+1
(

1
√

3

)dm

φ1−1/(1+γ)
n .

Therefore, for each ε0 > 0, 1 ≤ i ≤ m and ` = (`1, . . . , `m), we infer that

P

sup
x̃∈Sm

X

∣∣∣∣∣∣∣
m∑

q=2

(
m
q

)
u(q)

n,3

(
πq,m(G(T )

ϕ,x̃`,3)
)∣∣∣∣∣∣∣ > ε0ρφn


≤Nd

n max
1≤`i≤Nd

n

P


∣∣∣∣∣∣∣

m∑
q=2

(
m
q

)
u(q)

n,3

(
πq,m(G(T )

ϕ,x̃`,3)
)∣∣∣∣∣∣∣ > ε0ρφn


≤Nd

n n−m(ε0/2C6). (A.83)

By combining (A.75) and (A.83), for some ε > 0, it follows that

P

sup
x̃∈Sm

X

∣∣∣u(T )
n,3 (ϕ, x̃`(x̃)) − E[u(T )

n,3 (ϕ, x̃`(x̃))]
∣∣∣ > ερφn

 = O(Nd
n n−mε2/4), (A.84)

which implies for ε = 2
√

5d, as n→ ∞,

Nd
n n−mε2/4 = φ

−p(1+ 1
1+γ )

n

 m∏
j=1

 d∏
i=1

b jiη ji



− d

2
 m∑

j=1

d∑
i=1

1
b2

ji


d

n−5md
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=

(log n)−5mφ
10m−(1+ 1

1+γ )
n

 m∏
j=1

 d∏
i=1

η ji



− 1

2
 m∑

j=1

d∑
i=1

 m∏
k=1,k, j

 d∏
`=1,`,i

b ji




5m−1
2

b5(m−1)/2
ji




d

→ 0.

Hence, the proof is complete. �

Reminder Part:
Notice that

u(R)
n,3(ϕ, x̃) − E

[
u(R)

n,3(ϕ, x̃)
]

=
(n − m)!

n!

∑
i∈I(m,n)

G
(R)
ϕ,x̃,3(X̃i, Ỹi) − E

[
G

(R)
ϕ,x̃,3(X̃i, Ỹi)

]
.

Now, using the fact that for
∣∣∣ϕ(Ỹi)

∣∣∣ > ωn,3, we have (
∣∣∣ϕ(Ỹi)

∣∣∣ /ωn,3)1+γ > 1, which implies that∣∣∣E[u(R)
n,3(ϕ, x̃)]

∣∣∣ ≤ E[
∣∣∣ϕ(Ỹi)

∣∣∣ 1{|ϕ(Ỹi)|>ωn,3}K̃Λ̄n,3(x̃)(X̃i)]

≤ E[
∣∣∣ϕ(Ỹi)

∣∣∣ 
∣∣∣ϕ(Ỹi)

∣∣∣
ωn,3

1+γ

1{|ϕ(Ỹi)|>ωn,3}K̃Λ̄n,3(x̃)(X̃i)]

≤ ω
−(1+γ)
n,3 E[

∣∣∣ϕ(Ỹi)
∣∣∣2+γ
K̃Λ̄n,3(x̃)(X̃i)], (A.85)

where, by Assumption (C.3) and the fact that K̃Λ̄n,3(x̃)(·) is the density function of the product of dm
independent beta random variables θxi := (θx1 , . . . , θxm) ∈ [0, 1]dm, i = 1, . . . , dm, we have

E
[∣∣∣ϕ(Ỹi)

∣∣∣2+γ
K̃Λ̄n,3(x̃)(X̃i)

]
= E

{
E

(∣∣∣ϕ(Ỹi)
∣∣∣2+γ
| X̃i

)
K̃Λ̄n,3(x̃)(X̃i)

}
=

∫
[0,1]dm

E
(∣∣∣ϕ(Ỹ)

∣∣∣2+γ
| X̃ = ũ

)
f̃ (ũ)K̃Λ̄n,3(x̃)(ũ)dũ ≤ C1. (A.86)

Hence, by the definition of ωn,3,
∣∣∣∣E [

u(R)
n,3(ϕ, x̃)

]∣∣∣∣ ≤ O(φn) uniformly on x̃ ∈ Sm
X. Consequently, Markov’s

inequality gives us
sup
x̃∈Sm

X

∣∣∣∣u(R)
n,3(ϕ, x̃) − E

[
u(R)

n,3(ϕ, x̃)
]∣∣∣∣ = OP(φn). (A.87)

Hence, the proof is complete.

Proof of Theorem 5.2. Similar to the proof of the bias terms in the previous sections, we know that
based on (A.2) : ∣∣∣∣̂r(m)

n,3 (ϕ, x̃; Λ̄n,3(x̃)) − Ê
(̂
r(m)

n,3 (ϕ, x̃; Λ̄n,3(x̃))
)∣∣∣∣ ≤ I3,1 + I3,2. (A.88)

In addition, we have for some positive constants c1, c2 > 0,

sup
x̃∈Sm

X

∣∣∣un,3(1, x̃)
∣∣∣ = c1 a.s.,

sup
x̃∈Sm

X

∣∣∣E (
un,3(1, x̃)

)∣∣∣ = c2,

sup
x̃∈Sm

X

∣∣∣E (
un,3(ϕ, x̃)

)∣∣∣ = O(1).
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Hence by Theorem 5.1, for some c′′ > 0, we get with probability 1:

sup
x̃∈Sm

X

∣∣∣∣̂r(m)
n,3 (ϕ, x̃; Λ̄n,3(x̃)) − Ê

(̂
r(m)

n,3 (ϕ, x̃; Λ̄n,3(x̃))
)∣∣∣∣

φn
≤ sup

x̃∈Sm
X

(
I3,1

)
φn

+ sup
x̃∈Sm

X

(
I3,2

)
φn

≤ c′′.

Hence, the proof is complete. �

Proof of Theorem 5.3. To obtain the desired results, we need to prove that:

sup
x̃∈Sm

X

∣∣∣E {
un,3(ϕ, x̃)

}
− R(ϕ, x̃)

∣∣∣ = O

 m∑
j=1

d∑
i=1

b ji

 .
We first remark that

E
[
un,3(ϕ, x̃)

]
=

∫
[0,1]dm

r(m)(ϕ, t̃) f̃ (ũ)K̃Λ̄n,3(x̃)(ũ)dũ

= E
[
R(ϕ, θx̃)

]
,

where θx̃ = (θx1 , . . . , θxm) ∈ [0, 1]dm. Following the same reasoning as the proof of Theorem 4.6, a
second-order Taylor expansion around θx̃ = x̃ gives us:

E
[
R(ϕ, θx̃)

]
= R(ϕ, x̃) +

m∑
i=1

d∑
`=1

∂R(ϕ, x̃)
∂xi`

E(θxi` − xi`) +
1
2

m∑
i=1

d∑
`=1

∂2R(ϕ, x̃)
∂x2

i`

E(θxi` − xi`)
2

+

m∑
i, j=1,i, j

d∑
`,r=1,`,r

∂2R(ϕ, x̃)
∂xi`∂x jr

E
{
(θxi` − xi`)(θx jr − x jr )

}
,

for some x̃ joining θx̃ and x̃. Taking into account condition (C.2) and Lemma A.9 implies that

sup
x̃∈Sm

X

∣∣∣E {
un,3(ϕ, x̃)

}
− R(ϕ, x̃)

∣∣∣ = O

 m∑
j=1

d∑
i=1

b ji

 . (A.89)

Taking ϕ ≡ 1 in the above equation gives us

sup
x̃∈Sm

X

∣∣∣E {
un,3(1, x̃)

}
− f̃ (x̃)

∣∣∣ = O

 m∑
j=1

d∑
i=1

b ji

 . (A.90)

Combining these two results leads to

sup
x̃∈Sm

X

∣∣∣E (
un,3(ϕ, x̃)

)
− r(m)(ϕ, x̃)E

(
un,3(1, x̃)

)∣∣∣ = O

 m∑
j=1

d∑
i=1

b ji

 , (A.91)

and if we suppose that inf
x̃∈Sm

X

f̃ (x̃) > 0, we can infer that

sup
x̃∈Sm

X

∣∣∣∣̂E [̂
r(m)

n,3 (ϕ, x̃; Λ̄n,3(x̃))
]
− r(m)(ϕ, x̃)

∣∣∣∣ = O

 m∑
j=1

d∑
i=1

b ji

 .
Hence, the proof is complete. �
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Proof of Theorem 5.5. Using the notation established in the proof of Theorem 5.1, and employing a
reasoning akin to that of [79], we proceed to redefine ωn,3 and Nn,

ωn,3 := n
1+ε
2+γ and Nn := n1+ε

 m∏
j=1

 d∏
i=1

b jiη ji



− 1

2
 m∑

j=1

d∑
i=1

1
b2

ji

 ,
for an arbitrarily small ε. In order to prove Theorem 5.5, we need to demonstrate that

sup
x̃∈Sm

X

∣∣∣un,3(ϕ, x̃) − E
{
un,3(ϕ, x̃)

}∣∣∣ = O


√√√√√√√√√ (log n/n)

m∏
j=1

 d∏
i=1

b jiη ji




a.s. (A.92)

Similar to the proof of Theorem 5.1, for the reminder part, (A.85) and (A.86) give us∣∣∣E[u(R)
n,3(ϕ, x̃)]

∣∣∣ ≤ ω−(1+γ)
n,3 C1 = n−(1+ε)

( 1+γ
2+γ

)
C1 ≤ O(φn). (A.93)

Moreover, by (C.3) and Markov’s inequality, we infer readily that
∞∑

n=1

P
(
|ϕ(Ỹn)| > ωn,3

)
<

∞∑
n=1

E(|ϕ(Ỹn)|2+γ)

ω
2+γ
n,3

= E(|ϕ(Ỹn)|2+γ)
∞∑

n=1

1
n1+ε

< ∞.

Using the Borel-Cantelli lemma for a sufficiently large n, this gives us |ϕ(Ỹn)| ≤ ωn,3 with probability 1.
This implies that

∣∣∣ϕ(Ỹi)
∣∣∣ ≤ ωn,3 for any i ≤ n with probability 1 for a sufficiently large n. It follows that

u(R)
n,3(ϕ, x̃) = 0 with probability 1, that is,∣∣∣∣u(R)

n,3(ϕ, x̃) − E
[
u(R)

n,3(ϕ, x̃)
]∣∣∣∣ = O(φn) a.s.,

uniformly on x̃ ∈ Sm
X. Next, observe that

ωn,3N−m
n

m∏
j=1


 d∏

i=1

b jiη ji

−
1
2

 m∑

j=1

d∑
i=1

1
b2

ji

 = n−m(1+ε)
( 1+γ

2+γ

)
≤ O (φn) .

Hence, we infer that

sup
x̃∈Sm

X

∣∣∣E[u(T )
n,3 (ϕ, x̃`(x̃))] − E[u(T )

n,3 (ϕ, x̃)]
∣∣∣ = O

ωn,3N−m
n

m∏
j=1


 d∏

i=1

b jiη ji

−
1
2

 m∑

j=1

d∑
i=1

1
b2

ji


 = O(φn).

Then, (A.75) and (A.83) hold for a sufficiently large n. In addition, (C.4’) implies that

m∏
j=1


 d∏

i=1

b jiη ji

−
1
2

 m∑

j=1

d∑
i=1

1
b2

ji

 = O


n

1
1−κ



 m∏
j=1


 d∏

i=1

b jiη ji

−
1
2


κ
2

log(n)



1
1−κ


≤ O

(
n

1
1−κ

)
,
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where the last inequality holds because

 m∏
j=1


 d∏

i=1

b jiη ji

−
1
2


κ
2

/ log(n) is bounded. Then, picking

K = 2
√

(d + 1)(1 + ε) + d/(1 − κ),

yields Nd
n n−K2/4 = O

{
n−(1+ε)

}
, so that

∞∑
n=1

P

sup
x̃∈Sm

X

∣∣∣∣u(T )
n,3 (ϕ, x̃) − E

(
u(T )

n,3 (ϕ, x̃)
)∣∣∣∣ > ερφn

 ≤ ∞∑
n=1

O
(

1
n1+ε

)
< ∞.

Therefore, by the Borel-Cantelli lemma, we obtain

sup
x̃∈Sm

X

∣∣∣∣u(T )
n,3 (ϕ, x̃) − E

(
u(T )

n,3 (ϕ, x̃)
)∣∣∣∣ = O (φn) a.s.

Hence, the proof is complete. �

Proof of Theorem 5.6. The proof of Theorem 5.6 is done in the same fashion as the proof of
Theorem 5.2, combining (A.2) with the results of Theorem 5.5. �

Proof of Theorem 5.7. The proof of Theorem 5.7 is the same as the proof of Theorem 5.3. �

B. Appendix-2

This appendix contains supplementary information that is an essential part of providing a more
comprehensive understanding of the paper.

Lemma B.1 (Lemma 2.2.9, [143]). Let X1, . . . , Xn be independent random variables with bounded
ranges [−M,M] and zero means. Then,

P


∣∣∣∣∣∣∣

n∑
i=1

Xi

∣∣∣∣∣∣∣ > t

 ≤ 2 exp
{
−

t2

2(v + Mt/3)

}
,

for all t and v ≥ Var

 n∑
i=1

Xi

.
Lemma B.2 (Theorem A. page 201, [129]). Let f be a symmetric function taking its variables from
Sd,1 satisfying ‖ f ‖∞ ≤ c,

E f (X1, . . . , Xm) = θ,

and
σ2 = Var ( f (X1, . . . , Xm)) ,

then for t > 0 and n ≥ m, we have:

P
{
|u(m)

n,` ( f ) − θ| ≥ t
}
≤ exp

− [n/m]t2

2σ2 − 2
3ct

 .
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Lemma B.3 (Proposition.1, [5]). If G : S m → R is a measurable symmetric function with ‖G‖∞ = b,
then

P

n1/2

∣∣∣∣∣∣∣
m∑

j=2

(
m
j

)
u( j)

n

(
π j,mG

)∣∣∣∣∣∣∣ > t

 6 2 exp
(
−

t(n − 1)1/2

2m+2mm+1b

)
.

Lemma B.4 (Lemma 1, [117]). We have, as b→ 0 and uniformly for x ∈ Sd,1,

0 < Ab(x) ≤
b(d+1)/2(1/b + d)d+1/2

(4π)d/2

√√
(1 − ‖x‖1)

d∏
i=1

xi

(1 + O(b)).

Furthermore, for any subset ∅ , J ⊆ [d], and any κ ∈ (0,∞)d,

Ab(x) =



b̆−d/2ψ(x) (1 + Os(b)) ,
if xi/b→ ∞, ∀i ∈ [d] and (1 − ‖x‖1) /b→ ∞,

b−(d+|J|)/2ψJ (x)
∏
i∈J

Γ (2κi + 1)
22κi+1Γ2 (κi + 1)

·
(
1 + Oκ,x(b)

)
,

if xi/b→ κi, ∀i ∈ J and xi/b→ ∞, ∀i ∈ [d]\J , and (1 − ‖x‖1) /b→ ∞,

where ψ(·) and ψJ (·) are defined for every subset of indices J ⊆ [d], by

ψ(x) := ψ∅(x) and ψJ (x) :=

(4π)d−|J| · (1 − ‖x‖1)
∏

i∈[d]\J

xi


−1/2

. (B.1)

Lemma B.5 (Lemma 2, [117]). If α1, . . . , αd, β ≥ 2, then

sup
x∈Sd

Kα,β(x) ≤

√
‖α‖1 + β − 1

(β − 1)
∏

i∈[d] (αi − 1)
(‖α‖1 + β − d − 1)d .

Lemma B.6 (Lemma 3, [117]). If α1, . . . , αd, β ≥ 2, then for all x ∈ Int
(
Sd,1

)
,∣∣∣∣∣∣ ∂∂α j

Kα,β(x)

∣∣∣∣∣∣ ≤ {∣∣∣log (‖α‖1 + β)
∣∣∣ +

∣∣∣∣log
(
α j

)∣∣∣∣ +
∣∣∣log x j

∣∣∣} · √ ‖α‖1 + β − 1
(β − 1)

∏d
i=1 (αi − 1)

(‖α‖1 + β − d − 1)d ,

∣∣∣∣∣ ∂∂βKα,β(x)
∣∣∣∣∣ ≤ {∣∣∣log (‖α‖1 + β)

∣∣∣ + | log(β)| +
∣∣∣log (1 − ‖x‖1)

∣∣∣} · √ ‖α‖1 + β − 1
(β − 1)

∏d
i=1 (αi − 1)

(‖α‖1 + β − d − 1)d .

Lemma B.7 (Lemma 4, [117]). If α1, . . . , αd, β, α
′
1, . . . , α

′
d, β

′ ≥ 2, and X is F distributed with a
bounded density f supported on Sd,1, then

E
[∣∣∣Kα′,β′(X) − Kα,β(X)

∣∣∣]
≤3(d + 1)‖ f ‖∞

√
‖α ∨ α′‖1 + (β ∨ β′) − 1

((β ∧ β′) − 1)
∏

i∈[d]

((
αi ∧ α

′
i

)
− 1

) · (‖α ∨ α′‖1 +
(
β ∨ β′

)
− d − 1

)d
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· log
(
‖α ∨ α′‖1 +

(
β ∨ β′

))
·
∥∥∥(α′, β′) − (α, β)

∥∥∥
∞
,

where α ∨ α′ :=
(
max

{
αi, α

′
i

})
i∈[d]

, β ∨ β′ := max {β, β′}, and β ∧ β′ := min {β, β′}. Furthermore, let

Sd,1(δ) :=
{
x ∈ Sd,1 : 1 − ‖x‖1 ≥ δ and xi ≥ δ∀i ∈ [d]

}
, δ > 0.

Then, for 0 < δ ≤ e−1, we have

max
x∈Sd,1(δ)

∣∣∣Kα′,β′(x) − Kα,β(x)
∣∣∣

≤3(d + 1)‖ f ‖∞| log δ| ·

√
‖α ∨ α′‖1 + (β ∨ β′) − 1

((β ∧ β′) − 1)
∏

i∈[d]

(
αi ∧ α

′
i

)
− 1

) · (‖α ∨ α′‖1 +
(
β ∨ β′

)
− d − 1

)d

· log
(
‖α ∨ α′‖1 +

(
β ∨ β′

))
·
∥∥∥(α′, β′) − (α, β)

∥∥∥
∞
.
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