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Abstract: In this paper, the fuzzy counterparts of the collineations defined in classical projective
spaces are defined in a 3-dimensional fuzzy projective space derived from a 4-dimensional fuzzy
vector space. The properties of fuzzy projective space (λ,S) left invariant under the fuzzy collineations
are characterized depending on the membership degrees of the given fuzzy projective space and also
depending on the pointwise invariant of the lines. Moreover, some relations between membership
degrees of the fuzzy projective space are presented according to which are of the base point, base
line, and base plane invariant under a fuzzy collineation. Specifically, when all membership degrees
of (λ,S) are distinct, the base point, base line, and base plane of (λ,S) are invariant under the fuzzy
collineation f̄ . Conversely, if none of the base point, base line, or base plane remain invariant, then
the system becomes crisp in (λ,S). Additionally, some relations between the membership degrees
of the fuzzy projective space, concerning the invariance of the base point, base line, and base plane,
are presented.
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1. Introduction

The fuzzy concept was first introduced by Zadeh in 1965 [22]. In fuzzy set theory, if the
membership degree of an element x is µ(x), then the non-membership degree is 1 − µ(x), and thus, it
remains constant. This essentially means that certain elements of an object are assigned a membership
degree (a number in the unit interval [0, 1]) as an alternative to the traditional black-and-white
situation of belonging to or not belonging to. Fuzzy schemes are frameworks and techniques that
make use of fuzzy logic and systems to deal with a variety of imprecise and uncertain challenges.
Fuzzy logic, which manages imprecise or lacking data, finds use in various areas: Fuzzy rule-based
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systems, fuzzy control systems, fuzzy clustering, fuzzy decision-making, fuzzy optimization, fuzzy
set theory and topology. Numerous disciplines, including statistics, design theory, industrial control,
robotics, finance, coding theory, cryptography, network design, scheduling, communication theory, and
computer science, can use these schemes because they are flexible instruments for handling uncertainty
and complexity. For example, in fuzzy rule-based systems, [7, 8] papers explore advanced methods
for synchronizing and controlling chaotic dynamical systems. They introduces a Takagi-Sugeno (T-
S) fuzzy sliding mode control (TSFSMC) method to address input saturation and suppress undesired
behaviors in fractional-order systems and also presents a T-S fuzzy model-free state feedback (MFSF)
technique for stabilizing complex systems amid uncertainties and disturbances. Both approaches
highlight the effectiveness of fuzzy logic in managing complex dynamical systems with improved
performance and minimal chattering. Thanks to the classical link between geometry and statistics,
Akca et al. define the fuzzy counterpart of a spread in fuzzy projective spaces in their paper [3], and
they use this definition to address a more complex test group topic in statistics. Using combinatorial
designs, spreads can express the required arrangements for addressing the problem, allowing for the
shift from spreads to the Kirkman problem. Spreads essentially provide a structure for grouping
and dividing sets so that every pair of components meet precisely once, satisfying the Kirkman
problem’s constraints. Thus, spreads are used to give systematic solutions to the combinatorial
limitations of the Kirkman issue. It is possible to solve Kirkman’s well-known problem using lines
of PG(3, 2) [9]. Certain rules for dealing with this alternative approach have been established (see,
for example, [22]), and the theory has been applied in many areas. Many mathematical theories have
so-called fuzzy counterparts.

In fuzzy set theory, which is another subfield of fuzzy schemes, Azriel Rosenfeld published the
first article on fuzzy groups in 1971 [21]. Katsaras and Liu proposed fuzzy vector spaces in 1977 [15].
Let V be any vector space over K with dimension (n + 1). The set of all V subspaces that are
different from the trivial subspaces 0 and V is then PG(n,K), the n-dimensional projective space
over K. The terms “points of PG(n,K)” refer to the 1-dimensional subspaces, “projective lines” to
the 2-dimensional subspaces, and “projective planes” to the 3-dimensional subspaces. The concept
of homogeneous coordinates for projective spaces follows from this: Any nonzero scalar multiple of
the nonzero vector (x1, x2, x3, x4) that we use to represent a projective point is understood to represent
the same projective point (the formalities concern vector equivalency classes). It is evident that the
dimension decreases by one unit while moving from a vector space to the corresponding projective
space. Thus, an n−dimensional projective space PG(n,K) is generated from a (n + 1)−dimensional
vector space V [13]. With a finite set and a well-defined representation now established, we can apply
standard counting techniques to analyze and determine various properties of our space. There are
q4 − 1 nonzero vectors in the vector space, and each nonzero scalar multiple of a given nonzero vector
corresponds to the same projective point. Therefore, the total number of points in the projective space
PG(3, q) can be calculated as (q4−1)

(q−1) which simplifies to q3+q2+q+1. Every line has q+1 points, as may
be seen by counting the number of 1-dimensional subspaces that make up a 2-dimensional subspace.
Examine now the case in which q = 2. In this case, there are 15 points in the finite projective space
PG(3, 2), and there are 3 points on each line. In [16], some characterizations of fuzzy vector lines, fuzzy
vector planes, and fuzzy n-dimensional vector subspaces for n > 2 were given. In a projective plane,
about the fuzzy projective points and fuzzy projective lines, some theorems were introduced [16].
In 1999, Kuijken et. al. derived a fuzzy group from such a fuzzy projective geometry, thereby
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establishing a relationship between fuzzy vector spaces and fuzzy groups through the use of these
fuzzy projective geometries [17]. As a result of studies [16, 17], every fuzzy vector space generates a
fuzzy projective space, and every fuzzy projective space generates a fuzzy group. The classifications
of fuzzy vector planes, fuzzy projective lines, fuzzy lines, and fuzzy planes were introduced in a 3-
dimensional fuzzy projective space derived from a 4-dimensional fuzzy vector space [5, 12].

Abdulhalikov introduced the fuzzy correspondings of vector space maps in 1996 [1]. After that
in 1998, Abdulhalikov and Kim defined and investigated the properties of the concept of a fuzzy
subspace of a space of fuzzy linear maps. For the finite-dimensional case, the fuzzy basis of a fuzzy
subspace of fuzzy linear maps is discovered. Under natural conditions, the fuzzy subspace of fuzzy
linear maps is isomorphic to the fuzzy subspace of dual maps [2]. Kuijken and Maldeghem described
fuzzy projective plane collinations in 2003 [20]. The research [3] presents results on the Klein
mapping’s application to projective three-space of order 4 and investigates the fuzzification of the Klein
quadric within a five-dimensional projective space [3]. In [6], the definitions of the fuzzy equivalents
of collineations defined in classical projective planes and proofs of some properties that are invariant
under the fuzzy collineations in fuzzy projective planes were introduced by Altintas and Bayar.

The reason fuzzy collineations are important is that they provide consistency in the face of
imprecision by maintaining geometric relationships such as collinearity in fuzzy projective spaces.
By taking into account fuzzy representations, they make it easier to model and analyze geometric
transformations under uncertainty. Fuzzy collineations, which control ambiguity in visual data and
spatial relationships, can improve object detection and picture analysis in computer vision. By
accounting for errors in sensor data and environmental circumstances, they serve to improve the
accuracy of navigation and manipulation tasks in robotics. Furthermore it is useful in modeling and
comprehending data that is intrinsically ambiguous or partial are fuzzy collineations in geographic
information systems (GIS) and spatial analysis. Fuzzy collineations allow practitioners to create more
flexible and resilient solutions that are better able to tackle the complexity of real-world problems.
Furthermore, fuzzy collineations bridge the gap between theory and real-world applications where
absolute precision isn’t always achievable by extending the concepts of classical geometry into
fuzzy logic. In the literature, fuzzy collineations have been explored; however, the relationships
among membership degrees and their implications for base points, base lines, and base planes have
not been examined in detail. This study addresses this gap by providing a thorough analysis of
these relationships under fuzzy collineations, offering new insights into how membership degrees
interact and influence the geometric structures within fuzzy projective spaces. By investigating these
relationships, our study contributes to a deeper understanding of the effects of fuzzy collineations on
fundamental elements of fuzzy projective spaces. The findings may have implications for the broader
application of fuzzy geometry in areas such as computer science, artificial intelligence, and theoretical
mathematics, where fuzzy logic models are increasingly utilized. Thus, our research not only extends
the theoretical framework but also potentially influences practical applications where understanding
fuzzy structures is crucial.

It is our aim to contribute to this fuzzy theory by characterizing fuzzy collineations in a 3-
dimensional fuzzy projective space derived from a 4-dimensional fuzzy vector space. Much more
can and has been done. However, we will restrict the aims of this study according to some conditions
as follows:
• To investigate the fuzzy counterparts of the basic properties provided by isomorphism in
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projective space.
• To study which one of them, the base point, base line, and base plane, invariant under the fuzzy

collineation f̄ depending on the membership degrees of the given fuzzy projective space (λ,S).
• To give the relations between the membership degrees of the fuzzy projective space (λ,S)

according to the base point, base line, and base plane remaining invariant under the fuzzy
collineation f̄ .
• To examine the properties that remain invariant under the fuzzy collineation f̄ depending on the

pointwise invariant of the lines in the fuzzy projective space (λ,S).
The paper is organized as follows: After some definitions from both the fuzzy set theory and the

fuzzy projective spaces (Section 2), in Section 3 we define the fuzzy counterparts of homomorphism
and isomorphism defined in vector spaces in fuzzy projective spaces and apply theorems about
properties of collineations in projective space to fuzzy projective space. And Section 4 contains some
proofs about fuzzy collineations according to membership degree, and also the base point, the base
line, and the base plane are invariant or not invariant under the fuzzy collineations. Section 5 contains
a few final remarks.

2. Preliminaries

In this section, some relevant definitions of fuzzy set theory, fuzzy vector space, and fuzzy
projective space are reminded. First recall that fuzzy sets were introduced by Zadeh in the
fundamental paper [22].

Definition 2.1. ( [22]) A fuzzy set λ of a set X is a function λ : X → [0, 1] : x → λ(x). The number
λ(x) is called the degree of membership of the point x in λ. The intersection λ ∧ µ of the two fuzzy sets
λ and µ on X is given by the fuzzy set λ ∧ µ : X → [0, 1] : λ(x) ∧ µ(x), where ∧ denotes the minimum
operator and also ∨ denotes the maximum operator.

Definition 2.2. [19] Consider a set X and fuzzy sets λ and µ on X. The Cartesian product λ× µ of the
two fuzzy sets is defined as follows:

µ × λ : X × X → [0, 1] ,
(x, y) → µ(x) ∧ λ(y).

Definition 2.3. [16] Let µ : V → [0, 1] be a fuzzy set on V. Then we call µ a fuzzy vector space on V
if and only if µ(a.ū + b.v̄) ≥ µ(ū) ∧ µ(v̄),∀ū, v̄ ∈ V and a, b ∈ K.

Definition 2.4. [10] An (axiomatic) projective plane P is an incidence structure (N ,D, ◦) with N a
set of points,D a set of lines, and ◦ an incidence relations, such that the following axioms are satisfied:

i) Every pair of distinct points is incident with a unique common line.
ii) Every pair of distinct lines is incident with a unique common point.
iii) P contains a set of four points with the property that no three of them are incident with a

common line.
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A closed configuration S of P is a subset ofN ∪D that is closed under taking intersection points
of any pair of lines in S and lines spanned by any pair of distinct points of S. We denote the line in P
spanned by the points p and q by 〈p, q〉.

Definition 2.5. [14] An (axiomatic) projective space S is an incidence structure (N ,D, ◦) with N a
set of points,D a set of lines, and ◦ an incidence relations, such that the following axioms are satisfied:

i) Every line is incident with at least two points.
ii) Every pair of distinct points is incident with a unique common line.
iii) Given distinct points p, q, r, s, t such that 〈p, q〉 = 〈p, r〉 , 〈p, s〉 = 〈p, t〉, there is a point

x ◦ 〈q, s〉 ∩ 〈r, t〉 (Pasch’s axiom).

Definition 2.6. [14] Suppose P is an n−dimensional projective space. A fuzzy set λ on the point set of
P is a fuzzy n−dimensional projective space on P if λ(p) ≥ λ(q) ∧ λ(r), for all collinear pointsp, q, r
of P. We denote as (λ,P). The projective space P is called the underlying (crisp) projective space
of (λ,P). If P is a fuzzy point, line, plane, etc., we use underlying point, underlying line, underlying
plane, etc., respectively. We will sometimes briefly write λ instead of (λ,P).

In practice, this means that in the point set of a line, all elements have the same degree of
membership, but may not be the same. Moreover, more generally speaking, this means that in any
subspace U , all points have the same degree of membership, except that they may be in subspace U

′

of U. All points have the same degree of membership, except for those that may be in a subspace U
′′

of U
′

, etc. [4].

Definition 2.7. [4] Let (λ,P) be a fuzzy projective space and let U be a subspace of P. Then (λU ,U)
is called a fuzzy subspace of (λ,P) if λU(x) ≤ λ(x) for x ∈ U, and λU(x) = 0 for x < U.

As already alluded to above, the following proposition gives the structure of a fuzzy
projective line.

Proposition 2.8. [4] Let (λ, L) be a fuzzy projective line. Then there are constants a, b ∈]0, 1], a ≤ b,
and a point z of L such that

i) λ(z) = b,
ii) λ(x) = a, for all x , z.

By the previous proposition, every fuzzy projective line admitting points with different
membership degrees contains a unique point with a maximal membership degree. We will refer to
such a point as the base point of the fuzzy line. More generally, the structure of a fuzzy projective
space looks as follows [16].

Definition 2.9. [4] Let (λ,P) be a fuzzy projective space of dimension n. Then there are constants
ai ∈]0, 1], i = 0, 1, ..., n, with ai ≤ ai+1, and a chain of subspaces (Ui)0≤i≤n with Ui ≤ Ui+1 and
dimUi = i, such that

λ : P → [0, 1] ,
x → a0 f or x ∈ U0,

x → ai f or x ∈ Ui \ Ui−1, i = 1, 2, ..., n.
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Definition 2.10. Consider the projective space P = (N ,D, ◦). Suppose p ∈ N and α ∈ [0, 1]. The
fuzzy point (p, α) is the following fuzzy set on the point set N of P:

(p, α) : N → [0, 1] ,
p → α,

x → 0 i f x ∈ N \ {p} .

The point p is called the base point of the fuzzy point (p, α).
A fuzzy line (L, β) with base line L is defined in a similar way.
Two fuzzy lines (L, α) and (M, β), with α∧β > 0, intersect in the unique fuzzy point (L∩M, α∧β).

Dually, the fuzzy points (p, λ) and (q, µ), with λ ∧ µ > 0, span the unique fuzzy line (〈p, q〉 , λ ∧ µ).

Definition 2.11. [18] Suppose (λ,P) is a projective space (N ,D, ◦). The fuzzy set λ on N ∪ D is a
fuzzy projective space on (λ,P) if

i) λ(L) ≥ λ(p) ∧ λ(q),∀p, q : 〈p, q〉 = L and
ii) λ(p) ≥ λ(L) ∧ λ(M),∀L,M : L ∩ M = p.

Definition 2.12. [1] Let E and L be vector spaces over the same field F, and let µ : E → [0, 1],
λ : L → [0, 1] be fuzzy subspaces. If λ(ϕ(x)) ≥ µ(x) for all x ∈ E, we say that a linear map ϕ : E → L
is fuzzy linear from the fuzzy subspace µ to fuzzy subspace λ. The space of fuzzy linear maps from µ to
λ is denoted by FHom(µ, λ).

Definition 2.13. [1] Let (E1, µ1) and (E2, µ2) are two fuzzy vector spaces. If there exists an
isomorphism ϕ : E1 → E2 with the property µ1(x) = µ2(ϕ(x)) for all x ∈ E1, µ1 : E1 → [0, 1]
and µ2 : E2 → [0, 1] are isomorphic.

3. Collineations of fuzzy projective spaces

In the present section, collineations of fuzzy projective spaces were investigated. Compared to
isomorphisms, collineations of projective space have the advantages and properties. In projective
spaces, a collineation is a point-to-point and line-to-line transformation that preserves the relation of
incidence. Thus, it transforms ranges into ranges, pencils into pencils, quadrangles into quadrangles,
and so on. Clearly, it is a self-dual concept, the inverse of a collineation, and the product of
two collineations is again a collineation [11]. Our aim is now to define the fuzzy counterparts of
homomorphism and isomorphism defined in vector spaces in fuzzy projective spaces and to apply
theorems about properties of collineations in projective space to fuzzy projective space. Furthermore,
it will be shown that each collineation can be uniquely extended to a fuzzy projective collineation.

The definitions of homomorphism, isomorphism, and collineation in projective spaces can be
adopted to fuzzy projective spaces as follows:

Definition 3.1. Let (λ,S) and (µ,S′) be two fuzzy projective spaces with base spacesS, S′ respectively.
Suppose that f is a homomorphism of projective space S into projective space S′. f̄ is called as fuzzy
homomorphism from (λ,S) into (µ,S′), if f̄ (p, α) = ( f (p), β) for all (p, α) ∈ (λ,S) where λ(p) =

α, µ( f (p)) = β and α ≤ β. If f is an isomorphism of S into S′ and α = β, then f̄ is called a
fuzzy isomorphism between the fuzzy projective spaces (λ,S) and (µ,S′). Also, if S = S′, f̄ fuzzy
isomorphism is called a fuzzy collineation between projective spaces (λ,S) and (µ,S′).
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Theorem 3.2. Let f̄ : (λ,S) → (µ,S
′

) be a fuzzy isomorphism, then the followings hold: (i) For any
pair of fuzzy points (p1, α1) and (p2, α2), p1 , p2 in (λ,S),

f̄ (〈(p1, α1), (p2, α2)〉) =
〈

f̄ (p1, α1), f̄ (p2, α2)
〉
.

(ii) For any pair of fuzzy lines (L, β1) and (M, β2), L , M in the same fuzzy projective plane of (λ,S),

f̄ ((L, β1) ∩ (M, β2)) = f̄ (L, β1) ∩ f̄ (M, β2).

(iii) For any fuzzy point (p, α) and fuzzy line (L, β) in the same fuzzy projective plane of (λ,S), if p
is not on L, then the fuzzy point f̄ (p, α) is not on f̄ (L, β) in the same fuzzy projective plane of (µ,S

′

).

Proof. (i) Let f̄ be a fuzzy isomorphism between (λ,S) and (µ,S
′

). The fuzzy line spanned by the fuzzy
points (p1, α1) and (p2, α2) with distinct base points p1, p2 is 〈(p1, α1), (p2, α2)〉 = (〈p1, p2〉 , α1 ∧ α2).
Since f is an isomorphism between the base projective spaces S and S

′

, f (p1) , f (p2). So f̄ (p1, α1) ,
f̄ (p2, α2). Using the definitions of f̄ and f ,

f̄ (〈(p1, α1), (p2, α2)〉) = 〈( f (p1), α1) , ( f (p2), α2)〉 =
〈

f̄ (p1, α1), f̄ (p2, α2)
〉
,

is obtained.
(ii) Let f̄ be a fuzzy isomorphism between (λ,S) and (µ,S

′

). The intersection point of the fuzzy
lines (L, β1) and (M, β2) with distinct base lines L, M is (L, β1)∩ (M, β2) = (L∩M, β1 ∧ β2). Since f is
an isomorphism between the projective spaces S and S

′

, f (L) , f (M). So f̄ (L, β1) , f̄ (M, β2). Using
the definition of f̄ and f

f̄ ((L, β1) ∩ (M, β2)) = ( f (L ∩ M), β1 ∧ β2) = (( f (L), β1) ∩ ( f (M), β2)) = f̄ (L, β1) ∩ f̄ (M, β2).

(iii) Suppose that the fuzzy point f̄ ((p, α)) is on the fuzzy line f̄ ((L, β)) when the base point p is not
on the base line L. Then the fuzzy point (p, α) is not on the fuzzy line (L, β). From definitions of f and
f̄ , f̄ ((p, α)) = ( f (p), α) and f̄ ((L, β)) = ( f (L), β). Since the fuzzy point f̄ ((p, α)) is on the fuzzy line
f̄ ((L, β)) and f is isomorphism, f (p)◦ f (L) and p◦L are obtained. This contradicts the hypothesis. �

Theorem 3.3. Suppose that f̄ is a fuzzy collineation of (λ,S) defined by the collineation f of the base
space S. If two distinct points p1 and p2 in the base space S are invariant under the collineation f of
S, the fuzzy line spanned by fuzzy points (p1, α1) and (p2, α2) is invariant under the fuzzy collineation
f̄ of (λ,S).

Proof. Let the points p1 and p2 in S of (p1, α1) and (p2, α2) in (λ,S) be invariant under the collineation
f of S. Then, by the definition of fuzzy collineation f̄ in (λ,S), f̄ (p1, α1) = ( f (p1), α1) = (p1, α1) and
f̄ (p2, α2) = ( f (p2), α2) = (p2, α2).

For any pair ((p1, α1), (p2, α2)) of fuzzy points, p1 , p2, the fuzzy line (〈p1, p2〉 , α1 ∧α2) spanned
by them, also belongs to the fuzzy projective space (λ,S). By using the definition of f̄ of (λ,S) and
the remaining invariant of the points p1 and p2 under the collineation f in S, the image of the fuzzy
line (〈(p1, α1), (p2, α2)〉) under fuzzy collineation f̄ is

( f (〈p1, p2〉), α1 ∧ α2) = (〈 f (p1), f (p2)〉 , α1 ∧ α2) = (〈p1, p2〉 , α1 ∧ α2).

Hence, the fuzzy line (〈p1, p2〉 , α1 ∧ α2) is invariant under the fuzzy collineation f̄ . �
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3.1. Some relationships of collineations of fuzzy projective spaces with membership degrees

In this subsection, after giving general theorems about collineations, their relations with
membership degrees are analyzed.

From now on, we considered the fuzzy projective space (λ,S) with the base plane P and λ in the
following form:

λ : S → [0, 1],
q → a0,

p → a1, p ∈ L \ {q} ,
p → a2, p ∈ P \ {L} ,
p → a3, p ∈ S \ P,

where L is the base line of S containing q and P is the base projective plane containing L with a0 ≥

a1 ≥ a2 ≥ a3, ai ∈ [0, 1], i = 0, 1, 2, 3 [18].
The projective space S is called the base projective space of (λ,S). If S is a fuzzy point, a fuzzy

line, a fuzzy plane, ..., we use the base point, the base line, the base plane, ..., respectively. The invariant
properties under any fuzzy collineation in (λ,S) depending on the base point, the base line, the base
plane, and the membership degrees of (λ,S) are investigated in detail with the following theorems.

Theorem 3.4. Suppose that f̄ is a fuzzy collineation of (λ,S) defined by the collineation f of the base
space S.

(i) If a0 , a1 , a2 , a3, then then the fuzzy collineation f̄ leaves invariant the base point, the base
line, and the base plane of (λ,S).

(ii) If a1 , a2, then the base line is invariant.
(iii) If a2 , a3, then the base plane is invariant.
(iv) If a0 , a1 = a2, a2 , a3, then the base point is invariant, and the base line turns into a line

passing through the base point under the fuzzy collineation f̄ .

Proof. (i) The membership degrees of the points in the base plane can not be a3, so a0 , a3, a1 , a3,
a2 , a3. The membership degrees of the image of points on the base plane can be a0, a1, a2. Since
a2 , a3, the membership degree of the image point can not be a3. In this case, the image of the point
is in the base plane. The plane spanned by these points again becomes the base plane. These points’
images are again the points of the base plane. So the base plane is invariant.

(ii) Since f̄ is fuzzy isomorphism in (λ,S), f̄ (q, a0) ◦ f̄ (L, a1). Hence, the base point (q, a0) is on
the base line ( f (L), a1). The points on the base line have a1 and a2 membership degrees. The base line
consists of points with a1 and a2 membership degrees. Under the fuzzy collineation f̄ , the images of
these points have a0 and a1 membership degrees. Since a1 , a2 , a3, the image points must be on the
base line. So the base line f (L) = 〈q, f (p)〉 is invariant.

(iii) The points on the base plane have a1, a2, or a3 membership degrees. From the definition of
f̄ , the image points of these points have the same membership degrees under the fuzzy collineation f̄ .
Since a2 , a3, these points can not turn into points not on the base plane. Therefore, the base plane is
invariant under the fuzzy collineation f̄ .

(iv) Since a0 , a1 and also from i), the base point is invariant. Since a1 = a2, the point on the base
line other than the base point turns into a point in the base plane and does not turn into a point out of
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the base plane, because of a2 , a3. So the base line turns into a line through the base point in the base
projective plane. �

The following theorem states the properties of f̄ fuzzy collineation while the base point
is invariant.

Theorem 3.5. Suppose that f̄ is a fuzzy collineation of (λ,S) defined by the collineation f of the base
space S and the base point (q, a0) is invariant under the fuzzy collineation f̄ .

(i) If the base line (L, a1) is invariant under f̄ , (λ,S) has at most four membership degrees.
(ii) If the base line turns into a line in the base plane, there are at most three membership degrees

in (λ,S).
(iii) If the base line turns into a line not in the base plane, there are at most two membership

degrees in (λ,S).

Proof. (i) Let the base point (q, a0) and the base line (L, a1) be invariant under the fuzzy collineation
f̄ . Then f̄ (q, a0) = (q, a0). The image point f̄ (p, a1) of the fuzzy point (p, a1) on the base line (L, a1) is
( f (p), a1) and on the base line L.

If a0 , a1 , a2 , a3 are taken, there are at most four membership degrees in (λ,S).
(ii) Let the base point (q, a0) be invariant, and the base line (L, a1) turns into a line in the base

plane under the fuzzy collineation f̄ . Since the base line turns into a line in the base projective
plane and the membership degrees of the points on the base line are a0 or a1, then a1 must be equal
to a2. From the relationship between membership degrees a0 ≥ a1 ≥ a2 ≥ a3, there are at most three
membership degrees.

(iii) Let the base point (q, a0) be invariant, and the base line (L, a1) turns into a line not in the base
plane under the fuzzy collineation f̄ . The image point f̄ (p, a1) of the fuzzy point (p, a1) on the base
line (L, a1) has a0 or a1 fuzzy membership degree. Since the image line f̄ (L, a1) of the base line (L, a1)
is not in the base plane, a1 must be equal to a3. From the relationship between membership degrees
a0 ≥ a1 ≥ a2 ≥ a3, a1 = a2 = a3. Therefore, there are at most two membership degrees. �

As an numerical example, we consider the projective space PG(3, 2) with 15 points. Let us take the
projective points of PG(3, 2) and represent them as: P1 = (0, 0, 0, 1), P2 = (0, 0, 1, 0), P3 = (0, 0, 1, 1),
P4 = (0, 1, 0, 0), P5 = (0, 1, 0, 1), P6 = (0, 1, 1, 0), P7 = (0, 1, 1, 1), P8 = (1, 0, 0, 0), P9 = (1, 0, 0, 1),
P10 = (1, 0, 1, 0), P11 = (1, 0, 1, 1), P12 = (1, 1, 0, 0), P13 = (1, 1, 0, 1), P14 = (1, 1, 1, 0), and P15 =

(1, 1, 1, 1). If we take the base point as P1 = (0, 0, 0, 1), the base line L constructing with the fuzzy
points P1, P2, P3, and, the base plane as {P1, P2, P3, P4, P5, P6, P7}, then a chain of subspaces U0 =

{P1} ,U1 = {P1, P2, P3} ,U2 = {P1, P2, P3, P4, P5, P6, P7} ,U3 = {P8, P9, P10, P11, P12, P13, P14, P15} are
obtained. From Definition 2.9 and Theorem 3.5, the base point (P1, a0) is invariant under the fuzzy
collineation f̄ . If we apply ii) of Theorem 3.5., since the base line turns into a line in the base plane,
then the fuzzy point (P2, a1) on the base line turns into a fuzzy point with membership degree a2 not
on the base line. From the definition of fuzzy collineation, a1 must be equal to a2, and also due to the
relationship between the membership degrees a0 ≥ a1 ≥ a2 ≥ a3, there are at most three membership
degrees in (λ,S). Thus, in this situation, the membership degree of the six points {P2, P3, P4, P5, P6, P7}

on the base plane under the fuzzy collineation f̄ is equal.

Theorem 3.6. Suppose that f̄ is a fuzzy collineation of (λ,S) defined by the collineation f of the base
space S and the base point (q, a0) is invariant under the fuzzy collineation f̄ .
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(i) If the base plane turns into a plane other than itself passing through the base line, there are at
most three membership degrees in (λ,S).

(ii) If the base plane turns into a plane other than itself not containing the base line, there are at
most two membership degrees in (λ,S).

(iii) If the base plane is invariant, there are at most four membership degrees in (λ,S).

Proof. (i) Let the base point (q, a0) be invariant, and the base plane (P, a2) turns into a plane other
than itself, passing through the base line (L, a1) under the fuzzy collineation f̄ . The membership
degrees of the image points of the points in the base plane (P, a2) can be a1 or a2. Since the base
plane (P, a2) turns into a plane passing through the base line (L, a1) under the fuzzy collineation f̄ , the
membership degrees of the image points of the points not on the base line (L, a1) can be a2 or a3. So
a0 ≥ a1 ≥ a2 = a3 and there are at most three membership degrees in (λ,S).

(ii) Let the base point (q, a0) be invariant, and the base plane (P, a2) turns into a plane other than
itself, not containing the base line (L, a1) under the fuzzy collineation f̄ . So a1 must be equal to a3.
From the relationship between membership degrees a0 ≥ a1 ≥ a2 ≥ a3, a0 ≥ a1 = a2 = a3 is obtained.
So there are at most two membership degrees in (λ,S).

(iii) Let the base point (q, a0) and the base plane (P, a2) be invariant under the fuzzy collineation
f̄ . The membership degrees of the images of the points in the base plane are a0, a1, or a2. From the
relationship between membership degrees, there are at most four membership degrees in (λ,S). �

Theorem 3.7. Suppose that f̄ is a fuzzy collineation of (λ,S) defined by the collineation f of the base
space S and the base point is not invariant under the fuzzy collineation f̄ .

(i) If the base line is invariant and the base point turns into a point on the base line under the
fuzzy collineation f̄ of (λ,S), among the membership degrees ai, i = 0, 1, 2, 3, there is a relationship
a0 = a1 ≥ a2 ≥ a3.

(ii) If the base point turns into a fuzzy point not on the base line in the base plane under the fuzzy
collineation f̄ , then there are two membership degrees in (λ,S) such that a0 = a1 = a2 ≥ a3.

(iii) If the base point of (q, a0) turns into a fuzzy point not in the base plane under the collineation
f in S, then there is only one membership degree in (λ,S).

Proof. (i) Let the base point be not invariant and turns into another point on the base line (L, a1), then
f̄ (q, a0) = ( f (q), a1), f (q) , q.

Let the base line (L, a1) be invariant under the fuzzy collineation f̄ . Then the fuzzy point (q, a0)
turns into the fuzzy point (p, a1) with p ◦ L, q , p. Since f̄ is fuzzy isomorphism, a0 = a1. Hence,
there are at most three membership degrees in (λ,S).

(ii) Let the base point (q, a0) turns into a fuzzy point not on the base line (L, a1) in the base plane
under the fuzzy collineation f̄ . Since the image point of the base point has a2 membership degree,
a0 = a2 and a0 = a1 = a2 ≥ a3 are obtained. So there are at most two membership degrees in (λ,S).

(iii) Let the base point (q, a0) turns into a fuzzy point not in the base plane under the fuzzy
collineation f̄ . So, the image point of the base point has a3 membership degree, and a0 = a3 is obtained
under the fuzzy collineation f̄ . From the relationship between membership degrees, a0 = a1 = a2 = a3

is obtained; there is only one membership degree. �
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Theorem 3.8. Suppose that f̄ is a fuzzy collineation of (λ,S) defined by the collineation f of the base
space P. In this case,

(i) If M is a pointwise invariant line under the collineation f in the base projective plane P, then
the corresponding fuzzy line (M, β) is also pointwise invariant under the fuzzy collineation f̄ in (λ,S).

(ii) If two distinct lines L1 and L2 are pointwise invariant under the collineation f of the underlying
space S, then the intersection point of the fuzzy lines (L1, α1) and (L2, α2) is invariant under the fuzzy
collineation f̄ .

(iii) If two distinct lines L1 and L2, L1 , L2 are pointwise invariant lines under the collineation
f of the underlying space S, then the fuzzy plane which is spanned by 〈(L1, α1) , (L2, α2)〉 is invariant
under the fuzzy collineation f̄ .

(iv) If three distinct lines not in the same plane are pointwise invariant under the fuzzy collineation
f̄ , then f̄ is unit collineation.

Proof. (i) Let the base line M of the fuzzy line (M, β) in (λ,S) be pointwise invariant under the
collineation f of S. For every fuzzy point (p, α) on (M, β), from the definition of f̄ and being pointwise
invariant of M under collineation, f , f̄ (p, α) = ( f (p), α) = (p, α) . Hence the fuzzy line (M, β) is
pointwise invariant in (λ,S).

(ii) Let the distinct lines L1 and L2 be pointwise invariant under the collineation f of the base
space S, respectively. From (i), the fuzzy lines (L1, α1) and (L2, α2) are pointwise invariant under the
fuzzy collineation f̄ of (λ,S). Since (Li, αi) are pointwise invariant and (p, α) is on (Li, αi), i = 1, 2,
hence the intersection point of (L1, α1) and (L2, α2) is invariant.

Let the distinct lines L1 and L2 be pointwise invariant under the collineation f of the underlying
space S. It is well known that, if two distinct lines are pointwise invariant in a projective plane, all
points of the projective plane are invariant [6]. In addition, from i), the images of these lines are
pointwise invariant under the fuzzy collineation f̄ of (λ,S). Every point in the fuzzy projective plane
spanned by these fuzzy lines turns into again any point in this fuzzy projective plane, and also the fuzzy
plane, which is spanned by 〈(L1, α1) , (L2, α2)〉 is invariant under the fuzzy collineation f̄ .

Let three distinct lines not in the same plane be pointwise invariant under the fuzzy collineation
f̄ . Since all points are in the base plane under f collineation and the image of any fuzzy point (p, α) is
f̄ (p, α) = ( f (p), α), f̄ is unit collineation.

�

4. Conclusions

In this study, fuzzy collineations in 3-dimensional fuzzy projective space derived from 4-
dimensional fuzzy vector space were examined. Comparing with the well-known theorems about
isomorphisms and collineations in projective space, the fuzzy counterparts of these properties were
introduced. The properties of the fuzzy collineation f̄ depending on the pointwise invariant of any
line of (λ,S) are analyzed. It was observed that there is a close relationship between the membership
degrees and the invariance of the base point, base line, and base plane. When all membership degrees of
(λ,S) are different from each other, the base point, the base line, and the base plane are invariant under
the fuzzy collineation f̄ . If none of the base point, base line, and base plane remains invariant, then
the crisp occurs in (λ,S). Analyzing the basic properties of projective spaces under these collineations
led to several significant findings. These observations contribute to our understanding of how the
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base point, the base line, and base plane are invariant under the fuzzy collineations and also how they
change their membership degrees according to some conditions in projective spaces. Consequently, it
is thought that the results obtained in this study contribute to the literature on fuzzy theory.

The extent of this relation’s intimacy and whether it can provide more insight into the geometry
of projective planes or the triangle norms in fuzzy mathematics could be revealed by further research.
Future research could advance these findings by exploring several key areas: (1) Investigating fuzzy
collineations in higher-dimensional fuzzy projective spaces to uncover complex relationships and
invariances; (2) conducting comparative studies of different fuzzy projective spaces to identify broader
patterns and properties; (3) applying results to computational models and algorithms, especially in
fields like computer vision and artificial intelligence; and (4) extending theoretical insights to other
mathematical structures, such as fuzzy topology or fuzzy algebraic geometry, to potentially reveal new
aspects of fuzzy theory.
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