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Abstract: Quantile regression has been widely used in many fields because of its robustness and
comprehensiveness. However, it remains challenging to perform the quantile regression (QR) of
streaming data by a conventional methods, as they are all based on the assumption that the memory
can fit all the data. To address this issue, this paper proposes a Bayesian QR approach for streaming
data, in which the posterior distribution was updated by utilizing the aggregated statistics of current
and historical data. In addition, theoretical results are presented to confirm that the streaming
posterior distribution is theoretically equivalent to the orcale posterior distribution calculated using
the entire dataset together. Moreover, we provide an algorithmic procedure for the proposed method.
The algorithm shows that our proposed method only needs to store the parameters of historical
posterior distribution of streaming data. Thus, it is computationally simple and not storage-intensive.
Both simulations and real data analysis are conducted to illustrate the good performance of the
proposed method.
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1. Introduction

The term “big data” may have different meanings in different fields, so it has thus become a
dominant topic in almost all academic and application fields. In a more general sense, big data
encapsulates aspects such as quantity, diversity, speed, variability, and accuracy [1]. However, applying
statistical models and methods to big data often entails a substantial computational burden, straining
computer memory due to its large size and impacting computational efficiency, in that even seemingly
simple tasks can demand considerable computation time. In order to solve the dilemma of big data
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analysis, some researchers have proposed three methods [2]: Subsampling-based approaches [3, 4],
divide and conquer approaches [5–8], and online updating approaches [9–14]. Differing from the other
two methods, online updating approaches focus on streaming data and address statistical problems in an
updating framework without storage requirements for historical data. In the era of big data, streaming
datasets have gradually appeared in various fields, including investment analysis, medical imaging, and
computervision, making streaming data analysis increasingly useful and vital across various industries.
For instance, financial institutions track the changes of the stock market in realtime, calculate the value
at risk, and automatically rebalance the portfolio according to the stock price movements. Due to the
increasing demand for stream processing, online updating became more particularly appealing with
its ability to quickly process huge volumes of data so that organisa tions or businesses can react to
changing conditions in realtime.

In the framework for regression-type analysis, Shi et al. [11] developed online updating algorithms
for linear models and estimating equations. However, theoretical gurantees of these methods have been
established based on some strong regularity conditions. Mohamad and Bouchachia [13] proposed a
renewable estimation for the generalized linear model, which overcame the aforementioned limitations.
Lin et al. [15] introduced a general framework to execute renewable weighted sum estimation in various
online updates. Wang et al. [16] expanded the scope of online update methods by adapting to new
predictive variables midway through the data flow. Wu and Chen [17] developed an online update
method for survival analysis under the Cox proportional hazard model. Furthermore, Xue et al. [18]
proposed a online updating approach to evaluate the proportional hazard hypothesis. Balakrishnan
and Madigan [19] proposed a one-pass streaming algorithm for Bayesian regression. Based on sketch
drawing technology and random projection, Geppert et al. [20] improved the streaming algorithm for
Bayesian regression proposed in [19]. All of the above methods and algorithms are applicable in
practice. However, they mainly focus on mean regression, or are built upon likelihood framework.
Moreover, it is noteworthy that mean regression and likelihood methods still have limitations in
robustness, and are very sensitive to outliers or heavy-tailed distributions.

As a natural upgrade solution, quantile regression (QR) [21] has been used as a feasible alternative
to mean regression and has become a popular data analysis strategy. Quantile regression does not
simply focus on the average value of the distribution but considers the entire conditional distribution,
thus being more comprehensive. In addition, it is also robust to heavy-tailed distributions and outliers.
Because of these advantages, quantile regression has a wide range of applications, namely in health
research [22], longitudinal data analysis [23, 24], economics [25], and machine learning [26, 27].
However, because the datasets arrive continuously in an unbounded stream and the computer memory is
usually limited, the traditional quantile regression method cannot retain them when processing stream
data. Therefore, the traditional quantile regression strategy, which assumes that the computer memory
can adapt to all of the datasets, is no longer applicable. In addition, the estimator obtained by quantile
regression has no closed form, and the quantile regression loss function is also nondifferentiable.
This also leads to the fact that streaming data analysis methods cannot be directly applied to quantile
regression; see Chen et al. [28].

To circumvent the nondifferentiability of the QR loss function, Chen et al. [28] introduced
Horowitz’s smoothed QR, involving smoothing the indicator part of the check function through a
kernel smoothing survival function. Additionally, Chen and Zhou [29] proposed online QR strategies,
employing a smooth function to approximate the nondifferentiable check loss function. The method
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in [28] introduced a linear-type estimator for QR, and its calculation process needs to select bandwidth
parameters through data-driven criteria. Furthermore, the approach in [29] relied on the Taylor
expansion of the estimating equations, requiring the estimation of the unknown conditional density
function of the response variable. More recently, Wang et al. [30] developed a renewable QR estimation
strategy for streaming datasets, which renews the estimator with current data and summarized statistics
of historical data rather than historical raw data. In summary, the above methods have effectively
solved the dilemma of quantile regression in the case of streaming data, but these methods focus on the
solution of frequentist rather than Bayesian. In the field of Bayesian streaming data, current research
work is mainly focused on Bayesian flow networks (BFN) [48, 49]. Rezende and Mohamed [48]
introduced the concept of normalizing flows, which is a key component of Bayesian flow networks.
Müller and Quintana [49] provided a comprehensive introduction to the application of Bayesian
nonparametric models in data analysis and inference, including streaming data. BFN is a generative
model that integrates the advantages of Bayesian inference and deep learning. It has received extensive
attention in recent years in areas such as data generation, image generation, and text generation.
Bayesian flow networks particularly excel in handling discrete data generation problems, as they can
generate continuous and differentiable samples, providing a new solution for discrete data generation.
BFN combines the streaming models of deep learning with Bayesian inference, enabling the model
to adapt to both continuous and discrete data, and enhancing the interpretability and flexibility of
generative models. In tasks such as image generation and text generation, BFN has achieved good
experimental results, demonstrating its tremendous potential in practical applications. Therefore,
it is interesting to explore a more convenient Bayesian quantile regression strategy for streaming
datasets. To the best of our knowledge, there is little related work on Bayesian quantile regression
with streaming data.

In this paper, in contrast to the above methods, we develop a new idea for the analysis of
streaming data using the Bayesian quantile model, which renews the posterior distribution with current
data and summary statistics of historical data, instead of historical raw data. Specifically, we only
need to retain the posterior distribution parameters of previous data and a likehood function for
current data stream, and the historical data can be completely discarded. The Bayesian streaming
quantile regression (BSQR) model is formulated for streaming data through a conjugate normal-
inverse-gamma (NIG) prior distribution. Leveraging the posterior distribution of historical data as
the prior for current data stream, a posterior distribution is established without any loss of information.
Theoretically, we prove that the Bayesian streaming quantile regression estimator is equivalent to the
global oracle estimator calculated based on the entire data. Numerical experiments on both synthetic
and real data are also included to validate the theoretical results and illustrate the good performance of
our new method.

The rest of the paper is organized as follows. Section 2 presents the introduction of BQR method.
Section 3 gives the detailed expressions of NIG prior and posterior distributions for BQR using an
informative g-prior. The BSQR method is developed in Section 4. Sections 5 and 6 validate the
obtained theoretical results and illustrate the good performance of the proposed BSQR approach on
synthetic and real data. Section 7 contains the discussion and conclusions. In addition, the proof of
Theorem 1 is provided in the appendix.
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2. Bayesian quantile regression model

2.1. Quantile regression based on AL distribution

We consider the following linear quantile regression model

yi = xT
i β + ei, (2.1)

where yi is a continuous response variable and xi is an k×1 vector of predictors for the i-th observation,
i = 1, · · · , n. β is an k × 1 vector of unknown parameter of interest, ei is the error term, and its
distribution is assumed to have zero τ-th quantile.

Now, consider a linear conditional quantile function as follows:

Qτ(yi|xi) = xT
i βτ, (2.2)

where Qτ(·) = in f {y : Fyi(y|xi) ≥ τ} denotes the inverse of the cumulative distribution function of
the response conditional on xi. In τ-th quantile regression, the estimation for β can be obtained by
minimizing

min
β∈Rp

n∑
i=1

ρτ(yi − xT
i β), (2.3)

where ρτ(u) = u(τ − I(u ≤ 0)) denotes the check function.
Koenker and Machado [50] showed that ρτ(u) is exactly matched to the asymmetric Laplace

distribution (ALD), whose density function is given by

f (y|µ, σ, τ) =
τ(1 − τ)

σ
exp{−

1
σ
ρτ(y − µ)}, (2.4)

where µ is the location parameter and σ is the scale parameter.
Assume that errors {ei}

n
i=1 are i.i.d ALD(0, σ, τ), the likehood of yi is

f (yi|β, σ, τ) =
τ(1 − τ)

σ
exp{−

1
σ
ρτ(yi − xT

i β)}. (2.5)

According to Koenker and Machado [50], minimizing (2.3) is equivalent to maximizing the above
likelihood function (2.5). Yu and Moyeed [51] proposed a Bayesian method for QR by assuming an
ALD on the response as a working likelihood. Over the past few years, this working likelihood function
has been used in Geraci and Geraci and Bottai [52, 53]; among others. So, it is a natural choice to
use the ALD error distribution in Bayesian quantile models; “we believe that the ALD approach is a
valuable and relatively simple alternative to these other methods that does not need complex choices
of prior distributions and prior parameters”; see Section 3 of Benoit et al. [54].

However, direct use of the likelihood function is rather inconvenient for Bayesian quantile
regression. Specifically, the conditional distribution for the regression coefficients is not analytically
tractable due to the complexity of the above likelihood function. By Chu et al. [31] and Lum et al. [32],
the ei can be denoted as a location-scale mixture of normals as follows:

ei =
1 − 2τ
τ(1 − τ)

zi + ui

√
2

τ(1 − τ)
σzi, (2.6)
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where, zi ∼ Exp(σ−1) , ui ∼ N(0, 1), and zi and ui are independent. Let vi = 1
τ(1−τ)zi, then

(ei| vi, σ) ∼ N((1 − 2τ)vi, 2σvi), (vi|σ) ∼ Exp(σ−1τ(1 − τ)). (2.7)

Then, we have
(Yτ| β, σ,Σ, X) ∼ Nn(Xβ + (1 − 2τ)V, 2σΣ), (2.8)

where, Y = {y1, y2, · · · , yn}
T is an n × 1 response vector of yi, X is an n × k predictor matrix with i-th

row xT
i , V denotes an n × 1 vector of vi, and Σ is the diagonal matrix of vi.

Subsequently, let Y∗τ = 1
√

2
(Y − (1 − 2τ) V) and X∗ = 1

√
2
X , we have

(Y∗τ
∣∣∣ X∗, β, σ,Σ) ∼ Nn (X∗β, σΣ),

and
f (Y∗τ |X

∗, β, σ,Σ) = (2πσ)−
n
2 |Σ|−

1
2 exp{−

1
2σ

[Y∗τ − X∗β]T Σ−1[Y∗τ − X∗β]}. (2.9)

2.2. Likelihood function and prior distribution

According to Chu et al. [31], a NIG distribution is given by the following definition.

Definition 1. Let β be k-dimensional vector and σ > 0, if the joint distribution of (β, σ) has the
following form

f (β, σ) = Cσ−(a+ k
2 +1) exp{−

1
σ

[b +
1
2

(β − µ)T Λ(β − µ)]}, (2.10)

where C is a proportionality constant, then we have that (β, σ) follows the k-dimensional distribution
of NIGk(µ,Λ, a, b), that is, f (σ)∼IG (a, b), f (β|σ) ∼ Nk

(
µ, σΛ−1

)
.

Let β̂τ = (X∗T Σ−1X∗)−1X∗Σ−1Y∗τ , the likelihood (2.8) can be reformulated as:

f (Y∗τ |X
∗, β, σ,V,Σ) ∝ σ−

n−k
2 exp{−

1
2σ

[Y∗τ − X∗β̂τ]T Σ−1[Y∗τ − X∗β̂τ]}

× σ−
k
2 exp{−

1
2σ

(β − β̂τ)T Λ(β − β̂τ)}

= (σ)−(a+ k
2 +1)exp{−

1
σ

[bτ +
1
2

(β − µτ)T Λ(β − µτ)]},

(2.11)

where µτ = β̂τ, Λ = X∗T Σ−1X∗, a = n−k−2
2 and bτ = 1

2 [Y∗ − X∗β̂τ]
T
Σ−1[Y∗ − X∗β̂τ].

According to Definition 1, the likelihood function (2.8) can be represented as the NIG(µτ,Λ, a, bτ)
distribution,

f (Y∗τ
∣∣∣ X∗, β, σ,Σ) ∝ NIG(µτ,Λ, a, bτ). (2.12)

Now, for the sake of computational convenience, a conjugate NIG prior distribution is needed to
construct our Bayesian model of streaming data. According to the study of Chu et al. [31], a conjugate
prior for (β, σ) with a modification of Zellner’s informative g-prior in quantile regression could be
expressed as:

(β|σ, X∗,Σ) ∝ Nk(0k, gσ(X∗T Σ−1X∗)−1), (2.13)

(σ) ∝ σ−1. (2.14)
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Based on the above prior distributions of β andσ, a joint g-NIG prior distribution can be obtained by

π(β, σ| X∗,Σ) ∝ σ−( k
2 +1) exp{−

1
σ

[
1
2
βT X∗T Σ−1X∗

g
β]} ∝ NIGk(µ0,Λg0 , a0, b0), (2.15)

where µ0 = 0k, Λg0 = X∗T Σ−1X∗
g , a0 = 0, b0 = 0, g > 0 is a known parameter and can be set freely.

By (2.11) and (2.14), we have the following hierarchical model.

y | β, σ ∼ NIG(µτ,Λ, a, bτ), (2.16)

β | σ, X∗,Σ ∼ Nk(0k, gσ(X∗T Σ−1X∗)−1), (2.17)

vi | σ ∼ Exp(σ−1τ(1 − τ)), (2.18)

σ ∼ σ−1. (2.19)

2.3. The full conditional distributions and the Gibbs sampler

Given the informative g-prior distribution, the model becomes computationally easier to solve since
the full conditional distributions now are

π(β, σ,V |Y∗τ , X
∗) ∝ f (Y∗τ

∣∣∣ X∗, β, σ,V) f (β| X∗, σ,V) f (V |σ) f (σ)

∝ σ−( 3n+k+2
2 )(

n∏
i=1

vi
− 1

2 )|X∗T Σ−1X∗|
1
2 exp{−

1
2σ

[(Y∗τ − X∗β)T
Σ−1(Y∗τ − X∗β)

+ βT X∗T Σ−1X∗

g
β + 2τ(1 − τ)

n∑
i=1

vi]}.

(2.20)

(1) Sample vi from

π(vi| β, σ,Yi, Xi) ∝ GIG(0, ξ̄i, ζ̄i), (2.21)

where, ξ̄i =
(yi−xT

i β)2+(βT xi xT
i β)/g

2σ , ζ̄i = 1
2σ , i = 1, 2, · · · , n.

(2) Sample β from

π(β|Y∗τ , X
∗, σ,V) ∝ exp{−

1
2σ

[(Y∗τ − X∗β)T Σ−1(Y∗τ − X∗β) + βT X∗T Σ−1X∗

g
β]}

∝ Nk(µ̄τ, σΛ̄−1),
(2.22)

where, µ̄τ = [(1 + 1
g )X∗T Σ−1X∗]−1X∗T Σ−1Y∗τ , Λ̄ = (1 + 1

g )X∗T Σ−1X∗.
(3) Sample σ from

π(σ|Y∗τ , X
∗, β,V) ∝ σ

3n+k
2 +1exp{−

1
2σ

[(Yτ − Xβ)T Σ−1(Yτ − Xβ) + βT X∗T Σ−1X∗

g
β] + 2τ(1 − τ)

n∑
i=1

vi}

∝ IG(a, b),
(2.23)

where, a = 3n+k
2 , b = 1

2 [(Y∗τ − X∗β)T Σ−1(Y∗τ − X∗β) + βT X∗T Σ−1X∗
g β + 2τ(1 − τ)

n∑
i=1

vi].
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Here, GIG(0, ξ̄i, ζ̄i) is the generalized inverse Gaussian distribution with probability density function
x−1exp{ 12 (ζ̄x−1 + ξ̄x)} for x > 0.

For the convenience of calculation and expression, based on the posterior distribution of β and σ,
we have a joint posterior distribution of π(β, σ|Y∗τ , X

∗,V) as follows:

π(β, σ|Y∗τ , X
∗,V) ∝ NIG(µ̄τ, Λ̄, ā, b̄τ), (2.24)

where, µ̄τ = [(1 + 1
g )X∗T Σ−1X∗]−1X∗T Σ−1Y∗τ , Λ̄ = (1+ 1

g )X∗T Σ−1X∗, ā = 3
2n, bτ = 1

2Y∗τ
T Σ−1Y∗τ −

1
2 µ̄

T
τ Λ̄µ̄τ+

τ(1 − τ)
n∑

i=1
vi.

3. Bayesian quantile regression for streaming data

Different from traditional regression datasets, our focus in this paper is on streaming data sets.
Assume {Dm,m = 1, · · · ,M, · · · } are aggregated streaming data, Dm = {(ymi, xmi), i = 1, · · · , nm} are
the streaming data of m-th batch with sample size nm, and the total sample size up to M is NM =∑M

i=1 ni. To construct the posterior distribution for streaming data, the NIG multiplier operator defined
in Chu et al. [31] will be used, as presented in the following proposition.

Proposition 1. The multiplication of H k-dimensional distributions NIGk(µh,Λh, ah, bh) is also a NIG
distribution, that is

NIGk(µ,Λ, a, b) =

H∏
h=1

NIGk(µh,Λh, ah, bh), (3.1)

where µ = (
∑H

h=1 Λh)−1(
∑H

h=1 Λhµh), Λ =
∑H

h=1 Λh, a =
∑H

h=1 ah +
(H−1)(k+2)

2 , b =
∑H

h=1 bh + 1
2

∑H
h=1(µh −

µ)T Λh(µn − µ).

We begin with the m-th batch of streaming data Dm. Let Y∗τ,m and X∗m be the data in m-th batch Dm,

Σm be an nm×nm diagonal matrix, β̂τ,m =
(
X∗Tm Σ−1

m X∗Tm

)−1
X∗mΣ−1

m Y∗τ,m. From (2.10), the likelihood function
can be derived for the m-th batch of streaming data as follows:

f (Y∗τ,m|X
∗
m, β, σ,Σ) ∝ σ−

n−k
2 exp{−

1
2σ

[Y∗τ,m − X∗mβ̂τ,m]T Σ−1[Y∗τ,m − X∗mβ̂τ,m]}

× σ−
k
2 exp{−

1
2σ

(β − β̂τ,m)T Λm(β − β̂τ,m)}

= (σ)−(am+ k
2 +1)exp{−

1
σ

[bτ,m +
1
2

(β − µτ,m)T Λm(β − µτ,m)]},

(3.2)

where, µτ,m = β̂τ,m = (X∗Tm Σ−1
m X∗m)−1X∗mΣ−1

m Y∗τ,m, Λm = X∗Tm Σ−1
m X∗m, am = nm−k−2

2 , bτ,m =
1
2 [Y∗τ,m − X∗Tm β̂τ,m]

T
Σ−1

m [Y∗τ,m − X∗Tm β̂τ,m].
Subsequently, the posterior distribution of the streaming data can be obtained by multiplying the

NIG prior of the stream data with the likelihood function of the m-th batch data. To implement our
BSQR method, the prior distribution of the m-th batch of streaming data is introduced in the following
definition.
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Definition 2. The prior distribution of the m-th batch is defined by NIG(µp,τ,m,Λp,m, ap,m, bp,τ,m), which
consists of two parts, the adjusted posterior distribution of historical data and the g-NIG prior of
current data, that is

NIG(µp,τ,m,Λp,m, ap,m, bp,τ,m) = NIG(m−1)
k (µ̄τ,m−1, Λ̄m−1, ām−1 −

k + 2
2

, b̄τ,m−1) × NIG(µ0,Λm,0, a0, b0),

where, NIG(m−1)
k denotes the posterior distribution of the (m − 1)-th batch for streaming data,

µp,τ,m = (Λ̄m−1 + Λm,0)−1(Λ̄m−1µ̄τ,m−1 + Λm,0µ0),

Λp,m = Λ̄m−1 + Λm,0,

ap,m = ām−1 + a0,

bp,τ,m = b̄τ,m−1 + b0 +
1
2

(µ̄τ,m−1 − µp,τ,m)T Λm−1(µ̄τ,m−1 − µp,τ,m) +
1
2
µT

p,τ,mΛm,0µp,τ,m.

Remark 1. For streaming data D1,D2, · · ·Dm, · · · , if n1 ≥
k+2

3 , where n1 is the sample size of the first
batch of streaming data, the prior distribution NIG(µp,τ,m,Λp,m, ap,m, bp,τ,m) exists.

Through the prior distribution of stream data NIG(µp,τ,m,Λp,m, ap,m, bp,τ,m), we can get the posterior
distribution of the streaming data. Theorem 1 describes the renewability of the posterior distribution
of streaming data obtained through the NIG multiplier operator.

Theorem 1. Consider a linear QR model with streaming data observations D1,D2, · · ·Dm, · · · .
Setting the prior distribution of the initial streaming data as the g-NIG prior NIGk

(
µ0,Λg0 , a0, b0

)
.

When the m-th batch of streaming data is received, the posterior distribution of the streaming data
NIG(m)

k (µ̄τ,m, Λ̄m, ām, b̄τ,m) can be expressed as

NIG(m)
k (µ̄τ,m, Λ̄m, ām, b̄τ,m) = NIG(µp,τ,m,Λp,m, ap,m, bp,τ,m) × NIG(L)

k (µτ,m,Λm, am, bτ,m),

where, NIG(L)
k (µτ,m,Λm, am, bτ,m) is the likelihood function for the m-th block of data nodes,

µ̄τ,m =(Λ̄m−1 + Λm,0 + Λm)−1(µ0Λm,0 + µ̄τ,m−1Λ̄m−1 + µτ,mΛm)

= ((1 +
1
g

)
m∑

i=1

X∗Ti Σ−1
i X∗i )−1(

m∑
i=1

X∗Ti Σ−1
i Y∗i ),

Λ̄m = Λ̄m−1 + Λm,0 + Λm = (1 + 1
g )

∑m
i=1 X∗Ti Σ−1

i X∗i ,
ām = ām−1 + a0 + am + k+2

2 = 3
2nm + a0,

bτ,m = b̄τ,m−1 +b0 +bτ,m + 1
2 (µ̄τ,m−1− µ̄τ,m)T Λ̄m−1(µ̄τ,m−1− µ̄τ,m)+ 1

2 µ̄
T
τ,mΛm,0µ̄τ,m + 1

2 (µτ,m− µ̄τ,m)T Λm(µτ,m−

µ̄τ,m) = 1
2

∑m
i=1 Y∗Tτ,i ΣiY∗τ,i −

1
2 µ̄

T
τ,mΛ̄mµ̄τ,m + τ (1 − τ)

n∑
i=1

vi + b0.

According to Theorem 1, the update of parameters in the posterior distribution of the streaming data
only requires the parameters of the posterior distribution of historical data. Specifically, after receiving
the streaming data, we only need to calculate and store the parameters of the posterior distribution µ̄τ,m,
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Λ̄m, ām and b̄τ,m. In addition, when given all the values of vi, we can see from Theorem 1 that the
posterior distribution parameters of streaming data are equal to the posterior distribution parameters of
the entire data. The proof of Theorem 1 is provided in the appendix.

Under Theorem 1 and Proposition 1, an effective algorithm for the Bayesian streaming quantile
regression (BSQR) is developed in Algorithm 1.

Algorithm 1: Bayesian streaming data quantile regression algorithm
Step 1. Receive streaming data for the m-th batch and calculate the NIG likelihood function

NIGk(µτ,m,Λm, am, bτ,m),

where, µτ,m = β̂τ,m = (X∗Tm Σ−1
m X∗m)−1X∗mΣm

−1Y∗τ,m, Λm = X∗Tm Σ−1
m X∗m, am = n−k−2

2 ,
bτ,m = 1

2 [Y∗τ,m − X∗Tm β̂τ,m]
T
Σ−1

m [Y∗τ,m − X∗Tm β̂τ,m].
Step 2. Calculate the prior distribution of the m-th batch of streaming data:

NIG(µp,τ,m,Λp,m, ap,m, bp,τ,m) = NIG(µ̄τ,m−1, Λ̄m−1, ām−1 −
k + 2

2
, b̄τ,m−1) × NIG(µ0,Λm,0, 0, 0).

Step 3. Calculate the posterior distribution of the m-th batch of streaming data:

NIGk(µ̄τ,m, Λ̄m, ām, b̄τ,m) = NIG(µp,τ,m,Λp,m, ap,m, bp,τ,m) × NIG(L)
k

(
µτ,m,Λm, am, bτ,m

)
.

Step 4. Gibbs sampling:
(1) Denote j as the iteration count. Then set j = 0 and establish a set of initial values: v( j), σ( j), β( j).
(2) Follow the posterior distributions of βm, σm and vm.
(i) Sample v( j+1)

m from f
(
vm | β

( j)
m , σ

( j)
m

)
.

(ii) Sample σ( j+1)
m from f

(
σm | β

( j)
m , v

( j+1)
m

)
.

(iii) Sample β( j+1)
m from f

(
βm | σ

( j+1)
m , v( j+1)

m

)
.

(3) Set j = j + 1 and return to (2) until j = I, where I is the number of iteration times.

4. Simulation study

In this section, the proposed BSQR will be illustrated by simulated data.
We consider datasets in different cases and generate the streaming datasets D1,D2, · · · ,DM up to

batch M, where Dm = {(ymi, xmi) : 1 ≤ i ≤ nm}.

ymi = xT
miβ0 + emi, i = 1, · · · , nm, (4.1)

where, the elements of xmi are independently and identically distributed as the standard normal
distribution, and the vector β0 = (1, 3, 2, 10, 4, 3,−1, 4, 5, 0)T . For the random error emi, in order to
illustrate the robustness, the following three cases are considered.
Case 1. emi follows the asymmetric Laplace distribution.
Case 2. emi follows the standard normal distribution.
Case 3. emi follows t(3) distribution.
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For a comprehensive illustration, we compare our method with four competing estimators in the
current literature.

(1) The oracle Bayesian quantile regression (BQR) obtained by processing the entire data once.

(2) The renewable quantile regression (RQR) proposed in Wang et al. [30].

(3) The renewable SQR (RSQR) estimator proposed in Jiang et al. [37].

(4) The online linear estimator for the QR (OLEQR) proposed in Chen et al. [28].

The first competing estimator BQR is used to show that our method is statistically equivalent to
the oracle one and verify the theoretical results of Theorem 1 for the situation of finite sample. The
second to fourth estimator RQR is used to compare our method with the method of streaming data in
the frequentist framework, which makes our simulation experiments more comprehensive.

For the selection of hyperparameter g in g-NIG prior, Smith and Kohn [33] found that choosing g
between 10 and 1000 can achieve good results. Meanwhile, they set g = 100 as the final value. Dao
and Wang [34] also used g-NIG priors and found that their numerical results for different choices of g
within the range of 100 ≤ g ≤ 1000 yielded very similar results. For our model, we also validated the
selection of g using simulation experiments, and the results are shown in Figure 1. It can be observed
that the choice of g has little impact on MSE. Therefore, we follow the suggestions of Smith and Kohn
and set g = 100, a choice adopted by various researchers, such as Lee et al. [35] and Chen et al. [36].

Figure 1. The choice of the hyperparameter g.

To examinate the perfomance of the BSQR method, we fix n with varying batch size nm.
Specifically, M streaming datasets with n = 104 observations are generated independently, where
batch number M is between 50 and 100, with each batch having 10000

M observations. We repeat the
experiment 500 times and define β̂ j(s) as the estimator of β j in the s-th replication. In order to compare

estimation accuracy, the mean square errors (MSE) MS E(β̂ j) = 1
500

500∑
s=1

(β̂ j(s) − β0 j)2, j = 1, 2, · · · , 10,

are calculated for the three methods. The results of case 1 are shown in Tables 1 and 2.
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Table 1. Comparison between Bayesian streaming data method and other methods in the
case of ALD error distribution and m=50 batches.
τ Method MSE β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

τ = 0.1 BQR 0.109 1.98E-03 6.64E-03 5.78E-03 5.41E-02 8.93E-03 5.45E-03 2.12E-04 1.09E-03 1.04E-02 2.98E-03
BSQR 0.107 1.47E-03 7.73E-03 3.13E-03 5.08E-02 7.75E-03 9.96E-03 2.82E-03 9.23E-03 1.29E-02 1.88E-03
RQR 0.117 6.12E-03 1.33E-02 5.12E-03 8.30E-03 4.78E-03 9.79E-03 1.54E-03 2.22E-02 5.98E-03 4.43E-02
RSQR 0.117 4.67E-03 4.25E-03 6.44E-03 9.21E-02 9.71E-03 9.79E-03 5.92E-03 6.59E-03 7.74E-03 9.41E-02
OLEQR 0.121 5.05E-03 5.30E-02 5.77E-03 5.06E-03 8.42E-03 7.34E-03 3.77E-03 6.18E-02 8.04E-03 7.47E-02

τ = 0.3 BQR 0.063 8.50E-04 3.61E-03 2.06E-03 2.85E-02 5.75E-03 5.81E-03 4.41E-03 6.05E-03 8.01E-03 1.96E-03
BSQR 0.066 1.54E-03 3.50E-03 1.35E-03 3.14E-02 5.22E-03 6.49E-03 1.36E-03 6.07E-03 8.50E-03 1.15E-03
RQR 0.068 9.59E-03 2.29E-03 7.05E-03 7.57E-03 5.79E-03 1.62E-03 1.76E-03 6.46E-03 2.11E-02 6.61E-03
RSQR 0.067 3.67E-03 3.25E-02 5.44E-03 9.21E-03 9.74E-03 4.92E-03 6.59E-03 7.77E-02 7.31E-03 9.41E-03
OLEQR 0.075 4.76E-03 2.33E-03 5.28E-03 6.32E-03 4.54E-03 7.79E-03 1.14E-03 2.32E-03 1.98E-03 5.43E-03

τ = 0.5 BQR 0.057 3.33E-03 1.00E-03 8.50E-05 2.23E-02 9.09E-03 5.58E-04 4.93E-03 5.09E-03 1.04E-02 8.90E-04
BSQR 0.057 1.11E-03 3.43E-03 1.83E-03 2.84E-02 5.32E-03 3.70E-03 8.20E-04 5.32E-03 6.97E-03 9.79E-04
RQR 0.060 1.47E-03 6.15E-03 4.15E-03 1.46E-02 8.96E-03 5.96E-03 4.39E-03 3.44E-03 8.48E-02 7.64E-03
RSQR 0.060 5.05E-03 5.30E-02 5.77E-03 5.06E-03 8.42E-03 7.43E-03 3.77E-03 1.18E-02 8.04E-03 7.41E-03
OLEQR 0.071 1.12E-03 6.53E-03 2.12E-03 6.12E-03 1.78E-03 2.59E-03 2.46E-03 1.26E-03 9.98E-03 2.43E-03

τ = 0.7 BQR 0.064 1.47E-03 4.19E-03 1.69E-03 3.23E-03 5.06E-03 3.53E-03 1.60E-03 5.74E-03 7.29E-03 1.60E-03
BSQR 0.064 1.80E-03 4.10E-03 2.68E-03 3.20E-02 4.11E-03 3.83E-03 1.27E-03 7.01E-03 9.22E-03 1.36E-03
RQR 0.068 5.08E-03 2.59E-03 5.11E-03 2.26E-03 3.55E-03 1.38E-02 2.26E-03 7.64E-03 3.34E-02 1.01E-02
RSQR 0.068 2.89E-03 2.89E-03 1.12E-03 5.30E-03 3.78E-03 5.79E-03 3.25E-03 5.02E-03 5.98E-03 2.63E-02
OLEQR 0.076 1.48E-03 9.74E-02 4.28E-03 2.35E-03 2.63E-03 1.44E-03 1.84E-03 2.44E-02 1.84E-03 1.99E-02

τ = 0.9 BQR 0.111 3.52E-02 6.70E-03 4.40E-03 5.24E-02 1.06E-02 5.68E-03 4.16E-03 8.57E-03 1.17E-02 3.46E-03
BSQR 0.111 4.06E-03 6.60E-03 3.85E-03 5.04E-02 1.12E-02 6.47E-03 3.82E-03 1.24E-02 1.58E-02 3.55E-03
RQR 0.119 1.60E-02 2.08E-03 2.58E-03 1.52E-02 1.97E-03 1.25E-02 4.43E-03 1.07E-02 1.19E-02 8.86E-03
RSQR 0.117 7.64E-03 1.67E-02 8.70E-03 2.12E-02 7.01E-03 3.83E-03 5.22E-03 2.45E-02 7.58E-03 1.11E-02
OLEQR 0.124 1.53E-02 1.65E-02 1.66E-03 2.48E-03 5.92E-03 1.04E-03 7.04E-03 3.88E-02 1.28E-02 8.55E-03

Table 2. Comparison between Bayesian streaming data method and other methods in the
case of ALD error distribution and m=100 batches.
τ Method MSE β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

τ = 0.1 BQR 0.109 1.98E-03 6.64E-03 5.78E-03 5.41E-02 8.93E-03 5.45E-03 2.12E-04 1.09E-03 1.04E-02 2.98E-03
BSQR 0.110 3.35E-03 5.54E-03 2.29E-03 5.08E-02 9.47E-03 9.36E-02 3.19E-02 9.40E-03 1.96E-02 1.16E-03
RQR 0.119 2.04E-02 1.12E-02 4.16E-03 9.22E-03 8.87E-03 1.44E-02 1.08E-03 2.23E-02 9.69E-03 7.12E-03
RSQR 0.117 1.82E-02 1.01E-02 4.12E-03 8.30E-03 6.78E-03 9.79E-03 1.28E-03 2.20E-02 5.98E-03 7.43E-03
OLEQR 0.121 2.56E-02 1.33E-02 5.10E-03 9.30E-03 8.78E-03 1.79E-02 1.13E-03 9.22E-03 4.98E-03 1.43E-02

τ = 0.3 BQR 0.063 2.01E-04 1.32E-02 4.80E-03 2.35E-02 6.33E-03 1.26E-03 8.03E-05 4.59E-03 1.39E-03 1.55E-03
BSQR 0.066 1.48E-03 3.99E-03 2.30E-03 3.10E-02 5.49E-03 4.37E-03 1.44E-03 6.09E-03 8.88E-03 1.52E-03
RQR 0.066 3.19E-03 6.94E-03 4.59E-03 5.50E-02 5.56E-03 2.20E-03 6.33E-03 1.43E-02 2.10E-02 1.80E-02
RSQR 0.066 3.12E-03 5.94E-02 5.59E-03 8.30E-02 2.78E-03 2.79E-03 6.28E-03 1.22E-02 2.30E-03 1.79E-02
OLEQR 0.079 3.21E-03 5.33E-02 5.98E-03 9.12E-03 4.78E-03 5.79E-03 6.54E-03 4.25E-02 2.98E-03 2.12E-02

τ = 0.5 BQR 0.057 3.33E-03 1.00E-03 8.50E-05 2.23E-02 9.09E-03 5.58E-04 4.93E-03 5.09E-03 1.04E-02 8.90E-04
BSQR 0.057 1.58E-03 2.49E-03 1.53E-03 2.75E-02 3.90E-03 5.51E-03 9.75E-04 5.32E-03 7.89E-03 1.05E-04
RQR 0.060 4.76E-03 7.50E-04 6.99E-03 3.88E-03 7.35E-03 7.98E-03 1.18E-02 5.27E-03 6.75E-03 5.35E-03
RSQR 0.060 4.12E-03 6.43E-03 6.12E-03 2.30E-03 6.28E-03 7.79E-03 9.54E-03 1.01E-02 5.98E-03 6.03E-03
OLEQR 0.065 1.32E-03 5.33E-03 5.12E-03 2.30E-03 1.38E-03 2.78E-03 3.54E-03 6.12E-03 2.28E-03 6.23E-02

τ = 0.7 BQR 0.064 1.47E-03 4.19E-03 1.69E-03 3.23E-03 5.06E-03 3.53E-03 1.60E-03 5.74E-03 7.29E-03 1.60E-03
BSQR 0.065 1.72E-03 5.21E-03 2.42E-03 3.01E-02 6.50E-03 3.56E-03 1.50E-03 6.14E-03 7.30E-03 1.13E-03
RQR 0.070 1.32E-03 1.01E-03 5.14E-03 1.16E-02 2.50E-03 9.91E-03 1.49E-03 4.27E-03 1.13E-02 4.60E-03
RSQR 0.068 1.56E-03 6.33E-03 5.65E-03 5.30E-03 5.38E-03 8.79E-03 2.56E-03 1.02E-02 2.98E-03 1.56E-02
OLEQR 0.075 1.98E-03 1.33E-02 5.89E-03 6.89E-03 6.78E-03 8.29E-03 2.54E-03 9.56E-03 3.98E-03 8.98E-02

τ = 0.9 BQR 0.111 3.52E-02 6.70E-03 4.40E-03 5.24E-02 1.06E-02 5.68E-03 4.16E-03 8.57E-03 1.17E-02 3.46E-03
BSQR 0.115 3.31E-03 7.17E-03 5.11E-03 5.20E-03 9.83E-03 6.41E-03 3.89E-03 1.02E-03 1.41E-03 1.02E-03
RQR 0.118 2.21E-02 1.18E-02 7.33E-03 1.15E-02 5.19E-03 1.41E-03 1.65E-03 3.07E-03 5.07E-02 9.56E-03
RSQR 0.117 1.12E-02 1.01E-02 9.89E-03 5.63E-03 4.78E-03 8.79E-03 4.54E-03 1.22E-02 5.98E-03 2.01E-02
OLEQR 0.126 1.49E-02 1.50E-02 1.19E-02 9.27E-03 5.70E-03 5.47E-03 1.32E-02 1.60E-02 1.49E-03 2.30E-02

In practice, the error term emi may not be distributed as AL distribution. Therefore, Cases 2 and 3
are also simulated when the error term follows t-distribution with a degree of freedom 3, and standard
normal distribution, respectively. The results are shown in Tables 3–6.
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From the simulation results, we have several findings. First, our streaming data Bayesian quantile
regression method can always estimate the parameters consistently under three error distributions. In
the meantime, the estimation results are not affected by the data batch size, since the MSE values
of our method are almost in the same scale as the batch number increases from 50 to 100. Second,
under ALD error distribution, our method performs better than the other three methods, and also
performs comparably with the oracle Bayesian quantile regression, as the BQR and BSQR methods
are very close. Third, under other error distributions, our method performs worse than RQR and RSQR
methods, but still performs better than the OLEQR method.

Table 3. Comparison between Bayesian streaming data method and other methods in the
case of normal error distribution and m=50 batches.
τ Method MSE β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

τ = 0.1 BQR 0.032 1.99E-03 1.57E-03 3.33E-04 1.62E-02 7.34E-04 1.78E-04 9.46E-05 1.04E-02 2.28E-02 2.26E-03
BSQR 0.034 1.12E-03 2.41E-03 1.49E-03 2.14E-02 4.44E-03 2.63E-03 1.03E-03 3.20E-03 5.46E-03 2.13E-03
RQR 0.028 2.82E-03 2.72E-03 3.33E-03 3.15E-02 3.15E-03 2.77E-03 2.92E-03 2.28E-03 9.92E-04 7.63E-03
RSQR 0.026 3.12E-03 2.33E-03 2.12E-03 8.30E-03 1.78E-03 1.79E-03 1.94E-03 2.02E-03 1.98E-03 2.43E-03
OLEQR 0.051 4.12E-03 4.33E-03 5.12E-03 9.90E-03 4.78E-03 3.79E-03 1.54E-03 5.22E-03 5.98E-03 4.53E-03

τ = 0.3 BQR 0.041 7.24E-04 1.79E-03 4.08E-04 1.50E-02 7.87E-03 7.75E-04 8.83E-04 3.34E-04 1.27E-02 1.38E-03
BSQR 0.041 9.42E-04 2.35E-03 1.42E-03 2.03E-02 4.03E-03 2.17E-03 9.27E-04 3.57E-03 5.35E-03 7.81E-04
RQR 0.021 2.02E-03 2.37E-03 1.47E-03 2.35E-02 1.96E-03 2.06E-03 2.39E-03 2.03E-03 2.41E-03 3.22E-03
RSQR 0.019 9.11E-04 2.34E-03 1.31E-03 1.37E-03 2.18E-03 2.47E-03 3.05E-03 2.44E-03 1.78E-03 1.45E-03
OLEQR 0.046 3.84E-03 1.47E-03 1.05E-03 2.86E-03 2.41E-03 1.69E-03 1.12E-03 3.78E-02 2.30E-03 3.34E-03

τ = 0.5 BQR 0.040 9.16E-04 5.78E-03 2.52E-03 1.62E-02 3.50E-03 6.26E-04 7.71E-05 2.70E-03 8.09E-03 3.13E-04
BSQR 0.041 6.67E-04 2.03E-03 1.14E-03 2.13E-02 4.26E-03 2.10E-03 7.64E-04 3.24E-03 5.32E-03 7.32E-04
RQR 0.009 1.17E-03 8.77E-04 1.15E-03 7.73E-04 9.54E-04 7.48E-04 7.11E-04 7.47E-04 8.34E-04 7.74E-04
RSQR 0.007 1.12E-03 1.33E-03 1.12E-03 1.30E-03 1.58E-03 9.79E-04 1.54E-03 2.22E-04 5.98E-04 5.84E-04
OLEQR 0.042 2.07E-03 2.37E-03 1.34E-03 1.73E-03 1.41E-03 1.33E-03 1.58E-03 1.02E-03 1.10E-03 1.07E-03

τ = 0.7 BQR 0.046 3.60E-04 1.38E-04 3.47E-03 1.98E-02 9.46E-03 1.82E-04 2.77E-03 1.75E-03 5.60E-03 2.91E-03
BSQR 0.043 5.92E-04 2.00E-03 1.00E-03 2.11E-02 4.22E-03 1.98E-03 6.07E-04 3.28E-03 4.96E-03 4.10E-04
RQR 0.015 1.94E-03 2.08E-03 1.38E-03 1.43E-02 1.09E-03 1.30E-03 1.40E-03 1.16E-03 1.26E-02 1.48E-03
RSQR 0.015 1.01E-03 1.28E-02 6.94E-04 9.75E-04 3.07E-03 3.10E-03 1.38E-03 1.60E-02 2.34E-03 1.22E-02
OLEQR 0.047 9.63E-04 2.13E-02 1.52E-03 1.20E-03 1.24E-03 1.26E-03 1.66E-03 1.31E-02 2.68E-03 1.48E-03

τ = 0.9 BQR 0.039 1.27E-04 5.80E-04 2.06E-05 2.14E-02 5.26E-04 2.35E-03 9.00E-05 3.59E-03 9.84E-03 1.00E-03
BSQR 0.040 5.27E-04 2.06E-03 9.60E-04 2.09E-02 4.23E-03 1.91E-03 5.45E-04 3.69E-03 4.93E-04 4.10E-04
RQR 0.023 2.66E-03 3.17E-03 2.55E-03 2.45E-02 2.89E-03 2.60E-03 2.05E-03 3.62E-03 2.22E-02 2.86E-03
RSQR 0.023 3.58E-03 2.15E-03 5.12E-03 8.30E-03 4.78E-03 9.09E-03 1.52E-03 1.98E-03 5.28E-03 2.01E-03
OLEQR 0.048 3.05E-03 2.33E-03 9.12E-03 7.30E-03 3.78E-03 4.79E-03 1.88E-03 7.22E-02 5.98E-03 2.43E-03
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Table 4. Comparison between Bayesian streaming data method and other methods in the
case of normal error distribution and m=100 batches.
τ Method MSE β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

τ = 0.1 BQR 0.032 1.99E-03 1.57E-03 3.33E-04 1.62E-02 7.34E-04 1.78E-04 9.46E-05 1.04E-02 2.28E-02 2.26E-03
BSQR 0.033 1.08E-03 3.00E-03 1.64E-03 2.02E-02 4.45E-03 2.51E-03 1.04E-03 3.60E-03 5.34E-03 9.94E-04
RQR 0.020 1.50E-03 1.45E-03 2.97E-03 1.42E-03 2.12E-03 3.06E-03 6.78E-04 2.82E-03 4.99E-02 1.58E-03
RSQR 0.020 2.72E-03 3.33E-03 8.25E-03 2.56E-03 3.35E-03 2.13E-03 1.42E-03 1.55E-03 1.47E-03 1.16E-03
OLEQR 0.048 2.51E-03 2.47E-03 7.04E-03 6.03E-03 4.66E-03 8.57E-03 5.03E-03 6.50E-02 1.277E-03 1.06E-02

τ = 0.3 BQR 0.041 7.24E-04 1.79E-03 4.08E-04 1.50E-02 7.87E-03 7.75E-04 8.83E-04 3.34E-04 1.27E-02 1.38E-03
BSQR 0.043 8.46E-04 2.17E-03 1.28E-03 2.13E-03 4.26E-03 2.36E-03 1.03E-03 3.21E-03 5.32E-03 7.32E-04
RQR 0.016 1.21E-03 1.71E-03 2.64E-03 1.19E-02 1.82E-03 1.20E-03 2.08E-03 9.26E-04 2.23E-03 2.89E-03
RSQR 0.014 1.22E-03 6.43E-03 7.45E-03 1.89E-03 5.11E-04 7.33E-03 1.13E-03 1.19E-02 1.47E-03 1.16E-03
OLEQR 0.045 3.96E-03 8.64E-02 2.47E-03 5.08E-03 2.38E-03 2.65E-03 6.34E-03 7.35E-03 5.98E-03 2.73E-03

τ = 0.5 BQR 0.040 9.16E-04 5.78E-03 2.52E-03 1.62E-02 3.50E-03 6.26E-04 7.71E-05 2.70E-03 8.09E-03 3.13E-04
BSQR 0.040 6.76E-04 2.23E-03 1.24E-03 2.08E-02 4.09E-03 2.03E-03 6.74E-04 3.48E-03 4.85E-03 5.43E-04
RQR 0.009 7.25E-04 1.25E-03 2.56E-04 1.24E-03 4.41E-04 1.23E-03 1.18E-03 1.39E-03 2.68E-04 7.56E-04
RSQR 0.007 1.27E-03 1.16E-03 1.96E-03 1.09E-03 1.20E-03 1.17E-03 5.11E-04 4.43E-04 8.50E-03 1.17E-03
OLEQR 0.042 3.96E-03 8.64E-03 2.47E-03 5.08E-03 2.38E-03 2.65E-03 6.34E-03 7.35E-03 5.88E-03 2.73E-03

τ = 0.7 BQR 0.046 3.60E-04 1.38E-04 3.47E-03 1.98E-02 9.46E-03 1.82E-04 2.77E-03 1.75E-03 5.60E-03 2.91E-03
BSQR 0.039 5.66E-04 2.17E-03 1.20E-03 2.10E-02 4.09E-03 1.91E-03 4.35E-04 3.28E-03 4.64E-03 3.67E-04
RQR 0.018 1.02E-03 1.64E-03 1.70E-03 1.72E-02 1.67E-03 1.31E-03 2.67E-03 2.44E-03 1.74E-02 2.41E-03
RSQR 0.018 1.09E-03 1.16E-03 1.09E-03 8.27E-04 1.14E-03 2.03E-03 1.43E-03 1.83E-02 1.49E-03 1.48E-03
OLEQR 0.045 1.02E-03 6.54E-02 4.93E-03 4.36E-03 4.55E-03 3.44E-03 3.85E-03 2.62E-02 7.03E-03 3.78E-03

τ = 0.9 BQR 0.039 1.27E-04 5.80E-04 2.06E-05 2.14E-02 5.26E-04 2.35E-03 9.00E-05 3.59E-03 9.84E-03 1.00E-03
BSQR 0.040 5.31E-04 2.15E-03 1.17E-03 2.15E-02 4.41E-03 1.74E-03 4.41E-04 3.26E-03 4.53E-04 4.44E-04
RQR 0.021 2.81E-03 3.00E-03 2.66E-03 2.49E-02 2.31E-03 2.08E-03 1.90E-03 2.74E-03 2.18E-02 2.32E-03
RSQR 0.021 1.22E-03 1.33E-02 5.12E-03 8.30E-03 4.78E-03 9.79E-03 1.54E-03 2.22E-02 5.98E-03 4.43-02
OLEQR 0.047 1.51E-02 1.04E-02 3.63E-03 8.15E-03 6.74E-03 8.05E-03 6.05E-03 9.05E-03 1.05E-03 2.83E-03

Table 5. Comparison between Bayesian streaming data method and other methods in the
case of t-distribution error distribution and m=50 batches.
τ Method MSE β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

τ = 0.1 BQR 0.049 6.53E-06 1.18E-04 6.64E-04 2.92E-02 1.81E-05 1.59E-03 2.72E-04 1.53E-03 3.32E-03 1.65E-03
BSQR 0.048 1.31E-03 3.05E-03 2.45E-03 2.11E-02 3.91E-03 3.91E-03 1.35E-03 3.51E-03 6.63E-03 1.17E-03
RQR 0.035 1.86E-03 1.89E-03 1.43E-03 2.84E-02 3.42E-03 3.72E-03 2.82E-03 6.85E-03 3.01E-02 5.39E-03
RSQR 0.034 1.85E-03 2.53E-03 4.28E-03 6.49E-03 4.12E-03 3.83E-03 2.17E-03 4.32E-03 4.82E-03 4.10E-03
OLEQR 0.061 1.02E-02 5.26E-03 1.05E-03 1.08E-02 3.86E-03 5.27E-03 5.60E-03 2.60E-02 2.14E-03 3.86E-02

τ = 0.3 BQR 0.047 1.02E-03 3.02E-03 2.26E-03 2.11E-02 3.98E-03 3.77E-03 1.02E-04 3.48E-03 6.48E-02 9.08E-04
BSQR 0.047 1.30E-03 2.59E-04 2.24E-03 2.27E-02 4.19E-03 2.29E-03 1.35E-03 3.59E-03 5.57E-03 1.06E-03
RQR 0.021 2.43E-03 3.11E-03 1.84E-03 2.67E-02 1.74E-03 1.53E-03 1.12E-03 1.24E-03 2.34E-02 2.43E-03
RSQR 0.020 3.80E-03 1.45E-03 3.64E-03 2.40E-03 3.36E-03 1.73E-03 2.04E-03 2.22E-02 2.70E-03 2.27E-03
OLEQR 0.054 3.72E-03 5.24E-02 1.33E-02 3.39E-03 2.22E-03 1.06E-02 3.08E-03 5.92E-03 9.16E-03 2.19E-03

τ = 0.5 BQR 0.044 8.24E-04 2.93E-03 1.83E-03 2.08E-02 3.68E-03 3.24E-03 8.19E-04 3.26E-03 6.18E-03 6.49E-04
BSQR 0.046 1.05E-03 2.39E-03 2.10E-03 2.23E-02 4.43E-03 2.49E-03 1.03E-03 3.72E-03 5.57E-03 8.61E-04
RQR 0.015 1.89E-03 8.26E-03 1.05E-03 1.10E-02 4.13E-03 6.59E-03 6.85E-03 1.10E-03 1.56E-03 1.26E-03
RSQR 0.015 1.72E-03 9.26E-03 1.12E-03 9.30E-03 4.01E-03 3.79E-03 1.54E-03 3.21E-02 1.98E-03 5.43-04
OLEQR 0.048 5.12E-03 1.63E-03 1.12E-03 8.30E-03 6.78E-03 7.79E-03 5.14E-03 5.12E-03 2.98E-03 5.51E-03

τ = 0.7 BQR 0.045 4.79E-04 4.15E-03 1.61E-04 2.03E-02 4.15E-03 2.96E-04 1.21E-04 3.66E-04 6.12E-03 4.59E-04
BSQR 0.044 9.14E-04 2.43E-03 1.14E-03 2.24E-02 4.82E-03 2.23E-03 8.31E-04 4.21E-03 5.79E-03 5.58E-04
RQR 0.025 1.36E-03 2.11E-03 3.56E-03 1.38E-02 2.75E-03 2.94E-03 1.41E-03 3.16E-03 1.91E-02 2.20E-03
RSQR 0.024 2.28E-03 1.41E-03 2.57E-03 3.55E-03 3.39E-03 1.94E-03 2.54E-03 1.41E-02 3.51E-03 2.86E-03
OLEQR 0.050 1.12E-02 6.26E-03 1.26E-03 1.28E-03 3.86E-03 4.72E-03 5.60E-03 2.69E-03 2.14E-03 3.68E-03

τ = 0.9 BQR 0.044 7.26E-03 2.63E-03 1.14E-04 2.26E-02 3.70E-03 2.77E-03 9.24E-04 3.57E-03 5.39E-03 6.72E-04
BSQR 0.043 5.52E-04 2.72E-03 1.55E-03 2.13E-02 3.72E-03 2.88E-03 4.70E-04 3.56E-03 6.43E-03 5.92E-04
RQR 0.033 6.73E-03 1.43E-03 3.51E-03 7.05E-02 2.25E-03 3.38E-03 4.35E-03 2.53E-03 2.70E-02 9.95E-04
RSQR 0.030 6.23E-03 2.33E-03 8.12E-03 5.30E-03 1.78E-03 6.79E-03 3.54E-03 1.22E-02 8.98E-03 6.43E-03
OLEQR 0.055 1.62E-02 1.32E-02 2.13E-03 1.35E-03 3.88E-03 4.75E-03 5.22E-03 2.74E-02 2.21E-03 3.72E-03
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Table 6. Comparison between Bayesian streaming data method and other methods in the
case of t-distribution error distribution and m=100 batches.
τ Method MSE β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

τ = 0.1 BQR 0.049 6.53E-06 1.18E-04 6.64E-04 2.92E-02 1.81E-05 1.59E-03 2.72E-04 1.53E-03 3.32E-03 1.65E-03
BSQR 0.047 1.31E-03 3.05E-04 2.45E-03 2.11E-03 3.91E-03 3.91E-03 1.35E-03 3.51E-03 6.63E-03 1.17E-03
RQR 0.038 3.69E-03 3.23E-03 5.21E-03 7.80E-03 3.15E-03 2.37E-03 2.69E-03 1.68E-03 3.52E-03 2.43E-03
RSQR 0.036 1.85E-03 2.53E-03 5.34E-03 2.74E-03 2.38E-03 4.47E-03 5.16E-03 4.69E-03 4.07E-03 3.43E-03
OLEQR 0.060 3.45E-03 6.55E-02 9.47E-03 2.66E-03 5.93E-03 8.90E-03 4.11E-03 8.99E-03 5.93E-03 1.11E-02

τ = 0.3 BQR 0.047 1.02E-03 3.02E-04 2.22E-03 2.11E-02 3.98E-03 3.77E-03 1.02E-03 3.48E-03 6.48E-03 9.08E-04
BSQR 0.048 1.04E-03 2.51E-04 2.90E-03 2.05E-02 3.43E-03 2.93E-03 1.43E-03 3.79E-03 9.09E-03 8.67E-04
RQR 0.025 3.76E-03 3.25E-03 2.77E-03 1.32E-02 1.97E-03 1.76E-03 4.75E-03 1.90E-03 1.89E-02 3.55E-03
RSQR 0.023 3.12E-03 3.33E-03 3.12E-03 2.30E-03 1.78E-03 1.79E-03 1.54E-02 4.22E-03 8.98E-03 3.43E-03
OLEQR 0.051 5.12E-03 2.53E-02 5.12E-03 9.30E-03 6.78E-03 1.79E-03 1.54E-02 1.02E-02 6.98E-03 6.43E-03

τ = 0.5 BQR 0.044 8.24E-04 2.93E-03 1.83E-03 2.08E-02 3.68E-03 3.24E-03 8.19E-04 3.26E-03 6.18E-03 6.49E-04
BSQR 0.044 8.24E-04 2.93E-03 1.83E-03 2.08E-02 3.68E-03 3.24E-03 8.19E-04 3.26E-03 6.18E-03 6.49E-04
RQR 0.018 8.93E-03 2.82E-03 2.23E-03 2.34E-02 2.08E-03 7.20E-03 1.07E-03 9.43E-03 1.15E-02 8.11E-03
RSQR 0.018 8.67E-04 1.75E-02 2.93E-03 6.34E-04 2.84E-03 8.65E-04 2.20E-03 2.56E-02 1.96E-03 7.32E-03
OLEQR 0.048 2.12E-03 3.33E-02 6.12E-03 5.30E-03 1.78E-03 1.79E-03 6.54E-03 1.22E-02 2.98E-03 1.43E-02

τ = 0.7 BQR 0.045 4.79E-04 4.15E-03 1.61E-04 2.03E-02 4.15E-03 2.96E-04 1.21E-04 3.66E-04 6.12E-03 4.59E-04
BSQR 0.043 5.06E-04 3.16E-03 1.81E-03 2.15E-02 4.28E-03 2.35E-03 6.68E-04 3.19E-03 5.22E-03 7.17E-04
RQR 0.025 2.65E-03 1.66E-03 3.47E-03 4.19E-02 4.48E-03 2.56E-03 2.54E-03 1.05E-03 1.72E-02 1.88E-03
RSQR 0.024 8.02E-03 2.63E-02 5.92E-03 5.30E-03 5.78E-03 3.79E-03 2.94E-03 3.12E-03 5.96E-03 2.03E-02
OLEQR 0.051 4.32E-03 1.33E-02 5.12E-03 4.30E-03 4.78E-03 4.79E-03 6.14E-03 2.22E-03 5.98E-03 1.23E-02

τ = 0.9 BQR 0.044 7.26E-03 2.63E-03 1.14E-04 2.26E-02 3.70E-03 2.77E-03 9.24E-04 3.57E-03 5.39E-03 6.72E-04
BSQR 0.044 7.50E-04 2.20E-03 1.55E-03 2.14E-02 4.19E-03 2.96E-03 1.12E-04 3.73E-03 6.19E-03 7.48E-04
RQR 0.040 3.01E-03 1.57E-03 7.49E-03 4.59E-02 7.03E-03 3.52E-03 1.78E-03 7.71E-03 4.06E-03 5.04E-03
RSQR 0.040 5.84E-03 5.63E-03 1.02E-03 8.32E-03 4.52E-03 3.00E-03 2.22E-03 4.91E-03 2.21E-03 4.96E-03
OLEQR 0.059 1.32E-03 1.33E-02 5.12E-03 4.30E-03 6.78E-03 2.79E-02 6.54E-03 1.02E-02 2.98E-03 1.43E-02

Additionally, we consider an interesting scenario 2 where streaming datasets arrive at a high speed
and the batch size is small. For convenience, we fix the batch size n1 = · · · = nm = 100, and let
n increases from 105 to 106. The results are shown in Table 7 with ALD error distribution. The
results for other quantile levels and error distributions are similar and thus omitted. We can see from
Table 7 that the performance of our method improves (the MSE values all decrease) as the number
of batches increase from 1000 to 10000, and it always works comparably with the oracle Bayesian
quantile regression estimator. These results imply that our method is not affected as more data streams
are processed; in other words, it is robust to the number of batches.

Table 7. MSE results of Bayesian experiment on streaming data with varying n and fixed
batch sizes, n1 = n2 = · · · = nm = 100.

Method N τ = 0.3 τ = 0.5 τ = 0.7
BSQR 105 0.056 0.052 0.057

106 0.050 0.048 0.052
BQR 105 0.057 0.053 0.060

106 0.052 0.048 0.054

For Algorithm 1, we conduct an analysis of its computational complexity. By analyzing the
computational process of Algorithm 1, we determine that its computational complexity is O((nmk)2).
Furthermore, we record its running time and compare it with the distributed algorithm. For the
convenience of recording and computational efficiency, we fix the batch size n1 = · · · = nm = 100, and
let m increases from 10 to 100. All results are based on 1000 draws obtained from the Gibbs samplers.
Through this comparative analysis of running times, we observe that the streaming data algorithm has
better computational efficiency. The comparison result is shown in Figure 1, where the horizontal axis
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represents the number of batches and the vertical axis represents the running time unit in minutes.
Additionally, by comparing Tables 1–7 and Figure 2, it can be observed that our method is similar
to the full data method, but our method has better effiency than the distributed algorithm. Therefore,
the BSQR method can be used as an alternative to distributed algorithms to improve computational
efficiency, especially when the number of data batches is large.

Figure 2. Comparative analysis of algorithm running times.

5. Real data analysis

Example 1. The online news popularity dataset. In this example, we illustrate our Bayesian streaming
quantile regression method by using the Online News Popularity dataset. The dataset is from the UCI
machine learning repository. This is a large-scale dataset with N = 39, 640 observations. In our
analysis, the number of shares in social networks is set as the response variable, and the perspective
of web environment factors such as positive words, topic keywords, etc., are chosen as 7 predictors.
For comprehensiveness, five different quantile levels from small to large are considered, i.e., τ =

0.1, 0.3, 0.5, 0.7, and 0.9.
We fit our method to the above dataset by implementing Algorithm 1. In each τ, we partition the

dataset into 100 subsets with the size of nm = 396 for m = 1, · · · , 99 and n100 = 436. All results
are based on 15,000 draws obtained from the Gibbs samplers with a burn-in of 5000 iterations. The
estimated coefficients and posterior standard deviations at the specified quantile levels are presented in
Table 8.

Table 8. BSQR estimation of coefficient for the online news popularity data.
τ=0.10 τ= 0.30 τ= 0.50 τ= 0.70 τ= 0.90
Coeff Std Coeff Std Coeff Std Coeff Std Coeff Std

Intercept 3.1184 2.0746 5.2757 2.8087 5.9701 2.3922 6.2598 3.0828 9.5841 3.9952
length 0.0795 0.0362 0.1569 0.0387 0.1775 0.0619 0.2471 0.1224 0.3397 0.2512
num-keywords 0.4674 0.3502 0.6723 0.4962 0.7225 0.5124 0.7658 0.5625 0.7824 0.6314
title sentiment polarity 3.8472 3.2691 6.3682 4.2569 6.8923 4.3521 4.6130 3.9825 2.3569 1.9857
num-img 2.8009 1.7910 3.3239 2.1156 6.8448 3.0791 6.9821 4.1231 7.2656 4.5981
num-videos 1.0320 0.9432 1.6572 1.1152 1.8656 1.1974 1.9245 1.0358 2.0123 1.5699
num-positive -0.6779 0.2505 -0.6185 0.3244 -0.5812 0.2216 -0.4213 0.1985 -0.3320 0.2569
num-negitive 1.4053 1.3506 1.5691 1.4651 2.2664 1.3015 2.5688 1.8856 2.9851 2.0344
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We observe that the number of positive words is negatively correlated with the popularity,
while length, num-img, num-video, and num-negitive have positive impacts across all quantiles.
Additionally, as the quantile increases, the impact of title sentiment polarity first increases and then
decreases, which means that the title of a popular news cannot be too polarized. This empirical study
shows that the BSQR method we proposed is helpful in investigating the impact of different factors on
news popularity in streaming data scenarios.

Example 2. The Beijing multi-site air-quality dataset. This example illustrates the streaming data
algorithm for BSQR by using the Beijing multi-site air-quality dataset. The data were collected from
the Beijing Municipal Environmental Monitoring Center, which is a reputable institution responsible
for monitoring air quality, meteorological parameters, and other environmental factors in Beijing. The
dataset includes measurements of pollutants such as PM2.5, PM10, NO2, SO2, CO, and O3, as well
as meteorological variables like temperature, humidity, wind speed, and wind direction. The data
were recorded at multiple monitoring stations across the city, providing a spatially diverse dataset.
The dataset is publicly available at https://www.bjmemc.com.cn/, spanning the period from July 1,
2017 to March 30, 2023. The dataset includes 430,524 hourly air pollutant data points from 12
district-controlled air quality monitoring stations in Beijing. The reasons for using air quality data
are as follows: (1) Air quality data necessitates frequent real-time updates to accurately depict the
current state of air quality. Streaming data frameworks are capable of rapidly processing and providing
feedback on real-time data. (2) Air quality monitoring stations continuously and extensively generate
data. These stations are dispersed across various locations, with each site persistently producing a
substantial volume of data. Streaming data frameworks can efficiently handle this continuous data
flow.

In this study, we explore the relationship between the PM2.5 concentration (ug/m3) and ten variables
in Table 9. For model diagnostics, we use the AIC method for model selection. Specifically, we
collected the historical Beijing multi-site air-quality dataset from March 2013 to February 2017, and
calculated the AIC values under three different models based on the historical data, namely the classic
linear regression model and the quantile regression model with τ = 0.1 and 0.9. The AIC results are
shown in Figure 3. From Figure 3, we can observe that the model with 10 variables is the best model.

Table 9. Covariates and their descriptions.

Name Description
PM10 PM1.0 concentration (ug/m3)
SO2 SO2 concentration (ug/m3)
NO2 NO2 concentration (ug/m3)
CO CO concentration (ug/m3)
O3 O3 concentration (ug/m3)
TEMP temperature (degrees Celsius)
PRES pressure (hPa)
DEMP dew point remperature (degrees Celsius)
RAIN rainfall (mm/m3)
WSPM wind speed (m/s)
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Figure 3. The results of AIC using historical data.

Because this data was collected by air quality monitoring sites in chronological order, we set the
number of batches b = 48 based on the number of months. This air quality dataset and model have
been analyzed in Jiang and Yu [37], which also focused on quantile regression for streaming data.

We fit the streaming data to the Bayesian quantile regression model by implementing Algorithm 1
for five quantile levels, specifically τ = 0.10, 0.30, 0.50, 0.70, and 0.90. In each scenario, the entire
set of observations is divided into 48 subsets. Subsequently, the informative g-prior is assigned with
g=100. All reported results are based on 15,000 draws obtained from the Gibbs samplers, with a burn-
in period of 5000 iterations. Table 10 and Figure 4 present the estimated coefficients for the specified
quantile levels.

At different quantiles, the coefficients of five air factors are all significant and positive, indicating
that these air pollutants have a positive impact on PM2.5 concentration. As the quantile τ increases, the
estimated coefficients of SO2, NO2, and O3 decrease, which means that the impact of SO2, NO2, and
O3 on PM2.5 concentration gradually decreases with the increase of PM2.5 concentration. Additionally,
the estimated coefficients of PM0 and CO increase with increasing quantile τ, indicating that as the
concentration of PM2.5 increases, the impact of PM10 and CO is increasing.

Table 10. BSQR estimation of the coefficient for the air quality data.
τ=0.10 τ= 0.30 τ= 0.50 τ= 0.70 τ= 0.90
Coeff Std Coeff Std Coeff Std Coeff Std Coeff Std

Intercept -3.37E-04 1.12E-04 -4.58E-04 1.07E-04 -4.17E-04 1.25E-04 -2.83E-04 9.35E-05 -9.31E-04 3.93E-05
PM10 0.2051 1.78E-03 0.2661 2.79E-03 0.5478 3.27E-03 0.7472 2.95E-03 0.9397 2.34E-03
SO2 0.1393 7.49E-03 0.067 9.18E-03 0.0225 7.59E-03 0.0158 6.50E-03 0.0021 6.81E-03
NO2 0.0976 4.91E-03 0.0303 6.05E-03 0.0240 5.89E-03 -0.0730 5.53E-03 -0.075 3.53E-03
CO 0.0217 1.75E-04 0.0342 2.12E-04 0.0210 2.27E-04 0.0486 2.09E-04 0.0796 2.27E-04
O3 0.0873 2.04E-03 0.0902 2.81E-03 0.0692 3.19E-03 0.0507 2.14E-04 0.0111 1.45E-03
Temp -0.2712 1.29E-02 -0.415 1.59E-02 -0.465 1.91E-03 -0.4800 1.48E-03 -0.8166 9.98E-03
PRES -0.0083 3.27E-04 -0.0061 3.13E-04 -0.0004 3.79E-04 -0.0003 3.47E-04 -0.0003 2.09E-04
DEWP 0.3681 1.17E-02 0.5439 1.26E-02 0.6366 1.58E-02 0.5431 1.36E-02 0.9628 1.03E-03
RAIN -0.4460 8.72E-02 -0.4162 1.05E-02 -0.4335 7.62E-01 -0.3509 6.97E-02 -0.2513 4.95E-02
WSPM -0.4897 7.08E-02 -0.2915 9.63E-02 -0.1941 9.58E-02 -0.1218 8.23E-02 -0.0809 4.46E-02
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Figure 4. The estimated coefficients of BSQR under different quantiles for the air quality
data.

For the other five meteorological factors, TEMP, PRES, DEWP, RAIN, and WSPM, RAIN and
WSPM have significant and negative coefficients at each quantile, indicating that they have a negative
impact on PM2.5 concentration, and this effect become weaker as PM2.5 concentration increases. The
coefficient of PRES is not significant at the 0.9 quantile, indicating that air pressure has no significant
effect on PM2.5 at high concentrations. The TEMP coefficient is significantly negative at five quantiles,
and the absolute value of the coefficient gradually increases, meaning that as the concentration of PM2.5

increases, the impact of temperature becomes stronger. The coefficients of DEWP at each quantile are
significantly positive, and as the quantile increases, the coefficients show an increasing trend. This
indicates that as the concentration of PM2.5 increases, the impact of DWEP increases.

Compared with the method in [37], we added three new covariates, PM10, O3, and RAIN, making the
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analysis of the real data more comprehensive. In addition, the conclusion of BSQR method indicates
that the estimated coefficients of SO2 and NO2 decrease as quantity τ increases, and the estimated
coefficients of WSPM are negative. These findings are different from the conclusions of [34], but are
consistent with the research results of PM2.5 in Li [38] and Zhang and Zhang [39].

6. Conclusions

This paper extends the traditional frequency QR. This extension involves the utilization of an ALD-
based likelihood function, a conjugate NIG prior, and an adjusted NIG posterior. The streaming data
method we proposed does not require storing historical data; it only needs to save the parameters of the
posterior distribution and the current data. Furthermore, theoretical results establish the equivalency
between the proposed posterior distribution for streaming data and the one computed using the full data.
Both simulation studies and real data evaluations affirm the strong performance of the new approach
proposed in this paper.

Real data analysis of Example 1 shows that the popularity of news is related to factors such as the
number of positive words, images, video content, keywords and length. Among them, the number
of positive words has a negative impact on the popularity of news. In Example 2, air pollutants and
meteorological factors have varying impacts on PM2.5 concentration, with the influence of some factors
changing as PM2.5 concentration increase. Specifically, the impact of air pollutants SO2, NO2, and O3

decreases, while that of PM10 and CO increases. Among meteorological factors, the influence of RAIN
and WSPM decreases, and the impact of TEMP and DEWP becomes more pronounced at high PM2.5

concentrations.
This study reveals the degree and trend of the impact of different air pollutants and meteorological

factors on PM2.5 concentrations, which helps to more accurately understand the complex mechanisms
of PM2.5 formation and provides a scientific basis for air quality management. The following air quality
management strategies are recommended: (1) Prioritize the control of SO2, NO2, and O3 emissions,
especially in areas with lower PM2.5 concentrations, as these pollutants have a significant impact
on PM2.5; (2) in areas with higher PM2.5 concentrations, strengthen the control of PM10 and CO to
reduce their contribution to PM2.5 concentrations; (3) strengthen the study of air pressure to determine
its impact at different PM2.5 concentrations, providing a more comprehensive basis for management
strategies.

Nonetheless, there are several issues requiring future research. First, in conjunction with penalty
functions such as LASSO [40] and SCAD [41], it is necessary to further explore the high-dimensional
regularization for streaming data. Specifically, there are several versions of regularization that could be
used [42]. In the frequency framework, Ma et al. [43] proposed an online updating coordinate descent
algorithm, and a tuning lasso parameter selection was also suggested. Wang et al. [45] proposed a
provable online feature selection algorithm that utilizes the online leverage score. For the Bayesian
framework, we will explore Bayesian variable selection strategies in the streaming data context in
our subsequent work. Based on current research, we aim to propose more accurate and efficient
regularization methods for streaming data. Second, the new approach focuses on Bayesian linear QR
models, and the issue of concept drift [44, 46] is not considered. Thus, one can further consider more
complex Bayesian streaming data models like Bayesian deep neural networks, and invest the concept
drift problem in the online BQR setting. Lastly, the new algorithm is geared to independent data, while
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in practical scenarios, dependent or non-stationary data [47] are more commonly used, including time
series data or longitudinal data. Hence, it will be interesting to develop the corresponding algorithms
for such kinds of datasets.
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Appendix

For streaming data D1,D2, ...Dm, · · · , the NIG form of the posterior distribution for Dm−1 is,

f
(
β, σ|Y∗τ,m−1, X

∗
m−1,V

)
∝ NIG

(
µ̄τ,m−1, Λ̄m−1, ām−1, b̄τ,m−1

)
,

where, µ̄τ,m−1 = [(1 + 1
g )X∗Tm−1Σ

−1
m−1X∗m−1]−1X∗Tm−1Σ

−1
m−1Y∗τ,m−1, Λ̄m−1 = (1 + 1

g )X∗Tm−1Σ
−1
m−1X∗m−1, ām−1 = 3

2n,

bτ,m−1 = 1
2Y∗Tτ,m−1Σ

−1
m−1Y∗τ,m−1 −

1
2 µ̄

T
τ,m−1Λ̄m−1µ̄τ,m−1.

Thus, the likelihood function of Dm data is

f (Y∗τ,m|X
∗
m, β, σ,V,Σ) ∝ σ−

nm−k
2 exp{−

1
2σ

[Y∗τ,m − X∗m
T β̂τ,m]Σ−1

m [Y∗τ,m − X∗m
T β̂τ,m]}

σ−
k
2 exp{−

1
2σ

(β − β̂τ,m)T Λm(β − β̂τ,m)}

= (σ)−(a+ k
2 +1)exp{−

1
σ

[bτ,m +
1
2

(β − µτ,m)T Λ(β − µτ,m)]}.

The likelihood function has a representation of the NIG distribution NIG(µτ,m,Λm, am, bτ,m), which
means

f (Y∗τ,m|X
∗
m, β, σ,V,Σ) ∝ NIG

(
µτ,m,Λm, am, bτ,m

)
,
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where, µτ,m = β̂τ,m, Λ = X∗Tm Σ−1
m X∗m, am = nm−k−2

2 , bτ,m = 1
2 [Y∗τ,m − X∗mβ̂τ,m]

T
Σ−1

m [Y∗τ,m − X∗mβ̂τ,m].
According to Remark 1, the prior of the Bayesian algorithm for streaming data consists of the

adjusted historical posterior and the g-NIG prior distribution of the current data information

NIG(µ̄τ,m−1, Λ̄m−1, ām−1 −
k + 2

2
, b̄τ,m−1) × NIG(µ0,Λm,0, 0, 0).

The prior distribution of the m-th batch of streaming data is defined as

NIG(µp,τ,m,Λp,m, ap,m, bp,τ,m),

where,

µp,τ,m = (Λ̄m−1 + Λm,0)−1(Λ̄m−1µ̄τ,m−1)

= [(1 +
1
g

)
m−1∑

i

X∗Ti Σ−1
i X∗i +

X∗Tm Σ−1
m X∗m

g
]−1(X∗Tm−1Σ

−1
m−1Y∗τ,m−1),

Λp,m = Λ̄m−1 + Λm,0 = (1 +
1
g

)
m−1∑

i

X∗Ti Σ−1
i X∗i +

X∗Tm Σ−1
m X∗m

g
,

ap,m = ām−1 + a0 +
k + 2

2
−

k + 2
2

=
nm−1

2
,

bp,τ,m = b̄τ,m−1 + b0 +
1
2

(µ̄τ,m−1 − µp,τ,m)T Λm−1(µ̄τ,m−1 − µp,τ,m) +
1
2
µT

p,τ,mΛm,0µp,τ,m.

Now, we can infer that the posterior distribution of our algorithm in m-th batch is

NIGk(µ̄τ,m, Λ̄m, ām, b̄τ,m) = NIG(µp,m,Λp,m, ap,m, bp,m) × NIG
(
µτ,m,Λm, am, bτ,m

)
.

According to Proposition 1, we can obtain the NIG posterior parameters as follows,

µ̄τ,m = (Λp,m + Λm)−1(Λp,mµp,τ,m + Λmµτ,m)

= ((1 +
1
g

)
m−1∑

i

X∗Ti Σ−1
i X∗i +

X∗Tm Σ−1
m X∗m

g
+ X∗Tm Σ−1

m X∗m)−1(X∗Tm−1Σ
−1
m−1Y∗τ,m−1 + X∗Tm Σ−1

m Y∗τ,m)

= ((1 +
1
g

)
m∑
i

X∗Ti Σ−1
i X∗i )−1(

m∑
i

X∗Ti Σ−1
i Y∗τ,i),

Λ̄m = Λp,m + Λm = (1 +
1
g

)
m−1∑
i=1

X∗Ti Σ−1
i X∗i +

X∗Tm Σ−1
m X∗m

g
+ X∗Tm Σ−1

m X∗m = (1 +
1
g

)
m∑

i=1

X∗Ti Σ−1
i X∗i ,

ām = ap,m + am +
k + 2

2
=

nm−1

2
+

nm − k − 2
2

+
k + 2

2
=

nm + Nm−1

2
=

Nm

2
,
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b̄τ,m = bp,τ,m + bm +
1
2

(µp,m − µ̄τ,m)T Λp,m(µp,τ,m − µ̄τ,m) +
1
2

(µ − µ̄τ,m)T Λm(µ − µ̄τ,m)

=
1
2

m−1∑
i

Y∗Tτ,i ΣiY∗τ,i −
1
2
µ̄T
τ,m−1Λ̄m−1µ̄τ,m−1 −

1
2
µT

p,τ,mΛ̄m−1µ̄τ,m−1 +
1
2
µT

p,τ,mΛ̄m−1µp,τ,m

+
1
2
µT

p,τ,mΛm,0µp,τ,m +
1
2

Y∗Tτ,mΣmY∗τ,m −
1
2

Y∗Tτ,mΣmX∗Tµτ,m −
1
2
µT
τ,mX∗Tm Σ−1

m Y∗Tτ,m +
1
2
µT
τ,mX∗Tm Σ−1

m X∗mµτ,m

+
1
2
µT

p,τ,mΛp,mµp,τ,m −
1
2
µT

p,τ,mΛp,mµ̄τ,m −
1
2
µ̄T
τ,mΛp,mµp,τ,m +

1
2
µ̄T
τ,mΛp,mµ̄τ,m

+
1
2
µT
τ,mΛmµτ,m −

1
2
µT
τ,mΛmµ̄τm −

1
2
µ̄T
τmΛmµτ,m +

1
2
µ̄T
τ,mΛmµ̄τ,m

=
1
2

m−1∑
i=1

Y∗Tτ,i ΣiY∗τ,i +
1
2

Y∗Tτ,mΣmY∗τ,m −
1
2

m−1∑
i=1

Y∗Tτ,i ΣiX∗i µ̄τ,m

−
1
2
µ̄T
τ,m

m−1∑
i=1

X∗Ti ΣiY∗τ,i +
1
2
µ̄T
τ,m(Λp,m + Λm)µ̄τ,m −

1
2

Y∗Tτ,mΣ−1
m X∗µ̄τ,m −

1
2
µ̄mX∗Tm ΣmY∗τ,m

=
1
2

m−1∑
i=1

Y∗Tτ,i ΣiY∗τ,i +
1
2

Y∗Tτ,mΣmY∗τ,m −
1
2
µ̄T
τ,m

m−1∑
i=1

X∗Ti ΣiY∗τi −
1
2
µ̄mX∗Tm ΣmY∗τ,m

=
1
2

m∑
i=1

Y∗Tτ,i ΣiY∗τ,i −
1
2
µ̄T
τ,m

m∑
i=1

X∗Ti ΣiY∗τ,i.

Thus, the proof of Theorem is completed.
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