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Abstract: An adaptive neural network event-triggered consensus control method incorporating a state
observer was proposed for a class of uncertain nonlinear multi-agent systems (MASs) with actuator
failures. To begin, a state observer was constructed in an adaptive backstepping framework to estimate
the MASs’ unmeasurable states, and a radial basis function neural network (RBFNN) was employed to
approximate the unknown nonlinear function of MASs. Meanwhile, to reduce the impact of actuator
failure on the performance of MASs, the adaptive event-triggered mechanism (ETM) was designed
to dynamically compensate for actuator failures, which alleviated the communication burden among
individual agents by decreasing the update frequency of the control signals. Furthermore, all followers
can track the leader’s output signal with the synchronization errors converging to zero. Finally,
simulation examples were used to verify the effectiveness of the proposed control strategy.
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1. Introduction

Currently, many engineering problems are complex and dynamic, posing challenges for traditional
single-agent systems. Multi-agent systems (MASs) address these challenges through distributed
problem-solving via collaboration, competition, and division of labor. Consequently, the coherent
cooperative control of MASs has become a key research focus [1–7]. In [1], the authors studied
the coherent adaptive cooperative control of uncertain nonlinear MASs from the three uncertainties
of dead zone, disturbances, and uncertain time-varying control directions. Similarly, [3] extends the
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investigation to include uncertainties such as unknown control directions, input unmodeled dynamics,
sensor failures, and prescribed performance. In [5], a distributed control protocol is formulated through
the integration of adaptive control techniques and matrix theory. The design incorporates Fourier
series expansion and neural networks (NNs) to approximate uncertain nonlinearities with unmeasured
periodic time-varying perturbations. A variety of industrial field agents are further reorganized into
new heterogeneous MASs for cooperative control, and a review and outlook of the latest results are
presented in [6]. However, all the above control methods presuppose the assumption that all states
throughout the system can be measured.

The acquisition of state information is limited during the operational phase due to equipment
constraints, various other variables, and environmental conditions [8–14]. These limitations hinder the
system’s tracking performance and stability. This constraint ultimately hinders the system’s tracking
performance and stability. In [8], heterogeneous MASs comprising numerous unmanned ground
vehicles (UGVs) and unmanned aerial vehicles (UAVs) are investigated to design a fixed-time observer
aimed at estimating the mismatch interference and set total uncertainty.

In [9], the aid of a fuzzy observer for estimating the unavailable states is accompanied by utilizing
the characteristics of fuzzy logic systems (FLSs) to address mismatches among agents and uncertainties
within the MASs. In [12], the combination of the designed NNs state observer with the introduced
adaptive control algorithm addresses the system’s steady-state control and transient performance. To
deal with the problems arising from unknown perturbations, a low-coupling, simple structure and easy-
to-implement nonlinear perturbation observer is designed in [14].

In addition, nonlinearities widely exist in engineering control systems, for instance, actuator failures
are unavoidable problems that may negatively affect the stability, performance, safety, and lifetime of
the system. Therefore, it is especially critical for systems that require a high degree of controllability
and robustness. To cope with this problem, many scholars have proposed a multitude of innovative
control schemes with adaptive backstepping control techniques as the research background [15–21].
In [15], an adaptive fuzzy fixed-time fault-tolerant controller was designed by utilizing the inverse
step control technique and the fixed-time stabilization theory. In [16], an adaptive output feedback
compensation method is proposed by considering both actuator and sensor failure. Compared with [16]
Authors in [17] relaxes the assumption requirement on the nonlinear functions, and proposes a new
compensation mechanism to compensate for the impact of actuator failures by employing the approach
of cubic absolute value Lyapunov functions and the novel (σ,σ f )-modification.

On the contrary, the aforementioned research accomplishments rely on a traditional time-triggered
mechanism (TTM). The fixed sample frequency and limitations in communication bandwidth
associated with TTM lead to data redundancy in network signal transmission, thus occupying
communication resources. Consequently, there has been a growing interest among scholars in
exploring the event-triggered mechanism (ETM) [22–30]. In [22], an event-triggered output feedback
control method incorporating adaptive dynamic programming (ADP) with a state observer is proposed
to reduce the signal transmissions on network channels, and thus control signals are updated only
at specific moments where the triggering conditions are violated. In [25], researchers construct
an adaptive progressive tracking control strategy with a temporal control mechanism and an event
triggering mechanism with variable thresholds, and comparative experiments indicate better robustness
with the latter. In [27], the combination of command filtering backstepping and adaptive event-
triggered communication (e.g., when a certain threshold is reached) solves the virtual controller
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complexity problem while effectively avoiding the waste of communication resources. While [29]
is opposite to [27, 29], the preset triggered condition is established by utilizing the negative semi-
definiteness of the Lyapunov function’s derivative, aiming to alleviate the communication burden and
conserve computational resources.

In summary, with regard to a category of uncertain nonlinear MASs with actuator failures, an
adaptive NNs event-triggered consensus control strategy incorporating the state observer is proposed
to reduce the impact of the system by actuator failures. In comparison to existing findings, the main
innovations of the proposed control method include:

(1) Different from the existing algorithms, such as [15, 16, 27] an event-triggered adaptive states
observation consistency control strategy is proposed for a class of uncertain nonlinear MASs with
actuator failures.

(2) With regard to the actuator failures that are common in the actual industrial production
system, the existing compensation programs, such as [17–20], need to occupy a large amount
of communication resources. Thus, the design of an adaptive ETM to achieve dynamic
compensation for actuator failures while reducing the update frequency of control signals, which
reduces the occupation of communication resources, is more widespread in practical engineering.

(3) Due to the actual systems, the states of the system are often unmeasurable and the system
is characterized by nonlinearities. Therefore, an adaptive NNs control method incorporating
a state observer is proposed, which utilizes radial basis function neural networks (RBFNNs)
to approximate MASs’ unknown nonlinear functions, and the state observer is formulated for
estimating the states of MASs.

The rest is presented in the following sections. Section 2 contains the problem description and
preliminaries. Section 3 designs an adaptive NNs event-triggered consensus control scheme. Section 4
gives two simulation examples to verify the effectiveness of the designed scheme. Section 5 is the
conclusion.

2. Problem description and preliminaries

2.1. Problem description

Consider the following category of uncertain nonlinear MASs [31]
ẋk,i = xk,i+1 + fk,i(Xk,i), i = 1, 2, . . . , n − 1
ẋk,n = uk + fk,n(Xk,n)
yk = xk,1

(2.1)

where Xk,i = [xk,1, xk,2, . . . , xk,i]T and Xk,n = [xk,1, xk,2, . . . , xk,n]T are the state vectors, which are not
measurable; fk,i(·) is the unknown smooth nonlinear function; uk represents the control input, while
yk ∈ [yk,1, yk,2, . . . , yk,n]T denotes system output. The system consists of a leader labeled G and k(k =
1, 2, . . . ,N) followers.

Assume each agent is equipped with b = 1, 2, . . . ,Z, (Z > 1) actuators, where uk =
∑Z

b=1 lk,buk,b

and lk,b denotes the known constant control gain. During actual operation, agents will inevitably suffer
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from actuator failures. The actuator failure model of b − th (1, 2, . . . ,Z) is given as follows:{
uk,b = ρk,būk,b + ck,b,∀t ≥ tbw

ρk,bck,b = 0
(2.2)

where the health factor is ρk,b ∈ [0, 1]; ck,b and tbw are unknown constants, tbw indicates the moment of
the bth actual failure. The crucial working states of the actuator operation are categorized into three
situations:

1) ρk,b = 0, uk,b = ck,b. The actuator is in a state of complete failure.
2) ρk,b ∈ (0, 1), uk,b = ρk,būk,b. The partial failure will occur during actuator working.
3) ρk,b = 1, uk,b = ūk,b. The actuator works properly.
To facilitate the subsequent analysis, the work situations of the three actuators mentioned above

are further summarized. Thus, two sets Lm1 and Lm2 are set and Lm1 ∪ Lm2 = {1, 2, . . . ,Z}. Here, Lm1

indicates that the actuator is in a set of partial failure and normal operating states; Lm2 denotes the set
in which the actuator is in a complete failure state.

Then, the MASs (2.1) is transformed into the following equation:{
Ẋk = AeXk + Hyk +

∑n
i=1 Rk,i fk,i(Xk,i) + Rk,nuk

yk = QT Xk
(2.3)

where

Ae =


−hk,1 1 · · · 0
...

...
. . .

...

−hk,n−1 0 · · · 1
−hk,n 0 · · · 0


n×n

H =


hk,1
...

hk,n−1

hk,n

 Rk,i =

0 · · · 1︸︷︷︸
i

· · · 0


T

Rk,n =

0 · · · 1︸︷︷︸
n


T

Q = [1, 0, · · · , 0]T

where Ae is a strict Hurwitz matrix. Given a positive definite matrix P = PT > 0, there exists a positive
definite matrix O = OT > 0, which satisfies AT

e O + OAe = −P.

Assumption 1 ( [32]). The desired trajectory ys =
[
ys1, ys2, . . . , ysn

]T
∈ Rn has the derivative of the

(n + 1) − th order. There are constants s0 > 0 and s1 > 0 such that s1 > s0 and |ys| ≤ s0 ≤ s1.

Assumption 2 ( [33]). During the operation, the system can stand Z − 1 actuator failures at the same
time to the greatest extent.

Lemma 1 ( [34]). For any υ, ϱ ∈ R, the following inequality holds for

0 ≤ |υ| − υ tanh
(
υ

ϱ

)
≤ 0.2785ϱ. (2.4)

2.2. Graph theory

Through a directed graph Q(F ,D), the communication topology among agents including leaders
and followers is presented, in which F = {G, 1, 2, . . . ,N} represents the set of agents and D ⊆ F × F
denotes the set of edges. A = [ak j]N×N signifies the adjacency matrix of the graph Q between agents. If
there is an edge ( j, k) ⊆ D (from agent j to agent k), which signifies that agent k can receive information
from agent j, then ak j > 0; contrarily, ak j = 0. In addition, a matrix D = diag{s1, s2, . , sN} ∈ RN×N is
obtained, in which si =

∑N
j=1 ak j, i = 1, 2, . . . ,N, and a Laplacian matrix is L = D − A ∈ RN×N .
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2.3. RBFNNs

By using the characteristic that NNs can arbitrarily approximate the unknown nonlinear function,
the unknown nonlinear function of Q(θ) is processed, and there are

Q(θ) = ψT W(θ) + ε(θ) (2.5)

where W(θ) = [W1(θ),W2(θ), . . . ,Wn(θ)]T is expressed as the basis function vector and ψ =

[ψ1, ψ2, . . . , ψn]T signifies the ideal weight vector, in which n > 0 is the number of neural nodes;
there exists a positive constant ε̄ denoted as the approximation error such that |ε(θ)| ≤ ε̄. Generally, the
following basis function is selected as

Wi(θ) = − exp
(
(θ − pi)T (θ − pi)

κ2
i

)
(2.6)

where i = 1, 2, . . . , n; κi signifies the width, while pi = [pi1, pi2, . . . , pin]T denotes the center of the
Gaussian function.

Remark 1. ψ ∈ Rι encompasses ι unknown constants, represented by an unknown constant value ζ
for ||ψ||2 = ζ. By updating the norm of ψ instead of directly estimating it, thus, only the parameter ζ
is estimated. This is done to minimize the estimation error ζ̃ = ζ − ζ̂, thereby reducing computational
load and simplifying controller design.

3. Adaptive NNs event-triggered consensus control design

3.1. State observer design

Since the states of the MASs are unmeasurable, the following state observer is designed for its
estimation and its expression is { ˙̂xk,i = x̂k,n + hi(yk − x̂k,1)

˙̂xk,n =
∑Z

b=1 lk,buk,b + hn(yk − x̂k,1)
(3.1)

where X̂k,i =
[
x̂k,1, x̂k,2, · · · , x̂k,i

]T is the estimated value of Xk,i and X̂k,n =
[
x̂k,1, x̂k,2, · · · , x̂k,n

]T is the
estimated value of Xk,n. The observer error is ek = Xk,n − X̂k,n, and its derivative is obtained as

ėk = Aek +

n∑
q=1

Bk,q fk,q. (3.2)

Select the following Lyapunov function:

Vk,0 = eT
k Okek. (3.3)

By taking the derivative of Vk,0, one has
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V̇k,0 = eT
k (AT

e Ok + OkAe)ek + eT
k Ok

 n∑
q=1

Bk,q fk,q


= −eT

k Pkek + 2eT
k Ok

 n∑
q=1

Bk,q fk,q

 . (3.4)

According to Young’s inequality and
∑n

i=1 WT
k,0Wk,0 ≤ 1. Additionally, ζ is defined as ζ =

max
{
n ∥ψ0∥

2 , ∥ψi∥
2 , i = 1, . . . , n

}
and n is the number of neural nodes. Therefore, there will be

∥ψ0∥
2
≤ ζ/n, and

∣∣∣εk,0

∣∣∣ ≤ ε̄k,0 represents the approximate error, ε̄k,0 > 0.

2eT
k Ok

n∑
q=1

Bk,q fk,q = 2eT
k Ok

n∑
q=1

Bk,q

(
ψ̃T

k,0Wk,0 + εk,0

)
≤ 2λ2

max(Ok) ∥ek∥
2 + ∥Ok∥

2 ζk + ∥Ok∥
2 ε̄2

k,0. (3.5)

Then, substitute (3.5) into (3.4) to get

V̇k,0 ≤ −∆ ∥ek∥
2 + ∥Ok∥

2
(
ζk + ε̄

2
k,0

)
(3.6)

where ∆ = −2 (λmax(Ok))2 + λmin(Pk).

3.2. Control design

The construction of virtual control laws within the backstepping control framework follows.
Initially, the error system is expressed as{

zk,1 = υk(yk − ys) +
∑N

j=1 ak j(yk − y j)
zk,n = x̂k,n − αk,n−1 (n ≥ 2)

(3.7)

where zk,1 and zk,n represent a synchronization error of agent k and a virtual error, respectively; ys is the
leader’s output signal; υk ≥ 0 denotes the weight vector associated with the edge from agent k to leader
G. In particular, when υk = 0, it means that there is no direct information exchange between agent k
and leader G. Moreover, at least one agent will receive the synchronization information from leader G.

Step 1: The first Lyapunov function is constructed as follows:

Vk,1 = Vk,0 +
1
2

z2
k,1 +

1
2rk,1

ζ̃2
k,1 (3.8)

where rk,1 > 0 is a constant. ζ̃k,1 = ζk,1 − ζ̂k,1 signifies the estimation error, and ζ̂k,1 represents the
estimation of the uncertain parameter ζk,1. Then, from (2.1) and (3.7), the derivation of zk,1 is

żk,1 = (υk + sk)(ek,2 + zk,2 + αk,1 + fk,1) − ẏsυk −

N∑
j=1

ak j(x j,2 + f j,1). (3.9)
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According to (3.9), the V̇k,1 has

V̇k,1 =V̇k,0 + zk,1(υk + sk)(ek,2 + zk,2 + αk,1 + fk,1) − ẏsυk −

N∑
j=1

ak j(x j,2 + f j,1) −
1

rk,1
ζ̃k,1

˙̂ζk,1. (3.10)

Utilizing Young’s inequality yields

zk,1(υk + sk)ek,2 ≤
1
4

z2
k,1(υk + sk)2 + ∥ek∥

2 . (3.11)

Let Qk,1(θk,1) = (υk + sk) fk,1 +
1
4zk,1(υk + sk)2 − ẏsυk −

∑N
j=1 ak j(x j,2 + f j,1), the unknown nonlinear

function Qk,1(θk,1) is approximated by RBFNN, and it obtained that

Qk,1(θk,1) = ψT
k,1Wk,1(θk,1) + εk,1(θk,1) (3.12)

where θk,1 = [x̂k,1, x̂ j,1, x̂ j,2, ẏs]T . Utilizing Young’s inequality yields

zk,1Qk,1(θk,1) =zk,1ψ
T
k,1Wk,1(θk,1) + zk,1εk,1(θk,1)

≤
1

2σ2
k,1

z2
k,1ζk,1

∥∥∥Wk,1

∥∥∥2
+
σ2

k,1

2
+

z2
k,1

2
+
ε̄2

k,1

2
(3.13)

where ζk,1 =
∥∥∥ψk,1

∥∥∥2
, σk,1 is a positive constant to be designed, and

∣∣∣εk,1

∣∣∣ ≤ ε̄k,1 represents the
approximate error, ε̄k,1 > 0.

By incorporating (3.11)–(3.13) into (3.10) yields

V̇k,1 ≤V̇k,0 + zk,1

(υk + sk)αk,1 +
1

2σ2
k,1

zk,1ζ̂k,1

∥∥∥Wk,1

∥∥∥2
 + z2

k,1

2
+
σ2

k,1

2
+
ε̄2

k,1

2

−
1

rk,1
ζ̃k,1

 ˙̂ζk,1 −
1

2σ2
k,1

rk,1z2
k,1

∥∥∥Wk,1

∥∥∥2
 + (υk + sk)zk,1zk,2. (3.14)

αk,1 and ˙̂ζk,1 are designed as

αk,1 = −
1

(υk + sk)

βk,1zk,1 +
1

2σ2
k,1

zk,1ζ̂k,1

∥∥∥Wk,1

∥∥∥2
 , (3.15)

˙̂ζk,1 =
1

2σ2
k,1

rk,1z2
k,1

∥∥∥Wk,1

∥∥∥2
− ξk,1ζ̂k,1, (3.16)

where βk,1 > 0 and ξk,1 > 0 are constants.
By incorporating (3.15)-(3.16) into (3.14) yields

V̇k,1 ≤ − ∆1 ∥ek∥
2 + M1 − βk,1z2

k,1 +
1

rk,1
ξk,1ζ̃k,1ζ̂k,1 + (υk + sk)zk,1zk,2 +

σ2
k,1

2
+
ε̄2

k,1

2
+

z2
k,1

2
(3.17)

where ∆1 = ∆ − 1 and M1 = ∥Ok∥
2
(
ζk + ε̄

2
k,0

)
.
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Step i (i = 2, 3, . . . , n − 1): The Lyapunov function is constructed as

Vk,i = Vk,i−1 +
1
2

z2
k,i +

1
2rk,i

ζ̃2
k,i, (3.18)

where ζ̃k,i = ζk,i − ζ̂k,i signifies the estimation error, and ζ̂k,i represents the estimation of the uncertain
parameter ζk,i. According to (3.7), one has

żk,i = zk,i+1 + αk,i + hi(yk − x̂k,1) − α̇k,i−1 (3.19)

where

α̇k,i−1 =

i−1∑
q=1

∂αk,i−1

∂x̂k,q
(x̂k,q+1 + hqek,1) +

i−1∑
q=1

∂αk,i−1

∂ζ̂k,q

˙̂ζk,q +
∂αk,i−1

∂xk,1
(ek,2 + x̂k,2 + fk,1)

+

i−1∑
q=1

N∑
j=1

∂αk,i−1

∂x̂ j,q
ẋ j,q +

i∑
q=1

∂αk,i−1

∂y(q−1)
s

ẏ(q)
s . (3.20)

According to (3.19)-(3.20), one has

V̇k,i =V̇k,i−1 + zk,i

zk,i+1 + αk,i + hi(yk − x̂k,1) −
i−1∑
q=1

∂αk,i−1

∂x̂k,q
(x̂k,q+1 + hqek,1) −

i−1∑
q=1

∂αk,i−1

∂ζ̂k,q

˙̂ζk,q

−
∂αk,i−1

∂xk,1
(ek,2 + x̂k,2 + fk,1) −

i−1∑
q=1

N∑
j=1

∂αk,i−1

∂x̂ j,q
ẋ j,q −

i∑
q=1

∂αk,i−1

∂y(q−1)
s

ẏ(q)
s

 − 1
rk,1

ζ̃k,i
˙̂ζk,i. (3.21)

Utilizing the Young’s inequality yields

−zk,i
∂αk,i−1

∂k,i
ek,2 ≤

1
4

z2
k,i

(
∂αk,i−1

∂k,i

)2

+ ∥ek∥
2 . (3.22)

If i = 2, let Qk,i(θk,i) = hi(yk − x̂k,1) −
∑i−1

q=1
∂αk,i−1

∂x̂k,q
(x̂k,q+1 + hqek,1) −

∑i−1
q=1

∂αk,i−1

∂ζ̂k,q

˙̂ζk,q −
∂αk,i−1

∂xk,1
(x̂k,2 + fk,1) −∑i−1

q=1
∑N

j=1
∂αk,i−1

∂x̂ j,q
ẋ j,q −

∑i
q=1

∂αk,i−1

∂y(q−1)
s

ẏ(q)
s +

1
4z2

k,i

(
∂αk,i−1

∂k,i

)2
+

z2
k,i−1

2 + (υk + sk)zk,i−1. If i ≥ 3, let Qk,i(θk,i) = hi(yk −

x̂k,1)−
∑i−1

q=1
∂αk,i−1

∂x̂k,q
(x̂k,q+1+hqek,1)−

∑i−1
q=1

∂αk,i−1

∂ζ̂k,q

˙̂ζk,q−
∂αk,i−1

∂xk,1
(x̂k,2+ fk,1)−

∑i−1
q=1

∑N
j=1

∂αk,i−1

∂x̂ j,q
ẋ j,q−

∑i
q=1

∂αk,i−1

∂y(q−1)
s

ẏ(q)
s +

1
4z2

k,i

(
∂αk,i−1

∂k,i

)2
+

z2
k,i−1

2 + zk,i−1. Then, the unknown nonlinear function Qk,i(θk,i) is approximated by an
RBFNN, and it is obtained that

Qk,i(θk,i) = ψT
k,iWk,i(θk,i) + εk,i(θk,i) (3.23)

where θk,i = [x̂T
k,i, x̂

T
j,i, ẏs]T . Applying Young’s inequality yields

zk,iQk,i(θk,i) =zk,iψ
T
k,iWk,i(θk,i) + zk,iεk,i(θk,i)

≤
1

2σ2
k,i

z2
k,iζk,i

∥∥∥Wk,i

∥∥∥2
+
σ2

k,i

2
+

z2
k,i

2
+
ε̄2

k,i

2
(3.24)
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where ζk,i =
∥∥∥ψk,i

∥∥∥2
, σk,i is a positive constant to be designed, and

∣∣∣εk,i

∣∣∣ ≤ ε̄k,i represents the approximate
error, ε̄k,i > 0.

By incorporating (3.22)–(3.24) into (3.21) yields

V̇k,i ≤ − ∆i ∥ek∥
2 + M1 + zk,1

αk,i +
1

2σ2
k,i

zk,1ζ̂k,i

∥∥∥Wk,i

∥∥∥2
 + z2

k,i

2
+ zk,izk,i+1

−
1

rk,i
ζ̃k,i

 ˙̂ζk,i −
1

2σ2
k,i

rk,iz2
k,i

∥∥∥Wk,i

∥∥∥2
 + i∑

q=1

σ2
k,q

2
+
ε̄2

k,q

2

 . (3.25)

αk,i and ˙̂ζk,i are designed as

αk,i = −βk,izk,i −
1

2σ2
k,i

zk,iζ̂k,i

∥∥∥Wk,i

∥∥∥2
, (3.26)

˙̂ζk,i =
1

2σ2
k,i

rk,iz2
k,i

∥∥∥Wk,i

∥∥∥2
− ξk,iζ̂k,i, (3.27)

where βk,i and ξk,i are positive constants to be designed.
Further, by incorporating (3.26)-(3.27) into (3.25) yields

V̇k,i ≤ − ∆i ∥ek∥
2 + M1 − βk,iz2

k,i +
z2

k,i

2
+ zk,izk,i+1 +

1
rk,i
ξk,iζ̃k,iζ̂k,i +

i∑
q=1

σ2
k,q

2
+
ε̄2

k,q

2

 . (3.28)

Step n: Construct the Lyapunov function as

Vk,n = Vk,n−1 +
1
2

z2
k,n +

1
2rk,n

ζ̃2
k,n +

Z∑
b=1,b∈Lm1

1
2

∣∣∣lk,b

∣∣∣ ρk,bK̃T
k,bΓ

−1
k,bK̃k,b (3.29)

where rk,n is a positive constant to be designed. ζ̃k,n = ζk,n − ζ̂k,n signifies the estimation error, and
ζ̂k,n represents the estimation of the uncertain parameter ζk,n. Γ−1

k,b is the inverse matrix of Γk,b, which
moreover denotes a positive definite matrix.

Since the żk,n =
∑Z

b=1 lk,b
(
ūk,bρk,b + ck,b

)
+ hn(yk − x̂k,1) − α̇k,n−1, it is the same as Step i.

α̇k,n−1 =

n−1∑
q=1

∂αk,n−1

∂x̂k,q
(x̂k,q+1 + hqek,1) +

n−1∑
q=1

∂αk,n−1

∂ζ̂k,q

˙̂ζk,q +
∂αk,n−1

∂xk,1
(ek,2 + x̂k,2 + fk,1)

+

n−1∑
q=1

N∑
j=1

∂αk,n−1

∂x̂ j,q
ẋ j,q +

n∑
q=1

∂αk,n−1

∂y(q−1)
s

ẏ(q)
s . (3.30)

The expression for Vk,n after derivation is
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V̇k,n =V̇k,n−1 + zk,n

 Z∑
b=1

lk,b
(
ūk,bρk,b + ck,b

)
+ hn(yk − x̂k,1) −

n−1∑
q=1

∂αk,n−1

∂x̂k,q
(x̂k,q+1 + hqek,1)

−

n−1∑
q=1

∂αk,n−1

∂ζ̂k,q

˙̂ζk,q −
∂αk,n−1

∂xk,1
(ek,2 + x̂k,2 + fk,1) −

n−1∑
q=1

N∑
j=1

∂αk,n−1

∂x̂ j,q
ẋ j,q −

n∑
q=1

∂αk,n−1

∂y(q−1)
s

ẏ(q)
s


−

1
rk,1

ζ̃k,n
˙̂ζk,n −

Z∑
b=1

|lk,b|ρk,bK̃−1
k,bΓ

−1
k,b

˙̂Kk,b. (3.31)

Utilizing Young’s inequality yields

−zk,n
∂αk,n−1

∂k,n
ek,2 ≤

1
4

z2
k,n

(
∂αk,n−1

∂k,n

)2

+ ∥ek∥
2 . (3.32)

Let Qk,n(θk,n) = hn(yk − x̂k,1) −
∑n−1

q=1
∂αk,n−1

∂x̂k,q
(x̂k,q+1 + hqek,1) −

∑n−1
q=1

∂αk,n−1

∂ζ̂k,q

˙̂ζk,q −
∂αk,n−1

∂xk,1
(x̂k,2 + fk,1) −∑n−1

q=1
∑N

j=1
∂αk,n−1

∂x̂ j,q
ẋ j,q−

∑n
q=1

∂αk,n−1

∂y(q−1)
s

ẏ(q)
s +

1
4z2

k,n

(
∂αk,n−1

∂k,n

)2
+

z2
k,n−1

2 +zk,n−1. Then, the unknown nonlinear function
Qk,n(θk,n) is approximated by an RBFNN, and it is obtained that

Qk,n(θk,n) = ψT
k,nWk,n(θk,n) + εk,n(θk,n) (3.33)

where θk,n = [x̂T
k,n, x̂

T
j,n, ẏs]T . Applying Young’s inequality, one has

zk,nQk,n(θk,n) =zk,nψ
T
k,nWk,n(θk,n) + zk,nεk,n(θk,n)

≤
1

2σ2
k,n

z2
k,nζk,n

∥∥∥Wk,n

∥∥∥2
+
σ2

k,n

2
+

z2
k,n

2
+
ε̄2

k,n

2
(3.34)

where ζk,n =
∥∥∥ψk,n

∥∥∥2
, σk,n is a positive constant to be designed, and

∣∣∣εk,n

∣∣∣ ≤ ε̄k,n represents the
approximate error, ε̄k,n > 0.

By incorporating (3.32)–(3.34) into (3.31) yields

V̇k,n ≤V̇k,n−1 + zk,n

Z∑
b=1

lk,b
(
ūk,bρk,b + ck,b

)
+

1
2σ2

k,n

zk,nζ̂k,n

∥∥∥Wk,n

∥∥∥2
+

z2
k,n

2
−

z2
k,n−1

2

−
1

rk,n
ζ̃k,n

 ˙̂ζk,n −
1

2σ2
k,n

rk,nz2
k,n

∥∥∥Wk,n

∥∥∥2
 + σ2

k,n

2
+
ε̄2

k,n

2
− zk,nzk,n−1. (3.35)

The ETM of relative threshold is designed as follows

ϖk,b = −(1 + η)
[
ũk,b tanh

(
zk,nsgn(lk,b)ũk,b

λ

)
+ γ tanh

(
zk,nsgn(lk,b)γ

λ

)]
, (3.36)

 ūk,b(t) = ϖk,b
(
tk,F

)
, tk,F ≤ t < tk,F+1

ti,F+1 = inf
{
t ∈ R|

∣∣∣Ek,b(t)
∣∣∣ ≥ η ∣∣∣ūk,b(t)

∣∣∣ + η1

} (3.37)
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where 0 < η < 1, λ > 0, and γ > 0 are design constants; Ek,b(t) = ūk,b(t) − ϖk,b(t), in which ūk,b(t)
denotes the control signal andϖk,b(t) is the event-triggered control input; and γ > η1/(1−η) and m ∈ Z+.
When the trigger condition

∣∣∣Ek,b(t)
∣∣∣ ≥ η ∣∣∣ūk,b(t)

∣∣∣+ η1 holds true, ūk,b(t) = ϖk,b
(
tk,F

)
is updated and keeps

this value until the next event is triggered. tk,F denotes the moment when the event is triggered, tk,F > 0,
and F ∈ Z+. The control law ũk,b will be designed later.

For any t ∈
[
tk,F , tk,F+1

)
, ϖk,b(t) = (1 + ηϕ1(t)) ūk,b(t) + η1ϕ2(t), in which |ϕ1(t)| ≤ 1 and |ϕ2(t)| ≤ 1.

Thereby, it can be further articulated as

ūk,b(t) =
ϖk,b(t) − η1ϕ2(t)

1 + ηϕ1(t)
. (3.38)

Based on the uncertain actuator model and ETM, the control law ũk,b is constructed as follows

ũk,b = sgn(lk,b)KT
k,bH (3.39)

where Kk,b =
[
Kk,b11,Kk,b21, . . . ,Kk,b2Z

]T , Kk,b11 =
1∑Z

b=1,b∈Lm1
|lk,b |ρk,b

, and H =
[
αk,n, 1, . . . , 1

]T . Especially,

if b ∈ Lm2, one has Kk,b2Z = −
|lk,b |ck,b∑Z

b=1,b∈Lm1
|lk,b |ρk,b

. In contrast, if b ∈ Lm1, one has Kk,b2Z = 0.

Further, it can be inferred that

Z∑
b=1,b∈Lm1

zk,n|lk,b|ρk,bKT
k,bHk,b +

Z∑
b=1,b∈Lm2

zk,n|lk,b|ck,b = zk,nαk,n. (3.40)

Remark 2. It is noteworthy that, from Equations (3.39)–(3.40), it can be observed that ρk,b and ck,b

are all unknown constants. Therefore, the value of Kk,b cannot be directly measured. To achieve the
feasibility of the intermediate control law ũk,b, the estimation K̂k,b is utilized to estimate the value of
Kk,b, resulting in an estimation error K̃k,b = Kk,b − K̂k,b.

Then, ũk,b is re-expressed as
ũk,b = sgn(lk,b)K̂T

k,bH. (3.41)

According to (3.36), (3.38), and Lemma 1, it can be obtained that

zk,nsgn(lk,b)ūk,b = − zk,nsgn(lk,b)
(

1 + η
1 + ϕ1η

(
ũk,b tanh

(
zk,nsgn(lk,b)ũk,b

λ

)
+ γ tanh

(
zk,nsgn(lk,b)γ

λ

))
+

ϕ2η1

1 + ϕ1η1

)
≤

∣∣∣zk,nsgn(lk,b)ũk,b

∣∣∣ − zk,nsgn(lk,b)ũk,b tanh
(
zk,nsgn(lk,b)ũk,b

λ

)
+

∣∣∣zk,nsgn(lk,b)γ
∣∣∣ − zk,nsgn(lk,b)γ tanh

(
zk,nsgn(lk,b)γ

λ

)
−

∣∣∣zk,nsgn(lk,b)ũk,b

∣∣∣
≤zk,nsgn(lk,b)ũk,b + 0.557λ. (3.42)

By incorporating (3.38)–(3.42) into (3.35) yields

AIMS Mathematics Volume 9, Issue 9, 25752–25775.



25763

V̇k,n ≤V̇k,n−1 +

Z∑
b=1,b∈Lm1

zk,n|lk,b|sng(lk,b)ρk,bũk,b + 0.557
Z∑

b=1,b∈Lm1

|lk,b|ρk,bλ

+

Z∑
b=1,b∈Lm2

zk,nlk,bck,b − zk,nzk,n−1 +
1

2σ2
k,n

zk,nζ̂k,n

∥∥∥Wk,n

∥∥∥2
+

z2
k,n

2
−

z2
k,n

2

−
1

rk,n
ζ̃k,n

 ˙̂ζk,n −
1

2σ2
k,n

rk,nz2
k,n

∥∥∥Wk,n

∥∥∥2
 + n∑

q=1

σ2
k,q

2
+
ε̄2

k,q

2


≤V̇k,n−1 + zk,n

αk,n +
1

2σ2
k,n

zk,nζ̂k,n

∥∥∥Wk,n

∥∥∥2
 − z2

k,n

2
− zk,nzk,n−1

−
1

rk,n
ζ̃k,n

 ˙̂ζk,n −
1

2σ2
k,n

rk,nz2
k,n

∥∥∥Wk,n

∥∥∥2
 + z2

k,n

2
+

n∑
q=1

σ2
k,q

2
+
ε̄2

k,q

2


−

Z∑
b=1,b∈Lm1

|lk,b|K̃T
k,bρk,bΓ

−1
k,b

( ˙̂Kk,b + zk,nΓk,bH
)
+ 0.557

Z∑
b=1,b∈Lm1

|lk,b|ρk,bλ. (3.43)

˙̂ζk,n, ˙̂Kk,b, and αk,n are designed as

˙̂ζk,n =
1

2σ2
k,n

rk,nz2
k,n

∥∥∥Wk,n

∥∥∥2
− ξk,nζ̂k,n, (3.44)

˙̂Kk,b = −zk,nΓk,bH − gk,bΓk,bK̂k,b, (3.45)

αk,n = −βk,nzk,n −
1

2σ2
k,n

zk,nζ̂k,n

∥∥∥Wk,n

∥∥∥2
. (3.46)

Substituting (3.44)–(3.46), one has

V̇k,n ≤ − ∆n ∥ek∥
2 + M1 −

n∑
q=1

βk,qz2
k,q +

n∑
q=1

1
rk,q

ξk,qζ̃k,qζ̂k,q +

n∑
q=1

σ2
k,q

2
+
ε̄2

k,q

2


+

Z∑
b=1,b∈Lm1

|lk,b|ρk,bgk,bK̃T
k,bK̂k,b + 0.557

Z∑
b=1,b∈Lm1

|lk,b|ρk,bλ +
z2

k,n

2
(3.47)

where ∆n = ∆n−1 − 1.
Utilizing Young’s inequality yields

n∑
q=1

1
rk,q

ξk,qζ̃k,qζ̂k,q ≤ −

n∑
q=1

1
2rk,q

ξk,qζ̃
2
k,q +

n∑
q=1

1
2rk,q

ξk,qζ
2
k,q, (3.48)

|lk,b|ρk,bgk,bK̃T
k,bK̂k,b ≤ −

1
2
|lk,b|ρk,bgk,bK̃T

k,bK̃k,b +
1
2
|lk,b|ρk,bgk,bKT

k,bKk,b. (3.49)
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Further, combining (3.47)–(3.49) yields

V̇k,n ≤ − ∆n ∥ek∥
2
−

n∑
q=1

βk,qz2
k,q −

n∑
q=1

1
2rk,q

ξk,qζ̃
2
k,q −

Z∑
b=1,b∈Lm1

1
2
|lk,b|ρk,bgk,bK̃T

k,bK̃k,b +
z2

k,n

2
+ Ω (3.50)

where Ω = M1 +
∑n

q=1
1

2rk,q
ξk,qζ

2
k,q +

∑Z
b=1,b∈Lm1

1
2 |lk,b|ρk,bgk,bKT

k,bKk,b + 0.557
∑Z

b=1,b∈Lm1
|lk,b|ρk,bλ +∑n

q=1

(
σ2

k,q

2 +
ε̄2

k,q

2

)
.

Ultimately, it can be given as follows

V̇k,n ≤ − µ1eT
k Okek − µ2

n−1∑
q=1

1
2

z2
k,q − µ3

1
2

z2
k,n − µ4

n∑
q=1

1
2rk,q

ζ̃2
k,q

− µ5

Z∑
b=1,b∈Lm1

1
2
|lk,b|ρk,bK̃T

k,bΓ
−1
k,bK̃k,b + Ω, (3.51)

where µ1 = min
{

2∆n
λmax(Ok)

}
, µ2 = min

{
2βk,q

}
, µ3 = min

{
2βk,n − 1

}
, µ4 = min

{
ξk,q

}
, and µ5 =

min
{

gk,b

λmax(Γ−1
k,b)

}
. λmax(O−1

k ) and λmax(Γ−1
k,b) are the maximum eigenvalues of O−1

k and Γ−1
k,b, respectively.

Hence, it could be obtained that
V̇k,n ≤ −µ6Vk,n + Ω (3.52)

where µ6 = min {µ1, µ2, µ3, µ4, µ5}. The proposed control method can be showed by Figure 1.

Figure 1. A framework for uncertain nonlinear MASs tracking control under actuator
failures.

3.3. Stability analysis

Theorem 1. Under the Lemma 1, Assumption 1 and Assumption 2, combining the MASs (2.1) with
virtual control laws (3.15), (3.26), (3.46) and adaptive laws (3.16), (3.27), (3.44), (3.45) designed
based on the ETM (3.36), (3.37) and the state observer (3.1), the following conditions are satisfied:
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1) All signals within the closed-loop system remain bounded, with each agents’ output following the
trajectory of the virtual leader;

2) The occurrence of Zeno’s phenomenon can be successfully prevented.

Proof : Multiplying both sides of Equation (3.52) by eµ6t simultaneously yields

d(Vk,neµ6t)
dt

≤ Ωeµ6t. (3.53)

Then, solving the differential equation gives

1
2

z2
k,1 ≤ Vk,n(t) ≤ e−µ6tVk, n(0) +

Ω

µ6
(1 − e−µ6t). (3.54)

Thus, z2
k,1 converges exponentially to the tight set Ξ =

{
zk,1|z2

k,1 ≤
2Ω
µ6

}
at the rate of µ6 and can be

tuned by adjusting the design parameters for Ξ.
According to the tight set Ξ it follows that the error signals are all bounded, and ys is bounded, and

ζk,1 is a constant so that xk,1, ζ̃k,1, and ek are also bounded. Further, the bound of (3.7), (3.15), (3.26),
and (3.46) yields that αl,1, and xk,2 are all bounded. Similarly, xk,i, ζ̂k,1, x̂k,i and αk,i are all bounded.
Moreover, because K̃k,b = Kk,b − K̂k,b and K̃k,b are bounded, K̂k,b is also bounded. Thus, all signals
within the closed-loop system are semi-global consistent and eventually bounded.

Based on the literature [35], defining the synchronization error vector Θk = [z1,1, z2,1, ..., zk,1]T , one
has:

∥∥∥Θ̄k

∥∥∥ ≤ ∥Θk∥

λmax (L + A)
(3.55)

where Θ̄k = [z̄1,1, z̄2,1, ..., z̄k,1]T = Yk − ys, Yk = [y1,1, y2,1, ..., yk,1]T , ys = [ys1, ys2, ..., ysn]T , λmax (L + A)
denotes (L + A) the maximum eigenvalue. Thus, the tracking error of the MASs converges to the
following set:

∣∣∣z̄k,n

∣∣∣ ≤ min


√

2
λmax (L + A)

(
Ω

µ6

) 1
2
 . (3.56)

(3.28), as well as t ∈ [tk,F , tk,F+1), yields

d|Ek,b|

dt
= sgn(Ek,b)Ėk,b ≤ |ϖ̇k,b|. (3.57)

Expressed by (3.38), ϖ̇k,b remains continuously bounded with the existence of a constant ϖ̄k,b > 0
ensuring, |ϖ̇k,b| < ϖ̄k,b. Furthermore, it can be found that limtk,m→tk,m+1 Ek,b(t) = η|ūk,b(t)|+ η1. According
to the Lagrange mean value theorem, it can be obtained that:

tk,F+1 − tk,F ≥
η|ūk,b(t)| + η1

ϖ̄k,b
. (3.58)

Since tk,F+1 − tk,F ≥ t⋄, t⋄ should be guaranteed to satisfy t⋄ ≥ η|ūk,b(t)|+η1

ϖ̄k,b
. Obviously, the considered

system can effectively avoid the Zeno behavior.
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Remark 3. Zeno’s phenomenon involves an infinite number of events occurring in a finite period
of time, resulting in a system requiring an infinite update. This may aggravate the computational
weight of the system, making real-time control unattainable, further leading to communication
overload, and possibly even causing system crashes or performance degradation. Therefore,
designing event-triggered control systems that exclude the Zeno phenomenon ensures that the system
maintains computational feasibility, communication efficiency, and utility in long-term operation while
maintaining the desired performance and reliability.

Remark 4. Further analysis reveals that |zk,1| ≤ max
{(

2Vk,n(0)
) 1

2 ,
(

2Ω
µ6

) 1
2
}
. It is evident that the set

can be adjusted by selecting the parameters to be designed, such as βk,q, βk,n, ξk,q, gk,b, and so on.
Additionally, from Eqs (3.50)–(3.54), it can be observed that when ρk,b remains constant, the residual
set varies with the changes in ck,b. Similarly, when ck,b remains constant, Ω increases with the rising of
ρk,b, resulting in an expansion of the residual set of tracking errors. □

4. Simulation example and analysis

This section aims to validate the control method’s efficacy by conducting a comprehensive analysis
of numerical and practical examples.

4.1. Numerical example

Consider a MAS with actuator failures comprising a virtual leader and three follower agents. The
communication topology is illustrated in Figure 2, and the model for the follower agents are detailed as

ẋk,1 = xk,2 + fk,1(Xk,1)
ẋk,2 =

∑2
b=1 lk,buk,b + fk,2(Xk,2)

yk = xk,1

(4.1)

where k = 1, 2, 3 and selecting the nonlinear functions as fk,1 = 0.1(1 + sin2(xk,1))xk,1 and fk,2 =

2.5xk,2+ xk,1x2
k,2; uk,b = ρk,būk,b+ck,b, lk,b = 1(b = 1, 2) unknown constants and uk,1 and uk,2 are represent

system input signals. xk,1(0) = xk,2(0) = 0.1 are initial states and the initial values of the state observer
estimated are x̂k,1(0) = x̂k,2(0) = 0.2. The desired tracking signal is ys = sin(2t).

The basis function for RBFNNs is designed as follows:

Wk,i(Xk,i) = − exp
(
(Xk,i − pi)T (Xk,i − pi)

κ2
i

)
(4.2)

where i = 1, 2, . . . , 16; the Gaussian function centered at κi has a distribution interval in [−1, 1].
Other correlated parameters to be designed as η = 0.2, λ = 0.5, η1 = 0.2, γ = η1/(1 − η) + 0.01,

σk,1 = σk,2 = rk,1 = rk,2 = ξk,1 = ξk,2 = 0.1, hk,1 = 120, hk,2 = 602, βk,1 = 37, βk,2 = 18, gk,b = 0.3,
Γk,b = [1, 0; 0, 1], K̂k,b(0) = [0, 0, 0]T , and ζ̂k,1(0) = ζ̂k,2(0) = 0.

Consider the cases of two actuator failures, which are shown as follows. Case 1: Actuator 1 of each
agent keeps operating normally, and Actuator 2 of each agent loses 30% of performance after t = 8s.
Case 2: Each agent’s Actuator 1 fails 20% of the faults throughout the run and each agent’s Actuator 2
fails completely.
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Figure 2. Topology of communication graph.

The simulation results from Figure 3 to Figure 8 indicate that all signals are bounded. From
Figures 3(a) and 4(a), it can be observed that when facing actuator failures, every agent’s output
can effectively track the output signal of the virtual leader, enabling MASs to achieve signal
synchronization. Figures 4 and 7 show the values of observer state and real state for two cases, with
small error values between them. In Figures 5 and 8, it is evident that whether the actuator partially
fails or a complete failure occurs after 8 seconds of normal operation, the updated control signal will
be delivered to the system upon satisfying the event-triggered condition. This serves as compensation
for the actuator failures, demonstrating the better effectiveness of the proposed control method on the
system. By observing Figure 3(c), it significantly exceeds the simulation time step of 0.01s, indicating
the absence of the Zeno phenomenon. The values in Table 1 elucidate that the two cases conserve a
maximum of 72.60% and 77.60% of communication resources, respectively. This illustrates that, in
contrast to traditional TTM, ETM offers significant conservation of communication resources.

The designed control method is compared with the method in the literature [24] to compare its
tracking performance in the uncertain nonlinear MASs with actuator failures. From Figures 3 and 4,
it can be observed that the designed state observer is effective in estimating the system state and the
tracking error of each agent converges quickly to the range of the ±0.05 error band within 0.2s. The
tracking performance is better than that of the literature [24], and there is no need to assume in advance
that the system state is measurable at the time. Therefore, the designed control method is more general.
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Figure 3. Example 1: Case 1 about (a)System outputs and desired output ys. (b)
Synchronization errors. (c) Time intervals.
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Figure 4. Example 1: Case 1 about the values of real states xk,i and state observer estimated
x̂k,i.
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Figure 5. Example 1: Case 1 about the event-triggered control input ϖk,b, actuator input ūk,b,
and system input uk,b.
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Figure 6. Example 1: Case 2 about (a)System outputs and desired output ys. (b)
Synchronization errors. (c) Time intervals.
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Figure 7. Example 1: Case 2 about the values of real states xk,i and state observer estimated
x̂k,i.
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Figure 8. Example 1: Case 2 about the event-triggered control input ϖk,b, actuator input ūk,b,
and system input uk,b.

4.2. Practical example

To assess the proposed control approach in the actual system effectiveness, reference [35] for the
multi-single-link robotic arm system (k = 1, 2, 3)

ẋk,1 = xk,2

ẋk,2 =
∑2

b=1 lk,buk,b −
1
J (Bxk,2 + mglsin(xk,1))

yk = xk,1

(4.3)

where fk,2 = −
1
J (Bxk,2+mglsin(xk,1)) denotes the unknown smooth nonlinear functions; uk,b = ρk,būk,b+

ck,b, lk,b = 1(b = 1, 2) are unknown constants; and uk,1 and uk,2 represent system input signals. xk,1(0) =
xk,2(0) = 0.1 are initial states, representing joint angle and angular velocity, respectively and the initial
values of the state observer’s estimated state are x̂k,1(0) = x̂k,2(0) = 0.2. The robotic arm system
parameters are specified as follows: J = 0.8, B = 1 and mgl = 10. The desired tracking signal is
ys = sin(2t).

The communication topology graph and the selection of the basis functions for the cases of actuator
failures are the same as for the numerical example. The other relevant parameters to be designed are as
follows: η = 0.1, λ = 3, η1 = 0.5, γ = η1/(1−η)+0.001, σk,1 = σk,2 = rk,1 = rk,2 = 0.1, ξk,1 = ξk,2 = 0.5,
hk,1 = 112, hk,2 = 562, βk,1 = 44, βk,2 = 16, gk,b = 0.01, Γk,b = [1, 0; 0, 1], K̂k,b(0) = [0, 0, 0]T and
ζ̂k,1(0) = ζ̂k,2(0) = 0.
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Figure 9 to Figure 14 and Table 1 show the simulation results of the multi-single-link robotic arm
system (4.3), which is analyzed similarly to the numerical simulation. By utilizing the proposed
control method, the multi-single-link robotic arm system achieves the desired tracking performance
and signal bound while synchronizing the signals in the case of actuator failures subjected to the two
cases respectively. Furthermore, the nonexistence of the Zeno phenomenon is guaranteed.

Table 1. Saving percentage in communication resources for Examples.

Example Cases Agent 1 Agent 2 Agent 3

Example 1
Case 1 72.53% 68.33% 63.20%
Case 2 77.60% 69.20% 69.26%

Example 2
Case 1 62.20% 61.66% 63.73%
Case 2 61.66% 62.40% 65.60%
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Figure 9. Example 2: Case 1 about (a)System outputs and desired output ys. (b)
Synchronization errors. (c) Time intervals.
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Figure 10. Example 2: Case 1 about the values of real states xk,i and state observer estimated
x̂k,i.
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Figure 11. Example 2: Case 1 about the event-triggered control input ϖk,b, actuator input
ūk,b, and system input uk,b.
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Figure 12. Example 2: Case 2 about (a) System outputs and desired output ys. (b)
Synchronization errors. (c) Time intervals.
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Figure 13. Example 2: Case 2 about the values of real states xk,i and state observer estimated
x̂k,i.
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Figure 14. Example 2: Case 2 about the event-triggered control input ϖk,b, actuator input
ūk,b, and system input uk,b.

5. Conclusions

This research is targeted at a class of uncertain nonlinear MASs with actuator failures, whose
control objective is to design an adaptive NNs event-triggered consensus control method with state
observers to estimate unmeasurable states of the MASs, in order to realize the dynamic compensation
of actuator failures while reducing the communication resources among the agents and avoiding Zeno
phenomenon, and to make the all follower synchronization. Finally, the simulation results show the
effectiveness of the control method. In future work, we will utilize the proposed method in combination
with a fixed-time disturbance observer, speeding up the convergence of the system as well as directly
measuring the disturbance signals, which is a valuable research work.
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