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Abstract: In this paper, we proposed a stochastic volatility model in which the volatility was given by
stochastic processes representing two characteristic time scales of variation driven by approximate
fractional Brownian motions with two Hurst exponents. We obtained an approximate closed-form
formula for a European vanilla option price and the corresponding implied volatility formula based
on singular and regular perturbations and a Mellin transform. The explicit formula for the implied
volatility allowed us to find the slope of the implied volatility skew with respect to the Hurst exponent
and time-to-maturity. The proposed model allows the market volatility behavior to be captured
uniformly in time-to-maturity. We conducted an empirical analysis to find the validity of the proposed
model by comparing it with other models and Monte Carlo simulation. Further, we extended the pricing
result for the vanilla option to two path-dependent exotic (barrier and lookback) options and obtained
the corresponding price formulas explicitly.
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1. Introduction

Stochastic volatility models driven by fractional Brownian motion have been gaining attention in
the area of mathematical finance, since many empirical studies find that the decay in the autocorrelation
function of the volatility is better modeled by a power function than an exponential function and
fractional stochastic volatility models generate better fits to the observed market implied volatility
surface. Refer to, for example, Comte and Renault [9], Alòs et al. [2], Bayer et al. [4], Garnier and
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Solna [17], Forde and Zhang [12], Gatheral et al. [19], Guennoun et al. [20], Kim et al. [21], Bennedsen
et al. [5], Fukasawa and Gatheral [16], Shi and Yu [30], and Cont and Das [10], among others. While
Comte and Renault [9] stressed that fractional Brownian motion was relevant to capture long memory
in stochastic volatility, Gatheral et al. [19] showed that log-volatility behaves essentially as a fractional
Brownian motion with a Hurst exponent of order 0.1, at any reasonable time scale. A recent paper
by Wang et al. [33] also found that the logarithmic daily realized volatility series of various financial
assets have rough sample paths. However, fractional Brownian motion is not a semimartingale unless
the Hurst exponent is 1/2, as shown in Rogers [28], leading to a possible arbitrage opportunity (a free
lunch with vanishing risk, as a general term). “Arbitrage” means profiting from a price gap between
a derivative and a portfolio of assets that replicates the derivative’s cash flows. So, to get around this
problem while taking into account the long or short memory property, there have been studies using
the mixed fractional Brownian motion of Cheridito [8], the approximate fractional Brownian motion
of Thao [32], or the generalized fractional Brownian motion introduced by Pang and Taqqu [24].

We are interested in the approximate fractional Brownian motion introduced in Thao [32] in the
context of modeling stochastic volatility for pricing derivatives. This process is a semimartingale even
if the Hurst exponent is not 1/2 (contrary to the original fractional Brownian motion) and so the no-
arbitrage theory can be applied to obtain a partial differential equation (PDE) for the option price.
There are several works which have used this process for underlying asset price models or stochastic
volatility models. Refer to, for instance, Dung [11] for the Black-Scholes model, Sattayatham and
Intarasit [29] for a jump-diffusion model, Pospisil and Sobotka [26] for the Heston stochastic volatility
model, and Chang et al. [7] for the double Heston stochastic volatility model. In the present paper, we
apply approximate fractional Brownian motions to the multiscale stochastic volatility model of Fouque
et al. [14]. The merit of this stochastic volatility model is that the resulting option price approximation
is independent of the particular details of the volatility model and leads to more flexibility in the
parametrization of the implied volatility surface. We take two approximate fractional Brownian
motions with two Hurst exponents (instead of two standard Brownian motions) corresponding to two
characteristic (fast and slow) time scales of the multiscale volatility model, respectively. As far as we
know, this approach does not exist in the literature. However, this type of volatility formulation is
consistent with some of the previous works related to fractional Brownian motion. According to Xiao
and Yu [35, 36], the asymptotic distribution for the estimator of the persistence parameter is different
when the Hurst exponent is less than 1/2 from that when it is larger than 1/2 in the fractional Vasicek
model. Alòs and Leon [3] found, based on the Clark-Ocone-Haussman formula for the integrated
variance, that the volatility can be composed of terms with a Hurst index less than 1/2 being more
relevant at short scales and terms with Hurst index greater than 1/2 being more relevant at long
scales. Also, Bennedsen et al. [5] discovered evidence consistent with the hypothesis that time series of
realized volatility are both rough and very persistent. On the other hand, Cont and Das [10] observed
interestingly that even when the instantaneous volatility has the same roughness as Brownian motion,
the realized volatility exhibits behavior corresponding to a Hurst exponent significantly smaller than
1/2. This observation supports our use of approximate fractional Brownian motion instead of fractional
Brownian motion. The approximate fractional Brownian motion is thought of as between the standard
Brownian motion and the fractional Brownian motion. It is a stochastic process equipped with a Hurst
parameter, i.e., a measure of long-term memory of the time series. It is, however, a semimartingale in
the form of a Brownian motion plus a time (Riemann) integral of an adapted process. So, the arbitrage

AIMS Mathematics Volume 9, Issue 9, 25545–25576.



25547

opportunity can be excluded from the fundamental theorem of asset pricing and we are allowed to
use the replicating portfolio method to obtain the corresponding PDEs for European vanilla and exotic
options. The contribution of this work is as follows. We obtain approximate closed-form formulas for
the prices of European vanilla and two exotic options. Our results cover both long- and short-memory
properties of volatilities and control the skew slope by selecting appropriate Hurst exponents of the
fast and slow scale volatility movements. It unifies two previously known results regarding the Hurst
parameter dependence of the blow-up and slow-flattening behavior of skews and smiles of implied
volatility surfaces. Consequently, the implied volatility surfaces can be calibrated over a wide range
of time-to-maturities. Also, we provide a calibration method by representing the observed SPX option
prices in terms of the term structure of the implied volatility formula. Based on the calibration result,
we find that the implied volatility becomes higher when the fast-scale motion of the (spot) volatility
becomes “rougher” and the slow-scale motion of the volatility becomes “smoother”, which in turn
supports the necessity of a multiscale modeling framework for stochastic volatility.

The paper is organized as follows. In Section 2, we use approximate fractional Brownian motions
to establish a stochastic volatility model. In Section 3, we apply the replicating portfolio method to
obtain the corresponding PDE formula for the price of a European vanilla option and derive explicitly
a closed-form formula for the approximate option price using the combination of singular and regular
perturbations and the Mellin transform method. Subsequently, a closed-form formula for the implied
volatility corresponding to a European call option is obtained in Section 4. We check the accuracy of
the pricing formula, show how to calibrate the pricing parameters, and investigate the sensitivity of the
implied volatilities to the Hurst exponents in Section 5. We extend the vanilla option price formula to
two exotic-option cases in Section 6. Finally, Section 7 provides some concluding remarks.

2. Model formulation

A fractional Brownian motion BH
t with a Hurst exponent H, 0 < H < 1, is defined by a centered

Gaussian process satisfying the covariance function

E[BH
t BH

s ] =
1
2

(
|s|2H + |t|2H − |s − t|2H

)
.

The process BH
t is a self-similar process but is neither a semimartingale nor a Markov process except in

the case where H = 1/2. Mandelbrot and van Ness [22] gave an integral representation of the general
fractional Brownian motion as follows:

BH
t =

1
Γ(H + 1

2 )

[ˆ 0

−∞

[
(t − s)H− 1

2 − (−s)H− 1
2
]

dWs +

ˆ t

0
(t − s)H− 1

2 dWs

]
, t > 0, (2.1)

where Wt is a standard Brownian motion. The last integral part of (2.1) is a self-similar Gaussian
process, which becomes a Brownian motion for H = 1/2 and has non-stationary increments for H ,
1/2. It is a truncated version of the general fractional Brownian motion and is usually called Riemann-
Liouville fractional Brownian motion with a Hurst index H. This type of fractional Brownian motion
has been widely used in the modeling of volatilities. See, for example, Comte and Renault [9], Alòs et
al. [2], Bayer et al. [4], and Gatheral et al. [19], among others. It has a simple representation but it is
not a semimartingale for H , 1/2. Thus Thao [32] used a perturbation parameter, say γ, to introduce
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an approximate fractional Brownian motion defined as

Bγ,H
t :=

ˆ t

0
(t − s + γ)H− 1

2 dWs, γ > 0,

where Wt is a standard Brownian motion, and proved that Bγ,H
t is a semimartingale and converges to

the last integral of (2.1) in L2(Ω) sense and uniformly with respect to t ∈ [0,T ] for any fixed positive
number T when γ goes to 0.

In this paper, we use the process Bγ,H
t as a random source of the volatility of the underlying risky

asset return to introduce a new model given by

dXt = f (Yt,Zt)Xt dW x
t ,

dYt =
1
ε
α(Yt) dt +

1
√
ε
β(Yt) dBγ,H1

t ,

dZt = δ g(Zt) dt +
√
δ h(Zt) dBγ,H2

t

(2.2)

under a risk-neutral probability measure Q. The model (2.2) is the same as the multiscale stochastic
volatility model in Fouque et al. [14] except that the standard Brownian motions driving the two
stochastic volatility factors Yt and Zt are now replaced by the approximate fractional Brownian motions.
Since, by the Itô formula (see Oksendal [23], for example), the differential of the approximate fractional
Brownian motion is

dBγ,H
t =

(
H −

1
2

) (ˆ t

0
(t − s + γ)H− 3

2 dWs

)
dt + γH− 1

2 dWt,

the initial model (2.2) becomes

dXt = f (Yt,Zt)Xt dW x
t ,

dYt =

(
1
ε
α(Yt) +

1
√
ε

(H1 −
1
2

)φ1,t β(Yt)
)

dt +
1
√
ε
γH1−

1
2 β(Yt) dWy

t ,

dZt =

(
δ g(Zt) +

√
δ (H2 −

1
2

) φ2,t h(Zt)
)

dt +
√
δ γH2−

1
2 h(Zt) dWz

t ,

(2.3)

where φ1,t and φ2,t are defined by

φ1,t :=
ˆ t

0
(t − s + γ)H1−

3
2 dWy

s , φ2,t :=
ˆ t

0
(t − s + γ)H2−

3
2 dWz

s , (2.4)

where (t− s+γ)H− 3
2 does not blow up at any s ∈ [0, t] and H ∈ (0, 1). In the model (2.3), we assume that

0 < δ � ε �
√
δ < 1, W x

t , Wy
t , and Wz

t are standard Brownian motions defined on a filtered probability
space (Ω,F ,Ft,Q), they have a correlation structure given by d〈W x,Wy〉t = ρxydt, d〈W x,Wz〉t = ρxzdt,
and d〈Wy,Wz〉t =ρyzdt, and H1 ∈ (0, 1

2 ) and H2 ∈ (1
2 , 1). If Yt is a mean-reverting process, its mean itself

is also mean-reverting slowly, and it is driven by Zt, then this situation is called double-mean-reverting
(cf. Gatheral [18]). Wy and Wz are assumed to be correlated here so that the model can somewhat
capture the double-mean-reverting property of stochastic volatility even if the dependence of Yt on Zt

is not explicitly specified. The functions f , α, β, g, and h are assumed to satisfy necessary smooth

AIMS Mathematics Volume 9, Issue 9, 25545–25576.



25549

and boundedness conditions for the stochastic differential equation for Xt to have a unique solution.
The volatility factor Yt in (2.3) reflects rapid variation (for example, rapid mean reversion) while the
volatility factor Zt represents slow variation because those processes correspond to the solutions of
stochastic differential equations in which time t is replaced by t/ε (sped up) and δt (slowed down),
respectively. Particularly, the process Yt is assumed to be ergodic and have an invariant distribution,
denoted by Φ, which allows us to use averaging principles in Fouque et al. [15] to approximate the
option price. Of course, the model (2.3) is reduced to the model of Fouque et al. [14] if both H1 and H2

are equal to 1/2.
While fractional Brownian motion was stressed to capture long memory in the early age of

fractional stochastic volatility model development such as the study of Comte and Renault [9], it
has been discovered empirically since then that those models are valid only for long-term behavior
of volatility, while some rough volatility models are more appropriate in the short run (see, in
particular, Gatheral et al. [19]). This has led several authors to introduce volatility models incorporating
both roughness, meaning exponentially decaying autocorrelation, and long memory, meaning non-
integrable autocorrelation, corresponding to two different Hurst exponents. Refer to Alòs and Leon [3]
and Bennedsen et al. [5], for instance. This paper seeks to relate two characteristic (fast and slow)
time scales of the multiscale stochastic volatility model of Fouque et al. [15] to the roughness and the
long memory, respectively. This approach allows us to obtain an option pricing formula that can be
calculated easily starting from the Black-Scholes price.

3. Option price formula

3.1. Singular perturbation problem

In this paper, the following lemmas are useful for asymptotic analysis. They are the solvability
condition of a Poisson equation and the growth condition related to the infinitesimal generator of the
ergodic process Yt, 1

ε
A0, whereA0 is a differential operator defined as

A0 := α(y) ∂y +
1
2
β2(y)γ2H1−1 ∂yy.

Lemma 3.1. The Poisson equation

A0 p(t, x, y, z) + q(t, x, y, z) = 0

has a solution p(t, x, y, z) if and only if the function q is centered with respect to the invariant
distribution Φ of the process Y, i.e.,

〈q(t, x, ·, z)〉 :=
ˆ

q(t, x, y, z)Φ(y)dy = 0.

Proof. This is a version of the Fredholm alternative. Refer to Section 3.2 in Fouque et al. [15]. �

Lemma 3.2. Assume that equationA0 p(t, x, y, z) = 0 admits only solutions that do not grow as fast as

∂y p(t, x, y, z) ∼ e
´

(−2α)/β2γ2H1−1dy, y→ ∞.

Then the solution p does not depend on y.
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Proof. Solving the equationA0 p = 0 directly leads to this result. �

Since the approximate fractional Brownian motion Bγ,H
t is a semimartingale, the no-arbitrage theory

is allowed for the model (2.3) by the fundamental theorem of asset pricing (see Pascucchi [25], for
example). So, one can use the replicating portfolio approach to value the options. If Pε,δ(t, x, y, z; φ1, φ2)
denotes the option price with a payoff function H(x) under the model (2.3) when Xt = x, Yt = y, Zt = z,
φ1,t = φ1, and φ2,t = φ2, then the no-arbitrage argument with the self-financing assumption and the Itô
formula leads to a final value problem expressed by

Aε,δPε,δ(t, x, y, z; φ1, φ2) = 0, 0 ≤ t < T, Pε,δ(T, x, y, z; φ1, φ2) = H(x), (3.1)

where the multiscale operatorAε,δ is

Aε,δ :=
1
ε
A0 +

1
√
ε
A1 +A2 +

√
δ

ε
A3 +

√
δA4 + δA5,

A0 := α(y) ∂y +
1
2
β2(y)γ2H1−1 ∂yy,

A1 := β(y)
(
H1 −

1
2

)
φ1 ∂y + ρxy f (x, y) β(y) γH1−

1
2D1∂y,

A2 := ∂t +
1
2

f 2(y, z)D2,

A3 := ρyz β(y) h(z) γH1+H2−1∂yz,

A4 := ρxz f (y, z) h(z) γH2−
1
2 D1∂z + h(z)

(
H2 −

1
2

)
φ2 ∂z,

A5 := g(z) ∂z +
1
2

h2(z) γ2H2−1 ∂zz,

(3.2)

where the operator symbolDn is defined by

Dn := xn∂xn , n = 1, 2.

3.2. Approximation

From now on, the dependence of Pε,δ on φ1 and φ2 is omitted for notational simplicity. Since the
PDE problem (3.1) is a singular perturbation problem, we are interested in an asymptotic solution of
the form

Pε,δ(t, x, y, z) =

∞∑
i, j=0

(
√
δ)i(
√
ε) j Pi j(t, x, y, z). (3.3)

Following the multiscale asymptotic analysis of Fouque et al. [15] and using the operatorABS defined
by

ABS := ∂t +
1
2
σ̄2

f (z)D2, σ̄ f (z) :=
√
〈 f 2(·, z)〉,
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one can find that P00, P01, and P10 are independent of the variable y and they satisfy the PDE problems

ABSP00(t, x, z) = 〈A2〉P00 = 0,
P00(T, x, z) = H(x),

ABSP01(t, x, z) = 〈A1A
−1
0 (A2 − 〈A2〉)〉P00 = AH1

1 (z)D2P00(t, x, z) + AH1
2 (z)D1D2P00(t, x, z),

P01(T, x, z) = 0,

ABSP10(t, x, z) = −〈A4〉P00 = −BH2
1 (z)D1∂zP00(t, x, z) − BH2

2 (z)∂zP00(t, x, z),
P10(T, x, z) = 0,

(3.4)

respectively, where the functions AH1
1 , AH1

2 , BH2
1 , and BH2

2 are

AH1
1 (z) :=

1
2

(
H1 −

1
2

)
φ1〈β∂yψ〉, AH1

2 (z) :=
1
2
ρxyγ

H1−
1
2 〈 fβ∂yψ〉,

BH2
1 (z) := ρxzγ

H2−
1
2 〈 f 〉h(z), BH2

2 (z) :=
(
H2 −

1
2

)
φ2h(z),

(3.5)

respectively. Here, ψ(y, z) is a function defined by the solution to

A0ψ(y, z) = f 2(y, z) − 〈 f 2(·, z)〉. (3.6)

Note that AH1
1 (z) and AH1

2 (z) are related to the fast variation of volatility and a Hurst exponent less than
1
2 while BH2

1 and BH2
2 are connected with the slow-scale variation of volatility and a Hurst exponent

larger than 1
2 .

Since ABS is the differential operator ∂t plus the infinitesimal generator of a geometric Brownian
motion solving the stochastic differential equation

dXt = σ̄ f (z) Xt dW x
t

as its notation suggests, the PDE problemABSP00(t, x, z) = 0 with the final condition P00(T, x, z) = H(x)
gives us that P00 is the Black-Scholes option price (cf. Black and Scholes [6]) with constant volatility
replaced by z-dependent volatility, and subsequently we use notation PBS(t, x, z) instead of P00(t, x, z)
from now on.

By solving the PDE problems in (3.4) for PBS, P01, and P10, we obtain the following European
option price formula.

Proposition 3.1. Under the dynamics of (2.3) of the underlying asset price, the option price Pε,δ is
approximated by P̈ε,δ := PBS +

√
εP01 +

√
δP10, that is

P̈ε,δ(t, x, z) =PBS(t, x, z)

− (T − t)
[
Aε,H1

1 (z)
(
D2

1 −D1

)
− Aε,H1

2 (z)
(
−D3

1 +D2
1

)]
PBS(t, x, z),

− (T − t)2
[
Bδ,H2

1 (z)
(
−D3

1 +D2
1

)
− Bδ,H2

2 (z)
(
D2

1 −D1

)]
PBS(t, x, z),

(3.7)
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whereDn
1 := (D1)n =

(
x ∂
∂x

)n
and Aε,H1

1 , Aε,H1
2 , Bδ,H2

1 , and Bδ,H2
2 are given by

Aε,H1
1 (z) :=

√
ε AH1

1 (z), Aε,H1
2 (z) :=

√
ε AH1

2 (z)

Bδ,H2
1 (z) :=

1
2

√
δ σ̄ f (z)σ̄

′

f (z)BH2
1 (z), Bδ,H2

2 (z) :=
1
2

√
δ σ̄ f (z)σ̄

′

f (z)BH2
2 (z),

respectively.

Proof. To solve the PDE problems in (3.4) for PBS, P01, and P10, we use the Mellin transform and its
inverse transform defined by

(Mg)(ω) := ĝ(ω) =

ˆ
g(s) sω−1 ds, (M−1ĝ)(s) := g(s) =

1
2πi

ˆ a+i∞

a−i∞
ĝ(ω) s−ω dω,

respectively, where a is a real number, and obtain the ODE problems for P̂01 and P̂10 as follows.

∂tP̂BS(t, ω, z) + λ(ω, z)P̂BS(t, ω, z) = 0, P̂BS(T, ω, z) = ĥ(ω),
∂tP̂01(t, ω, z) + λ(ω, z)P̂01(t, ω, z) = η1(ω, z)P̂BS(t, ω, z), P̂01(T, ω, z) = 0,
∂tP̂10(t, ω, z) + λ(ω, z)P̂10(t, ω, z) = η2(ω, z)∂zP̂BS(t, ω, z), P̂10(T, ω, z) = 0,

(3.8)

where ĥ(ω) is the Mellin transform of h(x) and the functions λ(ω, z), η1(ω, z), and η2(ω, z) are

λ(ω, z) :=
1
2
σ̄2

f (z)ω(ω + 1),

η1(ω, z) := AH1
1 (z)ω(ω + 1) − AH1

2 (z)ω2(ω + 1),

η2(ω, z) := BH2
1 (z)ω − BH2

2 (z),

(3.9)

respectively. The solutions of (3.8) are given by

P̂BS(t, ω, z) = eλ(ω,z)(T−t)ĥ(ω),

P̂01(t, ω, z) = −(T − t) η1(ω, z) eλ(ω,z)(T−t)ĥ(ω),

P̂10(t, ω, z) = −
1
2

(T − t)2 η2(ω, z) σ̄ f (z)σ̄
′

f (z)ω(ω + 1) eλ(ω,z)(T−t)ĥ(ω).

(3.10)

Substituting (3.9) into (3.10), we obtain the following Mellin transform of P̈ε,δ explicitly:

ˆ̈Pε,δ(t, ω, z) = P̂BS(t, ω, z)

−
√
ε(T − t)

(
AH1

1 (z)(ω2 + ω) − AH1
2 (z)(ω3 + ω2)

)
P̂BS(t, ω, z)

−
√
δ

(T − t)2

2
σ̄ f (z)σ̄

′

f (z)
(
BH2

1 (z)(ω3 + ω2) − BH2
2 (z)(ω2 + ω)

)
P̂BS(t, ω, z).

(3.11)

The pricing formula (3.11) is given by a linear combination of terms that are in the form of a
product of P̂BS and a polynomial function of ω. So, we can calculate the formula explicitly through
the following property of the Mellin transform:M((D1)n f )(ω) = (−ω)n f̂ (ω). Using an inverse Mellin
transform on (3.11), we obtain a closed-form formula given in the proposition. �
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Therefore, once the Black-Scholes option price PBS is given, we can calculate the approximation
P̈ε,δ by computing the derivatives of PBS in the formula (3.7) and plugging the estimated group
parameters Aε,H1

1 , Aε,H1
2 , Bδ,H2

1 , and Bδ,H2
2 into (3.7). Note that the original model parameters and

functions such as γ, ε, δ, α, β, g, and h are not required to be directly chosen for the purpose of the
option price approximation. The group parameters are required to be chosen for calculating P̈ε,δ. We
use the implied volatility term structure of SPX call options to estimate those four group parameters.
See Section 5.2 for details.

Remark: One can obtain the second-order terms P02, P11, and P20 further and a subsequent
formula for the approximation

...
Pε,δ := PBS +

√
δP10 +

√
εP01 + δP02 +

√
δεP11 + εP20 as shown

in Appendix A, where the approximation error is also given. We note that the same approach
(approximation to the Black-Scholes price) used in this section and the following section are also used
in the more simple framework of the Heston model driven by the standard Brownian motion in Alòs
et al. [1].

4. Implied volatility

All of the original model parameters given in the model (2.3) are not required to price derivatives.
In fact, from Proposition 3.1, we notice that σ̄ f , Aε,H1

1 , Aε,H1
2 , Bδ,H2

1 , and Bδ,H2
2 are the ones required to

be estimated. In order to estimate those pricing parameters, we can utilize calibration from near-the-
money European call option implied volatilities. The volatility Iε,δ implied by the pricing formula (3.7)
is defined by the solution to the equation PBS(t, x; Iε,δ) = P̈ε,δ(t, x, z), where PBS(t, x;σ) stands for the
classical Black-Scholes call option price formula with volatility σ. Then the two correction terms I01

and I10 of the asymptotic expansion

Iε,δ(t, x, y, z) =

∞∑
i, j=0

(
√
δ)i(
√
ε) j Ii j(t, x, y, z)

are given by I01 = (∂σPBS)−1 P01 and I10 = (∂σPBS)−1 P10, respectively, and the leading term I00 is defined
as

I00(t, x, y, z) := σ̄ f (z).

Using the vega-gamma and speed-gamma relationships, i.e.,

∂σPBS = σ̄ f (T − t)x2∂xxPBS,

∂xxxPBS =

 d1

σ̄ f
√

T − t
+ 1

 (−1
x

)
∂xxPBS, d1 :=

log(x/K) + 1
2σ̄

2
f (T − t)

σ̄ f
√

T − t
,

we can obtain an approximate implied volatility surface Ïε,δ := I00 +
√
εI01 +

√
δI10 given by

Ïε,δ(T − t,K) = σ̄ f −
1
σ̄ f

Aε,H1
1 + Aε,H1

2

1 − d1

σ̄ f
√

T − t


+

T − t
σ̄ f

Bδ,H2
1

1 − d1

σ̄ f
√

T − t

 − Bδ,H2
2

 . (4.1)
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We are interested in the slope behavior of the implied volatility skew with respect to time-to-maturity
and the Hurst exponent. The slope of the implied volatility skew is given by

∂Ïε,δ

∂k
(T − t,K) =

1
σ̄3

f

−Aε,H1
2

T − t
+ Bδ,H2

1

 , (4.2)

where k := log K.
Based on the calibration result shown in Section 5.2 for SPX options, we do a numerical experiment

to show how the skew slope behaves against time-to-maturity. Figure 1 presents the experimental result
for the skew slope term structure. It shows that the slope tends to blow up as time-to-maturity becomes
shorter.
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Figure 1. Slope of implied volatility skew observed for SPX options on December 6, 2022;
σ̄ f = 0.04412

.

Comte and Renault [9] considered a Hurst exponent with H > 1
2 to explain the slow flattening of

skews and smiles of the implied volatility surface when time-to-maturity increases, while Alòs et al. [2]
gave a better description of the short time-to-maturity blow-up of the implied volatility surface with a
Hurst exponent H < 1

2 . So, our result is consistent with these two results in that the skew slope becomes
small when time-to-maturity increases while it becomes large when time-to-maturity decreases as seen
in Figure 1. Our result unifies these two separate previous results. This is desirable in practice as the
market volatility has both long- and short-memory properties depending on the situation. As described
by (4.2), the skew slope ∂Ïε,δ

∂k can behave flexibly depending on the appropriate Hurt parameters H1 and
H2 in the range of (0, 1

2 ) and (1
2 , 1), respectively. As a consequence, the implied volatility surface can

be calibrated over a wide range of time-to-maturities.

5. Performance, calibration, sensitivity, and accuracy

In this section, we check the accuracy and performance of the price formula given by (3.7)
in Proposition 3.1 for European call options via Monte Carlo simulation. We give an example
of calibrating the pricing parameters for three different time-to-maturities. We also investigate the
sensitivity of the implied volatility to the Hurst exponents H1 and H2.

Using the well-known Greeks in the Black-Scholes model, one can verify easily that the derivative
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price P̈(t, x, z) given by (3.7) satisfies the following identity for a European call option with strike K:

P̈(t, x, z) = xN (d1(x, z; K)) − KN (d2(x, z; K))

− K(T − t)
ϕ (d2(x, z; K), 0, 1)

σ̄ f (z)
√

T − t

Aε,H1
1 −

d2(x, z; K)

σ̄ f (z)
√

T − t
Aε,H1

2


− K(T − t)2ϕ (d2(x, z; K), 0, 1)

σ̄ f (z)
√

T − t

 d2(x, z)

σ̄ f (z)
√

T − t
Bδ,H2

1 − Bδ,H2
2

 ,
(5.1)

where N , d1, d2, and ϕ are given by

N(ω) :=
ˆ ω

−∞

ϕ($, 0, 1)d$,

d1(x, z;$)) :=
ln(x/$))

σ̄ f (z)
√

T − t
+

1
2
σ̄ f (z)

√
T − t,

d2(x, z;$)) :=
ln(x/$))

σ̄ f (z)
√

T − t
−

1
2
σ̄ f (z)

√
T − t,

ϕ ($, µ, σ) :=
1

√
2σ2π

e−
($−µ)2

2σ2 ,

(5.2)

respectively.

5.1. Performance of the formula

In this section, we calculate option prices under three different models and a Monte Carlo simulation
result (with 1 million simulations) and compare them with real market data, that is, the SPX option
data observed on December 7, 2022. Notations Pmarket, PMC, PfMSV, PMSV, and PBS stand for the market
option price, the Monte Carlo (MC) simulation result, the option price computed by the formula (5.1)
corresponding to the fractional multiscale stochastic volatility (fMSV) model (2.3), the option price
computed under a multiscale stochastic volatility (MSV) model corresponding to the case of H1 =

H2 = 1
2 in the formula (5.1), and the Black-Scholes option price, respectively.

For Monte Carlo simulation, we need random numbers generated by the stochastic processes φ1,t

and φ2,t in (2.4). The time interval [0,T ] is discretized into t0(= 0), t1, t2, · · · , tn(= T ) satisfying
t0 < t1 < · · · < tn with ∆t = ti − ti−1, i = 1, 2, · · · , n. Omitting the subscript number and superscript
letter of φ1,t, φ2,t, H1, H2, Wy

s , and Wz
s (and so using φt, H, and Ws), the random source φt satisfies the

following recursive equation by the Itô calculus:

φtk =

k∑
i=1

(tk − ti−1 + γ)H− 3
2
(
Wti −Wi−1

) d
=

k∑
i=1

(∆t (k − i + 1) + γ)H− 3
2
√

∆tZi

d
=

k∑
i=1

(∆t (k − i + 1) + γ)H− 3
2
√

∆tZk−i−1
d
=

k∑
i=1

(i∆t + γ)H− 3
2
√

∆tZi

d
= (k∆t + γ)H− 3

2
√

∆tZk + φtk−1 ,

where the notation d
= denotes distributional equality and the Zi’s are independent and identically

(standard normal) distributed. Thus, we generate the random sources φti , i = 1, 2, · · · , n, recursively,
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by the following algorithm:

φti ← (i∆t + γ)H− 3
2
√

∆tZi + φti−1 .

Applying this algorithm to (2.3), we can obtain a Monte Carlo simulation result PMC for the European
options. Table 1 represents the setting of the related parameters and functions for finding the price PMC.

Table 1. The parameters and functions for PMC.

Parameter Value

H1 0.0998

H2 0.7984

γ 0.6986

dt 3.9683 × 10−5

ε 0.01

δ 0.001

S 0 3941.26

Y0 0.001

Z0 0.001

φ1, φ2 1

Function Choice

f (y, z) ν
1+e−x+e−y , ν = 0.5988

α(y) −y

β(y)
√

2

g(z) z

h(z) z

We calculate Pmarket, PMC, PfMSV, PMSV, and PBS for a European call option with two time-to-
maturities, where PMC is obtained based on the setting in Table 1. Using these results, we compute the
square norms ‖ Pmarket−PMC ‖, ‖ Pmarket−PfMSV ‖, ‖ Pmarket−PMSV ‖, and ‖ Pmarket−PBS ‖ for the purpose
of comparing the Monte Carlo simulation and the three different volatility models. Table 2 presents
the result. It shows that the fMSV model outperforms the other models including the Monte Carlo
simulation. This tends to be the case more conspicuously when time-to-maturity becomes shorter. Note
that shorter time-to-maturity options tend to have higher trading volume in general. Therefore, using
the approximate fractional Brownian motion instead of the standard Brownian motion for volatility
seems to provide a great advantage in option pricing. On the other hand, Table 3 provides the elapsed
time of option pricing based on the Monte Carlo simulation (reputation number = 1, 000, 000 and dt =

1/25200), and the three different volatility models. The computer used for the computation is specified
as Intel(R) Core(TM)-i9-10900 CPU, Windows 10 Pro O/S and 64GB RAM. Moreover, the program
used for the computation is MATLAB R2022b. The Monte Carlo simulation method takes much more
time than the analytic methods based on the three different volatility models while the three different
models are relatively similar to each other in terms of the elapsed pricing time.
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Table 2. Performance of PMC, PfMSV, PMSV, and PBS compared with Pmarket for two time-to-
maturities.

Days to Maturity: 31

‖ Pmarket − PMC ‖ ‖ Pmarket − PfMSV ‖ ‖ Pmarket − PMSV ‖ ‖ Pmarket − PBS ‖

28.7959 18.3497 31.6503 36.7458

Days to Maturity: 56

‖ Pmarket − PMC ‖ ‖ Pmarket − PfMSV ‖ ‖ Pmarket − PMSV ‖ ‖ Pmarket − PBS ‖

97.7220 69.4679 90.5983 90.8465

Table 3. The elapsed computing time (unit: second) of PMC, PfMSV, PMSV, and PBS.

PMC PfMSV PMSV PBS

307.7409 3.9800 × 10−4 2.8880 × 10−4 2.3640 × 10−4

Among those parameters required to be estimated, i.e., σ̄ f , Aε,H1
1 , Aε,H1

2 , Bδ,H2
1 , and Bδ,H2

2 , the
parameter σ̄ f is first estimated from historical SPX data over a period of time in the near past, where
the slow-scale variable (z) dependence of σ̄ f accounts for updating the long-run average from time to
time. To estimate the group parameters Aε,H1

1 , Aε,H1
2 , Bδ,H2

1 , and Bδ,H2
2 , we rewrite the implied volatility

surface (4.1) as

Ïε,δ(T − t,K) = σ̄ f +
[
aε + cδ(T − t)

]
+

[
bε + dδ(T − t)

] ln(K/x)
T − t

,

where the parameters aε , bε , cδ, and dδ are related to the pricing parameters Aε,H1
1 , Aε,H1

2 , Bδ,H2
1 , and Bδ,H2

2
through the relationship

Aε,H1
1 = −σ̄ f

(
aε +

1
2
σ̄2

f b
ε

)
, Aε,H1

2 = −σ̄3
f bε ,

Bδ,H2
1 = σ̄3

f dδ, Bδ,H2
2 = σ̄ f

(
cδ +

1
2
σ̄2

f d
δ

)
.

(5.3)

So, once aε , bε , cδ, and dδ are estimated from calibration to the implied volatility term structure of SPX
call options, one can use the relationship (5.3) to estimate the pricing group parameters Aε,H1

1 , Aε,H1
2 ,

Bδ,H2
1 , and Bδ,H2

2 and calculate the derivative price P̈ε,δ(t, x, z) obtained in Proposition 3.1.
More concretely, the averaged volatility σ̄ f is first estimated using the 10-day historical volatilities

calculated from the SPX data obtained from the site http://www.investing.com and then the
parameters aε , bε , cδ, and dδ are estimated using the SPX call option data obtained from the site
http://www.barchart.com. Figure 2 shows the implied volatilities of the SPX option in the real market
and the curve Ïε,δ fitted to the market data. From this fit, aε , bε , cδ, and dδ are estimated and then
the pricing group parameters Aε,H1

1 , Aε,H1
2 , Bδ,H2

1 , and Bδ,H2
2 are determined. Figure 3 demonstrates the

corresponding result observed at one day.
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Figure 2. The implied volatility market data and fitted curves for four different time-to-
maturities with σ̄ f = 0.0441.
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Figure 3. Calibrated parameters Aε,H1
1 , Aε,H1

2 , Bδ,H2
1 , and Bδ,H2

2 against time-to-maturity
observed on December 6, 2022; σ̄ f = 0.04412.

5.2. Sensitivity to H1 and H2

The Hurst exponents H1 and H2 related to the fast- and slow-scale variations of the volatility,
respectively, are important parameters in our underlying asset price model (2.3). To investigate the
dependence of the implied volatility (4.1) on the Hurst exponents, we rewrite (4.1) as follows:

Ïε,δ(T − t,K) = σ̄ f −
1
σ̄ f

aε1(H1)
(
H1 −

1
2

)
+ aε2(H1)γH1−

1
2

1 − d1

σ̄ f
√

T − t


+

(T − t)
σ̄ f

bδ1(H2)γH2−
1
2

1 − d1

σ̄ f
√

T − t

 − bδ2(H2)
(
H2 −

1
2

) ,
where aε1(H1), aε2(H1), bδ1(H2), and bδ2(H2) are

aε1(H1) = Aε,H1
1

(
H1 −

1
2

)−1

, aε2(H1) = Aε,H1
2 γ−H1+ 1

2 ,

bδ1(H2) = Bδ,H2
1 γ−H2+ 1

2 , bδ2(H2) = Bδ,H2
2

(
H2 −

1
2

)−1

,

respectively.
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In Figure 4, we demonstrate the behavior of the implied volatility Ï with respect to the Hurst
parameters H1 and H2. Figure 4(a) shows Ï against H1 for a variety of H2 while Figure 4(b) shows Ï
against H2 for a variety of H1. The figures indicate that Ï increases as H1 decreases or H2 increases for
any fixed H2 or H1, respectively. So, the implied volatility becomes higher when the fast-scale motion
of the volatility becomes “rougher” and the slow-scale motion of the volatility becomes “smoother”.
This is an interesting result in view of modeling stochastic volatility. This provides us with one of the
reasons why we need a multiscale framework for stochastic volatility.
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Figure 4. The implied volatility Ï against H1 or H2 with σ̄ f = 0.0441, aε1 = 0.0198, aε2 =

1.7558 × 10−8, bδ1 = −5.6611 × 10−5, bδ2 = −0.0084, γ = 0.6986, K = 3940, T − t = 0.1041,
and γ = 0.6986.

5.3. Accuracy

In this section, we check the accuracy of the approximation PfMSV with respect to the parameters
γ, ε, and δ. We choose a very small value, close to zero, of each of the parameters and show that
the approximations converge to the Monte Carlo simulation result, denoted by PMC*, with the small
parameter(s).

Table 4 shows how PfMSV converges to PMC* = 41.2643 as γ goes to 0.0001. On the other hand,
Table 5 shows how the approximations PfMSV move to the Monte Carlo simulation result PMC* =

41.2576 when ε and δ go to 1.0000× 10−6 and 1.0000× 10−9, respectively. We note that the correlation
term ρyz does not appear in the first-order approximation of our interest in this article but it would
appear in higher order approximation. We assume ρyz = 0 in the numerical experiment in order to
match the situation given by our first-order approximation.
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Table 4. Comparison of PfMSV and PMC* = 41.2643 for several choices of γ converging to
0.0001; S 0 = 3941.26, K = 3900, H1 = 0.0998, H2 = 0.7984, ε = 0.000005, δ = 0.0000005,
time to maturity = 0.0476, dt = 4.7619 × 10−4, ρxy = 0.1, ρxz = 0.1, ρyz = 0, Y0 = −2.5,
Z0 = −4, φ1 = 1, and φ2 = 1.

Convergence of PfMSV to PMC*

γ PfMSV ‖PMC* − PfMSV‖

0.99000 40.8679 0.3964

0.89101 40.8901 0.3742

0.79202 40.9096 0.3548

0.69303 40.9347 0.3300

0.59404 40.9613 0.3030

0.49505 40.9914 0.2730

0.39606 41.0247 0.2396

0.29707 41.0629 0.2014

0.19808 41.1082 0.1562

0.09909 41.1661 0.0983

0.00010 41.2595 0.0048
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Table 5. Comparison of PfMSV with PMC* = 41.2576 for several choices of ε and δ converging
to 1.0 × 10−6 and 1.0 × 10−9, respectively; S 0 = 3941.26, K = 3900, H1 = 0.0998, H2 =

0.7984, γ = 0.6986, time-to-maturity = 0.0476, dt = 4.7619 × 10−4, ρxy = 0.1, ρxz = 0.1,
ρyz = 0, Y0 = −2.5, Z0 = −4, φ1 = 1, and φ2 = 1.

Convergence of PfMSV to PMC*

δ ε PfMSV ‖PMC* − PfMSV‖

1.0000 × 10−5 1.0000 × 10−4 39.7545 1.5031

9.0001 × 10−6 9.0100 × 10−5 39.8316 1.4260

8.0002 × 10−6 8.0200 × 10−5 39.9131 1.3445

7.0003 × 10−6 7.0300 × 10−5 39.9997 1.2578

6.0004 × 10−6 6.0400 × 10−5 40.0928 1.1648

5.0005 × 10−6 5.0500 × 10−5 40.1938 1.0638

4.0006 × 10−6 4.0600 × 10−5 40.3053 0.9523

3.0007 × 10−6 3.0700 × 10−5 40.4315 0.8261

2.0008 × 10−6 2.0800 × 10−5 40.5803 0.6773

1.0009 × 10−6 1.0900 × 10−5 40.7715 0.4861

1.0000 × 10−9 1.0000 × 10−6 41.1209 0.1367

6. Extension to exotic options

In general, the prices of exotic options can be determined after option pricing models are calibrated
to market data of plain vanilla options. In this section, we extend the pricing result for European vanilla
options under the fractional multiscale stochastic volatility model (2.3) to two types of path-dependent
exotic options, i.e., barrier and lookback options.

6.1. Barrier option

Barrier options are similar to vanilla options but they only become activated or extinguished when
the underlying asset hits a specific price level (the so-called “barrier”). So, the value of barrier options
can jump up or down greatly. This type of option is commonly traded in the foreign exchange and
equity markets.

Given the model (2.3), let Uε,δ(t, x, y, z) be the price of a down-and-out (D/O) barrier option, where
a payoff function is given by

H(XT ) = (XT − K)+1{inft≤τ≤T Xτ>B} (6.1)

with a strike price K, a barrier level B, and an expiration time T . From the no-arbitrage theory with the
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self-financing condition and the Itô formula, Uε,δ(t, x, y, z) satisfies the PDE problem

Aε,δUε,δ(t, x, y, z) = 0, 0 ≤ t < T,

Uε,δ(T, x, y, z) = (x − K)+, Uε,δ(t, B, y, z) = 0,
(6.2)

where the multiscale operatorAε,δ is defined by (3.2).
We are going to derive a solution of the form

Uε,δ(t, x, y, z) =

∞∑
i, j=0

(
√
δ)i(
√
ε) j Ui j(t, x, y, z) (6.3)

as an approximate solution of the PDE problem (6.2). Substituting the series expansion (6.3) into the
PDE problem (6.2) and using the same methodology as used for Proposition 3.1, one can have the
following PDE problems for the terms Ui j(t, x, y, z), (i, j) ∈ {(0, 0), (0, 1), (1, 0)}:

ABSU00(t, x, z) = 〈A2〉U00 = 0,
U00(T, x, z) = (x − K)+,

U00(T, B, z) = 0,

ABSU01(t, x, z) = AH1
1 (z)D2U00(t, x, z) + AH1

2 (z)D1D2U00(t, x, z),
U01(T, x, z) = 0,
U01(t, B, z) = 0,

ABSU10(t, x, z) = −BH2
1 (z)D1∂zU00(t, x, z) − BH2

2 (z)∂zU00(t, x, z),
U10(T, x, z) = 0,
U10(t, B, z) = 0,

(6.4)

where AH1
1 (z), AH1

2 (z), BH2
1 (z), and BH2

2 (z) are given by (3.5).
The following lemma is useful to solve the PDE problems for the terms U01 and U10.

Lemma 6.1. Consider the PDE problems

ABSu(t, x, z) = (T − t)n ξ(t, x, z), t < T, x > B, (n = 0, 1, 2, · · · ),
u(T, x, z) = 0, u(t, B, z) = 0.

If ξ satisfies the equationABSξ(t, x, z) = 0, then the solution u(t, x, z) can be decomposed into

u(t, x, z) = u1(t, x, z) + u2(t, x, z),
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where u1 and u2 are solutions to the PDE problems given by

ABSu1(t, x, z) = (T − t)n ξ(t, x, z),
u1(T, x, z) = 0,

u1(t, B, z) = −
1

n + 1
(T − t)n+1 ξ(t, B, z),

ABSu2(t, x, z) = 0,
u2(T, x, z) = 0,

u2(t, B, z) =
1

n + 1
(T − t)n+1 ξ(t, B, z),

respectively. Furthermore, the solutions u1 and u2 are given by

u1(t, x, z) = −
1

n + 1
(T − t)n+1 ξ(t, x, z),

u2(t, x, z) =
(x/B)1/2

n + 1
(T − t)n+1 ln (x/B)

σ̄ f
√

2π

×

ˆ T

t

1
(τ − t)3/2 exp

− 1
8
σ̄2

f (τ − t) +
ln2 (x/B)

2σ̄2
f (τ − t)

 ξ(t, B, z) dτ,

respectively.

Proof. This lemma is related to the Black-Scholes framework with volatility σ̄ f . Refer to Section 6.2
in Fouque et al. [15] for a proof. �

Based on Lemma 6.1, we obtain the following semi-closed form formula for an approximate value
of Uε,δ(t, x, y, z).

Proposition 6.1. Under the dynamics of (2.3), the option price Uε,δ(t, x, y, z) is approximated by Üε,δ :=
UBS +

√
εU01 +

√
δU10, that is

Üε,δ(t, x, z) = UBS(t, x, z) −
[
(T − t)H ε,H1

01 + (T − t)2H
δ,H2
10

]
UBS(t, x, z)

+ (x/B)1/2 ln (x/B)

σ̄ f
√

2π

ˆ T

t

1
(τ − t)3/2 exp

−1
8
σ̄2

f (τ − t) −
ln2 (x/B)

2σ̄2
f (τ − t)


×

(
(T − t)H ε,H1

01 + (T − t)2H
δ,H2
01

)
UBS(τ, B, z) dτ,

where UBS(t, x, z) is defined by

UBS(t, x, z) :=

 PBS (t, x, z; K) − x
B PBS

(
t, B2

x , z; K
)
, if K > B

PBS (t, x, z; B)) − x
B PBS

(
t, B2

x , z; B
)
, if K < B

andH ε,H1
01 andHδ,H2

10 are differential operators defined by

H
ε,H1
01 := Aε,H1

1 (z)
(
D2

1 −D1

)
− Aε,H1

2 (z)
(
−D3

1 +D2
1

)
,

H
δ,H2
10 := Bδ,H2

1 (z)
(
−D3

1 +D2
1

)
− Bδ,H2

2 (z)
(
D2

1 −D1

)
,

(6.5)
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respectively. Here, PBS (t, x, z;$) is the Black-Scholes call option price given by

PBS (t, x, z;$) = xN
(
d1(x, z;$)

)
+$N

(
d2(x, z;$)

)
, (6.6)

where di(s, z;$) (i = 1, 2) are defined in (5.1). The group parameters Aε,H1
1 (z), Aε,H1

2 (z), Bδ,H2
1 (z), and

Bδ,H2
2 (z) are defined in Proposition 3.1.

Proof. First of all, since U00 satisfies a PDE problem for a D/O barrier option under the Black-Scholes
model with volatility σ̄ f as seen in (6.4), it becomes UBS defined in the proposition.

On the other hand, from (6.4), we have the following PDE problems for Ü01 :=
√
εU01 and Ü10 :=

√
δU10:

ABSÜ01(t, x, z) = H
ε,H1
01 UBS(t, x, z),

Ü01(T, x, z) = 0,
Ü01(t, B, z) = 0,

ABSÜ10(t, x, z) = 2(T − t)Hδ,H2
10 UBS(t, x, z),

Ü10(T, x, z) = 0,
Ü10(t, B, z) = 0,

(6.7)

respectively. Applying Lemma 6.1 to (6.7) directly, one can obtain solutions for Ü01 and Ü10 which
lead to Üε,δ(t, x, z) given in the proposition when they are added to U00. �

6.2. Lookback option

A lookback option is an exotic option that allows the holder to exercise an option at the most
favorable (minimum or maximum) price of the underlying asset over the life of the option. The floating
strike lookback option eliminates the risk associated with the market entry time. In this section, we
obtain a pricing formula for the floating strike lookback call option under the model (2.3). In terms of
a stochastic process defined by

mt = inf
{0≤τ≤t}

Xτ

(the minimum value from the contract time 0 until the current time t), we let Vε,δ(t,m, x, y, z) denote
the price of the lookback call option, where the payoff function H(x,m) is given by

H(x,m) = (x − m)+. (6.8)

From the no-arbitrage theory with the self-financing condition and the Itô formula, Vε,δ(t,m, x, y, z)
satisfies the PDE problem

Aε,δVε,δ(t, x,m, y, z) = 0, 0 ≤ t < T, x > m,

Vε,δ(T, x,m, y, z) = (x − m)+,
∂

∂x
Vε,δ(t,m,m, y, z) = 0.

(6.9)
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We solve the PDE problem (6.9) for Vε,δ(t, x,m, y, z) using the asymptotic series expansion

Vε,δ(t, x,m, y, z) =

∞∑
i, j=0

(
√
δ)i(
√
ε) j Vi j(t, x,m, y, z). (6.10)

Plugging (6.10) into the PDE in (6.9) and applying the same methodology as used for Proposition 3.1
yield that Vi j(t, x,m, y, z), (i, j) ∈ {(0, 0), (0, 1), (1, 0)}, satisfy the PDE problems

ABSV00(t, x,m, z) = 〈A2〉V00 = 0,
V00(T, x,m, z) = (x − m)+,

∂xV00(t,m,m, z) = 0,

ABSV01(t, x,m, z) = AH1
1 (z)D2V00(t, x,m, z) + AH1

2 (z)D1D2V00(t, x, z),
V01(T, x,m, z) = 0,

∂xV01(t,m,m, z) = 0,

ABSV10(t, x,m, z) = −BH2
1 (z)D1∂zU00(t, x, z) − BH2

2 (z)∂zV00(t, x,m, z),
V10(T, x,m, z) = 0,

∂xV10(t,m,m, z) = 0,

(6.11)

respectively.
The following lemma is useful to solve the PDE problems for the terms V01 and V10.

Lemma 6.2. Consider a PDE problem given by(
∂

∂t
+

1
2
σ̄2

f (z)x2 ∂
2

∂x2

)
v(t, x, z) = ζ(t, x, z), t < T, x > 0,

v(T, x, z) = 0, vx(t, 0, z) = v(t, 0, z).
(6.12)

Then the solution v(t, x, z) is given by

v(t, x, z) = −

ˆ T

t

ˆ ∞
0

exp
(
1
2

(ln x − w)
)
ζ (T + t − τ, ew, z) G(τ,w, x, z)dwdτ,

where G(τ,w, x, z) is given by

G(τ,w, x, z) =
[
ϕ
(
ln x,w, σ̄ f (z)

√
T − τ

)
+ ϕ

(
ln x,−w, σ̄ f (z)

√
T − τ

)
−

ˆ ∞
0
ϕ
(
ln x,−(w + y), σ̄ f (z)

√
T − τ

)
exp

(
−

1
2

y
)
dy

]
.

Here, the function ϕ is defined in (5.2).

Proof. As the PDE in (6.12) is a non-homogeneous linear PDE with a Neumann boundary condition,
by the change of variables, it can become a non-homogeneous heat equation whose solution is well-
known. Refer to Polyanin and Nazaiknskii [27] for details. �
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Based on Lemma 6.2, we obtain the following formula for an approximate value of Vε,δ(t, x,m, z).

Proposition 6.2. Under the dynamics of (2.3), the option price Vε,δ(t, x,m, z) is approximated by V̈ε,δ :=
VBS +

√
εV01 +

√
δV10, that is

V̈ε,δ(t, x,m, z) = VBS(t, x,m, z)

− m
ˆ T

t

ˆ ∞
0

exp
(
1
2

(
ln

( x
m

)
− w

)) (
H

ε,H1
01 + 2 (τ − t)Hδ,H2

10

)
× VBS (T + t − τ, ew, 1, z) G

(
τ,w,

x
m
, z

)
dwdτ,

(6.13)

where VBS(t, x,m, z) is defined as

VBS(t, x,m, z) = PBS(t, x, z; m)

+ x σ̄ f

√
T − t

(
ϕ
(
d1(x, z; m), 0, 1

)
− d1(x, z; m)N

(
−d1(x, z; m)

) )
,

(6.14)

H
ε,H1
01 and Hδ,H2

10 are the differential operators defined by (6.5), and G is the function defined in
Lemma 6.2. Here, PBS(t, x, z;$), ϕ ($, µ, σ), and d1(x, z;$) are defined in (6.6) and (5.2), respectively.

Proof. Above all, as the solution V00 of the first PDE problem in (6.11) is exactly the price of the
floating strike lookback call option under the Black-Scholes model whose volatility is σ̄ f (z), it is the
same as VBS given by (6.14) which can be found in, for instance, Wilmott [34].

To derive approximate closed-form formulas for Vε,δ, we let V̈01 :=
√
εV01 and V̈10 :=

√
δV10, and

apply the reduction method of the dimension used in Shreve [31] to the PDE problems in (6.11). Letting
w := x

m and V̈i j(t, x,m, z) = mV̈i j

(
t, x

m , 1, z
)

=: mWi j(t,w, z), (i, j) = {(0, 1), (1, 0)}, (6.11) becomes

ABS[w]WBS(t,w, z) = 0,
WBS(T,w, z) = w − 1,
WBS(t, 1, z) = ∂wWBS(t, 1, z),

ABS[w]W01(t,w, z) = H
ε,H1
01 [w]WBS(t,w, z),

W01(T,w, z) = 0,
W01(t, 1, z) = ∂wW01(t, 1, z),

ABS[w]W10(t,w, z) = 2(T − t)Hδ,H2
10 [w]WBS(t,w, z),

W10(T,w, z) = 0,
W10(t, 1, z) = ∂wW10(t, 1, z),

(6.15)

where

Dn[w] = wn∂wn , n = 1, 2,

ABS[w] = ∂t +
1
2
σ̄2

f (z)D2[w],

H
ε,H1
01 [w] = Aε,H1

1 (z)
(
D2

1[w] −D1[w]
)
− Aε,H1

2 (z)
(
−D3

1[w] +D2
1[w]

)
,

H
δ,H2
10 [w] = Bδ,H2

1 (z)
(
−D3

1[w] +D2
1[w]

)
− Bδ,H2

2 (z)
(
D2

1[w] −D1[w]
)
.
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Applying Lemma 6.2 to the PDE problems (6.15) for W10 and W01 directly, one can obtain the solutions
corresponding to the formula (6.13). �

7. Conclusions

In this paper, we have introduced a semimartingale approximation of fractional stochastic volatility
in terms of two approximate fractional Brownian motions corresponding to two characteristic time
scales. Based on the semimartingale property, we make use of the replicating portfolio method to obtain
the parabolic PDE problems for European vanilla, barrier, and lookback options, and then solve those
problems explicitly and derive approximate closed-form formulas for the option prices. The mixture
of the Hurst parameters and the multiple time scales of volatility can unify effectively the previously
known separate results about the time-to-maturity dependence of the blow-up or flattening behavior of
the skews of the implied volatility. So, knowing that stochastic volatility models driven by fractional
Brownian motions can generate better fits to implied volatility surfaces, our uniform approximation
result can contribute to the situation that the volatility parameters including the Hurst exponent should
be calibrated over a wide range of time-to-maturities.
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Appendix

A. Second-order approximation

In this section, we obtain the second-order terms P02, P11, and P20 in the asymptotic series
expansion (3.3). The corresponding PDE problems have the terminal conditions 〈P02(T, x, ·, z)〉 = 0,
P11(T, x, y, z) = 0, and P20(T, x, y, z) = 0, respectively. Here, the averaged terminal condition
〈P02(T, x, ·, z)〉 = 0 and the condition

〈ψ(·, z)〉 = 0 (A.1)

are imposed based on the terminal layer analysis given by Fouque et al. [13].
We first obtain the following lemma for the terms P02, P12, and P03 in (3.3).

Lemma A.1. The second-order terms P02, P12, and P03 in (3.3) can be expressed as

P02(t, x, y, z) = −
1
2
ψ(y, z)D2PBS + F02(t, x, z),

P12(t, x, y, z) = −
1
2
ψ(y, z)D2P10 − ρxzd(z)γH2−

1
2η(x, z)D1∂zPBS + F12(t, x, z),

P03(t, x, y, z) =
1
2

(H2 −
1
2

)φ1ξD2PBS +
1
2
ρxyγ

H1−
1
2 ζD1D2PBS −

1
2
ψD2P01 + F03(t, x, z),

(A.2)

for some functions F02, F12, and F03 independent of the variable y, where η, ξ, and ζ are the solutions
of

A0η(y, z) = f (y, z) − 〈 f (·, z)〉,
A0ξ(y, z) = β(y, z)∂yψ(y, z) − 〈β(·, z)∂yψ(·, z)〉,
A0ζ(y, z) = f (y, z)β(y, z)∂yψ(y, z) − 〈 f (·, z)β(·, z)∂yψ(·, z)〉,

(A.3)

respectively.

Proof. Putting (3.3) into (3.1), Lemmas 3.1 and 3.2 draw forth Poisson equations given by

A0P02 = − (A2 − 〈A2〉) PBS,

A0P12 = − ((A2 − 〈A2〉) P10 + (A4 − 〈A4〉) PBS) ,
A0P03 = − ((A1P02 − 〈A1P02〉) + (A2 − 〈A2〉) P01) .

(A.4)

Using the solutions η, ξ, and ζ of (A.3), we can derive the solutions P02, P12, and P30 in the form
of (A.2) for some y-independent functions F02, F12, and F03. �

Next, we obtain PDEs for F02 (and so P02), P11, and P20.
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Proposition A.1. The second-order solutions F02 in (A.2), P11, and P20 are independent on the variable
y and satisfy the following PDEs

ABSF02 = −〈A1P03〉 +
1
4
〈ψ f 2〉D2

2PBS,

ABSP11 = − (〈A1P12〉 + 〈A3P02〉 + 〈A4〉P01) ,
ABSP20 = − (〈A4〉P10 +A5PBS)

(A.5)

with the boundary conditions F02(T, x, z) = P11(T, x, z) = P20(T, x, z) = 0.

Proof. First of all, similarly with the proof of Lemma A.1, we can obtain the PDEs given by

A0P11 = A0P20 = A0P21 = 0

which yields that P11, P20, and P21 are independent on the variable y. Additionally, we can get the PDE
given by

A0P04 +A1P03 +A2P02 = 0,
A0P13 +A1P12 +A2P11 +A3P02 +A4P01 = 0,
A0P22 +A1P21 +A2P20 +A3P11 +A4P10 +A5PBS = 0.

(A.6)

Applying Lemma 3.1 and the y-independence of P11, P20, and P21 into (A.6), we can have the PDEs

〈A2P02〉 = −〈A1P03〉, (A.7)

and

〈A1P12〉 +ABSP11 + 〈A3P02〉 + 〈A4〉P01 = 0,
ABSP20 + 〈A4〉P10 +A5PBS = 0.

(A.8)

Thus, we can obtain the PDEs for P11 and P02 in (A.5).
On the other hand, putting P02 in (A.2) into (A.7), we can obtain

〈A2P02〉 = −
1
2
〈ψ(·, z)L2〉D2P00(t, x, z) +ABSF02(t, x, z)

= −
1
2
〈ψ(·, z) (A2 − 〈A2〉)〉D2P00(t, x, z) +ABSF02(t, x, z)

= −
1
2

〈
ψ(·, z)

(
f 2(y, z) −

〈
f 2(·, z)

〉)
D2

〉
D2P00(t, x, z) +ABSF02(t, x, z)

= −
1
2

(〈
ψ(·, z) f 2(·, z)

〉
− 〈ψ(·, z)〉

〈
f 2(·, z)

〉)
D2

2P00(t, x, z) +ABSF02(t, x, z)

= −
1
2

〈
ψ(·, z) f 2(·, z)

〉
D2

2P00(t, x, z) +ABSF02(t, x, z)

= −〈A1P03〉,

where the assumption (A.1) has been used. Thus the first equation for F02 in (A.5) has been derived. �
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Finally, the second-order approximation
...
P(t, x, y, z) := PBS +

√
δP10 +

√
εP01 +δP02 +

√
δεP11 +εP20

and its accuracy are obtained as follows by solving the PDEs (A.5) in Proposition A.1.

Proposition A.2. Under the dynamics of (2.3) of the underlying asset price, the option price Pε,δ

is approximated by
...
P(t, x, y, z) := PBS +

√
δP10 +

√
εP01 + δP02 +

√
δεP11 + εP20, where the first

approximation part P̈(t, x, y, z) := PBS +
√
δP10 +

√
εP01 is given by Proposition 3.1 and P02, P11, and

P20 are given by

P02(t, x, y, z) = −
1
2
ψ(y, z)D2PBS + (T − t)

4∑
k=1

Ak
02D

k
1PBS + (T − t)2

6∑
k=2

Bk
02D

k
1PBS,

P11(t, x, z) = (T − t)2
k∑

k=1

Bk
11D

k
1PBS + (T − t)3

6∑
k=2

Ck
11D

k
1PBS,

P20(t, x, z) = (T − t)2
2∑

k=1

Bk
20D

k
1PBS + (T − t)3

4∑
k=1

Ck
20D

k
1 + (T − t)4

4∑
k=1

Dk
20D

k
1PBS,

(A.9)

where Ak
i j, Bk

i j, Ck
i j, and Dk

i j are set aside in Appendix B for comfortable readability. Moreover, the
approximation has the accuracy

‖P(t, x, y, z) −
...
P(t, x, y, z)‖ = O

(
ε1+l/2 + ε

√
δ + δ

√
ε + δ3/2

)
for any l < 1.

Proof. First of all, we can rewrite the solutions P01 and P10 in Proposition 3.1 as

P01 := −(T − t)B[z]PBS,

P10 := −
1
2

(T − t)2σ̄′f (z)σ̄ f (z)C[z]PBS,
(A.10)

where B and C are the operators defined by

B[z] = AH1
1 (z)D3

1 +
(
AH1

1 (z) − AH1
2 (z)

)
D2

1 − AH1
1 (z)D1,

C[z] =
(
−BH2

1 (z)
)
D3

1 +
(
BH2

1 (z) − BH2
2 (z)

)
D2

1 + BH2
2 (z)D1,

respectively. Putting the solutions (A.10) for P01 and P10 and (A.2) for P02, P12, and P03 into (A.5), we
have the following PDEs

ABSF02 = (E[z] − (T − t)F [z]B[z]) PBS,

ABSP11 =

(
σ̄′fG[z]

∂

∂σ
− (T − t)H[z]

(
B′[z] + σ̄′fB[z]

∂

∂σ

)
−

1
2

(T − t)2σ̄′f σ̄ fM[z]C[z]
)

PBS,

ABSP20 =

(
EH2

1

(
σ̄′′f

∂

∂σ
+

(
σ̄′f

)2 ∂2

∂σ2

)
+ EH2

2 σ̄′f
∂

∂σ
− (T − t)2N[z]

(
C′[z] + σ̄ fC[z]

∂

∂σ

))
PBS,

(A.11)

where G,H ,M, and N are the differential operators defined by

G[z] =
(
DH1,H2

1 (z) + DH1,H2
2 (z)

)
D2

1 +
(
DH1,H2

1 (z) + DH1,H2
3 (z)

)
D1,

H[z] = DH2
1 (z)D1 + DH2

2 (z),

M[z] = DH1
1 (z)D3

1 +
(
−DH1

1 (z) + DH1
2 (z)

)
D2

1 +
(
−DH1

2 (z)
)
D1,

N[z] = EH2
3 D1(z) + EH2

4 (z).
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Here, DH1,H2
i , DH1

i , DH2
i , and EH2

i are defined in Appendix B. By applying the following results
(motivational equations) in Fouque et al. [13] to the PDEs (A.11), we solve the PDEs (A.11) to obtain
the solutions (A.9).

ABS

(
(T − t)n+1

n + 2
∂

∂σ
PBS

)
= −(T − t)n ∂

∂σ
PBS,

ABS

(
(T − t)n+1

n + 3

(
∂2

∂σ2 +
1

σ̄ f (n + 2)
∂

∂σ

)
PBS

)
= −(T − t)n ∂2

∂σ2 PBS.

(A.12)

The proof of the error estimate should be similar to the proof in Fouque et al. [13] and so we omit
the proof. �

B. The constants in the solutions F02, P11, and P20

A4
02 := −

(
CH1

1 + CH1
4

)
,

A3
02 := CH1

1 −CH1
2 + 2CH1

4 ,

A2
02 := CH1

2 −CH1
3 −CH1

4 ,

A1
02 := CH1

3

B6
02 :=

1
2

CH1
5 AH1

2 ,

B5
02 :=

1
2

(
CH1

5

(
AH1

1 − 2AH1
2

)
+ CH1

6 AH1
2

)
,

B4
02 := −

1
2

(
CH1

5

(
2AH1

1 − AH1
2

)
+ CH1

6 (AH1
1 − 2AH1

2

)
,

B3
02 :=

1
2

(
CH1

5 AH1
1 −CH1

6

(
2AH1

1 − AH1
2

))
,

B2
02 :=

1
2

CH1
6 AH1

1 ,

B4
11 := −

1
2

(
σ̄′f σ̄ f

(
DH1,H2

1 + DH1,H2
2

)
− DH2

1
∂

∂z
AH1

1

)
,

B3
11 :=

1
2

(
σ̄′f σ̄ f

(
2DH1,H2

1 + DH1,H2
2 − DH1,H2

3

)
+

[
DH2

1
∂

∂z

(
AH1

1 − AH1
2

)
+ DH2

2
∂

∂z
AH1

2

])
,

B2
11 := −

1
2

(
σ̄′f σ̄ f

(
DH1,H2

1 − DH1,H2
3

)
+

[
DH2

1
∂

∂z
AH1

1 − DH2
2
∂

∂z

(
AH1

1 − AH1
2

)])
B1

11 := −
1
2

DH2
2
∂

∂z
AH1

1 ,
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C6
11 :=

1
3
σ̄′f σ̄ f

(
DH2

1 AH1
2 −

1
2

DH1
1 BH2

2

)
,

C5
11 :=

1
3
σ̄′f σ̄ f

(
DH2

1

(
AH1

1 − 2AH1
2

)
+ DH2

2 AH1
2 +

1
2

[
DH1

1

(
2BH2

1 − BH2
2

)
− DH1

2 BH2
1

])
,

C4
11 := −

1
3
σ̄′f σ̄ f

(
DH2

1

(
2AH1

1 − AH1
2

)
− DH2

2

(
AH1

1 − 2AH1
2

)
+

1
2

[
DH1

1

(
BH2

1 − 2BH2
2

)
− DH1

2

(
2BH2

1 − BH2
2

)])
,

C3
11 :=

1
3
σ̄′f σ̄ f

(
DH2

1 AH1
2 − DH2

2

(
2AH1

1 − AH1
2

)
−

1
2

[
DH1

1 BH2
2 + DH1

2

(
BH2

1 − 2BH2
2

)])
,

C2
11 :=

1
3
σ̄′f σ̄ f

(
DH2

2 AH1
1 −

1
2

DH1
2 BH2

2

)
,

B2
20 := −

1
2

(
EH2

1

(
σ̄′′f σ̄ f +

(
σ̄′f

)2
)

+ EH2
2 σ̄′f σ̄ f

)
,

B1
20 :=

1
2

(
EH2

1

(
σ̄′′f σ̄ f +

(
σ̄′f

)2
)

+ EH2
2 σ̄′f σ̄ f

)
,

C4
20 := −

1
3

((
σ̄′f

)2
σ̄2

f E
H2
1 +

1
2

(
σ̄′′f σ̄ f +

(
σ̄′f

)2
)

EH2
3 BH2

1 +
1
2
σ̄′f σ̄ f E

H2
3
∂

∂z

(
σ̄′f σ̄ f BH2

1

))
,

C3
20 :=

1
3

(
2
(
σ̄′f

)2
σ̄2

f E
H2
1 +

1
2

(
σ̄′′f σ̄ f +

(
σ̄′f

)2
) (

EH2
3

(
BH2

1 − BH2
2

)
− EH2

4 BH2
1

)
+

1
2
σ̄′f σ̄ f

[
EH2

3
∂

∂z

(
BH2

1 − BH2
2

)
− EH2

4
∂

∂z

(
BH2

1

)])
,

C2
20 := −

1
3

((
σ̄′f

)2
σ̄2

f E
H2
1 −

1
2

(
σ̄′′f σ̄ f +

(
σ̄′f

)2
) (

EH2
3 BH2

2 + EH2
4

(
BH2

1 − BH2
2

))
−

1
2
σ̄′f σ̄ f

[
EH2

3
∂

∂z

(
BH2

2

)
+ EH2

4
∂

∂z

(
BH2

1 − BH2
2

)])
,

C1
20 :=

1
6

((
σ̄′′f σ̄ f +

(
σ̄ f )2

))
EH2

4 BH2
2 + σ̄′f σ̄ f E

H2
4
∂

∂z
BH2

2

)
,

D6
20 := −

1
8

(
σ̄′f

)2
σ̄2

f E
H2
3 BH2

1 ,

D5
20 :=

1
8

(
σ̄′f

)2
σ̄2

f

(
EH2

3

(
2BH2

1 − BH2
2

)
− EH2

4 BH2
1

)
,

D4
20 := −

1
8

(
σ̄′f

)2
σ̄2

f

(
EH2

3

(
BH2

1 − 2BH2
2

)
− EH2

4

(
2BH2

1 − BH2
2

))
,

D3
20 := −

1
8

(
σ̄′f

)2
σ̄2

f

(
EH2

3 BH2
2 + EH2

4

(
BH2

1 − 2BH2
2

))
,

D2
20 := −

1
8

(
σ̄′f

)2
σ̄2

f E
H2
4 BH2

2 ,
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CH1
1 (z) := −

1
2
ρ2

xyγ
2H1−1

〈
f (·, z)β(·)

∂ζ

∂y
(·, z)

〉
,

CH1
2 (z) := −

1
2
ρxyγ

H1−
1
2

(
H1 −

1
2

)
φ1

(〈
β(·)

∂ζ

∂y
(·, z)

〉
+

〈
f (·, z)β(·)

∂ξ

∂y
(·, z)

〉)
,

CH1
3 (z) := −

1
2

(
H1 −

1
2

)2

φ2
1

〈
β(·)

∂ξ

∂y
(·, z)

〉
,

CH1
4 (z) :=

1
4

〈
ψ(·, z) f 2(·, z)

〉
,

CH1
5 (z) :=

1
2
ρxyγ

H1−
1
2

〈
f (·, z)β(·)

∂ψ

∂y
(·, z)

〉
,

CH1
6 (z) :=

1
2

(
H1 −

1
2

)
φ1

〈
β(·)

∂ψ

∂y
(·, z)

〉
,

DH1,H2
1 (z) :=

1
2
ρyzh(z)γH1+H2−1

〈
f (·, z)β(·)

∂ψ

∂y
(·, z)

〉
,

DH1,H2
2 (z) := ρxyρxzh(z)γH1+H2−1

〈
f (·, z)β(·)

∂η

∂y
(·, z)

〉
,

DH1,H2
3 (z) := ρxzh(z)γH2−

1
2

(
H1 −

1
2

)
φ1

〈
β(·)

∂η

∂y
(·, z)

〉
,

DH2
1 (z) := −ρxzh(z)γH2−

1
2 〈 f (·, z)〉 ,

DH2
2 (z) := −h(z)

(
H1 −

1
2

)
φ2,

DH1
1 (z) :=

1
2
ρxyγ

H1−
1
2

〈
f (·, z)β(·)

∂ψ

∂y
(·, z)

〉
,

DH1
2 (z) :=

1
2

(
H1 −

1
2

)
φ1

〈
β(·)

∂ψ

∂y
(·, z)

〉
,

EH2
1 (z) := −

1
2

h2(z)γ2H2−1,

EH2
2 (z) := −g(z),

EH2
3 (z) := −ρxzh(z)γH2−

1
2 〈 f (·, z)〉 ,

EH2
4 (z) := −h(z)

(
H2 −

1
2

)
φ2.
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