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Abstract: The propagation of rumors indisputably inflicts profound negative impacts on society
and individuals. This article introduces a new unaware ignorants-aware ignorants-spreaders-
recovereds (2IS R) rumor spreading model that combines individual vigilance self-awareness with
nonlinear spreading rate. Initially, the positivity of the system solutions and the existence of its
positive invariant set are rigorously proved, and the rumor propagation threshold is solved using the
next-generation matrix method. Next, a comprehensive analysis is conducted on the existence of
equilibrium points of the system and the occurrence of backward bifurcation. Afterward, the stability
of the system is validated at both the rumor-free equilibrium and the rumor equilibrium, employing
the Jacobian matrix approach as well as the Lyapunov stability theory. To enhance the efficacy
of rumor propagation management, a targeted optimal control strategy is formulated, drawing upon
the Pontryagin’s Maximum principle as a guiding framework. Finally, through sensitivity analyses,
numerical simulations, and tests of real cases, we verify the reliability of the theoretical results and
further consolidate the solid foundation of the above theoretical arguments.
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1. Introduction

Rumors are fabricated statements without the existence of facts. Traditionally, rumors are spread
orally or interpersonally. In the era of “self-media”, where information dissemination is becoming
faster and more convenient, rumors have caught the fast train of the internet, expanding
unprecedentedly in terms of speed, breadth, and influence. For example, on February 16th, 2024, a
self-media account on the internet circulated a video titled “Picking up the Lost Workbook of Primary
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School Student Qin Lang in Paris, France.” Upon its release, the video garnered immense viewership,
generating a significant amount of traffic. Following a thorough investigation and verification
conducted by relevant personnel, it was revealed that the video was a malicious fabrication, intended
to spread rumors or false information through the internet. Such rumors occupy public resources,
disrupt social order, and have a negative impact on society. Therefore, gaining a comprehensive
understanding of the mechanisms behind rumor generation and dissemination is crucial for us to
better comprehend and respond to such phenomena. By enhancing our information literacy and
improving our ability to discern rumors, we can effectively mitigate the harmful effects of rumors.

The original rumor spreading model was developed from the infectious disease model. The famous
Daley-Kendall (DK) model was first presented by Daley and Kendall in 1965 [1, 2]. It was the first
model to successfully combine rumor spreading and mathematics. Thereafter, based on the DK model,
Maki and Thomson further extended the model and proposed the Maki-Thomson (MT) model in [3].
It is noteworthy that as research into the dissemination of rumors intensifies, scholars have further
discovered that the process is significantly influenced by the intricate topology of social networks.
Watts and Strogatz proposed the small-world network model in 1998 [4] and analyzed the information
propagation characteristics on it, which can be regarded as the important milestone in the examination
of rumor spreading in small-world networks. As research progressed, a growing number of scholars
turned their attention to the intricate dynamics of rumor spreading across complex networks [5–11],
and various influencing factors were considered during the spread of rumors [12–17].

The impact of self-awareness on rumor dissemination is primarily manifested in an individual’s
capacity to discern the authenticity of information and their resistant attitude toward its propagation.
When a person possesses a heightened perception, comprehension, and discernment toward specific
information, they exhibit a stronger critical faculty toward related content and are less prone to
participating in the dissemination of rumors. Therefore, the rumor spreading ability of the aware
ignorants can be represented by the nonlinear function g(S )I, where g(S ) tends to saturation level
when S becomes large, i.e.,

g(S ) =
βS

1 + δS

where βS measures the rumor’s ability to spread, 1
1+δS captures the behavioral shifts triggered by an

increase in the number of alert and informed ignorants, and δ is the half-saturation constant.
The control of rumors can be better weakened by studying the adverse effects of rumors on the

society. Applying optimal control to the rumor spreading model means that the number of rumor
spreading individuals can be controlled to the maximum extent at the minimum cost. Jain et al. used
Pontryagin’s maximum principle and counter news attack mechanism and designed an optimal rumor
control system to minimize the density of rumor adopters and control cost [18]. Huo et al. verified
that the optimal control strategy can minimize the number of rumor spreaders and effectively control
the rumor spreading [19]. It is known that excessive control intensity frequently results in
unwarranted resource expenditure, whereas inadequate control intensity fails to effectively contain the
dissemination of rumors. Consequently, the implementation of optimized control strategies holds
paramount importance in mitigating the rumors spreading.

Based on the above research, this article discusses the dynamic behaviors of rumor spreading in
different situations derived from whether the ignorants has the ability to identify. Moreover, we delved
into the model’s dynamic characteristics and devised an optimal control strategy to mitigate the spread
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of rumors. Hence, the main contributions in this article are as follows:
(1) A new model of rumor propagation with saturation incidence is proposed, predicated on specific

hypotheses, which takes into account the self-awareness of the rumor ignorants and classifies them
into two categories according to their degree, thus more closely resembling the phenomenon of rumor
spreading in real life.

(2) By calculating the thresholdℜ0, the existence of rumor-free equilibrium and rumor equilibrium
in the model are analyzed, and the existence of backward bifurcation is discussed. Then, the stability
of the equilibrium points is explored by constructing a Lyapunov function.

(3) The optimal control strategy is established for the model using Pontryagin’s maximum
principle. It is able to find strategies to decrease the impact and spread of rumors by adopting methods
such as education or online monitoring of rumor spreaders. The best control effect is achieved with
minimum cost.

The rest of the paper is organized as follows. In Section 2, a new model of rumor spreading with
saturated transmission rate is proposed. In Section 3, the existence and stability of equilibrium points
of the model are considered. An optimal control to reduce rumor spreading is proposed in Section 4. In
Section 5, numerical simulations validate the accuracy of the theoretical results. Additionally, Section 6
provides a real-world instance to demonstrate the practical applicability of the model. The paper
concludes in Section 7.

2. The basic formulation of the model

In this section, we introduce a rumor propagation model that takes into account users’
self-awareness. This self-awareness enables users to be alert to potential risks and hazards associated
with rumors, thus maintaining a cautious attitude toward information. Based on the user’s status, we
categorize them into four different types: Unaware ignorants Iu(t): they refer to individuals who are
yet unaware of the rumor, a cohort of unknowns who potentially possess insufficient pertinent
knowledge and judgment capabilities. Aware ignorants Ia(t): in the face of rumor spreading, although
they will show a more rational and prudent attitude, and be able to think and judge the content of the
rumor independently, they actually do not know the specific content and are still in a state of
ignorance. Spreaders S (t): these users are individuals who actively spread rumors to others. They
further amplify the impact of rumors in social networks. Recovereds R(t): it refers to the process of
rumor spreading. More users are initially affected by the rumor and are no longer participating in it.

The rumor’s predicted social network spread pattern is based on the following assumptions:
(1) In the social network, the number of users added per unit time is to be W1 and W2, respectively.

In addition, the eviction rate µ represents the probability of each type of user leaving the system per
unit time.

(2) Since Iu gradually becomes alert and aware through improving self-knowledge and actively
learning relevant knowledge, they will transform into aware individuals Ia with probability α.

(3) When ignorants come into contact with rumor spreaders, they may be influenced by the rumors
and become rumor spreaders. We assume that the probability of Iu(t) and S (t) transforming into S (t)
after contact is β1. The probability of Ia(t) and S (t) becoming S (t) after contact is the saturated
propagation rate β2IaS

1+δS .
(4) Those ignorant people who are already alert are able to recognize and resist the misinformation
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of rumors directly due to their vigilant and prudent attitude toward information, thus becoming the
recovereds with a certain probability of η. Rumor spreaders with probability γ stop spreading rumors
and become the recovereds.

Using the above assumptions, W1, W2, α, µ, η, γ, β1, β2 are all positive constants. The process
of 2IS R rumor propagation can be characterized as in Figure 1. The model is described by the
following system of differential equations:

dIu(t)
dt
= W1 − αIu(t) − β1Iu(t)S (t) − µIu(t),

dIa(t)
dt
= W2 + αIu(t) −

β2Ia(t)S (t)
1 + δS (t)

− µIa(t) − ηIa(t),

dS (t)
dt
= β1Iu(t)S (t) +

β2Ia(t)S (t)
1 + δS (t)

− γS (t) − µS (t),

dR(t)
dt
= ηIa(t) + γS (t) − µR(t),

(2.1)

with the initial conditions

Iu(0) > 0, Ia(0) > 0, S (0) > 0, R(0) > 0.

Figure 1. Description diagram of the rumor dynamics.

Based on [20], the following two lemmas will be proved.

Lemma 2.1. Assume (Iu(t), Ia(t), S (t),R(t)) is the solution of system (2.1) that satisfies the initial
conditions, then Iu(t), Ia(t), S (t),R(t) are positive for all t > 0.

Proof. First, we prove that Iu(t) and Ia(t) are positive for all t > 0. We know that Iu(0) > 0 and Ia(0) > 0
from the initial conditions of system (2.1). According to the continuity of the solution that satisfies the
initial conditions, it is assumed that there is a normal number t1, which makes Iu(t) > 0 and Ia(t) > 0
for t ∈ [0, t1), and suppose that Iu(t) = 0 and Ia(t) = 0 when t = t1. dIu(t1)

dt = W1 and dIa(t1)
dt = W2 can be

obtained from the first equation of system (2.1).

AIMS Mathematics Volume 9, Issue 9, 25513–25531.



25517

However, ∀t ∈ [0, t1), Iu(t) > Iu(t1) = 0 and Ia(t) > Ia(t1) = 0 which cause a contradiction with
dIu(t1)

dt > 0 and dIa(t1)
dt > 0. Thus, there is a positive number t1, which makes Iu(t1) > 0 and Iu(t1) > 0.

By the same way, we can prove that the existence of positive 0 < t1 < t2 < t3 makes S (t2) > 0 and
R(t3) > 0, respectively. □

Lemma 2.2. The feasible region Ω is defined as:

Ω =

{
(Iu, Ia, S ,R) ∈ R+4 : Iu ≤ I△u , Ia ≤ I△a , Iu + Ia + S + R ≤

W1 +W2

µ

}
which is a positive invariant set of system (2.1).

Proof. Let N(t) = Iu(t) + Ia(t) + S (t) + R(t). It is easy to know that

dN(t)
dt
= W1 +W2 − µN(t),

and then lim
t→∞

sup N(t) = W1+W2
µ

. Additionally,

dIu(t)
dt
= W1 − αIu(t) − β1Iu(t)S (t) − µIu(t) ≤ W1 − (α + µ)Iu(t),

dIa(t)
dt
= W2 + αIu(t) −

β2Ia(t)S (t)
1 + δS (t)

− µIa(t) − ηIa(t) ≤ W2 + αIu(t) − (µ + η)Ia(t).

It follows that

lim
t→∞

sup Iu(t) =
W1

α + µ
:= I△u , lim

t→∞
sup Ia(t) =

W2

µ + η
+

αW1

(α + µ)(µ + η)
:= I△a .

Therefore, the positive invariant set of system (2.1) is Ω =
{
(Iu, Ia, S ,R) ∈ R+4 : Iu ≤ I△u , Ia ≤

I△a , Iu + Ia + S + R ≤ W1+W2
µ

}
. □

Due to R(t) being independent of the other equations of the system (2.1), we simplify the equations
for convenience as follows:

dIu(t)
dt
= W1 − αIu(t) − β1Iu(t)S (t) − µIu(t),

dIa(t)
dt
= W2 + αIu(t) −

β2Ia(t)S (t)
1 + δS (t)

− µIa(t) − ηIa(t),

dS (t)
dt
= β1Iu(t)S (t) +

β2Ia(t)S (t)
1 + δS (t)

− γS (t) − µS (t).

(2.2)

Remark 1. A plethora of scholarly works has delved into the dynamics of rumor propagation.
However, these studies do not take into account the self-awareness of rumor ignorants. In the context
of rumor dissemination, self-awareness of rumors refers to an individual’s ability to identify and
judge rumors and avoid being misled by them when confronted with information. Consequently, we
posit a new rumor propagation model (2.1), which categorizes the ignorants of rumors based on
varying degrees of self-awareness.
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3. Stability analysis of system

In this section, we will discuss the stability of the rumor-free equilibrium and rumor equilibrium of
the system (2.2). The specific algorithm is as follows.

The rumor-free equilibrium E0 = (Iu, Ia, 0), where Iu =
W1
α+µ

and Ia =
W2
µ+η
+ αW1

(α+µ)(µ+η) , is easy to
compute.

Next, the basic regeneration number is calculated by using the next generation matrix method [21].
By writing the third equation in system (2.2) as dS (t)

dt = F − V in which F = β1Iu(t)S (t) + β2Ia(t)S (t)
1+δS (t)

andV = γS (t)+ µS (t), let F = ∂F
∂S

∣∣∣∣∣
E0

= β1Iu + β2Ia and V = ∂V
∂S

∣∣∣∣∣
E0

= (µ+ γ). The spectral radius of the

matrix FV−1 is the basic reproduction numberℜ0 of the system, which can be obtained as follows for
the system (2.2):

ℜ0 = ρ(FV−1)

=
β1Iu + β2Ia

µ + γ

=
αβ2(W1 +W2) + β1W1(µ + η) + µβ2W2

(µ + γ)(α + µ)(µ + η)
.

Theorem 3.1. Ifℜ0 < 1, the rumor-free equilibrium E0 of system (2.2) is locally asymptotically stable.

Proof. The Jacobian matrix of system (2.2) at the rumor-free equilibrium E0 is

J(E0) =


−α − µ 0 −β1Iu

α −µ − η −β2Ia

0 0 β1Iu + β2Ia − γ − µ

 .
By simple calculation, it has

(λ + µ + η)(λ + α + µ)[λ − (β1Iu + β2Ia − (µ + γ))] = 0. (3.1)

This gives the characteristic roots of (3.1) as

λ1 = −µ − η, λ2 = −α − µ, λ3 = β1Iu + β2Ia − (µ + γ) = (µ + γ)(ℜ0 − 1).

Since ℜ0 < 1 , λ1, λ2, and λ3 are negative, one can conclude that E0 is locally asymptotically
stable. □

Theorem 3.2. The rumor-free equilibrium E0 is globally asymptotically stable ifℜ0 < 1.

Proof. To construct the subsequent Lyapunov function

V(t) = S (t).

By taking the derivative of V , it can be obtained that

dV(t)
dt
= β1Iu(t)S (t) +

β2Ia(t)S (t)
1 + δS (t)

− γS (t) − µS (t)
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≤ (β1I△u + β2I△a )S (t) − (µ + γ)S (t)
= (µ + γ)(ℜ0 − 1)S (t).

If ℜ0 < 1 , the dV(t)
dt ≤ 0, and dV(t)

dt = 0 if and only if S (t) = 0. In accordance with LaSalle’s
invariance principle, E0 is globally asymptotically stable. □

When system (2.2) gets rumor equilibrium E∗ =
{
I∗u, I

∗
a, S

∗
}
, the system (2.2) satisfies the following

equation: 
W1 − αI∗u − β1I∗uS ∗ − µI∗u = 0,

W2 + αI∗u −
β2I∗aS ∗

1 + δS ∗
− µI∗a − ηI

∗
a = 0,

β1I∗uS ∗ +
β2I∗aS ∗

1 + δS ∗
− γS ∗ − µS ∗ = 0.

(3.2)

We have

I∗u =
W1

α + β1S ∗ + µ
,

I∗a =
1 + δS ∗

(µ + η)(1 + δS ∗) + β2S ∗
·
α(W1 +W2) +W2(β1S ∗ + µ)

α + β1S ∗ + µ
.

The result is obtained directly through computation

A(S ∗)2 + BS ∗ +C = 0, (3.3)

where

A = β1(µ + γ)((µ + η)δ + β2),
B = (µ + γ)(α + µ)((µ + η)δ + β2) + (µ + η)(µ + γ)β1

− β1β2(W1 +W2) − (µ + η)β1W1δ,

C = (µ + η)(α + µ)(µ + γ) − αβ2(W1 +W2) − β1W1(µ + η) − µβ2W2

= (µ + η)(α + µ)(µ + γ)(1 −ℜ0).

Next, we will solve the positive solution S ∗ of Eq (3.3). Equation(3.3) has a unique positive root
when C < 0 (ℜ0 > 1); when C = 0 (ℜ0 = 1), Eq (3.3) has a positive root if and only if B < 0; when
C > 0 (ℜ0 < 1), Eq (3.3) has two equal positive roots S ∗ = − B

2A if B < 0 and ∆ = 0, then Eq (3.3) has
two positive roots if ∆ > 0 and B < 0.

Furthermore, in accordance with the third, from ℜ0 < 1 and W1+W2
µ
= 1, it follows that (µ + γ) >

αβ2µ+β1W1(µ+η)+µβ2W2
(α+µ)(µ+η) . Substituting the above equation into B,

B =(µ + γ)(α + µ)((µ + η)δ + β2) + (µ + η)(µ + γ)β1

− β1β2(W1 +W2) − (µ + η)β1W1δ,

>[αβ2µ + β1W1(µ + η) + µβ2W2]δ − β1β2µ − (µ + η)β1W1δ

+
[αβ2µ + β1W1(µ + η) + µβ2W2]β2

(µ + η)
+

[αβ2µ + β1W1(µ + η) + µβ2W2]β1

(α + µ)
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>(αβ2µ + µβ2W2)δ + β1β2W1 − β1β2µ

+
µβ2

2(α +W2)
(µ + η)

+
β2

1W1(µ + η) + µβ1β2(α +W2)
(α + µ)

>(αβ2µ + µβ2W2)δ + β1β2W1 +
µβ2

2(α +W2)
(µ + η)

+
β2

1W1(µ + η)
(α + µ)

−
µβ1β2W1

(α + µ)

>(αβ2µ + µβ2W2)δ +
µβ2

2(α +W2)
(µ + η)

+
β2

1W1(µ + η)
(α + µ)

> 0.

It follows that when C > 0, it can be inferred that B > 0. Hence, it can be concluded that
system (2.2) does not have backward bifurcation.

Denote

ℜ̂0 = 1 −
(P − Q)2

4β1(µ + γ)((µ + η)δ + β2)[(µ + η)(α + µ)(µ + γ)(1 −ℜ0)]
,

where P = (µ + γ)(α + µ)((µ + η)δ + β2) + (µ + η)(µ + γ) and Q = β1β2(W1 +W2) + (µ + η)β1W1δ.
Concerning the pivotal basic reproduction number previously defined, we derive pertinent

conclusions regarding the positive equilibrium point in the subsequent theorem.

Theorem 3.3. For the system (2.2), upon defining ℜ0 and ℜ̂0 as aforementioned, we arrive at the
following:

(1). Ifℜ0 > 1, there exists a unique rumor equilibrium point denoted as E∗.
(2). Ifℜ0 = 1 and B < 0, there is a unique rumor equilibrium point.
(3). Ifℜ0 ≤ 1 and B ≥ 0, the system (2.2) does not have a rumor equilibrium point.
(4). If ℜ0 = ℜ̂0 and B < 0, system (2.2) possesses a singular and unique equilibrium point

pertaining to rumor spreading.
(5). Ifℜ0 < ℜ̂0 and B < 0, there is no rumor equilibrium point.

Proof. Given that ℜ0 < 1, system (2.2) admits positive equilibrium points only when the condition
B < 0 is satisfied. Additionally, letting ∆ represent the discriminant of Eq (3.3), the critical value is
ascertained by the condition ∆ = 0. By solving ∆ = 0 in terms of ℜ0, we arrive at the previously
delineated critical value of ℜ̂0.

Moreover, we get the following relationships:

∆ < 0⇐⇒ℜ0 < ℜ̂0, ∆ = 0⇐⇒ℜ0 = ℜ̂0, ∆ > 0⇐⇒ℜ0 > ℜ̂0.

When B < 0, system (3.3) may possess 0 or 1 positive equilibrium point, depending on whether
ℜ0 < ℜ̂0 andℜ0 = ℜ̂0, respectively.

In summary, the Theorem 3.4 yields a definitive conclusion regarding the number of positive
equilibrium points. □

Next, we assume that

Ψ =
β2I∗aS ∗

1 + δS ∗
represents the incidence of the model.

Furthermore, we set ∂Ψ
∂Ia

and ∂Ψ
∂S to be represented by ΨIa and ΨS , respectively, i.e., ΨIa =

β2S ∗

1+δS ∗ and

ΨS =
β2I∗a

(1+δS ∗)2 ; meanwhile, Θ1 = (α + µ), Θ2 = (µ + η), and Θ3 = (µ + γ).
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Theorem 3.4. If a1a2 − a3 > 0, then the rumor equilibrium E∗ of system (2.2) is locally asymptotically
stable, where a1, a2, and a3 are chosen as follows.

Proof. The Jacobian matrix of system (2.2) at E∗ = (I∗u, I
∗
a, S

∗) is as follows:

J(E∗) =


−β1S ∗ − Θ1 0 −β1I∗u

α −ΨIa − Θ2 −ΨS

β1S ∗ ΨIa β1I∗u + ΨS − Θ3

 .
The characteristic equation for matrix J(E∗) has the following form:

λ3 + a1λ
2 + a2λ + a3 = 0, (3.4)

where a1 = Θ1 +Θ2 +Θ3 + β1S ∗ +ΨIa − β1I∗u −ΨS , a2 = (Θ2 +Θ3)(β1S ∗ +Θ1 +ΨIa)+Θ3(Θ2 +ΨIa)−
(Θ1 + Θ2)(β1I∗u + ΨS ) − β1I∗uΨIa − β1S ∗ΨS , a3 = Θ3(Θ1 + β1S ∗)(Θ2 + ΨIa) + αβ1I∗uΨIa − Θ1β1I∗u(Θ2 +

ΨIa) − Θ2ΨS (Θ1 + β1S ∗).
Using the Routh-Hurwitz stability criterion [22], if a1, a2, a3 > 0, and a1a2 − a3 > 0, then the real

parts of all the eigenvalues of Eq (3.4) are negative, which proves that the rumor equilibrium E∗ is
locally asymptotically stable. □

4. Optimal control model

When rumors continue to spread and cause adverse effects, it is crucial to take targeted measures
to contain their spread. To this end, this section details a real-time optimal control approach that aims
to achieve effective suppression of rumor spreading within a desired time frame at minimal cost. This
control mechanism not only takes into account the dynamics of rumor spreading, but also incorporates
a cost control strategy, which provides a powerful tool for practically tackling the rumor spreading
problem. The model after adding the control mechanism is given as follows:

dIu(t)
dt
= W1 − αIu(t) − β1Iu(t)S (t) − µIu(t),

dIa(t)
dt
= W2 + αIu(t) −

β2Ia(t)S (t)
1 + δS (t)

− µIa(t) − ηIa(t),

dS (t)
dt
= β1Iu(t)S (t) +

β2Ia(t)S (t)
1 + δS (t)

− γS (t) − µS (t) − r(t)S (t),

dR(t)
dt
= ηIa(t) + γS (t) + r(t)S (t) − µR(t),

(4.1)

in which r(t) represents the intensity of control measures taken to reduce the spread of rumors through
education or network supervision. To evaluate the associated costs, we introduce ϕ and κ to signify
the mean expenditure required to control and educate S individuals, respectively. Considering that the
required time frame is [0,T ], the subsequent phase involves commencing the process of formulating
the objective function for the optimal control strategy.
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J(r(t)) =
∫ T

0
[ϕS (t) + κr2(t)]dt. (4.2)

The feasible region of r(t) is U = {(r(t))|0 ≤ r(t) ≤ rmax, t ∈ (0,T ]}, where rmax denotes the upper
bound of r(t). Optimal control r∗ satisfy J(r∗) = min{J(r(t)) : (r(t)) ∈ U}.

Next, we construct the Lagrangian function

L(S (t), r(t)) = ϕS (t) + κr2(t).

The Hamiltonian function is delineated as

H(Iu(t), Ia(t), S (t),R(t), r(t), λi(t)) = L(S (t), r(t))
+λ1(t)

[
W1 − αIu(t) − β1Iu(t)S (t) − µIu(t)

]
+λ2(t)

[
W2 + αIu(t) −

β2Ia(t)S (t)
1 + δS (t)

− µIa(t) − ηIa(t)
]

+λ3(t)
[
β1Iu(t)S (t) +

β2Ia(t)S (t)
1 + δS (t)

− γS (t) − µS (t) − r(t)S (t)
]

+λ4(t)
[
ηIa(t) + γS (t) + r(t)S (t) − µR(t)

]
, (4.3)

where i = 1, 2, 3, 4. Leveraging Pontryagin’s principle of optimality [23], the subsequent theorem is
formulated.

Theorem 4.1. Assuming Iϵu, Iϵa, S ϵ , and Rϵ represent the optimal states achieved under the optimal
control r∗, there exist adjoint variables λi(t), i = 1, · · · , 4, that satisfy the following conditions:

dλ1(t)
dt
=λ1(t)(α + β1S ϵ + µ) − λ2(t)α − λ3(t)β1S ϵ ,

dλ2(t)
dt
=λ2(t)(

β2S ϵ

1 + δS ϵ
+ µ + η) − λ3(t)

β2S ϵ

1 + δS ϵ
− λ4(t)η,

dλ3(t)
dt
= − ϕ + λ1β1Iϵu + λ2(t)

β2S ϵ

1 + δS ϵ
− λ4(t)(γ + r(t))

− λ3(t)
[
β1Iϵu +

β2Iϵa
(1 + δS ϵ)2 − (γ + µ) − r(t)

]
,

dλ4(t)
dt
=λ4(t)µ,

(4.4)

with the transversality conditions λi(T ) = 0. The optimal control r∗ is stipulated as follows:

r∗ = max{min{
(λ3 − λ5)S ϵ

2κ
, 0}, rmax}.

Proof. Set Iu(t) = Iϵu, Ia(t) = Iϵa, S (t) = S ϵ , and R(t) = Rϵ using Pontryagin’s maximum principle. Upon
derivation, the following adjoint equations are obtained.
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

dλ1(t)
dt
= −

∂H
∂Iu(t)

=λ1(t)(α + β1S ϵ + µ) − λ2(t)α − λ3(t)β1S ϵ ,

dλ2(t)
dt
= −

∂H
∂Ia(t)

=λ2(t)(
β2S ϵ

1 + δS ϵ
+ µ + η) − λ3(t)

β2S ϵ

1 + δS ϵ
− λ4(t)η,

dλ3(t)
dt
= −

∂H
∂S (t)

= − ϕ + λ1β1Iϵu + λ2(t)
β2S ϵ

1 + δS ϵ
− λ4(t)(γ + r(t))

− λ3(t)
[
β1Iϵu +

β2Iϵa
(1 + δS ϵ)2 − (γ + µ) − r(t)

]
,

dλ4(t)
dt
= −

∂H
∂R(t)

=λ4(t)µ.

Adhering to the optimality criteria, the differentiation of Eq (4.3) with regard to r(t) is delineated
herein.

∂H
∂r(t)
|r(t)=r∗ = 2κr∗ − λ3(t)S ϵ + λ4(t)S ϵ = 0.

Then, the optimal control can be obtained

r∗ =
(λ3(t) − λ4(t))S ϵ

2κ
.

In other words, the optimal control variables r∗ are characterized as

r∗ = max{min{
(λ3(t) − λ4(t))S ϵ

2κ
, 0}, rmax}.

□

5. Numerical simulations

In this section, we plan to perform numerical simulation analyses using two different datasets
presented in Table 1. Specifically, the Set 1 will be used as a reference to study the trend of rumor
dissipation, while the Set 2 will be used as a basis to explore the mechanism of continuous rumor
propagation. Choose the following initial value: Iu(0) = 0.6 − 0.05k, Ia(0) = 0.3 − 0.03k,
S (0) = 0.06 + 0.04k, and R(0) = 0.04 + 0.04k, k ∈ [1, 8].

Table 1. The parameter set for simulation.

Parameters W1 W2 α β1 β2 η γ µ δ

Set 1 values 0.03 0.01 0.15 0.26 0.18 0.12 0.2 0.04 0.38
Set 2 values 0.02 0.01 0.17 0.28 0.2 0.05 0.02 0.03 0.38

5.1. Sensitivity analysis

In sensitivity analyses to assess the impact of variable changes on the system as a whole, our primary
concern is to determine which parameters have the greatest impact on the basic reproduction number
ℜ0. For this purpose, we have carried out exhaustive calculations based on the normalized sensitivity
index defined in the literature [24] to identify the parameters that are most sensitive toℜ0. The results
of the sensitivity assessment of these parameters are presented in Table 1.

AIMS Mathematics Volume 9, Issue 9, 25513–25531.



25524

If the sensitivity index of a parameter assumes a positive value, it signifies that an increase in the
parameter leads to an elevation in the thresholdℜ0. Conversely, a negative sensitivity index indicates
that an augmentation in the parameter results in a decrease of the thresholdℜ0. From Figure 2, it can
be seen that regardless of the rumor disappearance or existence, the parameters W1, W2, α, β1, and β2

have positive sensitivity indices, i.e., ℜ0 increases with the increase of these parameters. In contrast,
the sensitivity indices of the parameters η, γ, and µ are all less than zero, i.e., ℜ0 decreases with an
increase in these parameters.
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Figure 2. (a) The sensitivity index of ℜ0 to different parameters, when ℜ0 < 1. (b) The
sensitivity index ofℜ0 to different parameters, whenℜ0 > 1.

5.2. The stability of rumor-free equilibrium and rumor equilibrium

Example 5.1. Considering the data for parameter Set 1 in Table 1, Figure 3 delves into the scenario
where ℜ0 = 0.3289 < 1. Drawing upon the proof presented in Theorem 3.2, we infer that within the
system, the propagation of rumors will progressively attenuate, ultimately leading to their
disappearance. Concurrently, the equilibrium E0 of system (2.1) is deemed to be globally
asymptotically stable. This assertion is visually corroborated in Figure 3(a). Furthermore,
Figure 3(b) shows the phase diagram at the rumor-free equilibrium E0. Collectively, Figure 3
demonstrates that regardless of the initial conditions, the impact of rumors will gradually weaken and
eventually disappear.

Example 5.2. By choosing the parameters of Set 2 in Table 1, Figure 4 discusses the case ℜ0 =

1.3988 > 1. Therefore, according to Theorem 3.5, there exists a rumor equilibrium E∗ in system (2.1).
Figure 4(a) clearly shows the dynamic trajectory of all states stable. Figure 4(b) more specifically
shows that although the initial values have changed, their final steady-state remains unchanged. This
further confirms the stability of system (2.1) at the rumor equilibrium E∗.

Example 5.3. We use the parameters of Set 2 in Table 1. When other parameters are constant, we select
δ = 0, δ = 0.38, and δ = 0.8 to analyze the effect of ignoramuses with different self-alertness awareness
on rumor spreading. Figure 5(a) shows that as the self-awareness of the ignorant increases, the density
of spreaders gradually decreases, indicating that they become more cautious about the information
they receive after enhancing their self-awareness, thereby reducing the density of spreaders. Similarly,
α = 0, α = 0.38, and α = 0.8 are chosen to discuss the effect of changes in the probability of
unaware ignorants switching to aware ignorants. Figure 5(b) shows that as α gets larger, the number
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of propagators gets smaller. That is, as the probability of an ignorant person converting to an aware
ignorants person rises, the number of rumor spreaders decreases accordingly.

(a) (b)
Figure 3. (a) The evolutions of Iu(t), Ia(t), S (t), and R(t) over time at E0. (b) Phase diagram
with different initial values whenℜ0 < 1.

(a) (b)
Figure 4. (a) The evolutions of Iu(t), Ia(t), S (t), and R(t) over time at E∗. (b) Phase diagram
with different initial values whenℜ0 > 1.
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Figure 5. (a) The trajectories of S (t) with ℜ0 > 1, δ = 0, δ = 0.38, and δ = 0.8. (b) The
trajectories of S (t) withℜ0 > 1, α = 0.17, α = 0.34, and α = 0.68.
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5.3. Feasibility of optimal control

This section discusses the effectiveness of optimal control. In the presence of rumors, the initial
values are set to be Iu(0) = 0.6, Ia(0) = 0.3, S (0) = 0.06, and R(0) = 0.04. The weights of the indicators
are ϕ = 2 and κ = 1. Figure 6 depicts the variation of S (t) and R(t) over time with and without optimal
control. From the figure, it can be concluded that the number of spreaders significantly decreases
and the amount count of recovereds increases under optimal control. That is, the government and
related departments can increase the investment in public education to improve the public’s ability to
identify and prevent rumors and control the spread of rumors through various channels, such as school
education, community promotion, and media publicity. The trajectory of the optimal control strategy
and the corresponding change in control cost over time has been clearly demonstrated in Figure 7.
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Figure 6. The trajectories of S (t) and R(t) with and without optimal control.
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Figure 7. (a) Evolution of optimal control paths r(t) in [0,5]. (b) The trajectories of control
cost profiles J(t) between expected intervals [0, 3].

In the context of optimal control, varying the control time T results in distinct
trajectories. Figure 8(a) illustrates that the trajectories of r(t) exhibit variations when the control time
T is set to 3, 4, and 5, respectively. As depicted in Figure 8(b), the control consumptions J(t) are
presented for various control times: T = 3, T = 4, and T = 5. Our observations indicate that as the
time T increases, so does the consumption J(t).
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Figure 8. (a) Evolution of optimal control paths r(t) under varying T . (b) The trajectories of
control cost profiles J(t) under varying T .

6. Model application

To validate the pertinent results, a practical example is presented in this section as an application
of the model. Utilizing a microblog post regarding “the leader being trampled to death as a result of
tourists pulling the tails of elephants” as the data source, simulations are conducted. [25] provides the
amount of reprints for the first 44 h of rumor spreading, as shown in Figure 9(a).

Given that users who engage with microblogs possess a specific knowledge base and cultural
background, it is postulated that Ia = 0. Also inspired by [26], the following parameters are chosen:
δ = 8 × 10−3, W2 = 8 × 10−4, β2 = 1 − 1 × 10−15, µ = 8 × 10−4, η = 6.8 × 10−3, and γ = 0.37. By
incorporating the aforementioned parameters with the real data, a meticulous fitting process is
conducted, yielding Figure 9(b) as the outcome.
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Figure 9. (a) The sensitivity index of ℜ0 to different parameters. (b) The progression of
rumor spreaders and factual data.

Next, if we adopt an effective control strategy against the spreader, then the rumor is likely to die
down quickly. Based on the optimal control presented in Section 5, ϕ = 4 and κ = 8 are chosen.
The transformation of the rumor spreaders is graphically depicted in Figure 10. The optimal control
intensity r(t) is shown in Figure 11(a), while the consumption J(t) is presented in Figure 11(b). It
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is obvious that under the optimal control strategy (e.g., the government adopts science education and
the network regulator bans the spreaders), the number of spreaders will decrease rapidly, while the
consumption J(t) will be less than in the other cases.
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Figure 10. The evolution of S (t) states with and without optimal control.
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Figure 11. (a) The evolution of optimal control strength r(t). (b) The consumption J(t) with
different control.

7. Conclusions

This article studies a 2IS R rumor propagation model with nonlinear correlation, and the nonlinear
occurrence rate of the model can reflect an individual’s psychological alertness. To begin, the positivity
and positive invariant set of the solution of the established rumor propagation model are proved. Then,
the next generation matrix method is used to calculate the rumor propagation threshold ℜ0, and the
existence of the equilibrium is analyzed, and it is proved that there is no backward bifurcation at
the rumor equilibrium. In addition, the main results indicate that when ℜ0 < 1, rumors eventually
disappear, and the rumor-free equilibrium E0 is globally asymptotically stable. Whenℜ0 > 1, rumors
continue to spread and the rumor equilibrium E∗ is locally asymptotically stable. In order to further
control the spread of rumors, we studied the optimal control strategy of increasing education and online
regulatory measures. Finally, sensitivity analysis is conducted on various parameters in the model, and
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the correctness of the theoretical results is verified through numerical simulation. The influence of
psychological factor δ on rumor propagation was also simulated. By analyzing real cases, we confirm
that the model constructed in this paper not only has theoretical significance, but also has feasibility in
practical applications.

Considering the complexity and variability of the internet, the impact of complex network
structures on rumor propagation will be considered in the future, as well as the fact that it is not
enough to curb rumor spreading by optimizing control strategies. In the future, we will study in depth
the effects of other control strategies [27–30] on rumor propagation, with a view to finding a more
comprehensive solution. Meanwhile, since the stochastic rumor model can more accurately reflect the
complex propagation laws in real life [31–34], this will also be the direction of our subsequent
research.
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