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Abstract: A multivariate data analysis (MVDA) is a powerful statistical approach to simultaneously 

analyze datasets with multiple variables. Unlike univariate or bivariate analyses, which simultaneously 

focus on one or two variables, respectively , MVDA considers the interactions and relationships among 

multiple variables within a dataset. Several nonparametric tests can be used in the context of one-

sample multivariate location problems. The exact distributions of such tests cannot be analytically 

computed and are usually approximated using an asymptotic approximation. This article proposes the 

saddlepoint approximation method to approximate the tail probability for multivariate sign and signed-

rank tests. It is suggested as a more accurate alternative to the traditional asymptotic approximation 

method and an alternative to the simulation method. It requires a lot of time as it depends on all possible 

permutations. Real data examples were provided to illustrate the calculation of p-values, and a 

simulation study was conducted to compare the accuracy of the saddlepoint approximation method 

with the simulation method (permutation-based, so time-consuming) and an asymptotic normal 

approximation method. The study results show that the saddlepoint approximation provides highly 

accurate approximations to the p-values of the considered statistics, and it often outperforms the 

normal approximation. Additionally, the results show that the proposed method’s computation time is 

much less than that of the time-consuming simulation method. 

Keywords: multivariate sign tests; distribution free; permutation tests; tail probability saddlepoint 

approximation; multivariate signed rank tests 
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1. Introduction  

Many real-world phenomena involve interactions between multiple factors. A multivariate data 

analysis (MVDA) allows researchers to dissect these complex systems and to understand how different 

variables affect each other and contribute to the overall outcomes. For example, in medical research, 

datasets often include multiple variables such as patient demographics, genetic information, medical 

history, biomarkers, and treatment outcomes. MVDA helps researchers identify factors that influence 

the disease risk, treatment response, and patient outcomes. This is just an example for illustration; 

however, MVDA is relevant to many other fields, including engineering, economics, agriculture, 

public health, psychology, urban planning, energy, and more. Essentially, any discipline that deals with 

complex systems or phenomena that involve multiple interacting factors relies on multivariate analyses 

to extract meaningful insights from data. Accordingly, many statisticians were interested in extending 

univariate and bivariate statistical tests to multivariate cases. Among these tests are the sign tests. Sign-

based approaches are non-parametric methods that are very appealing because of their inherent 

simplicity and resistance to standard Gaussian assumptions. Sign tests originated in the univariate case 

when they were primarily used to assess issues with location and symmetry. Over several decades, 

multivariate extensions of univariate sign-based approaches have garnered significant interest. 

Bivariate sign test location testing may be traced back to Hodges [1] and Blumen [2]. Numerous sign 

test and signed-rank approaches for the multivariate location issue have recently been developed in 

scientific literature. Randles [3] suggested an inter-directional, distribution-free multivariate sign test. 

Hettmansperger et al. [4] presented a new approach to conduct hypothesis tests on the central location 

of multivariate data (MVD), and emphasized the importance of asymptotic invariance for robust 

statistical inference. Möttönen and Oja [5] introduced the multivariate spatial sign method to robustly 

estimate location parameters in an MVDA. Hettmansperger et al. [6] presented a novel approach to 

construct affine-invariant multivariate one-sample sign tests. For more information and knowledge 

about non-parametric tests for MVD, the reader can review the following references: Möttönen and 

Oja [7], Larocque and Labarre [8], Mahfoud and Randles [9], and Bernard and Verdebout [10]. 

Moreover, we refer to Oja’s article, Oja [11], which reviewed the literature on multivariate sign-rank 

tests, and focused on their properties, applications, and limitations. 

Approximation techniques in statistics approximate intricate statistical measures, distributions, or 

functions when precise computations become challenging or unfeasible. Such methods prove 

invaluable when analytical solutions are absent or when computations entail high-dimensional or 

computationally demanding tasks. This article suggests the saddlepoint approximation (SPA) to 

approximate the exact distribution function for the multivariate sign and signed-rank test class. The 

SPA is a method employed in statistics and the probability theory to approximate probability 

distributions, especially in situations where traditional methods such as numerical integration or exact 

calculations are challenging. SPA provides highly accurate approximations to the distribution of a 

statistic, and often outperforms traditional methods such as the normal approximation, especially in 

the distribution’s tails. It includes terms from the Edgeworth expansion, which provides a more refined 

approximation compared to the central limit theorem. It is computationally feasible with modern 

computing resources, which allows practitioners to implement it practically. It improves the accuracy 
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of statistical inference, particularly for hypothesis testing and confidence interval estimation, thus 

leading to more reliable conclusions. Unlike many other asymptotic methods, the SPA is often effective 

even with relatively small sample sizes, thus making it useful in practical situations where data may 

be limited. The method has been implemented in various statistical software packages, making it 

accessible to practitioners without requiring deep theoretical knowledge of the underlying mathematics. 

Some essential references on SPA include Daniels [12], Lugannani and Rice [13], Skovgaard [14], 

Barndorff-Nielsen and Cox [15], and Butler [16]. The SPA has applications in various statistics and 

related fields, such as biostatistics and epidemiology, reliability engineering, finance and risk 

management, genetics and genomics, machine learning and data science, statistical physics, and 

thermodynamics. The following are some recent references on SPA: Meng et al. [17], Abd El-Raheem 

and Abd-Elfattah [18,19], Zhao et al. [20], Shanan et al. [21], Meng et al. [22], Abd El-Raheem and 

Hosny [23], and Abd El-Raheem et al. [24,25]. These references cover various aspects and applications 

of SPA, including tail probabilities, high-dimensional data, genetics, and nonlinear functionals. They 

provide insights into recent developments and advancements in the field, thus making them valuable 

resources for researchers interested in SPA and related topics. 

The existing studies of asymptotic approximations for the p-value of the one-sample multivariate 

sign and signed rank tests provide valuable and accessible tools for non-parametric inferences in 

multivariate settings. While these approaches are powerful, they have some limitations, the most 

important of which is their reliance on large sample sizes. The asymptotic normal method assumes that 

the sample size is sufficiently large for the central limit theorem to hold. For small or moderate sample 

sizes, the normal approximation may not be accurate, thus leading to biased or incorrect inferences. 

Furthermore, for small sample sizes, the distribution of the sample mean or other statistics may 

significantly deviate from normality, making the approximation unreliable. Thus, the accuracy of 

asymptotic approximations in small samples is a significant concern. Accordingly, in this article, we 

propose the SPA method to approximate the p-value of the one-sample multivariate sign and signed 

rank tests as a more accurate alternative to the normal approximation, especially with medium and 

small sample sizes, and as a less computationally demanding and time-consuming alternative to the 

permutation method. 

The remaining sections of this article are organized as follows: Section 2 presents multivariate 

sign and signed-rank tests with minimal adjustments to account for the linear case; the proposed 

approximation is described in Section 3; Sections 4 and 5 compare the performance of the saddlepoint 

technique versus the asymptotic method using numerical examples and simulation studies; and finally, 

the conclusion is provided in Section 6. 

2. Multivariate sign and signed-rank tests 

This section presents the most common sign and signed-rank test statistics for multivariate 

samples. The first statistic of the multivariate sign test was developed by Hettmansperger et al. [4] as 

a general multivariate analog of the bivariate sign test. Suppose that 𝑿𝟏, 𝑿𝟐, . . . , 𝑿𝒏 is a random sample 

from the multivariate symmetric distribution 𝐹 with an unknown symmetry center 𝜽. Here, symmetry 

means that 𝐗𝐢 − 𝜽 and 𝜽 − 𝐗𝐢 are identically distributed. To examine the hypothesis, 𝐻0: 𝜽 = 𝟎, let 𝑯 

be a fixed half-space such that if 𝑿 is a member of 𝑯, then −𝑿 is not a member and let 𝑿𝑖 = 𝑎𝑖𝒀𝑖 , 𝑖 =

1, … , 𝑛, where 𝒀𝑖 ∈ 𝑯, 𝑎𝑖 indicates whether 𝑿𝑖 belongs to 𝑯 or not.  

First, we start by presenting the statistic in the trivariate case; then, we present its generalization 
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to the multivariate case. Thus, the trivariate sign test statistic is given by the following:  

𝑴𝒔 =∑𝑎𝑖𝒒𝑖

𝑛

𝑖=1

, 

where  

𝒒𝑖 = (

𝑞𝑖1
𝑞𝑖2
𝑞𝑖3
) = (

𝑛 − 1
2

)
−1

∑𝑆𝑖𝑗𝑙(𝟎)

(

 
 
 
− |
𝑦𝑗2 𝑦𝑙2
𝑦𝑗3 𝑦𝑙3

|

  |
𝑦𝑗1 𝑦𝑙1
𝑦𝑗3 𝑦𝑙3

|

− |
𝑦𝑗1 𝑦𝑙1
𝑦𝑗2 𝑦𝑙2

|)

 
 
 

𝑗<𝑙

,    𝑗, 𝑙 = 1,2, … , 𝑛, 

such that  

𝑆𝑖𝑗𝑙(𝟎) = 𝑠𝑔𝑛(|

1 1
0 𝑦𝑖1

1 1
𝑦𝑗1 𝑦𝑙1

0 𝑦𝑖2
0 𝑦𝑖3

𝑦𝑗2 𝑦𝑙2
𝑦𝑗3 𝑦𝑙3

|), 

indicates whether 𝟎 is above or below the plane defined by the three points 𝒀𝒊, 𝒀𝒋 and 𝒀𝒍.  

From the above, we can present the generalization of the statistic 𝑴𝒔 to the case of the 𝑘-variate 

as follows: 

𝑴𝒔 =∑𝑎𝑖𝒒𝑖

𝑛

𝑖=1

, (1) 

where  

𝒒𝑖 = (

𝑞𝑖1
𝑞𝑖2
⋮
𝑞𝑖𝑘

) = (
𝑛 − 1
𝑘 − 1

)
−1

∑ 𝑆𝑖,𝑖1 … 𝑖𝑘−1(𝟎)(

𝑊1(𝑖1, … , 𝑖𝑘−1 )

𝑊2(𝑖1, … , 𝑖𝑘−1 )
⋮

𝑊𝑘(𝑖1, … , 𝑖𝑘−1 )

)

1≤𝑖1<⋯< 𝑖𝑘−1≤𝑛

,    

and 𝑊𝑗(𝑖1, … , 𝑖𝑘−1 ), 𝑗 = 1,2, . . . , 𝑘 is the cofactor of 𝑦𝑖𝑗 for the matrix 

(

𝑦𝑖1 𝑦𝑖11
𝑦𝑖2 𝑦𝑖12

⋯ 𝑦𝑖𝑘−11
⋯ 𝑦𝑖𝑘−12

⋮ ⋮
𝑦𝑖𝑘 𝑦𝑖1𝑘

⋮ ⋮
⋯ 𝑦𝑖𝑘−1𝑘

  ), 

and  

𝑆𝑖,𝑖1 …𝑖𝑘−1(𝟎) = 𝑠𝑔𝑛(|

1 1
0 𝑦𝑖11

⋯ 1
⋯ 𝑦𝑖𝑘1

⋮ ⋮
0 𝑦𝑖1𝑘

⋮ ⋮
⋯ 𝑦𝑖𝑘1

|), 

which indicates whether 𝟎 is above or below the hyperplane defined by the points 𝒀𝒊𝟏 , … , 𝒀𝒊𝒌 .  

Under the null hypothesis, which is dependent upon the observed values 𝒀𝟏, 𝒀𝟐, . . . , 𝒀𝒏, the 𝑎𝑖 are 

independent and 𝑃(𝑎𝑖 = 1) = 𝑃(𝑎𝑖 = −1) = 1/2,  which means that 𝐸(𝑴𝒔|𝐻0) = 𝟎  and 𝝈𝟐 =

 𝐸(𝑴𝒔𝑴𝒔
𝑇|𝐻0) = ∑ 𝒒𝑖𝒒𝑖

𝑇𝑛
𝑖=1 .  
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The second statistic is a multivariate signed-rank test statistic, which was introduced by 

Hettmansperger et al. [7]. Let 𝑿𝟏, 𝑿𝟐, . . . , 𝑿𝒏  be a random sample from a 𝑘 -variate continuous 

distribution and  

𝑃 = {𝑝 = (𝑖1, 𝑖2, … , 𝑖𝑘): 1 ≤ 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑘 ≤ 𝑛}, 

be the set of 𝑁𝑃 = (
𝑛
𝑘
) different k-tuples of the index set {1, 2, … , 𝑛}. The index 𝑝 belongs to the set 

𝑃 , which refers to a 𝑘 -subset of the initial observations. Furthermore, using the 𝑘  observations 

provided in 𝑝  as vertices, 𝑝  determines a (𝑘 −  1) -dimensional hyperplane (passing through the 𝑘 

observations included in 𝑝) in the 𝑘-dimensional space and a (𝑘 −  1)-dimensional sub-simplex.  

Based on the symbols and definitions contained in the previous statistic (1), let 𝐸 be the set of 2𝑘 

possible vectors (±1, ±1, … ,±1) and define the following:  

𝑸𝑝
 +(𝑿) = 2−𝑘∑𝑆𝑝𝑒(𝑿)𝒅𝑝𝑒

𝑒𝜖𝐸

, 

where 𝑆𝑝𝑒(𝑿) = 𝑠𝑔𝑛(𝑑0𝑝𝑒 + 𝑿
𝑇𝒅𝑝𝑒),  such that 𝑑0𝑝𝑒 = (−1)

𝑘 det(𝑒1𝑿𝑖1, 𝑒2𝑿𝑖2, … , 𝑒𝑘𝑿𝑖𝑘)  and 

𝒅𝑝𝑒 is the 𝑘-dimensional vector of cofactors of 𝑿 in the following:  

𝑑𝑒𝑡 (
1 1

𝑒1𝑿𝑖1 𝑒2𝑿𝑖2   

…
…

1 1
𝑒𝑘𝑿𝑖𝑘 𝑿

). 

If 𝑆𝑝𝑒(𝑿) > or (<)0, then this means the hyperplane 𝑝 is above or below 𝑿, respectively. 

The formula for the multivariate signed-rank test statistic is given by the following: 

𝑴𝑹 = ∑𝑎𝑖𝑹(𝒀𝑖)

𝑛

𝑖=1

, (2) 

In the statistic (2), 𝑿𝒊 = 𝑎𝑖𝒀𝒊 , where 𝒀𝒊 ∈ 𝑯 . Hence, 𝑎𝑖 = ±1  as 𝑿𝑖 ∈ 𝑯  or 𝑿𝑖 ∈ 𝑯
𝑐 , and 𝑹  is 

defined as the vector signed-rank function as follows: 

𝑹(𝒀𝒊) = (

𝑟𝑖1
𝑟𝑖2
⋮
𝑟𝑖𝑘

) = 𝑁𝑃
−1∑𝑸𝑝

+(𝒀𝒊)

𝑝𝜖𝑃

. 

Under the null hypothesis, which is dependent upon the observed values 𝒀𝟏, 𝒀𝟐, . . . , 𝒀𝒏, the 𝑎𝑖 are 

independent and 𝑃(𝑎𝑖 = 1) = 𝑃(𝑎𝑖 = −1) = 1/2. Hence, 𝐸(𝑴𝑹|𝐻0) = 𝟎 and covariance matrix is 

as follows: 

𝝈𝟐 = 𝑐𝑜𝑣(𝑛−1/2𝑴𝑹) = 𝑛−1∑𝑹(𝒀𝒊)

𝑛

𝑖=1

𝑹(𝒀𝒊)
𝑇 . 

Because both the multivariate sign test statistic 𝑴𝒔 in Eq (1) and the multivariate signed-rank test 

statistic 𝑴𝑹 in Eq (2) are basically multivariate normal distributions, we can modify them and obtain 

an equivalent statistic of a linear nature form as follows: 

𝐷 =∑𝑎𝑖𝑇𝑖

𝑛

𝑖=1

, (3) 

where 𝑇𝑖 = ∑ 𝑞𝑖𝑗
𝑘
𝑗=1  for the sign test statistic 𝑴𝒔 in Eq (1) and 𝑇𝑖 = ∑ 𝑟𝑖𝑗

𝑘
𝑗=1  for the signed-rank test 
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statistic 𝑴𝑹 in Eq (2). 

The following section derives the SPA for the permutation distribution of the class 𝐷 in Eq (3). 

3. Saddlepoint p-values of the multivariate sign and signed-rank tests 

Let 𝑏𝑖 =
𝑎𝑖+1

2
; then, the statistic 𝐷 in Eq (3) can be written as follows:  

𝐷 =∑2𝑏𝑖𝑇𝑖 −∑𝑇𝑖

𝑛

𝑖=1

,

𝑛

𝑖=1

 (4) 

where 𝑏𝑖 = 0 or 1 for 𝑖 = 1, 2, … , 𝑛 are independent identically Bernoulli (1/2) random variates. Thus, 

the moment generating function of the statistic 𝐷 in Eq (4) is given by 

𝑀𝐷(𝑠) = 𝑒𝑥𝑝(−𝑠∑ 𝑇𝑖
𝑛
𝑖=1 )∏ {

1

2
+
1

2
𝑒𝑥𝑝(2𝑇𝑖𝑠)}

𝑘
𝑖=1 , 

and the cumulant generating function of the statistic 𝐷 in Eq (4) is given by  

𝐶𝐷(𝑠) = −𝑠∑𝑇𝑖

𝑛

𝑖=1

+∑log {
1

2
+
1

2
𝑒𝑥𝑝(2𝑇𝑖𝑠)}

𝑛

𝑖=1

. 

The SPA for the distribution function [13], 𝐹𝐷(. ), and the probability mass function [12], 𝑓𝐷(. ), 

at 𝐷 = 𝐷0 are given, respectively, by the following:  

𝐹̂𝐷(𝐷0) ≅

{
 
 

 
 Φ(w̃) + ϕ(w̃) (

1

w̃
−
1

𝑢̃
)        𝑖𝑓    𝐷0 ≠ 𝜇

1

2
+

𝐶𝐷
′′′(0)

6√2𝜋𝐶𝐷
′′(0)3/2

                   𝑖𝑓   𝐷0 = 𝜇
 (5) 

and 

𝑓𝐷(𝐷0) ≅
1

√2𝜋𝐶𝐷
′′(𝑠̃)

𝑒𝑥𝑝[𝐶𝐷(𝑠̃) − 𝑠̃ 𝐷0], 

where 

w̃ = 𝑠𝑔𝑛(𝑠̃)√2[𝑠̃𝐷0 − 𝐶𝐷(𝑠̃)]       𝑎𝑛𝑑         𝑢̃ = 𝑠̃√𝐶𝐷
′′(𝑠̃), 

are functions of 𝐷0 where 𝐶𝐷
′′ and 𝐶𝐷

′′′ are the second and third derivatives of 𝐶𝐷, respectively. The two 

symbols, Φ and ϕ, denote the standard normal distribution and density functions, respectively, and the 

symbol 𝑠𝑔𝑛(𝑠̃) denotes the sign of 𝑠̃. The saddlepoint 𝑠̃ is the unique solution of the equation 𝐶𝐷
′ (𝑠̃) =

𝐷0, that is, 

𝐶𝐷
′ (𝑠̃) =∑

2𝑇𝑖 exp(2𝑇𝑖𝑠)

1 + exp(2𝑇𝑖𝑠)

𝑛

𝑖=1

−∑𝑇𝑖

𝑛

𝑖=1

= 𝐷0. (6) 

The Newton-Raphson method is used to solve the saddlepoint equation in Eq (6). The calculation 

of the saddlepoint p-value is summed up as follows: start by solving the saddlepoint Eq (6) to find 𝑠̃ at 

given 𝐷0; then use 𝑠̃ to find w̃ and 𝑢̃; and finally, substitute with w̃ and 𝑢̃ in Eq (5) to find 𝐹̂𝐷(𝐷0). 

Thus, the saddlepoint p-value at 𝐷0 is given by 𝑃̃(𝐷 ≥ 𝐷0) = 1 − 𝐹̂𝐷(𝐷0).  
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It is necessary to point out that the test statistic in (4) includes discrete random variables, even 

though the continuous SPA was used to approximate its distribution function. The reason for using the 

continuous formula is that it offers the most precise approximation for the mid-p-value. This accuracy 

was discussed by Pierce and Peters [26], Davison and Wang [27], and discussed in Section 6.1.4 in 

Butler [16]. The simplest explanation from the last reference suggests that a continuous SPA serves as 

an approximation to the true inverse Fourier transform, which determines 𝑃(𝐷 ≤ 𝐷0) . Given that 

𝑃(𝐷 ≤ 𝐷0) has a step discontinuity at 𝐷0, the exact Fourier inversion at 𝐷 = 𝐷0 is the midpoint of the 

step or the mid-p-value, which is what the continuous SPA actually approximates; see Theorem 10.7b 

in the reference Henrici [28]. 

4. Numerical examples  

Analyzing  some numerical examples can deepen our grasp of how various methods accurately 

approximate the exact p-value of the multivariate sign and signed-rank tests. Therefore, this section 

includes the analysis of four distinct types of multivariate real data sets (i.e., four numerical examples). 

Rao [29] conducted a study that involved cork bores from the north (𝑁), east (𝐸), south (𝑆), and west 

(𝑊) directions of tree trunks in a plantation block comprised of 28 trees. The aim was to assess whether 

there were variations in the bark deposit thickness and weight across the four cardinal directions. The 

tested hypothesis was whether cork bores on the trees exhibited a uniform thickness in all directions. 

In the first example, 14 observations were selected from the original dataset, which were utilized by 

Hettmansperger et al. [4] in their article. In the second example, all 28 observations were included. For 

both examples, the data were transformed into trivariate observations using 𝒙1 = 𝐸 − 𝑁, 𝒙2 = 𝑆 −

𝐸 𝑎𝑛𝑑 𝒙3 = 𝑊 − 𝑆; see Hettmansperger et al. [4] for more information about these transformations. 

The third example analyzes multivariate lung function data from Merchant et al. [30] for 12 workers 

that were exposed to cotton dust for six hours. The data includes numerous variables discussed in the 

attempt to determine lung function changes, including forced vital capacity, forced expiratory volume, 

and closing capacity. These data were analyzed to test the hypothesis that the mean vector of lung 

function changes is equal to 0. The fourth example is 4D data that represents the monthly minimum 

grass temperature (℃) recorded in 2022 for the Cavan, Donegal, Carlow, and Galway counties in 

Ireland (Met Éireann [31]). This data is presented in Table 1. The tested hypothesis was whether the 

monthly minimum grass temperatures were uniform in the four counties. The approximated p-values 

using the simulation, SPA, and normal approximation (NA) methods are displayed in Table 2. 

Based on the results shown in Table 2, we observe that the suggested approximation method, 

namely the saddlepoint method, is more accurate than the normal approximation method. This is 

evident from the proximity of the saddlepoint method results to those of the simulation method. It is 

worth noting that we cannot calculate the exact p-value due to the unknown distribution of the test 

statistic. However, this can be compensated for by calculating the p-value by assuming all permutations 

of the statistic. However, this requires a significant amount of time. This method is called the 

simulation or reference method. We use this method to compare the accuracy of the approximation 

techniques, which are the normal and saddlepoint methods. Throughout this article, we will refer to 

the p-value approximated using the simulation method as either a simulated p-value or a reference p-

value. 
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Table 1. The monthly minimum grass temperature (℃) recorded in 2022 for counties 

Cavan, Donegal, Carlow, and Galway in Ireland. 

County Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Cavan -4.1 -1.7 -8.4 -7.2 -1.1 -0.6 6.2 2.8 0.1 0.0 -1.5 -10.8 

Donegal -3.0 -1.6 -9.4 -5.9 0.4 0.4 5.1 0.8 0.7 3.5 -0.7 -8.6 

Carlow -9.2 -7.4 -8.8 -8.3 -0.8 -0.9 5.4 1.9 -1.7 -1.5 -6.1 -10.7 

Galway -8.4 -5.9 -8.7 -8.6 -0.2 0.6 5.3 2.1 -0.9 0.0 -6.3 -11.7 

Table 2. The approximated p-values for the four datasets. 

Test statistic Example Simulation SPA NA 

Multivariate sign 

test 

1 0.092921 0.092718 0.089423 

2 0.043049 0.042986 0.042904 

3 0.010043 0.010037 0.010981 

4 0.254059 0.251976 0.242107 

Multivariate 

signed-rank test 

1 0.100608 0.100335 0.096239 

2 0.148538 0.148156 0.141879 

3 0.097989 0.097358 0.095456 

4 0.070636 0.069621 0.067370 

5. Simulation study  

In this section, the accuracy of the SPA for the two tests, the multivariate sign test (MST) and 

multivariate signed-rank test (MSRT)  is verified by conducting a simulation study. Four multivariate 

distributions are used to simulate the data: the standard multivariate normal distribution with a 

correlation coefficient equal to 0.5, the standard multivariate logistic distribution, the standard 

multivariate extreme value distribution, and the standard multivariate exponential distribution. The 

motivation behind selecting these distributions for data generation in the simulation study is to ensure 

a comprehensive evaluation of the statistical methods under a wide range of conditions (e.g., symmetry, 

heavy tails, outliers, and skewness). This variety of distributions helps to test the methods’ robustness, 

versatility, and applicability to real-world data, and ultimately provides a thorough understanding of 

their performance. 1,000 datasets are generated from the four distributions with different sample sizes, 

𝑛 =  10, 20, 30 and 50. Tables 3–6 show the results for the four distributions. The following data are 

included in each table: “Sad.P.” refers to the percentage of the 1,000 different datasets in which the 

saddlepoint p-value was closer to the simulated mid p-value than it was to the asymptotic normal p-

value; the term ‘E.Nor.’ refers to the average relative absolute error of the normal p-value from the 

simulated mid p-value; and the term ‘E.Sad.’ refers to the average relative absolute error of the 

saddlepoint p-value from the simulated mid p-value. The simulated mid p-value is calculated based on 

106 permutations of the indicators {𝑏𝑖}. 

To illustrate the results obtained from the simulation study, we take Table 5 with 𝑛 =  30 and the 

MST as an illustration, and note that the saddlepoint p-values were closer to the simulated mid p-value 

values 97.1% of the time with a relative absolute error of 3.988% versus 65.826% for the asymptotic 

normal method. Across all tests and cases, the SPA proved to be highly accurate and superior to the 

normal approximations. This is evidenced by the high proportions listed in the Sad.P. rows in 
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Tables 3–6. 

Previously, it was verified that the saddlepoint method is more accurate than the normal 

approximation method. Now, we must explain why the saddlepoint method is a possible alternative to 

the simulation method. To clarify this, we calculated the computing time for both methods, and the 

results are presented in Table 7. Table 7 shows a significant difference between the computing times 

of the saddlepoint and simulation approaches. Using the SPA approach, we can compute the average 

value of 1000 p-values for each of the considered cases in less than a minute. In contrast, the simulation 

method takes between fifty to one hundred and thirty hours to compute the corresponding values. 

Table 3. Sad.P., E.Sad. and E.Nor. for simulated data from the standard multivariate 

exponential distribution. 

Test MST MSRT 

𝑛 Sad.P. E.Sad. E.Nor. Sad.P. E.Sad. E.Nor. 

10 79.8 0.04509 0.12217 78.1 0.00340 0.00682 

20 97.0 0.14068 0.34581 95.8 0.00015 0.00158 

30 93.9 0.20208 0.28879 93.8 0.00020 0.00121 

50 96.2 0.05846 0.41571 90 0.00024 0.00094 

Table 4. Sad.P., E.Sad. and E.Nor. for simulated data from the standard multivariate normal 

distribution. 

Test MST MSRT 

𝑛 Sad.P. E.Sad. E.Nor. Sad.P. E.Sad. E.Nor. 

10 81.1 0.01161 0.02698 79.6 0.00270 0.00642 

20 94.2 0.00138 0.01303 95.9 0.00015 0.00151 

30 93.0 0.00117 0.00745 97.2 0.00007 0.00068 

50 87.2 0.00123 0.00489 96.6 0.00003 0.00018 

Table 5. Sad.P., E.Sad. and E.Nor. for simulated data from the standard multivariate 

extreme value distribution. 

Test MST MSRT 

𝑛 Sad.P. E.Sad. E.Nor. Sad.P. E.Sad. E.Nor. 

10 82 0.24004 0.68459 78.9 0.00276 0.00564 

20 96.1 0.01675 0.51301 97.2 0.00011 0.00122 

30 97.1 0.03988 0.65826 99.5 0.00003 0.00044 

50 93.3 0.02649 0.19689 98 0.00007 0.00057 

Table 6. Sad.P., E.Sad. and E.Nor. for simulated data from the standard multivariate 

logistic distribution. 

Test MST MSRT 

𝑛 Sad.P. E.Sad. E.Nor. Sad.P. E.Sad. E.Nor. 

10 79.8 0.04509 0.12217 82.2 0.00167 0.00404 

20 97.0 0.01406 0.34581 97.9 0.00009 0.00064 

30 93.9 0.20208 0.28879 93.9 0.00026 0.00183 

50 96.2 0.05846 0.41571 90 0.00017 0.00072 
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Table 7. Computation time in minutes for approximating p-values using saddlepoint and 

simulation methods. 

Distribution Test Time Sample size 

10 20 30 50 

Multivariate 

exponential 

MST Sad-time 0.709 0.433 0.454 0.495 

Sim- time 3126.693 5150.324 5956.334 7791.688 

MSRT Sad-time 0.416 0.442 0.524 0.512 

Sim- time 4272.836 5192.100 7015.12 6910.893 

Multivariate 

normal 

MST Sad-time 0.421 0.453 0.466 0.466 

Sim- time 4203.440 5269.037 6116.469 7727.039 

MSRT Sad-time 0.4264 0.539 0.499 0.214 

Sim- time 4285.335 6769.081 6718.269 8178.236 

Multivariate 

extreme value 

MST Sad-time 0.421 0.436 0.457 0.479 

Sim- time 4198.061 5236.192 6140.252 7693.722 

MSRT Sad-time 0.506 0.483 0.484 0.487 

Sim- time 4467.121 5614.974 6024.827 6336.412 

Multivariate 

logistic 

MST Sad-time 0.423 0.442 0.458 0.654 

Sim- time 4201.679 5165.436 6046.54 11314.340 

MSRT Sad-time 0.726 0.893 0.872 0.613 

Sim- time 7008.120 7994.677 9536.889 9326.201 

6. Conclusions 

In conclusion, the MVDA offers a robust statistical approach to examine datasets with multiple 

variables, and captures the complex interactions and relationships that univariate or bivariate analyses 

cannot. This article highlights the challenges of computing exact distributions for nonparametric tests 

of one-sample multivariate location problems, which are typically addressed through an asymptotic 

approximation. This study introduced the saddlepoint method as a more accurate alternative to the 

traditional asymptotic approximation and a faster alternative to the time-intensive simulation method. 

The effectiveness of the saddlepoint method was demonstrated through illustrative examples and a 

simulation study, thus underscoring its potential as a superior approach for approximating distribution 

functions in multivariate analyses. 
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