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Abstract: This work aims to provide a new Galerkin algorithm for solving the fractional Rayleigh-
Stokes equation (FRSE). We select the basis functions for the Galerkin technique to be appropriate
orthogonal combinations of the second kind of Chebyshev polynomials (CPs). By implementing the
Galerkin approach, the FRSE, with its governing conditions, is converted into a matrix system whose
entries can be obtained explicitly. This system can be obtained by expressing the derivatives of the
basis functions in terms of the second-kind CPs and after computing some definite integrals based on
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analysis. We demonstrate that the approach is applicable and accurate by providing some numerical
examples.
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1. Introduction

A wide range of fields rely on Chebyshev polynomials (CPs). Some CPs are famously special
polynomials of Jacobi polynomials (JPs). We can extract four kinds of CPs from JPs. They were
employed in many applications; see [1-4]. However, others can be considered special types of
generalized ultraspherical polynomials; see [5,6]. Some contributions introduced and utilized other
specific kinds of generalized ultraspherical polynomials. In the sequence of papers [7-10], the authors
utilized CPs of the fifth- and sixth-kinds to treat different types of differential equations (DEs).
Furthermore, the eighth-kind CPs were utilized in [11, 12] to solve other types of DEs.
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Several phenomena that arise in different applied sciences can be better understood by delving
into fractional calculus, which studies the integration and derivatives for non-integer orders. When
describing important phenomena, fractional differential equations (FDEs) are vital. There are many
examples of FDEs applications; see, for instance, [13—-15]. Because it is usually not feasible to
find analytical solutions for these equations, numerical methods are relied upon. Several methods
were utilized to tackle various types of FDEs. Here are some techniques used to treat several
FDEs: the Adomian decomposition method [16], a finite difference scheme [17], generalized
finite difference method [18], Gauss collocation method [19], the inverse Laplace transform [20],
the residual power series method [21], multi-step methods [22], Haar wavelet in [23], matrix methods
in [24-26], collocation methods in [27-30], Galerkin methods in [31-33], and neural networks method
in [34].

Among the essential FDEs are the Rayleigh-Stokes equations. The fractional Rayleigh-Stokes
equation is a mathematical model for the motion of fluids with fractional derivatives. This equation
is used in many areas of study, such as non-Newtonian fluids, viscoelastic fluids, and fluid dynamics.
Many contributions were devoted to investigating the types of Rayleigh-Stokes from a theoretical and
numerical perspective. Theoretically, one can consult [35-37]. Several numerical approaches were
followed to solve these equations. In [38], the authors used a finite difference method for the fractional
Rayleigh-Stokes equation (FRSE). In [39], a computational method for two-dimensional FRSE is
followed. The authors of [40] used a finite volume element algorithm to treat a nonlinear FRSE.
In [41], a numerical method is applied to handle a type of Rayleigh-Stokes problem. Discrete Hahn
polynomials treated variable-order two-dimensional FRSE in [42]. The authors of [43] numerically
solved the FRSE.

The significance of spectral approaches in engineering and fluid dynamics has been better
understood in recent years, and this trend is being further explored in the applied sciences [44—46].
In these techniques, approximations to integral and differential equations are assumed by expanding
a variety of polynomials, which are frequently orthogonal. The three spectral techniques used most
often are the collocation, tau, and Galerkin methods. The optimal spectral approach to solving the
provided equation depends on the nature of the DE and the governing conditions that regulate it. The
three spectral methods use distinct trial and test functions. In the Galerkin method, the test and trial
functions are chosen so that each basis function member meets the given DE’s underlying constraints;
see [47,48]. The tau method is not limited to a specific set of basis functions like the Galerkin approach.
This is why it solves many types of DEs; see [49]. Among the spectral methods, the collocation method
is the most suitable; see, for example, [50,51].

In his seminal papers [52,53], Shen explored a new idea to apply the Galerkin method. He selected
orthogonal combinations of Legendre and first-kind CPs to solve the second- and fourth-order DEs.
The Galerkin approach was used to discretize the problems with their governing conditions. To address
the even-order DEs, the authors of [54] employed a generalizing combination to solve even-order DEs.

This paper’s main contribution and significance is the development of a new Galerkin approach for
treating the FRSE. The suggested technique has the advantage that it yields accurate approximations
by picking a small number of the retained modes of the selected Galerkin basis functions.

The current paper has the following structure. Section 2 presents some preliminaries and essential
relations. Section 3 describes a Galerkin approach for treating FRSE. A comprehensive study on the
convergence analysis is studied in Section 4. Section 5 is devoted to presenting some illustrative
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examples to show the efficiency and applicability of our proposed method. Section 6 reports some
conclusions.

2. Some fundamentals and formulas
This section defines the fractional Caputo derivative and reviews some of its essential properties.
Next, we gather significant characteristics of the second-kind CPs. This paper will use some orthogonal

combinations of the second-kind CPs to solve the FRSE.

2.1. Caputo’s fractional derivative

Definition 2.1. In Caputo’s sense, the fractional-order derivative of the function &(s) is defined as [55]

1 S
Dé(s) = ——— f (s =P 'ePndt, >0, s>0, p-l<a<p, pelN 2.1)
I'(p—a) Jo

For D* with p — 1 < @ < p, p € N, the following identities are valid:

D*C =0, C is aconstant, (2.2)
0, lf (S N and < la R

DY P = py - p 0 p < [a] 03
T(p—(ﬂl) s~ ifpeNy and p=Jlal,

where N = {1,2,...} and Ny = {0, 1,2,...}, and [] is the ceiling function.

2.2. Shifted second-kind CPs

The shifted second-kind CPs Uj(t) are orthogonal regarding the weight function w(¢) = Vt(t —1)
in the interval [0, 7] and defined as [56,57]

J
Ui = > At j20, (2.4)
r=0

where .
3 227 (=) (j+r+1)!

A= 2.5
" T Rr+ D (-n)! 2.5)
with the following orthogonality relation [56]:
f w(®) U, (O U, (1) dt = g, (2.6)
0
where
a2 |1, if m=n,
mn — "o 2.7
=78 {o, if m# . @7
{U;,(1)}m=0 can be generated by the recursive formula:
. 2t . . . . 2t
U, =2{—-1|U0,_®-U, @), Uyr=1 Uj@)=—-1, m>=2. (2.8)
T T

The following theorem that presents the derivatives of U; (¢) is helpful in what follows.
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Theorem 2.1. [56] For all j > n, the following formula is valid:

4\ (p+ 1) ()0
D"Uj-(t):(—) > — 2 U0, (2.9)
) S (JG-n-p) (3G+n+p+2)

(p+j+n)even

The following particular formulas of (2.9) give expressions for the first- and second-order
derivatives.

Corollary 2.1. The following derivative formulas are valid:

j-1

£ 4 £ .

DUj(1) =~ Z P+DHUD, j=1, (2.10)

(pij)oadd

4 &
D*U(1) == Z p+DG-pUG+p+DU,0O, j=2. (2.11)

T
(pfj:)(iven

Proof. Special cases of Theorem 2.1. O

3. Treatment for the FRSE

This section is devoted to analyzing a Galerkin approach to solve the following FRSE [38, 58]:
vi(x,t) = DY [avi(x, 1) ] = bvy(x, 1) = S(x, 1), O0<a<l, (3.1
governed by the following constraints:
v(x,0) =vy(x), O0<x<{, 3.2)
v(0,6) =vi(®), v, t)=w(@), 0<t<T, (3.3)
where a and b are two positive constants and S(x, ¢) is a known smooth function.

Remark 3.1. The well-posedness and regularity of the fractional Rayleigh-Stokes problem are
discussed in detail in [36].

3.1. Selection of trial functions
We choose the trial functions to be
@i(x) = x (€ — x) Ui (x). (3.4)

Due to (2.6), it can be seen that {¢;(x)},5, satisfies the following orthogonality relation:

4
Lammm%mw:%, (3.5)

where

ol {1, if i =, 36

aij = —5— e
! 8 10, if i+ j,

and O(x) =
x2 (6—x)

Il
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Theorem 3.1. The second-derivative of ¢;(x) can be expressed explicitly in terms of U}(x) as

o)~ .
I =Zﬂj,in(X),

=0
where
Jj+1, if i > j, and (i + j)even,
l‘lj,i:_z %(l+1)(l+2)’ l‘fl:.]7
0, otherwise.

Proof. Based on the basis functions in (3.4), we can write

> i(x) . dU;(x) ), U0
e 22U/ (x)+2(—-2x) P (xl—x )W.
Using Corollary 2.1, Eq (3.9) may be rewritten as
& ¢i(x) : 'S o160 & :
dsﬂxz =-2Ui0+8 ) (p+ DU, - > (p+ DU,
(pﬁo odd <p£7>0 odd
4 G
+5 2, P DU-PG+p+DxU,w
(p-fj:)(z'ven
7)\2 J=2
- (z) D+ DG-p G+ p+2) U W),
p=0
(p+j)even

With the aid of the recurrence relation (2.8), the following recurrence relation for U’ (x) holds:

4
xUl(x) = 1 [U,,(x)+2U;(x) + U_,(0) ].

Moreover, the last relation enables us to write the following relation:

2
¥ Ui (x) = % [4U0,,(x)+6U/(x)+4U_,(x)+U_,(x) + U ,(x) ].

1

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

If we insert relations (3.11) and (3.12) into relation (3.10), and perform some computations, then we get

d2 X i "
px) Zﬂj,in(X),

2
dx =
where
j+1, if i > j, and (i + j) even,
Hii=—2 %(i+1)(i+2), ifi = j,
0, otherwise.

This completes the proof.

(3.13)

(3.14)

O
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3.2. Galerkin solution for FRSE with homogeneous boundary conditions

Consider the FRSE (3.1), governed by the conditions: v(0, ) = v(¢, 1) = 0.

Now, consider the following spaces:

Pm(Q) = span{pi(x) Uj(1) : 1, j = 0,1,...,. M},
Xm(Q) = v(x, 1) € Pp(Q) : v(0,1) = v({, 1) =0},

where Q = (0,¢) x (0, 7].
The approximate solution ¥(x, 1) € X () may be expressed as

M M
an) =) Y Ui =pCUT,

i=0 j=0

where
(" [(JDO(X)’ Qol(x)a ey ‘PM(X)],
U* = [Uy(0), Uj(@), . .. , UL,

(3.15)

(3.16)

and C = (¢;;)o<i, j«<m 1s the unknown matrix to be determined whose order is (M + 1) X (M + 1).

The residual R(x, r) of Eq (3.1) may be calculated to give

R(x, 1) = 9(x, 1) = D [aDee(x, 1) ] = b DX, 1) — S(x, ).
The philosophy in applying the Galerkin method is to find V(x, ) € X,((€2), such that

(R(x, 1), ¢.(x) Uj(t))a)(x,;) =0, 0<r<M, O0<s<M-1,

where @(x, ) = &(x) w(t). The last equation may be rewritten as

M M

- R (i)
i (i), %(x))a,(x)( T ,Us<r>) —a ZZCU( o ’sor(x))
i=0 j=0 w(t) i=0 j=0
(4o I ,
=b ) D (g o] (U0 U0),, = (SCn. 60 Us)g -
i=0 j=0 (x)

In matrix form, Eq (3.19) can be written as
A'CB-aH'CK-bH' CQ=0G,

where

G = (gr,s)(M+l)><Ma 8rs = (S(X, t) ) SDr(x) Uj(t))a-,(x’t) ’
A = (Gi) M+ Dx(M+1)s a;iy = (@i(x); ©(X)) a0 >

B = (bj,s)(M+1)><M,

dU' (1)
s _( di

, U’;(t))

w(t)

(3.17)

(3.18)

(or oo, vi),,

(3.19)

(3.20)

(3.21)
(3.22)

(3.23)
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25463

d? i(x)
H = (hi) Ms1yxMe1)s hi, = (_dSD s ()Dr(x))
X
K = (kjdmenxms kjs = (D? U@, U:(t))wm ’
Q = (g )M+ DxMs Djs = (Uj'(t)’ U:(t))wm '

Moreover, (3.2) implies that

M M
Z Z ¢ijair Uj(0) = (X, 0), (X)), O<r<M

i=0 j=0

(3.24)

(3.25)
(3.26)

(3.27)

Now, Eq (3.20) along with (3.27) constitutes a system of algebraic equations of order (M + 1)?, that

may be solved using a suitable numerical procedure.

Now, the derivation of the formulas of the entries of the matrices A, B, H, K and Q are given in

the following theorem.

Theorem 3.2. The following definite integral formulas are valid:

¢
(a) L w(x) pi(x) p(x) dx = a;,,

4 d2 ;
(b) fo O(x) d“’xix) @ (x)dx = hy,,

() fo W)U U dt = g,

T dU3(1)
(d) f w(r) Ui dt = by,
0 dt

(e) Lw(t)[D?Uj-(t)]Uﬁ(t)dt=k,-,s,

where qj, and a;, are given respectively in Eqs (2.6) and (3.6). Also, we have

i
hi,r = Z,Uj,i Yirs
Jj=0

-1
T
bjas = 7 ZO (P + 1)6p,sa

(p+j+1)even

n(r+1), ifj=rand (r+ j)even,

Yir=4n(j+1), ifj<rand (r+ j)even,
0, otherwise,
1, ifp=s,

Ops = .fp
0, ifp#s,

AIMS Mathematics

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)
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and
a4 (s + DR T (=1 ek + DIT (k— o + 3)
_; Qk+ ) (G-ITk—a+1)
—s,s+2,—a+k+3 (3.33)
x 3F, 1,
L—a+k+3

where 3F, is the regularized hypergeometric function [59].

Proof. To find the elements 4, ,: Using Theorem 3.1, one has
hi,= | @ ) e(x)dx = Z,u ji w(X) U (x) ¢r(x) dx. (3.34)
0
Now, fof w(x) Uj.(x) ¢,(x) dx can be calculated to give the following result:

Ll
[ o etds =y, (335)

and therefore, we get the following desired result:

hi, = Z,Uj,i Yire (3.36)
=0

To find the elements b;;: Formula (2.10) along with the orthogonality relation (2.6) helps us to write

T dU(r) rr &
R R e D WAL (3.37)
0

p=0
(p+Jj)odd

To find kj,: Using property (2.3) together with (2.4), one can write

ks = f w0 (DY U] Ul o) di
0

< DREN (=1 + k + 1)! T

= D B DA G —a 1) Jy VO w0 (3.38)
L 2N (= 1Y+ ke + )] S V2T (= 1)”“1“(n+s+2)1“(k+n a+ )

:; k+ DI - k)!(k —a)! Z Qn+ D! (s—m)!T(k+n—a+?3)

If we note the following identity:

VA2 e (1 (n+ s+ DIT (k+n—a+ 3)

Z; Cn+ D! (s—n)!T(k+n—a+3) (3.39)
1 s a2 3\ . —s,s+2,—a+k+%
=17(=D s+ D7 I‘(k a+2) 3F2( S qtk+3 L,

AIMS Mathematics Volume 9, Issue 9, 25457-2548]1.
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then, we get

LA (s 4+ DR (<1 T(+ k+ )T (k— o+ 3)
kis=
’ kZ::‘ IFrQk+2)(j-k'I'tk—a+1)
-85, 8+2,—a+k+ % (3.40)
X 3F2 1
3 —a+k+3
Theorem 3.2 is now proved. m|

Remark 3.2. The following algorithm shows our proposed Galerkin technique, which outlines the
necessary steps to get the approximate solutions.

Algorithm 1 Coding algorithm for the proposed technique

Input a, b, ¢, 7, @, vo(x), and S(x, ).

Step 1. Assume an approximate solution d(x, ¢) as in (3.16).

Step 2. Apply Galerkin method to obtain the system in (3.20) and (3.27).

Step 4. Use Theorem 3.2 to get the elements of matrices A, B, H, K and Q.
Step 5. Use NDsolve command to solve the system in (3.20) and (3.27) to get c;;.
Output ¥(x, 7).

Remark 3.3. Based on the following substitution:
X X
V(x, 1) = y(x 1) + (1 - Z) V0.0 + 5 v(C, 1), (3.41)

the FRSE (3.1) with non-homogeneous boundary conditions will convert to homogeneous ones y(0, 1) =

v, 1) =0.
4. Error bound

In this section, we study the error bound for the two cases corresponding to the 1-D and 2-D
Chebyshev-weighted Sobolev spaces.
Assume the following Chebyshev-weighted Sobolev spaces:
HO O (1) ={u: Dy ue L, (1), 0 < k < m}, 4.1)

Y7 (1) ={u : u(0) = u(€) = 0and Dyu € L (), 0 < k < m), (4.2)

w

where I, = (0,7) and I, = (0, ¢) are quipped with the inner product, norm, and semi-norm

m
_ a+k a+k 2 _ _ a+m
(1t, V) —;(Dt DI L Nl = G, e = D8 ullz,
m 4.3)
k k 2
vy, = ) (DhuDive o lRy = Gwvyy, s lulvg, = 107 ullgz,
k=0

AIMS Mathematics Volume 9, Issue 9, 25457-25481.
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where 0 < @ < 1 and m € N.
Also, assume the following two-dimensional Chebyshev-weighted Sobolev space:

a+p+q

HVS

w(x,t

y(€) = {u 1 u(0,1) = u({,1) = 0 and (&), r=p=0,s>qg2=0} 4.4)

Gram © Lot

equipped with the norm and semi-norm

1
aa+p+q u

dxP O 1a+d ||,

oS

2
}, i, = || L (4.5)
(X,t) @(x,1)

llellezs | =

axralcws L

where0 < a < 1landr,s € N.

Lemma4.1. [60] Forne N,n+r > 1,andn+ s > 1, where r, s € R are any constants, we have

I'n+r) _
<o n" s, 4.6
Tnts) n " (4.6)
where )
r—s 1 (r—2ys)
ns _ . 4.
On exp(2(n+s—l)+12(n+r—l)+ n ) “.7)

Theorem 4.1. Suppose 0 < a < 1, and 7j(t) = Z f1;U(1) is the approximate solution of n(t) €
=0
H""(I}). Then, for 0 <k <m < M+ 1, we get

w(t)
(04 A m— =5 m—
1D () = Dz, < 74 M ), (4.8)

where A < B indicates the existence of a constant v such that A < v B.

Proof. The definitions of n(¢) and 7(¢) allow us to have

1™ Gr(e) = A, = Z P 1D U0l

n=M+1
00 IDFH UMD,
A w(t) a+m g 2
n_z‘ml""' oG, o U, (4.9)
u)t)
IID‘”" U, I,

m(r)
< § 10y
IID?”’"U +1()||2

kyr* 2
DU, 01

: w(f) a+k T* 2
To estimate the factor DU, T, o, we first find [|D7 U, (Ol 2,

w(t)

| Dk U;M(t)lliz( = f DU (1) DY U, (D) w(t) dt. (4.10)
(1, O

AIMS Mathematics Volume 9, Issue 9, 25457-25481.
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Equation (2.3) along with (2.4) allows us to write

M+1

DI U, (1) = ,;1 P - kr_! — rokar
and accordingly, we have
a+k T 2 iSl 2 (”!)2 ’ 2 (r—k—a)+ 1 1
D, UMH(t)”Lfm = r;I A M1 Rr—k—a+l) J ! 2(r—-n2dt
_ le o ke NTCDTQO-k-a)+))
G 2I2(r—k—a+ D)TQRUr-k-a)+3)

The following inequality can be obtained after applying the Stirling formula [44]:

P+ DIQ(r—k - )+ 3) . B
Pr—fk-a+DICo—f-—azy " =0

By virtue of the Stirling formula [44] and Lemma 4.1, ||D{** U, +1(t)||iz can be written as
w(t)

M+1
||D§l+k U*M+1(t)||iz() < P TZ(M—k—a/+2) (M + 1)2(k+a) (M —k+ 1)—% Z 1

r=k+1
— /l* T2(M—k—a+2) (M + 1)2(k+a) (M _ k + 1)—%
TM +2) P ® (TM =k +2)\
M+ 1) IM-k+1)
< P2Mkas2) g2 () (Aq k)‘%,

— ) P2 Mk—a2) (

22 T
where A* = max {M%‘f}
o 0<r<M+1
Similarly, we have
1
||D;1/+m ijﬂ(t)”iz() < 2 (M-m-a+2) MZ (m+a) (M -m)2,
w(t

and accordingly, we have

DX U (P -3
! MR V) ( M-k ) ’
\\Df* Uj\/(_'_l(t)”LZ)m M-—m

D=

IM-m+1)
< L2 m=k) M%S(m—k)_

Inserting Eq (4.16) into Eq (4.9), one gets
N m— =5 (m—
1D} Gr() = OGS 770 M I (@)

Therefore, we get the desired result.

4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

O
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Theorem 4.2. Suppose {(x) = z?jo Z,- @i(x), is the approximate solution of {ap(x) € Y’”(x)(lz) Then, for
0<k<m<M+1,we get

ID4 €0 = 2z, < €7 MF P E(0R, (4.18)
Proof. At first, based on the definitions of £(x) and /(x), one has

> WGP Dk e,
n=M+1
I 2||Dksan<x>||2()
Gl s DY eu(l,
Wt DT ealx )|| (4.19)

||D’< er IR,

D% (€00 = £l

W(x)
< 1€
= D7 o I, o
Now, we have
M+1 M+1
I'(r+2) F(r +3)
Dk — g/lr r —k+1 /lr r k+2’ 4.20
Cep () Z M 513 Z M ke (4.20)
and therefore, IID" O (| 7 can be written as
W(x)
M+1 2 1
. 2 (r+2)TQR(r—k+1)-3)
D! opa I, == > P2, = 2
o) s Pr-k+2)IrQr—-k+1)—1) 42l
A ey g 2VERC AT —k+2) - 5 '
+ .
Z ML T2 — ke + TR —k+2) - 1)
The application of the Stirling formula [44] leads to
C2r+2)TQRr—-k+1)-1
(r +2) T =Dkt
RPr-k+2)TRr—-k+1)-1) 4.22)
Cr+3)IQr-k+2) -1 ETPR '
2
Fr—k+3)TQr—k+-Dn " 0%
and hence, we get
3
IDE orti N2, < COHDMEM = k)2, (4.23)
W(x)

Finally, we get the following estimation:

|DX 90M+1(x)|| > .
w(x) N 52(111—/() MT(m_k)- (424)
”Dx 90M+1(x)||L2

O(x)

At the end, we get
= _ =1
1D} (€)= Zllz, | s £ MF 0100, (4.25)

O
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Theorem 4.3. Given the following assumptions: @ = 0,0 < p <r < M+ 1, and the approximation to
v(x, 1) € H'(Q) is D(x, t). As a result, the estimation that follows is applicable:

14
Hﬁ own =5l

Proof. According to the definitions of v(x, ) and V(x, t), one has

SEPMIECP Dl (4.26)

M 00
) =00 = >0 > e Uy + Z Zc,,w,<x>U*<r>
l;(() ]00 M+1 i=M+1 j=0 (427)
<) D iU + Z Zcijw,(x) )
i=0 j= i=M+1 j=0
Now, applying the same procedures as in Theorem 4.2, we obtain

0P -

— (W(x, 1) — P(x, 1)) SO M P (x, Do (4.28)

o xP L., (x)

]

Theorem 4.4. Given the following assumptions: @ = 0,0 < g < s < M+ 1, and the approximation to
v(x, 1) € HZ'(Q) is D(x, t). As a result, the estimation that follows is applicable:

o7
J57

Theorem 4.5. Let ¥(x, t) be the approximate solution of v(x,t) € H. fx t)(Q) and assume that 0 < a < 1.
Consequently, forO < p<r< M+ 1,and 0 < g < s < M+ 1, we obtain

- V(x,1))

< T MT 679 p(x, Dl (4.29)

LZ

‘@(x,1)

9vta | o -1
- Y < 7579 pr=P A7 B (5=@)+r-p)] o . )
57074 [axp (vCx, 1) = 0(x, f))] L ST M vCx. Dl (4.30)
(x,1)
Proof. The proofs of Theorems 4.4 and 4.5 are similar to the proof of Theorem 4.3. m|

Theorem 4.6. Let R(x,t) be the residual of Eq (3.1), then ||R(x, t)|| 2., 0as M — oo.
Proof. ||R(x,1)|| 2. of Eq (3.28) can be written as

IR, D2, =9

1=boe(en) = SC0)|,

o | 6 .
Er [W(V(x’ 1) = V(x, t))]

~ o, t))“ -
Lé(x ) Lém) (43 1)
2

0 .
-b | 7 Ww(x, 1) — ¥(x,1))

L2

‘@(x,t)

Now, the application of Theorems 4.3—4.5 leads to

-5 =1
IR Dl , ST MT D e Dl = a1 072 M y(x, )l
W(x, (x,1) W(x,1) (4 32)
r—2 1 r-2) ’
-bl M= [v(x, t)|H:_;<(>m.

Therefore, it is clear that ||R(x, 7)| 2., = 0as M — oo. O
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5. Illustrative examples

This section will compare our shifted second-kind Galerkin method (SSKGM) with other methods.
Three test problems will be presented in this regard.

Example 5.1. [38] Consider the following equation:

vi(x, ) = DY [ v (x, 1) ] = vi(x, ) = S(x, 1), O0<a <1, (5.1

where
S(x,) =2tx(x—0) [(5 2 —5xt+ 52)(%_60 P 3z) — X (x - 5)2], (5.2)

governed by (3.2) and (3.3). Problem (5.1) has the exact solution: u(x, ) = x> (£ — x)* 2.

In Table 1, we compare the L, errors of the SSKGM with that obtained in [38] at £ = 7 = 1. Table 2
reports the amount of time for which a central processing unit (CPU) was used for obtaining results in
Table 1. These tables show the high accuracy of our method. Figure 1 illustrates the absolute errors
(AEs) at different values of @ at M = 4 when £ = 7 = 1. Figure 2 illustrates the AEs at different values
of @ at M = 4 when ¢ = 3, and 7 = 2. Figure 3 shows the AEs at different @ at M = 4 when ¢ = 10,
and 7 = 5.

Table 1. Comparison of the L, errors for Example 5.1.

Our method Method in [38]
_ — 1 —1 1 1
a M—4 h—m,T—m T—m,h—m
0.1 1.22946 x 1071° 1.1552 x 107° 1.4408 x 107°
0.5 2.40485 x 10716 1.0805 x 107° 1.4007 x 107°
09 8.83875 x 107" 8.1511 x 1077 1.3682 x 107°

Table 2. CPU time used for Table 1.

CPU time of our method CPU time of method in [38]
_ 1 1 1 1
04 M =4 h—m,T—m T—m,h—m
0.1 30.891 16.828 67.243
0.5 35.953 16.733 67.470
0.9 31.078 16.672 67.006

Example 5.2. [38] Consider the following equation:
vi(x, 1) = D [va(x, ) | = vi(x, 1) = S(x,1), 0 <a <], (5.3)

where )

IG-a

governed by (3.2) and (3.3). Problem (5.3) has the exact solution: u(x, f) = > sin(r x).
Table 3 compares the L, errors of the SSKGM with those obtained by the method in [38] at £ =
7 = 1. This table shows that our results are more accurate. Table 4 reports the CPU time used for

S(x, 1) = u* + sin(r x) £+ 72+ 2t - sin’(r x),

AIMS Mathematics Volume 9, Issue 9, 25457-25481.



25471

obtaining results in Table 3. Moreover, Figure 4 sketches the AEs at different values M when @ = 0.7,
and ¢ = 7 = 1. Table 5 presents the maximum AEs at @ = 0.8 and M = 8 when ¢{ = 7 = 1. Figure 5
sketches the AEs at different @ for M =10, { =3 and 7 = 1.

Error (a=0.2) Error (a=0.4)

3.x107" 1.5x 10718

1.0 00 5700

Error (a=0.6) Error (¢=0.8)

1.0

Figure 1. The AEs at different values of a for Example 5.1.

Error (a=0.3) Error (a=0.5)

Error (@=0.7) Error (a=0.9)

Figure 2. The AEs at different values of a for Example 5.1.
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Error (a=0.3)

Error (a=0.5)

Figure 3. The AEs at different values of « for Example 5.1.

Table 3. Comparison of the L, errors for Example 5.2.

Our method Method in [38]
_ 1 1 1 1
(04 M— 8 h—m,T—m T—W,h—m
0.1 4.97952 x 10719 9.1909 x 107> 5.1027 x 107
0.5 5.85998 x 10710 8.4317 x 107 4.4651 x 1073
0.9 4.62473 x 10710 6.2864 x 107> 4.0543 x 107>
Table 4. CPU time used for Table 3.
CPU time of our method CPU time of method in [38]
_ 1 1 — 1 1
a M = 8 h—m,T—m T—m,h—m
0.1 119.061 20.095 70.952
0.5 118.001 19.991 71.117
0.9 121.36 19.908 71.153
AIMS Mathematics

Volume 9, Issue 9, 25457-25481.
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Table 5. The maximum AEs of Example 5.2 at & = 0.8, M = 8.

X t=02 t=04 t=0.6 t=0.8

0.1 7.82271 x 10712 9.69765 x 107! 1.48667 x 1071° 2.65085 x 10710
0.2 4.24386 x 107! 6.82703 x 107! 2.34553 x 10710 5.1182x 1071°
0.3 4.48637 x 107! 6.28317 x 107! 2.69028 x 10710 4.28024 x 10710
0.4 2.57132 x 1071 5.02944 x 1071 1.45928 x 1071° 3.26067 x 10710
0.5 6.59974 x 1071 1.22092 x 107! 438141 x 10710 7.16844 x 10710
0.6 1.11684 x 107! 1.04731 x 1071° 1.78963 x 1071° 2.80989 x 10710
0.7 4.19906 x 107! 7.33454 x 1071 2.70484 x 10710 4.25895 x 10710
0.8 2.97515x 1071 1.16961 x 1071° 2.70621 x 10710 4.63116 x 1071°
0.9 1.0014 x 107! 8.68311 x 107! 1.43244 x 10710 2.71797 x 10710

Error(N=2) Error(N=4)
1.0 ~ 1.0 ™
Figure 4. The AEs at different values of M when a = 0.7 for Example 5.2.
AIMS Mathematics Volume 9, Issue 9, 25457-25481.
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Error(a=0.2)

Error(a=0.4)

Error(a=0.6)

3700

Figure 5. The AEs at different values of @ when M = 10 for Example 5.2.

Example 5.3. Consider the following equation:

where

vi(x, 1) = D [vi(x, ) ] = vi(x, 1) = S(x, 1),

S(x, 1) = sin(2 7 x) (

47°T(5) 4.,
Iré-a

O<a<l,

+4n2t4+4t3),

(5.4)

governed by (3.2) and (3.3). The exact solution of this problem is: u(x, ) = #* sin(2 7 x).
Table 6 presents the maximum AEs at @ = 0.5 and M = 9 when ¢ = 7 = 1. Figure 6 sketches the
AEs at different M and @ = 0.9 when £ =7 = 1.

Table 6. The maximum AEs of Example 5.3 at @ = 0.5, M =9.

X t=02 t=04 t=0.6 t=0.8

0.1 4.36556 x 1078 6.4783 x 1078 4.6896 x 1078 3.07364 x 1078
0.2 3.41326 x 1078 5.29923 x 1078 2.18292 x 1078 6.69242 x 1078
0.3 4.74795 x 1078 5.70081 x 1073 1.14413 x 1077 1.69409 x 1077
0.4 8.64528 x 1078 1.11593 x 107’ 1.6302 x 1077 1.69931 x 107’
0.5 2.03915 x 1078 2.95873 x 1078 2.78558 x 1078 2.04027 x 1071
0.6 8.36608 x 1078 1.07773 x 1077 1.59124 x 107’ 1.70274 x 107’
0.7 1.53354 x 1078 1.00892 x 1078 7.07611 x 1078 1.68702 x 107’
0.8 3.88458 x 1078 6.00347 x 1078 2.85788 x 1078 6.72342 x 1078
0.9 3.00922 x 1078 4.49878 x 1078 2.82622 x 1078 3.06797 x 1078

AIMS Mathematics
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Error(N=6) Error(N=7)

0.00003
1.0 0.00002

1.0 00

Error(N=8)

1000 1570.

Figure 6. The AEs at different values of M when @ = 0.9 for Example 5.3.

Example 5.4. [61] Consider the following equation:
vi(x, 1) = DY [vi(x, ) ] = vi(x, 1) = S(x,1), O<a<l, (3.5
governed by the following constraints:

v(x,00=0, 0<x<l, (5.6)
v0,1) =", v, =er"?, 0<t<]1, (5.7)

where

r 3
Stx,n) = e [Py —1+2) - oy +5) t“”’*z),

I(—a+y+3)

and the exact solution of this problem is: u(x,f) = e*#*2. This problem is solved for the case y = 1.
In Table 7, we compare the L, errors of the SSKGM with that obtained in [61] at different values
of a. This table shows the high accuracy of our method. Figure 7 illustrates the AE (left) and the
approximate solution (right) at M = 7 when a = 0.6.

AIMS Mathematics Volume 9, Issue 9, 25457-25481.
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Table 7. Comparison of the L, errors for Example 5.4.

Our method Method in [61]
a M=17 n=m=10
0.1 1.39197 x 1071 2.176 x 107°
0.3 1.34984 x 10710 9.045 x 107°
0.5 5.87711 x 107! 1.516 x 1078
0.7 8.43536 x 10712 1.415x 1078
0.9 7.46064 x 10712 5.749 x 107°
Error(a=0.6)

Approximate solution

1.0~
Figure 7. The AE (left) and the approximate solution (right) at M = 7 when @ = 0.6 for
Example 5.4.

6. Conclusions

This study presented a Galerkin algorithm technique for solving the FRSE using orthogonal
combinations of the second-kind CPs. The Galerkin method converts the FRSE with its underlying
conditions into a matrix system whose entries are given explicitly. A suitable algebraic algorithm
may be utilized to solve such a system, and by chance, the approximate solution can be obtained.
We showcased the effectiveness and precision of the algorithm through a comprehensive study of the
error analysis and by presenting multiple numerical examples. We think the proposed method can be
applied to other types of FDEs. As an expected future work, we aim to employ this paper’s developed
theoretical results and suitable spectral methods to treat some other problems.
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