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1. Introduction

Consider the following sum of linear ratios problem

(SLR)


min ϕ(x) =

p∑
i=1

c>i x + di

e>i x + fi

s.t. x ∈ X := {x ∈ Rn|Ax ≤ b}

where p ≥ 2, ci ∈ R
n, di ∈ R, ei ∈ R

n, fi ∈ R, A ∈ Rm×n, b ∈ Rm, X is a nonempty and bounded set.
Besides, for any x ∈ X, it is assumed that e>i x + fi > 0 (i ∈ {1, 2, · · · , p}), which is without loss of
generality (see [1, 2]).

Over the years, many scholars have paid special attention to and studied algorithms for solving
problem SLR. There are two main reasons for this. One is in the application, this problem has been
widely appeared in the fields of economics [3], financial investment [4], portfolio [5, 6] and system
engineering [7], biodiversity conservation [8], network data envelopment analysis [9] and computer
vision [10]. The other is in the theoretical research, except for some special cases [11], SLR is usually
NP-hard [12], and its multiple local non-global solutions seriously interfere with the process of finding
global optimal solutions. This property aggravates the difficulty of global optimization, so it is of great
practical and theoretical significance to develop a new global optimization algorithm for SLR.

In general, there is a positive correlation between the difficulty of SLR and the magnitude of p. For
a single linear fractional programming problem with p = 1 and the quasi-concavity (quasi-convexity)
property of the objective function, Ozkok [13] proposes an iterative algorithm based on the (ε, δ)-
definition of continuity; Charnes and Cooper adopts an ingenious method to transform the problem into
a linear program [14]. When p = 2, Konno et al. [15] developed a parameter-based simplex method
to solve the problem, while the branch-and-bound (B&B) algorithm based on wave-curve bounds
proposed by Xia et al. [16] can also solve such problem cases. For decades, there have been many
effective algorithms for the SLR problem with p > 2, such as the interior point method [17], heuristic
method [18], concave minimization method [19], polynomial time approximation algorithm [20],
image-space analysis method [21], monotone method [22], outer approximation algorithm [23]
and B&B algorithms [24–28]. Among these algorithms, the B&B algorithm is a classical global
optimization method, which is often adopted to solve many difficult optimization problems. Most
B&B algorithms for solving SLR are implemented by employing various equivalent transformations
and establishing corresponding relaxation strategies. Also, other strategies are sometimes combined
to design algorithms. For instance, Benson [24] proposed a B&B algorithm for SLR by combining
simplex-based branching operations with Lagrangian dual-bound strategies. By combining the two
techniques of B&B and plane cutting, Benson [25] also proposed a global algorithm, which adds
linear cuts but does not compute newly generated vertices. Kuno and Masaki [10] and Carlsson
and Shi [26] constructed two B&B algorithms based on the linear relaxation technique, but their
branching operations are all performed in the n-dimensional decision space, so that the computational
efficiency decreases with the increase of the number of variables. For solving generalized sum-of-ratio
programming problems, Ashtiani and Paulo [29] presented a cut-plane algorithm combining a B&B
technique with linear relaxation, whose branching operations are performed in the 2p-dimensional
output space. By transforming the SLR problem into an equivalent bilinear programming problem
with bilinear constraints, Jiao and Liu [30], Liu and Ge [31] and Liu et al. [32] respectively proposed
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different linear relaxation strategies to simultaneously relax the objective and constraint functions,
and designed different B&B algorithms whose branching operations take place in p-dimensional outer
space. Recently, Jiao and Ma [33] proposed a new linear relaxation strategy based on the essential
structure of each fractional function in ten different cases, from which a B&B algorithm was designed
by combining the corresponding acceleration techniques and branching operations in p-dimensional
outer space. To reduce the dimension of the outer space where branching operations are performed,
Zhang et al. [1, 2] designed two B&B algorithms based on Charnes–Cooper (CC) transformation [14]
and different linear relaxation strategies, both of which branching operations occur in the (p − 1)-
dimensional outer space. Similarly, Shen et al. [34] also designed a B&B algorithm with branching
operations in a (p − 1)-dimensional space, but it incorporated a second-order cone programming
(SOCP) relaxation technique. For a more detailed introduction of SLR and its generalized form, it
is recommended to refer to the fractional programming bibliography [35].

In this paper, a novel B&B algorithm is developed for solving the SLR problem globally. Our
main work is to reformulate the SLR problem into a new equivalent problem (EP) with an non-
convex objective function and (p − 1) non-convex constraints by introducing intermediate variables.
Thus, a new nonlinear relaxation strategy is proposed based on the relaxation of these non-convex
constraints. According to the characteristics of the objective function of the relaxation subproblem,
a corresponding acceleration technique is designed. It is noted that Zhang et al. [1, 2] and Shen et
al. [34] firstly employed CC transformation to reduce the number of linear fractions in SLR from p to
(p−1), and thus proposed new B&B algorithms that execute branching processes in (p−1)-dimensional
space. Differently, based on the new equivalent problem, we study the problem from another point
of view, and finally propose a nonlinear relaxation. Through an artful transformation, the nonlinear
relaxation subproblem is finally reconstructed into a SOCP problem. Compared with some existing
B&B algorithms, our algorithm does not perform branching operations in p-, 2p- or n-dimensional
space, so it may greatly save computation when solving some SLR instances. Furthermore, the SLR
problem we studied only assumes that the denominator of each fractional function is positive, instead
of the positive denominator and non-negative numerator in [20, 30, 36]. Of course, the computational
complexity of the proposed algorithm is derived in detail, and its analysis method is different from
those in the existing literature (e.g., [1, 33, 34]). This estimates the maximum number of iterations for
our algorithm as lowly as possible. Finally, the numerical results show that the algorithm is feasible
and effective. Overall, our algorithm can solve all small and medium-sized SLR problems well, and is
quite stable and effective for large-scale problems.

The rest of this paper is organized as follows: In Section 2, we give the relevant theories of the
algorithm, which mainly includes the equivalent problem, bounding operation, branching operation,
rectangle-region reduction technique, detailed steps and computational complexity. Section 3
introduces some test examples in the existing literature, and gives the computation results and
numerical analysis. Finally, a positive review and outlook are given for the research of this paper.

2. Theoretical framework

To solve the problem of SLR globally, this section mainly presents a new B&B algorithm based on
a nonlinear relaxation strategy.
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2.1. Equivalent problem and its analysis

In this section, in order to solve the problem SLR based on the B&B algorithm, we need to propose
a new equivalent problem for it. To this end, we reformulate the SLR as the following form:

(EP)



min φ(x, µ) =

p−1∑
i=1

µi −

p−1∑
i=1

αi

(
e>i x + fi

e>p x + fp

)
+

c>p x + dp

e>p x + fp

s.t.
c>i x + di

e>i x + fi
+ αi

(
e>i x + fi

e>p x + fp

)
≤ µi, i = 1, · · · , p − 1,

x ∈ X

by introducing a vector µ = (µi, µ2, · · · , µp−1)> ∈ Rp−1, αi > 0.
The equivalence between problems EP and SLR is given by the following theorem.

Theorem 1. A point x∗ ∈ Rn is global optimal for the problem SLR if and only if (x∗, µ∗) ∈ Rn+p−1 is

global optimal for the problem EP with µ∗i =
c>i x∗+di

e>i x∗+ fi
+ αi

(
e>i x∗+ fi
e>p x∗+ fp

)
, i = 1, · · · , p − 1.

Proof. For each i = 1, · · · , p− 1, the univariate function µi is monotonically increasing as µi increases,
so the conclusion of the theorem clearly holds. �

Theorem 1 illustrates that the problem ESLR can be addressed by solving the EP. At the same time,
a partial component x∗ of the optimal solution (x∗, µ∗) of EP becomes the optimal solution of SLR.
Thus, the study of problem EP will be focused.

It can be found that the objective function and constraints

c>i x + di

e>i x + fi
+ αi

(
e>i x + fi

e>p x + fp

)
≤ µi (2.1)

of EP are non-convex, so that the non-convexity of the problem is currently reflected in these places.
However, we only investigate the relaxation of these non-convex constraints, while the objective
function will be simply linearized later. To do so, it is necessary to know the initial upper bound

µ0
i and lower bound µ0

i
of µ∗i such that µ0

i
≤ µ∗i := c>i x∗+di

e>i x∗+ fi
+ αi

(
e>i x∗+ fi
e>p x∗+ fp

)
≤ µ0

i , and to construct an

initial box H0 :=
∏p−1

i=1

[
µ0

i
, µ0

i

]
. Hence, for each i = 1, 2, · · · , p − 1, the following problems need to be

resolved:

η
i
= min

x∈X

c>i x + di

e>i x + fi
, ηi = max

x∈X

c>i x + di

e>i x + fi
, (2.2)

ς
i
= min

x∈X

e>i x + fi

e>p x + fp
, ςi = max

x∈X

e>i x + fi

e>p x + fp
. (2.3)

It is imperative to note that subsequent to the adoption of CC transformation, the problems in Eqs (2.2)
and (2.3) can be reformulated into corresponding linear programming problems, thereby facilitating
their resolution. Then let

µ0
i

:= η
i
+ αiςi

, µ0
i := ηi + αiςi, (2.4)
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which satisfies µ0
i
≤ µ∗i ≤ µ

0
i for i = 1, 2, · · · , p − 1.

Based on the above discussion, it can be concluded that (x∗, µ∗) must satisfy x∗ ∈ X and µ0
i
≤ µ∗i ≤ µ

0
i

(i = 1, 2, · · · , p − 1). Next, for each i = 1, 2, · · · , p − 1, we multiply e>i x+ fi
e>p x+ fp

onto both sides of the
constraint (2.1) to obtain the following equivalent nonlinear constraint:

c>i x + di

e>p x + fp
+ αi

(
e>i x + fi

e>p x + fp

)2

≤
µi(e>i x + fi)

e>p x + fp
. (2.5)

By adding (µi)2

4αi
to both sides of Eq (2.5) and doing a simple arrangement, the inequality can be rewritten

as: ( √
αi(e>i x + fi)
e>p x + fp

−
µi

2
√
αi

)2

+
c>i x + di

e>p x + fp
≤

(µi)2

4αi
, i = 1, 2, · · · , p − 1. (2.6)

Accordingly, EP is clearly equivalent to the following problem:

EP(H0)


min φ(x, µ) =

p−1∑
i=1

µi +
c>p x + dp −

∑p−1
i=1 αi(e>i x + fi)

e>p x + fp

s.t. Eq.(2.6) x ∈ X, µ ∈ H0.

Suppose that H =
∏p−1

i=1 [µ
i
, µi] denotes any sub-rectangle of H0, i.e., H ⊆ H0, then the subproblem

of EP over H can be formulated as follows:

EP(H)


min φ(x, µ) =

p−1∑
i=1

µi +
c>p x + dp −

∑p−1
i=1 αi(e>i x + fi)

e>p x + fp

s.t. Eq.(2.6) x ∈ X, µ ∈ H.

Based on the characteristics of the B&B algorithm, we will propose a nonlinear relaxation strategy
of the subproblem EP(H) for the execution of the bounding operation.

2.2. Nonlinear relaxation strategy

In this section, we mainly relax EP(H) as a nonlinear relaxation programming (NLRP) problem that
can provide a lower bound for the optimal value of EP(H) in the proposed algorithm.

Now, after linearizing a term on the right-hand side of each non-convex constraint (2.6), the
corresponding nonlinear relaxation subproblem can be obtained. It is well known that the concave
envelope of a univariate convex function (µi)2 over the interval [µ

i
, µi] can be formulated as

ϑi(µi) = (µ
i
+ µi)µi − µi

µi, i = 1, 2, · · · , p, (2.7)

which necessarily satisfy

ϑi(µi) ≥ (µi)2 for any µi ∈ [µ
i
, µi], i = 1, 2, · · · , p. (2.8)

AIMS Mathematics Volume 9, Issue 9, 25396–25412.



25401

According to Eq (2.8), each of the above constraints (2.6) can be relaxed into:( √
αi(e>i x + fi)
e>p x + fp

−
µi

2
√
αi

)2

+
c>i x + di

e>p x + fp
≤

1
4αi

ϑi(µi), i = 1, 2, · · · , p − 1. (2.9)

Thus, EP(H) is finally relaxed as the following nonconvex program:

NLRP(H)


min ψ(x, µ) =

p−1∑
i=1

µi +
c>p x + dp −

∑p−1
i=1 αi(e>i x + fi)

e>p x + fp

s.t. Eq.(2.9), x ∈ X, µ ∈ H.

From Eq (2.8), it can be known that ϑi(µi) is actually a linear upper approximation function of (µi)2

over [µ
i
, µi], which implies that the feasible region of EP(H) always does not exceed that of problem

NLRP(H), so that the optimal value of the latter is never greater than that of the former. This clarifies
that solving the NLRP(H) yields an effective lower bound on the optimal value of EP(H).

For each i = 1, 2, · · · , p − 1, if the positive fractional function
e>p x+ fp

e>i x+ fi
is multiplied by the left and

right sides of Eq (2.9), the following inequality can be obtained:

c>i x + di

e>i x + fi
+ αi

(
e>i x + fi

e>p x + fp

)
− µi ≤

(e>p x + fp)(ϑi(µi) − (µi)2)

4αi(e>i x + fi)
≤

(µi − µi
)2

16αiςi

. (2.10)

After comparing Eqs (2.1) and (2.10), the relaxation process essentially magnifies 0 to
(e>p x+ fp)(ϑi(µi)−(µi)2)

4αi(e>i x+ fi)
, thus relaxing the feasible region of the problem EP(H). From the above relaxation

process, it can be found that different values of αi will lead to relaxation problems NLRP(H) with
different compactness. When H = H0, by the definition of µ0

i
and µ0

i in Eq (2.4), the upper limit of
constraint error in Eq (2.10) is closely related to the value of αi, i.e.,

(µ0
i − µ

0
i
)2

16αiςi

=
(ηi − ηi

+ αi(ςi − ςi
))2

16αiςi

=: ξ(αi).

Over the interval (0,+∞), the minimum value of the univariate function ξ(αi) is reached at the point
ηi−ηi
ςi−ςi

. Consequently, under the condition of αi =
ηi−ηi
ςi−ςi

, when each non-convex constraint (2.1) is relaxed,

the upper bound of the error between the optimal values of EP(H0) and NLRP(H0) can be minimized
as much as possible. Therefore, throughout this paper, the value of each parameter αi will always be
ηi−ηi
ςi−ςi

.
Also, it can be observed from Eqs (2.7), (2.8) and (2.10) that the rectangles corresponding to the

variable µ can be directly branching and thinning, which forces the optimal values of NLRP(H) and
EP(H) to gradually approach each other in the limiting sense.

2.3. Solving problem NLRP(H)

Given a rectangle H ⊆ H0, if the problem NLRP(H) is solvable, we notice that the problem cannot
be solved directly by using the existing convex optimization solver, which is extremely inconvenient.
However, NLRP(H) is implicitly convex and can be revealed as follows:
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It is observed that the linear fractional factors in NLRP(H) have the same denominator e>p x + fp.
By introducing the CC transformation: t = 1

e>p x+ fp
and y = tx, the problem can be transformed into the

following convex problem:

CP(H)



minω(y, t, µ) =

p−1∑
i=1

µi + c>p y + dpt −
p−1∑
i=1

αi(e>i y + ft)

s.t.
(
√
αi(e>i y + fit) −

µi

2
√
αi

)2

+ c>i y + dit ≤
1

4αi
ϑi(µi), i = 1, 2, · · · , p − 1,

e>p y + fpt = 1, Ay − bt ≤ 0, t > 0, µ ∈ H.

Remark 1. Let W = {(y, t)|e>p y + fpt = 1, Ay − bt ≤ 0, t > 0}, for any (y, t) ∈ W, it holds that t > 0
and y/t ∈ X. Besides, for any x ∈ X, let t = 1

e>p x+ fp
, y = tx, it can be verified that (y, t) ∈ W and

ω(y, t, µ) = ψ(x, µ). Therefore, we can obtain the optimal solution ( ŷ
t̂ , µ̂) of NLRP(H) from the optimal

solution (ŷ, t̂, µ̂) of CP(H).

The problem CP(H) is well defined, as is stated in [1, 14]. As a result, the conclusions in Remark 1
are obvious. Although CP(H) can be directly handled by some existing convex optimization solvers,
since the quadratic term of each convex constraint is the square of a linear factor, the problem can be
essentially rewritten as the following SOCP problem:

SOCP(H)



min
p−1∑
i=1

µi + c>p y + dpt −
p−1∑
i=1

αi(e>i y + ft)

s.t.
∥∥∥(4αi(e>i y + fit) − 2µi, βi − 1

)∥∥∥
2
≤ βi + 1, i = 1, 2, · · · , p − 1,

βi = ϑi(µi) − 4αi(c>i y + dit), i = 1, 2, · · · , p − 1,
e>p y + fpt = 1, Ay − bt ≤ 0, t > 0, µ ∈ H.

This problem can be solved directly by the solver coneprog in MATLAB(2023a), which can also be
called a SOCP relaxation of EP(H).

2.4. Branching rule of rectangle

Branching operation is essential in B&B algorithm.
In our algorithm, the branching rule of H =

∏p−1
i=1 [µ

i
, µi] ⊆ H0 can be summarized as follows:

(i) Let µκ − µκ = max{µi − µi
: i = 1, 2, · · · , p − 1}, zκ = 1

2 (µ
κ

+ µκ);
(ii) By adopting zκ, the interval [µ

κ
, µκ] corresponding to the κ-edge of H is divided into two intervals

[µ
κ
, zκ] and [zκ, µκ], and then H is subdivided into two sub-rectangles

H1 =

κ−1∏
i=1

[µ
i
, µi] × [µ

κ
, zκ] ×

p−1∏
i=κ+1

[µ
i
, µi], H2 =

κ−1∏
i=1

[µ
i
, µi] × [zκ, µκ] ×

p−1∏
i=κ+1

[µ
i
, µi].

Based on the above discussion, we can know that H1 ∩ H2 = {µ ∈ Rp−1|µκ = zκ} and H1 ∪ H2 = H.
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2.5. Region reduction technique

In this subsection, a simple region reduction technique is mainly derived, so as to delete some or
all regions in a sub-rectangle H that cannot obtain the global optimal solution, which can reduce the
explored child nodes or compress the search domain, thus accelerating the convergence speed of the
B&B algorithm.

Without loss of generality, let H =
∏p−1

i=1 [µ
i
, µi] ⊆ H0. Let UB denote the currently known best

objective function value of problem EP.
For any feasible solution (x, µ) of EP(H) worth being considered, it must satisfy

φ(x, µ) =

p−1∑
i=1

µi +
c>p x + dp −

∑p−1
i=1 αi(e>i x + fi)

e>p x + fp
≤ UB,

then for every ι = 1, 2, · · · , p − 1, we define

γ = µ̂ +

p−1∑
i=1

µ
i
, αι = UB − γ + µ

ι
,

where µ̂ = min
x∈X

c>p x+dp−
∑p−1

i=1 αi(e>i x+ fi)
e>p x+ fp

.
If the global optimal solution (x∗, µ∗) of EP can be obtained by employing H, there must be a

necessary condition:

φ(x∗, µ∗) ≤ φ(x, µ) ≤ UB, f or some (x, µ) ∈ X × H, (2.11)

which is the key to the following rectangular reduction theorem.

Theorem 2. If αι < µ
ι

for a ι ∈ {1, 2, · · · , p − 1}, the problem EP cannot obtain the global optimal
solution over the rectangle H; otherwise, if αι < µι for some ι ∈ {1, 2, · · · , p − 1}, the global optimal
solution cannot be obtained from Hι, where

Hι =

ι−1∏
i=1

[µ
i
, µi] × (αι, µι] ×

p−1∏
i=ι+1

[µ
i
, µi] ⊆ H.

Proof. If there is a ι ∈ {1, 2, · · · , p − 1} such that αι < µ
ι
, it follows that

φ(x∗, µ∗) ≤ UB = αι + γ − µ
ι
< γ = µ̂ +

p−1∑
i=1

µ
i
≤ φ(x, µ), ∀x ∈ X, µ ∈ H,

which contradicts Eq (2.11), so that the former conclusion of the theorem holds. Further, if µ
ι
≤ αι < µι

for some ι ∈ {1, 2, · · · , p − 1}, it follows from µ = (µ1, µ2, · · · , µp−1)> ∈ Hι and the definition of αι that
αι < µι ≤ µι and

φ(x∗, µ∗) ≤ UB = αι + γ − µ
ι
< µι + γ − µ

ι
≤ µι + µ̂ +

p−1∑
i=1,i,ι

µi ≤ φ(x, µ)

for all x ∈ X, µ ∈ Hι. This means that no element µ in Hι can be a component of the optimal solution
(x∗, µ∗), i.e., µ∗ , µ for any µ ∈ Hι. So the proof of the theorem is complete. �
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2.6. SOCP relaxation based Branch-and-Bound Reduction Algorithm

To find the global optimal solution to the lifted problem EP, we construct a SOCP relaxation based
branch-and-bound reduction algorithm (SOCPRBBRA) by adding the proposed convex relaxation,
rectangular branching technique and rectangle-reduction rule to the B&B framework.

Algorithm (SOCPRBBRA)
Step 0. (Initialization).
Given a tolerance ε > 0. Calculate µ0

i
and µ0

i by Eqs (2.2)–(2.4).

Initialize the rectangle H0 =
∏p−1

i=1 [µ0
i
, µ0

i ].
Solve the relaxation problem NLRP(H0) to obtain its optimal value LB(H0) and optimal solution (x̂, µ̂).
Set LB0 = LB(H0), LB0 = ϕ(x̂), xv = x̂, Ξ = {[H0, LB(H0)]}, k := 0.
Step 1. (Termination).
If UBk − LBk ≤ ε, terminate and output xv.
Step 2. (Rectangular subdivision).
By using the bisection method shown in Sect. 2.4, the rectangle Hk is divided into two sub-rectangles
Hk1 and Hk2. Set Ξ := Ξ\{[Hk,UB(Hk)]}.
Step 3. (Region reduction operation).
For each ς = 1, 2, remove or reduce Hkς with the help of the region reduction technique in Sect. 2.5.
Put all the reduced rectangles into the set Q and denote the number of elements in Q as |Q| , i.e.
|Q| = 0, 1 or 2. If |Q| , 0, proceed to the next step; otherwise, go to Step 5.
Step 4. (Pruning operation, update the upper bound).
For each H ∈ Q, solve the relaxation problem NLRP(H) to obtain its optimal value LB(H) and optimal
solution (x̂, µ̂); if UBk−LB(H) > ε, set Ξ := Ξ∪{[H, LB(H)]} and U = ϕ(x̂), if U < UBk, set UBk = U,
xv = x̂.
Step 5. (Determine the lower bound).
If Ξ , ∅, set LBk := min{LB(H) : [·, LB(H)] ∈ Ξ} and goto Step 6, otherwise stop and output xv,
k = k + 1.
Step 6. (Select a rectangle).
Choose an element {[Hk, ·]} ∈ Ξ such that LB(Hk) = LBk.
Set k := k + 1 and return to Step 1.

Remark 2. In this algorithm, the optimal solution (x̂, µ̂) of the relaxation problem NLRP(H) is
not necessarily feasible for EP, but it can be verified that (x̂, µx̂) is feasible for EP when µx̂ =

(µx̂
1, µ

x̂
2, · · · , µ

x̂
p−1)> with µx̂

i =
c>i x̂+di

e>i x̂+ fi
+

αi(e>i x̂+ fi)
e>p x̂+ fp

is set, in which case φ(x̂, µx̂) = ϕ(x̂) is found. Therefore,
we can directly choose ϕ(x̂) (if possible) to update the upper bound instead of φ(x̂, µx̂).

In the above algorithm, k is adopted as the iteration index. At each iteration, one subproblem is
selected and up to two new subproblems are created to replace the old one. The optimal value of the
new subproblem will gradually improve compared with the old subproblem, and the corresponding
upper and lower bounds will be updated, so that the gap between the upper and lower bounds will
gradually decrease. Indeed, SOCPRBBRA can output a global ε-optimal solution for the problem EP
or SLR with a given tolerance ε > 0. Here, we call xv ∈ X a global ε-optimal solution to SLR if
ϕ(xv) ≤ V(SLR) + ε, where V(SLR) denotes the optimal value of SLR.
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Theorem 3. Given a tolerance ε > 0, when SOCPRBBRA runs to Step 1 of the kth iteration, if the
subproblem {[Hk,UB(Hk)]} satisfies µκ − µκ ≤ 4

√
ε
N with µκ − µκ = max{µi − µi

: i = 1, 2, · · · , p − 1},

N =
∑p−1

i=1
1
αiςi

, the algorithm must terminate and output a global ε-optimal solution to problem SLR.

Proof. Without loss of generality, denote Hk as H =
∏p−1

i=1 [µ
i
, µi], LBk as LB, and UBk as UB. Since H

is the selected rectangle to be divided, the following formula must be established:

V(EP) − V(NLRP(H)) ≥ 0, (2.12)

Now, let (x̃, µ̃) be an optimal solution of NLRP(H). We have

φ(x̃, µ̂) − ψ(x̃, µ̃) =

p−1∑
i=1

(µ̂i − µ̃i) ≤
p−1∑
i=1

(e>p x̃ + fp)(ϑi(µ̃i) − (µ̃i)2)

4αi(e>i x̃ + fi)
, (2.13)

where µ̂ = (µ̂1, µ̂2, · · · , µ̂p−1)> with µ̂i =
c>i x̃+di

e>i x̃+ fi
+

αi(e>i x̃+ fi)
e>p x̃+ fp

. Furthermore, it follows from Eqs (2.7)
and (2.8) that

max
µ̃i∈[µi

,µi]

(
ϑi(µ̃i) − (µ̃i)2

)
=

(µi − µi
)2

4
, i = 1, 2, · · · , p − 1. (2.14)

Hence, from Eqs (2.12)–(2.14), it holds that

0 ≤ V(EP) − V(NLRP(H)) ≤ φ(x̃, µ̂) − ψ(x̃, µ̃) ≤
p−1∑
i=1

(µi − µi
)2

16αiςi

≤
N
16

(µκ − µκ)
2, (2.15)

where ς
i
is defined in Eq (2.3). When µκ − µκ ≤ 4

√
ε
N , it follows from Eq (2.15) that

0 ≤ V(EP) − V(NLRP(H)) ≤ φ(x̃, µ̂) − ψ(x̃, µ̃) ≤
N
16

(µκ − µκ)
2 ≤ ε. (2.16)

Since LB = LB(H) is the smallest lower bound at the current iteration, it holds that

ψ(x̃, µ̃) = LB ≤ V(EP) = V(SLR) ≤ UB = ϕ(xv) = φ(xv, µv) ≤ φ(x̃, µ̂), (2.17)

where µv = (µv
1, µ

v
2, · · · , µ

v
p−1)> with µv

i =
c>i xv+di

e>i xv+ fi
+

αi(e>i xv+ fi)
e>p xv+ fp

, i = 1, 2, · · · , p − 1. When µκ − µκ ≤ 4
√

ε
N ,

it follows from Eqs (2.16) and (2.17) that

φ(xv, µv) − V(EP) = ϕ(xv) − V(SLR) ≤ UB − LB ≤ φ(x̃, µ̂) − ψ(x̃, µ̃) ≤ ε, (2.18)

which clarifies that xv and (xv, µv) are global ε-optimal solutions to problems SLR and EP, respectively.
�

Theorem 3 shows that the optimal value of EP over each selected sub-rectangle and that of its
relaxation problem NLRP(H) are gradually approaching in the limiting sense. This implies that the
bounding and branching operations are consistent, so the B&B algorithm is theoretically globally
convergent.

Now, let us analyze the complexity of SOCPRBBRA based on Theorem 3 and the iterative
mechanism of this algorithm.
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Theorem 4. Given a tolerance ε > 0, the maximum number of iterations required by SOCPRBBRA
to obtain a global ε-optimal solution for SLR is p−1∏

i=1

(µ0
i − µ

0
i
)
( N
16ε

)(p−1)/2
 ,

where N =
∑p−1

i=1
1
αiςi

.

Proof. When SOCPRBBRA terminates, either k = 0 or k ≥ 1. If k = 0, the algorithm does not enter
the iteration loop. Thus, let us talk about the case where the algorithm terminates after many iterations.

At the case of k ≥ 1, it follows from Theorem 3 that µκ − µκ ≤ 4
√

ε
N is essentially a sufficient

condition for the termination criterion of the algorithm, UBk − LBk ≤ ε, to hold. Further, according
to the rectangular branching rule in Step 2, a total of k + 1 sub-rectangles are generated for the
initial rectangle H0. For convenience, we denote these subrectangles as H1,H2, · · · ,Hk+1, respectively.

Obviously, H0 =
k+1⋃
ι=1

Hι. In the worst case, suppose that the longest edge of each subrectangle

Hι :=
∏p−1

i=1 [µ
i
, µi] satisfies µκ − µκ ≤ 4

√
ε
N , where κ ∈ arg max{µi − µi

: i = 1, 2, · · · , p − 1}. At
this point, every edge [µ

i
, µi] of Hι satisfies

µi − µi
≤ 4

√
ε

N
, i = 1, · · · , p − 1, (2.19)

which implies that the volume Vol(Hι) of Hι does not exceed the volume Vol(H̄ι) of a rectangle H̄ι

with a unique edge length 4
√

ε
N . Thus, we have

Vol(H0) =

p−1∏
i=1

(µ0
i − µ

0
i
) =

k+1∑
ι=1

Vol(Hι) ≤ (k + 1)Vol(H̄ι) = (k + 1)
(
4
√
ε

N

)p−1

. (2.20)

Next, by combining Eq (2.20), we have

k ≥
Vol(H0)
Vol(H̄ι)

− 1 =

p−1∏
i=1

(µ0
i − µ

0
i
)
( N
16ε

)(p−1)/2

− 1.

However, when Eq (2.19) holds and k =

⌊∏p−1
i=1 (µ0

i − µ
0
i
)
(

N
16ε

)(p−1)/2
⌋
, these k + 1 sub-rectangles must

be deleted in Step 4. Thus, the number of iterations at which SOCPRBBRA terminates is at most⌊∏p−1
i=1 (µ0

i − µ
0
i
)
(

N
16ε

)(p−1)/2
⌋
. This completes the proof. �

Remark 3. Theorem 4 reveals that when SOCPRBBRA finds a global ε-optimal solution for SLR, the
computational time required is at most

2T

 p−1∏
i=1

(µ0
i − µ

0
i
)
( N
16ε

)(p−1)/2


seconds, where T denotes the upper bounds of the time required to solve a SOCP problem SOCP(H)
(see Section 2.3).

Remark 4. Theorem 4 sufficiently guarantees that SOCPRBBRA completes termination in a finite
number of iterations because of the existence of this most extreme number of iterations.
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3. Numerical experiments

To verify the effectiveness and feasibility of SOCPRBBRA, we compared it with the algorithms
in [1, 2, 31, 33] and the commercial solver BARON [37]. The corresponding codes were compiled and
run on Matlab(2023a) and a series of numerical experiments were performed. All calculations were
carried out on a desktop computer with Win7 operating system and an Intel(R) Core(TM) i5-8500 3.00
GHz power processor and 8 GB of memory. Besides, all linear programming and second-order cone
programming problems are addressed by linprog and coneprog solvers in Matlab.

In all experiments of solving the random instances generated by Problem 1, the same tolerance
ε adopted by all algorithms is 10−6. For each set of parameters (p,m, n), ten random instances of
the same size are generated and solved by related algorithms, and the average numerical results are
recorded in Tables 1 and 2. The symbols in the header line of these tables are interpreted as: CPU: The
average CPU running time after solving ten test instances by an algorithm; Iter: the average number
of iterations after solving ten test instances by an algorithm; Opt.val: the average optimal value after
solving ten test instances by an algorithm.
Problem 1. 

min
p∑

i=1

∑n
j=1 di jx j + gi∑n
j=1 ci jx j + hi

s.t.
n∑

j=1

ak jx j ≤ bk, k = 1, 2, · · · ,m

x j ≥ 0.0, j = 1, 2, · · · , n.

where all di j, ci j, bk and ak j are randomly generated in [0,10]; all gi and hi are randomly generated
in [0,1].

From the numerical results of Tables 1 and 2, all optimal values of SOCPRBBRA are not much
different from other algorithms, especially compared with the commercial software package BARON.
Moreover, SOCPRBBRA is optimal in both the number of iterations and CPU time, which reflects the
excellent computational ability of our algorithm in solving the SLR problem.

A fact that can be observed from Table 1 is that BARON seems to be only suitable
for solving some small-scale problems, and can clearly know that problems with (p,m, n) =

(2, 5, 2000), (2, 5, 3000), (2, 5, 5000), (3, 5, 2000) cannot be handled by the package within 3600s.
Nevertheless, it is not difficult to find from Tables 1 and 2 that the number p of fractions is a major factor
affecting the computational performance of our algorithm. However, compared with the algorithms
in [1,2,31,33], this effect is relatively small. Particularly, the numerical results in Table 2 reveal that the
algorithm in [33] cannot handle problems with (p,m, n) = (4, 100, 500), (4, 140, 700) and (5, 100, 500)
in 3600s. Thus, SOCPRBBRA is expected to become a potential solver for solving some specific SLR
problems.

In summary, although the number of fractional terms affects the computational performance of
SOCPRBBRA, the computational ability of the algorithm is stronger than that of BARON and the
algorithms in [1,2,31,33] when solving specific SLR problems. Moreover, our algorithm may be more
suitable for solving SLR problems with fewer linear fractional terms, especially for some large-scale
problems.
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Table 2. Computational comparisons among SOCPRBBRA and the algorithms in Refs [1,
33] for Problem 1 .

(p,m, n)
SOCPRBBRA Ref. [1] Ref. [33]

Iter CPU Opt.val Iter CPU Opt.val Iter CPU Opt.val

(2,5,25) 4.1 0.0511 10.6717 10.0 0.3393 10.6717 486.4 14.9469 10.6717
(2,10,50) 6.6 0.0928 27.0132 14.6 0.3042 27.0132 538.2 5.1878 27.0132
(2,20,100) 5.5 0.1246 5.7241 20.1 0.3643 5.7241 873.5 11.7983 5.7241
(2,60,300) 7.3 1.4472 11.7670 31.9 4.1865 11.7670 398.0 33.5582 11.7670
(2,100,500) 6.0 5.7734 14.1794 21.0 14.2905 14.1794 259.7 99.0577 14.1794
(2,140,700) 5.7 11.5332 4.9275 17.3 7.5279 4.9275 77.2 67.8522 4.9275
(2,200,1000) 6.3 35.0878 6.2781 20.2 90.5737 6.2781 213.4 535.7422 6.2781
(3,5,25) 15.6 0.3541 10.9691 29.1 1.0736 10.9691 1091.9 8.9137 10.9691
(3,10,50) 26.4 0.4569 27.3195 461.6 5.9316 27.3195 7546.8 79.8372 27.3195
(3,20,100) 21.5 0.4950 10.3249 69.9 1.4715 10.3249 9261.5 137.6806 10.3249
(3,60,300) 24.4 5.1643 10.0868 90.1 12.2862 10.0868 30913.6 2656.9443 10.0868
(3,100,500) 19.9 5.9031 10.9452 98.8 137.0207 10.9452 2364.8 1144.3356 10.9452
(3,140,700) 20.8 46.5581 15.6849 169.7 292.8312 15.6849 2243.5 1809.0920 15.6849
(3,200,1000) 21.9 127.9725 6.6388 119.5 573.9409 6.6388 932.1 2393.1107 6.6388
(4,5,25) 42.7 0.5303 20.7392 2047.7 38.6920 20.7392 12789.1 116.9910 20.7392
(4,10,50) 72.5 1.2027 23.6421 134.1 1.9314 23.6421 53546.3 715.2585 23.6421
(4,20,100) 59.3 1.7275 11.6142 763.3 24.7755 11.6142 31351.7 667.6312 11.6142
(4,60,300) 58.7 21.7087 19.3050 320.9 68.0013 19.3050 9373.6 1074.9317 19.3050
(4,100,500) 49.4 47.8845 11.9962 322.0 193.6454 11.9962 − − −

(4,140,700) 41.2 153.1522 6.6882 630.7 1425.6532 6.6882 − − −

(5,5,25) 119.8 1.6097 27.3708 17176.8 543.1353 39.9423 12604.2 151.9283 33.6565
(5,10,50) 103.0 1.9965 14.4297 12746.7 164.5762 14.4297 61295.9 764.7003 14.4297
(5,20,100) 78.4 2.4796 21.3268 397.5 9.1383 21.3268 47865.2 836.0249 21.3268
(5,60,300) 84.7 45.3486 21.3502 369.0 101.5605 21.3502 20321.8 3491.9032 21.3502
(5,100,500) 116.8 113.4898 45.4468 482.4 319.6263 45.4471 − − −

4. Conclusions

In this paper, we study the SLR problem. By employing a new equivalent transformation
technique, SLR is transformed into the problem EP. Then we reconstruct and relax these non-convex
constraints, so that the non-convex relaxation subproblem of EP is obtained. Furthermore, a new global
optimization algorithm SOCPRBBRA is constructed by combining non-convex relaxations with B&B
technique. The branching operations of the algorithm takes place in the space Rp−1, rather than space
Rp, R2p or Rn, which greatly saves the computational workload of the algorithm. A large number of
numerical results show that SOCPRBBRA not only has stronger computing power than the commercial
software package BARON, but also has higher computational efficiency than the four existing B&B
algorithms (i.e., algorithms in [1, 2, 31, 33]) when solving some specific SLR problems. The future
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work is to extend our algorithm to generalized nonlinear fractional programming problems.
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