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Abstract: This paper establishes non-uniform continuity of the data-to-solution map in the periodic
case for the two-component Fornberg-Whitham system in Besov spaces Bs

p,r(T) × Bs−1
p,r (T) for s >

max{2 + 1
p ,

5
2 }. In particular, when p = 2 and r = 2, this proves the non-uniform dependence on initial

data for the system in Sobolev spaces H s(T) × H s−1(T) for s > 5
2 .
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1. Introduction

In this paper, we consider the following two-component Fornberg-Whitham (FW) system for a fluid
ut + uux =

(
1 − ∂2

x

)−1
∂x (ρ − u)

ρt + (ρu)x = 0
(u, ρ) (0, x) = (u0, ρ0) (x)

(1.1)

where x ∈ T = R/2πZ, t ∈ R+. Here, u = u(x, t) is the horizontal velocity of the fluid, and ρ = ρ(x, t)
is the height of the fluid surface above a horizontal bottom. This system was first proposed in [5],
and local well-posedness and non-uniform dependence on the initial data were established in Sobolev
spaces H s(R) × H s−1(R) for s > 3

2 in [11, 12].
Local well-posedness in Besov spaces Bs

p,r(R) × Bs−1
p,r (R) of (1.1) was established in [4] for s >

max{2 + 1
p ,

5
2 }. Besov spaces Bs

p,r are a class of functions of interest in the study of nonlinear partial
differential equations, as they are based on Sobolev spaces and introduce a measure of generalized
Hölder regularity through the index r, along with the Sobolev index of differentiability s and the
Lebesgue integrability index p. If s and p are fixed, the spaces Bs

p,r grow larger with increasing r. In [4],
the FW system was shown to be well-posed in the sense of Hadamard by establishing the existence
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and uniqueness of the solution to the system (1.1) and then proving continuity of the data-to-solution
map when the initial data belong to Bs

p,r(R) × Bs−1
p,r (R) for s > max{2 + 1

p ,
5
2 }.

In this paper, our objective is to prove non-uniform dependence on periodic initial data for the
two-component FW system (1.1) in Bs

p,r(T) × Bs−1
p,r (T) for s > max{2 + 1

p ,
5
2 }. We work with periodic

initial data, as that simplifies our choice of approximate solutions and the resulting estimates. Setting
Λ = 1 − ∂2

x, we rewrite (1.1) as 
ut + uux = Λ−1∂x (ρ − u)

ρt + uρx + ρux = 0
(u, ρ) (0, x) = (u0, ρ0) (x)

(1.2)

where x ∈ T = R/2πZ and t ∈ R+.
The paper is organized as follows: In Section 2, we recall the standard definitions and properties

of Besov spaces, linear transport equations, the operator Λ, and the two-component FW system. In
Section 3, we prove non-uniform dependence on initial data for the FW system (1.2) when the initial
data belong to Bs

p,r(T) × Bs−1
p,r (T) for s > max{2 + 1

p ,
5
2 }. For this proof, we use a technique previously

seen in the study of non-uniform continuity of data-to-solution maps for other nonlinear PDEs, for
instance in [6–8, 10, 12]. We construct two sequences of approximate solutions such that the initial
data for these sequences converge to each other in Bs

p,r(T) × Bs−1
p,r (T). Non-uniform dependence is then

established by proving that the approximate and hence the exact solutions remain bounded away from
each other for any positive time t > 0. This idea was first explored by Kato in [9] to show that the
data-to-solution map for Burgers’ equation is not Hölder continuous in the H s norm with s > 3/2 for
any Hölder exponent.

2. Notation and preliminaries

This section is a review of relevant definitions and results on Besov spaces, linear transport
equations, the operator Λ, and the two-component FW system (1.2). We begin by listing some useful
notation to be used throughout Section 3.

2.1. Notation

For any x, y ∈ R,

• x . y denotes x ≤ αy for some constant α.
• x ≈ y denotes x = βy for some constant β.
• x & y denotes x ≥ γy for some constant γ.

2.2. Besov spaces

We recall the construction of a dyadic partition of unity from [8]. Consider a smooth bump function
χ such that supp χ = [−4

3 ,
4
3 ] and χ = 1 on [−3

4 ,
3
4 ]. For ξ > 0, set ϕ−1(ξ) = χ, ϕ0(ξ) = χ

(
ξ

2

)
− χ(ξ)

and ϕq(ξ) = ϕ0(2−qξ). Then, supp ϕq = [ 3
4 · 2q, 8

3 · 2q] and
∑

q≥−1
ϕq(ξ) = 1. Using this partition, a

Littlewood-Paley decomposition of any periodic distribution u is defined in [3] as follows:
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Definition 2.1 (Littlewood-Paley decomposition). For any u ∈ D′(T) with the Fourier series u(x) =∑
j∈Z

û jei jx where û j = 1
2π

2π∫
0

e−i jyu(y) dy, its Littlewood-Paley decomposition is given by u =
∑

q≥−1
∆qu,

where ∆qu are periodic dyadic blocks defined for all q ∈ Z as

∆qu =
∑
j∈Z

ϕq( j)û jei jx .

Using this Littlewood-Paley decomposition, Besov spaces on T are defined in [3] as follows:

Definition 2.2 (Besov spaces). Let s ∈ R and p, r ∈ [1,∞]. Then the Besov spaces of functions are
defined as

Bs
p,r ≡ Bs

p,r(T) = {u ∈ D′(T)
∣∣∣ ‖u‖Bs

p,r < ∞} ,

where

‖u‖Bs
p,r =


( ∑

q≥−1
(2sq‖∆qu‖Lp)r

)1/r

if 1 ≤ r < ∞

sup
q≥−1

2sq‖∆qu‖Lp if r = ∞
.

Following are some properties proved in [1, Section 2.8] and [3, Section 1.3] that facilitate the study
of nonlinear partial differential equations in Besov spaces.

Lemma 2.3. Let s, s j ∈ R for j = 1, 2 and 1 ≤ p, r ≤ ∞. Then the following properties hold:

(1) Topological property: Bs
p,r is a Banach space continuously embedded inD′(T).

(2) Algebraic property: For all s > 0, Bs
p,r ∩ L∞ is a Banach algebra.

(3) Interpolation: If f ∈ Bs1
p,r ∩ Bs2

p,r and θ ∈ [0, 1], then f ∈ Bθs1+(1−θ)s2
p,r and

‖ f ‖Bθs1+(1−θ)s2
p,r

≤ ‖ f ‖θ
Bs1

p,r
‖ f ‖1−θ

Bs2
p,r
.

(4) Embedding: Bs1
p,r ↪→ Bs2

p,r whenever s1 ≥ s2. In particular, Bs
p,r ↪→ Bs−1

p,r for all s ∈ R.

Remark on (2) in Lemma 2.3: When s > 1
p (or s ≥ 1

p and r = 1), Bs
p,r ↪→ L∞. We will use the fact

that for 0 < s < 1
p , the result is still true as long as the functions are bounded.

2.3. Linear transport equation

Given a linear transport equation, Proposition A.1 in [2] proves the following estimate for its
solution size in Besov spaces:

Proposition 2.4. Consider the linear transport equation∂t f + v∂x f = F

f (x, 0) = f0(x)
(2.1)

where f0 ∈ Bs
p,r(T), F ∈ L1((0,T ); Bs

p,r(T)) and v is such that ∂xv ∈ L1((0,T ); Bs−1
p,r (T)). Suppose

f ∈ L∞((0,T ); Bs
p,r(T)) ∩ C([0,T ];D′(T)) is a solution to (2.1). Let 1 ≤ p, r ≤ ∞. If either s , 1 + 1

p ,
or s = 1 + 1

p and r = 1, then for a positive constant C that depends on s, p, and r, we have

‖ f (t)‖Bs
p,r ≤ eCV(t)

(
‖ f0‖Bs

p,r + C
∫ t

0
e−CV(τ)‖F(τ)‖Bs

p,r dτ
)
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where

V(t) =

∫ t

0
‖∂xv(τ)‖B1/p

p,r ∩L∞ dτ if s < 1 +
1
p

and

V(t) =

∫ t

0
‖∂xv(τ)‖Bs−1

p,r
dτ otherwise .

For r < ∞, f ∈ C([0,T ], Bs
p,r(T)), and if r = ∞, then f ∈ C([0,T ], Bs′

p,1(T)) for all s′ < s.

2.4. The Operator Λ

Let Λ = 1 − ∂2
x; then, for any test function g, the Fourier transform of Λ−1g is given by F

(
Λ−1g

)
=

1
1+ξ2 ĝ(ξ). Moreover, for any s ∈ R, Λ−1∂x is continuous from Bs−1

p,r to Bs
p,r; that is, for all h ∈ Bs−1

p,r , there
exists a constant κ > 0 depending on s, p, and r such that

‖Λ−1∂xh‖Bs
p,r ≤ κ‖h‖Bs−1

p,r
. (2.2)

2.5. The Fornberg-Whitham system

The well-posedness of the two-component FW system (1.2) in Besov spaces was established on the
real line in [4] with the following result:

Theorem 2.5. Let s > max{2 + 1
p ,

5
2 }, p ∈ [1,∞], r ∈ [1,∞] and (u0, ρ0) ∈ Bs

p,r(R) × Bs−1
p,r (R). Then the

system (1.2) has a unique solution (u, ρ) ∈ C
(
[0,T ]; Bs

p,r(R) × Bs−1
p,r (R)

)
, where the doubling time T is

given by

T =
C(

‖u0‖Bs
p,r + ‖ρ0‖Bs−1

p,r

)2 ,

with C being a constant that depends on s, p, and r, and the solution size is estimated as

‖(u, ρ)‖Bs
p,r×Bs−1

p,r
≤ 2

(
‖u0‖Bs

p,r + ‖ρ0‖Bs−1
p,r

)
.

Moreover, the data-to-solution map is continuous.

Since we work with Bs
p,r(T) × Bs−1

p,r (T) in this paper, we state the following:

Corollary 2.6. Theorem 2.5 holds when R is replaced by T.

Proof. The existence of a solution to (1.2) is proved by altering the mollifier used to prove Theorem 2.5.
This adaptation of the mollifier was done for the single Fornberg-Whitham equation in [7, Section 3.1].
Uniqueness and continuous dependence on periodic initial data for the system (1.2) are established by
approximation arguments similar to those in [4, Sections 3.2 and 3.3].

�

3. Non-uniform dependence on initial data

In this section, we establish non-uniform dependence on initial data in the periodic case for the
two-component FW system (1.2) in Besov spaces.
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Theorem 3.1. Let s > max{2 + 1
p ,

5
2 } and r ∈ [1,∞]. The data-to-solution map (u0, ρ0) 7→ (u(t), ρ(t))

of the Cauchy problem (1.2) is not uniformly continuous from any bounded subset of Bs
p,r(T) × Bs−1

p,r (T)
into C([0,T ]; Bs

p,r(T)) × C([0,T ]; Bs−1
p,r (T)) where T is given by Theorem 2.5. In particular, there exist

two sequences of solutions {(uω,n, ρω,n)} with ω = ±1 such that the following hold:

(i) lim
n→∞

(
‖u1,n(0) − u−1,n(0)‖Bs

p,r + ‖ρ1,n(0) − ρ−1,n(0)‖Bs−1
p,r

)
= 0.

(ii) lim inf
n→∞

(
‖u1,n − u−1,n‖Bs

p,r + ‖ρ1,n − ρ−1,n‖Bs−1
p,r

)
& | sin t|.

Proof. For n ∈ N, we consider two sequences of functions {(uω,n, ρω,n)} with ω = ±1, defined byuω,n = −ω
n + 1

ns sin(nx + ωt)
ρω,n = 1

n + 1
ns sin(nx + ωt)

.

We take initial data u0
ω,n = uω,n(0) = −ω

n + 1
ns sin nx

ρ0
ω,n = ρω,n(0) = 1

n + 1
ns sin nx

.

Let the solutions to the FW system (1.2) with these initial data be denoted by (uω,n, ρω,n). At t = 0, we
have

lim
n→∞

(
‖u0

1,n − u0
−1,n‖Bs

p,r + ‖ρ0
1,n − ρ

0
−1,n‖Bs−1

p,r

)
= lim

n→∞
2‖n−1‖Bs

p,r = 0 ,

which proves part (i) of Theorem 3.1.

To prove part (ii), first we estimate ‖(u0
ω,n, ρ

0
ω,n)‖Bγp,r×Bγ−1

p,r
and ‖(uω,n, ρω,n)‖Bγp,r×Bγ−1

p,r
for any γ > 0 and

r < ∞. Using the triangle inequality, we have

‖(u0
ω,n, ρ

0
ω,n)‖Bγp,r×Bγ−1

p,r
≤ 2‖n−1‖Bγp,r + n−s‖ sin nx‖Bγp,r + n1−s‖ sin nx‖Bγ−1

p,r
. (3.1)

By Definition 2.2,

‖ sin nx‖Bγp,r =

∑
q≥−1

2γqr‖∆q sin nx‖rLp


1
r

. (3.2)

From Definition 2.1, as shown in the Appendix, we have ‖∆q sin(nx)‖Lp = ϕq(n), where 0 < ϕq(n) ≤ 1
for all q such that 1

ln(2) ln
(

3
8n

)
≤ q ≤ 1

ln(2) ln
(

4
3n

)
and ϕq (n) = 0 otherwise. Hence, (3.2) implies that for

any γ > 0,

‖ sin(nx)‖Bγp,r ≤


1

ln(2) ln( 4
3 n)∑

q= 1
ln(2) ln( 3

8 n)
(2q)γr


1
r

.

As 2q ≤ 4
3n for every term in the summation, from the above, we obtain

‖ sin(nx)‖Bγp,r ≤


1

ln(2) ln( 4
3 n)∑

q= 1
ln(2) ln( 3

8 n)

(
4
3

n
)γr


1
r

=

(
1

ln(2)

[
ln

(
4
3

n
)
− ln

(
3
8

n
)]) 1

r
(
4
3

n
)γ
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=

(
1

ln(2)
ln

(
32
9

)) 1
r
(
4
3

)γ
nγ = Cγnγ . (3.3)

Here and in what follows, Cγ is a generic constant that depends only on γ for fixed p and r. Similarly,
it follows that for any γ > 0,

‖ cos(nx)‖Bγp,r ≤ Cγnγ. (3.4)

By Definition 2.1,

∆qn−1 = ϕq(0) n−1 =

n−1 if q = −1
0 otherwise

.

So, ‖n−1‖Bγp,r =

( ∑
q≥−1

2γqr‖∆qn−1‖rLp

) 1
r

= 2−γn−1 . Using this and (3.3), it follows from (3.1) that

‖(u0
ω,n, ρ

0
ω,n)‖Bγp,r×Bγ−1

p,r
≤ 21−γn−1 + Cγnγn−s + Cγnγ−1n1−s

≤ Cγ max{n−1, nγ−s} . (3.5)

Since (uω,n, ρω,n) is a phase shift of (u0
ω,n, ρ

0
ω,n), we have

‖(uω,n, ρω,n)‖Bγp,r×Bγ−1
p,r
≤ Cγ max{n−1, nγ−s} . (3.6)

If r = ∞, (3.5) and (3.6) follow immediately from Definition 2.2.

We complete the proof of Theorem 3.1 by establishing (ii) for {(uω,n, ρω,n)}, taking advantage of the
following lemma, whose proof follows the proof of Theorem 3.1. Lemma 3.2 establishes that for each
n and ω, (uω,n, ρω,n) approximates (uω,n, ρω,n) in Bs

p,r(T) × Bs−1
p,r (T) uniformly on [0,T ] for some T > 0.

Lemma 3.2. Let Eω,n = (Eω,n1 ,Eω,n2 ) where Eω,n1 = uω,n − uω,n and Eω,n2 = ρω,n − ρ
ω,n, with ω = ±1. Then

for all t ∈ (0,T ), where T is given by Theorem 2.5, ‖Eω,n(t)‖Bs
p,r×Bs−1

p,r
= ‖Eω,n1 (t)‖Bs

p,r + ‖Eω,n2 (t)‖Bs−1
p,r
→ 0

as n→ ∞.

We show that (u−1,n, ρ−1,n) and (u1,n, ρ1,n) stay bounded away from each other for any t > 0. Since

‖u1,n − u−1,n‖Bs
p,r ≥ ‖u

1,n − u−1,n‖Bs
p,r − ‖u

1,n − u1,n‖Bs
p,r − ‖u

−1,n − u−1,n‖Bs
p,r (3.7)

and
‖ρ1,n − ρ−1,n‖Bs−1

p,r
≥ ‖ρ1,n − ρ−1,n‖Bs−1

p,r
− ‖ρ1,n − ρ1,n‖Bs−1

p,r
− ‖ρ−1,n − ρ−1,n‖Bs−1

p,r
, (3.8)

adding (3.7) and (3.8) we obtain

‖u1,n−u−1,n‖Bs
p,r +‖ρ1,n−ρ−1,n‖Bs−1

p,r
≥ ‖u1,n−u−1,n‖Bs

p,r +‖ρ
1,n−ρ−1,n‖Bs−1

p,r
−‖E1,n(t)‖Bs

p,r×Bs−1
p,r
−‖E−1,n(t)‖Bs

p,r×Bs−1
p,r

≥ n−s
(
‖ sin(nx + t) − sin(nx − t)‖Bs

p,r + ‖ sin(nx + t) − sin(nx − t)‖Bs−1
p,r

)
− 2‖n−1‖Bs

p,r − ‖E
1,n(t)‖Bs

p,r×Bs−1
p,r
− ‖E−1,n(t)‖Bs

p,r×Bs−1
p,r

= 2n−s
(
‖ cos(nx)‖Bs

p,r | sin(t)| + ‖ cos(nx)‖Bs−1
p,r
| sin(t)|

)
− 21−γn−1 − ‖E1,n(t)‖Bs

p,r×Bs−1
p,r
− ‖E−1,n(t)‖Bs

p,r×Bs−1
p,r
.

(3.9)
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By Definition 2.2, if r = ∞, we immediately have

‖ cos(nx)‖Bs
p,r ≥ Csns , (3.10)

where Cs is a constant that depends only on s for a given p. For 1 ≤ r < ∞, there is a similar estimate,
whose proof is given in the Appendix. Also, by Lemma 3.2, we have ‖Eω,n(t)‖Bs

p,r×Bs−1
p,r
→ 0 for ω = ±1,

as n→ ∞. Using this and (3.10), it follows from (3.9) that

lim inf
n→∞

(
‖u1,n − u−1,n‖Bs

p,r + ‖ρ1,n − ρ−1,n‖Bs−1
p,r

)
≥ 2Cs

(
lim inf

n→∞
| sin(t)| + lim inf

n→∞
n−1| sin(t)|

)
≈ | sin(t)| > 0 .

This proves part (ii) of Theorem 3.1 and completes the proof of non-uniform dependence on initial
data for the two-component FW system (1.2) in Bs

p,r(T) × Bs−1
p,r (T) for s > max{2 + 1

p ,
5
2 }.

�

Now we prove Lemma 3.2.

Proof. (Lemma 3.2) We show that ‖Eω,n(t)‖Bγp,r×Bγ−1
p,r
→ 0 as n→ ∞ for any γ with max{s − 3

2 , 1 + 1
p } <

γ < s − 1, and then interpolate between such a γ and a value δ > s. Recall that Eω,n1 = uω,n − uω,n and
E
ω,n
2 = ρω,n − ρ

ω,n. It can be seen that Eω,n1 and Eω,n2 vanish at t = 0 and that they satisfy the equations∂tE
ω,n
1 + uω,n∂xE

ω,n
1 = −Eω,n1 ∂xuω,n + Λ−1∂x(Eω,n2 − E

ω,n
1 ) − R1

∂tE
ω,n
2 + uω,n∂xE

ω,n
2 = −Eω,n2 ∂xuω,n − ρω,n∂xE

ω,n
1 − E

ω,n
1 ∂xρ

ω,n − R2
. (3.11)

Here, R1 and R2 are the approximate solutions for the FW system, that is,R1 = ∂tuω,n + uω,n∂xuω,n − Λ−1∂x(ρω,n − uω,n)
R2 = ∂tρ

ω,n + ∂x(ρω,nuω,n)
.

• Estimate for ‖R1‖Bγp,r : Using the definitions of uω,n and ρω,n, we have

R1 = ∂tuω,n + uω,n∂xuω,n − Λ−1∂x(ρω,n − uω,n) =
1

2n2s−1 sin (2(nx + ωt)) .

Then by (3.3),
‖R1‖Bγp,r ≤ Cγnγ−2s+1 .

• Estimate for ‖R2‖Bγ−1
p,r

: Using the definitions of uω,n and ρω,n,

R2 = ∂tρ
ω,n + ∂x(ρω,nuω,n) =

1
ns cos(nx + ωt) +

1
n2s−1 sin (2(nx + ωt)) .

So from (3.3) and (3.4), it follows that

‖R2‖Bγ−1
p,r
≤ Cγ

(
n−snγ−1 + n1−2snγ−1

)
≤ Cγnγ−s−1 .

AIMS Mathematics Volume 9, Issue 9, 25284–25296.
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Therefore,
‖R1‖Bγp,r + ‖R2‖Bγ−1

p,r
. nγ−s−1 . (3.12)

Since Eω,n1 (t) and Eω,n2 (t) satisfy the linear transport equations (3.11), to estimate the error
‖Eω,n(t)‖Bγp,r×Bγ−1

p,r
, we apply Proposition 2.4 to obtain

‖E
ω,n
1 (t)‖Bγp,r ≤ K1eK1V1(t)

∫ t

0
e−K1V1(τ)‖F1(τ)‖Bγp,r dτ (3.13)

and

‖E
ω,n
2 (t)‖Bγ−1

p,r
≤ K2eK2V2(t)

∫ t

0
e−K2V2(τ)‖F2(τ)‖Bγ−1

p,r
dτ (3.14)

where K1, K2 are positive constants depending on γ and

F1(t) = −Eω,n1 ∂xuω,n + Λ−1∂x(Eω,n2 − E
ω,n
1 ) − R1 , (3.15)

F2(t) = −Eω,n2 ∂xuω,n − ρω,n∂xE
ω,n
1 − E

ω,n
1 ∂xρ

ω,n − R2 . (3.16)

V1(t) =

∫ t

0
‖∂xuω,n(τ)‖Bγ−1

p,r
dτ ,

V2(t) =


∫ t

0
‖∂xuω,n(τ)‖B1/p

p,r ∩L∞ dτ if γ < 2 + 1
p∫ t

0
‖∂xuω,n(τ)‖Bγ−2

p,r
dτ otherwise

.

Since max{s − 3
2 , 1 + 1

p } < γ < s − 1, we have

V1(t) . nγ−st ≤ n−1t and V2(t) ≤ C
∫ t

0
‖uω,n(τ)‖Bγp,r dτ (3.17)

for some constant C that depends on γ, p, and r. By Theorem 2.5 and Eq (3.5), it follows that

V2(t) ≤ 2C
∫ t

0
‖
(
u0
ω,n, ρ

0
ω,n

)
‖Bγp,r×Bγ−1

p,r
dτ . n−1t . (3.18)

Let K = max{K1,K2}. Using (3.17) and (3.18), we combine (3.13) and (3.14) to obtain

‖E
ω,n
1 (t)‖Bγp,r + ‖Eω,n2 (t)‖Bγ−1

p,r
.

∫ t

0
eK(t−τ)/n

(
‖F1(τ)‖Bγp,r + ‖F2(τ)‖Bγ−1

p,r

)
dτ . (3.19)

• Estimate for ‖F1(τ)‖Bγp,r : From (3.15), as Bγ
p,r is a Banach algebra, we have

‖F1‖Bγp,r ≤ ‖E
ω,n
1 ‖B

γ
p,r
‖∂xuω,n‖Bγp,r + ‖Λ−1∂x(Eω,n2 − E

ω,n
1 )‖Bγp,r + ‖R1‖Bγp,r

≤ ‖E
ω,n
1 ‖B

γ
p,r
‖uω,n‖Bγ+1

p,r
+ ‖Λ−1∂x(Eω,n2 − E

ω,n
1 )‖Bγp,r + ‖R1‖Bγp,r . (3.20)

From (2.2),

‖Λ−1∂x(Eω,n2 − E
ω,n
1 )‖Bγp,r ≤ κ‖E

ω,n
2 − E

ω,n
1 ‖Bγ−1

p,r
≤ M

(
‖E

ω,n
1 ‖B

γ
p,r

+ ‖Eω,n2 ‖Bγ−1
p,r

)
(3.21)
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where M is a constant depending on γ, p, and r. By Theorem 2.5, we have

‖uω,n‖Bγ+1
p,r
≤ 2‖

(
u0
ω,n, ρ

0
ω,n

)
‖Bγ+1

p,r ×Bγp,r
,

so by (3.5), ‖uω,n‖Bγ+1
p,r
≤ 2Cγ max{n−1, nγ+1−s}. As γ > max{s − 3

2 , 1 + 1
p },

‖uω,n‖Bγ+1
p,r
. nγ+1−s . (3.22)

Using (3.21) and (3.22), from (3.20), we obtain

‖F1(τ)‖Bγp,r .
(
M + nγ+1−s

)
‖E

ω,n
1 (τ)‖Bγp,r + M‖Eω,n2 (τ)‖Bγ−1

p,r
+ ‖R1(τ)‖Bγp,r . (3.23)

• Estimate for ‖F2(τ)‖Bγ−1
p,r

: We may use the algebra property, item (2) of Lemma 2.3, for Bγ−1
p,r since

γ − 1 > max{s − 5
2 ,

1
p } > 0 and the functions we are dealing with are bounded. Then, from (3.16),

‖F2‖Bγ−1
p,r
≤ ‖E

ω,n
2 ‖Bγ−1

p,r
‖∂xuω,n‖Bγ−1

p,r
+ ‖ρω,n‖Bγ−1

p,r
‖∂xE

ω,n
1 ‖Bγ−1

p,r

+ ‖∂xρ
ω,n‖Bγ−1

p,r
‖E

ω,n
1 ‖Bγ−1

p,r
+ ‖R2‖Bγ−1

p,r

. n−1‖E
ω,n
1 ‖B

γ
p,r

+ ‖Eω,n2 ‖Bγ−1
p,r
‖uω,n‖Bγp,r + ‖R2‖Bγ−1

p,r
. (3.24)

By Corollary 2.6, ‖uω,n‖Bγp,r ≤ 2‖
(
u0
ω,n, ρ

0
ω,n

)
‖Bγp,r×Bγ−1

p,r
, which implies

‖uω,n‖Bγp,r ≤ 2Cγ max{n−1, nγ−s}

by (3.5). As γ < s − 1, ‖uω,n‖Bγp,r . n−1. Using this in (3.24) yields

‖F2(τ)‖Bγ−1
p,r
. n−1‖E

ω,n
1 (τ)‖Bγp,r + n−1‖E

ω,n
2 (τ)‖Bγ−1

p,r
+ ‖R2(τ)‖Bγ−1

p,r
. (3.25)

Adding (3.23) and (3.25) gives

‖F1(τ)‖Bγp,r + ‖F2(τ)‖Bγ−1
p,r
. (M + nγ+1−s)

(
‖E

ω,n
1 (τ)‖Bγp,r + ‖Eω,n2 (τ)‖Bγ−1

p,r

)
+ ‖R1(τ)‖Bγp,r + ‖R2(τ)‖Bγ−1

p,r
. (3.26)

Substituting (3.26) into (3.19), we obtain

‖Eω,n(t)‖Bγp,r×Bγ−1
p,r
. f (t) +

∫ t

0
g(τ)‖Eω,n(τ)‖Bγp,r×Bγ−1

p,r
dτ (3.27)

where

f (t) ≈
∫ t

0
eK(t−τ)/n

(
‖R1(τ)‖Bγp,r + ‖R2(τ)‖Bγ−1

p,r

)
dτ (3.28)

and
g(τ) ≈ (M + nγ+1−s)eK(t−τ)/n ≤ (M + 1)eK(t−τ)/n . (3.29)

Using Grönwall’s inequality, from (3.27) we obtain

‖Eω,n(t)‖Bγp,r×Bγ−1
p,r
. f (t) +

∫ t

0
g(τ) f (τ)e

∫ t
τ

g(z) dz dτ . (3.30)
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Using (3.12) along with (3.28) and (3.29), from (3.30), we obtain

‖Eω,n(t)‖Bγp,r×Bγ−1
p,r
. nγ−s−1 , (3.31)

which means that ‖Eω,n(t)‖Bγp,r×Bγ−1
p,r
→ 0 as n→ ∞ for any max{s − 3

2 , 1 + 1
p } < γ < s − 1.

On the other hand, if δ ∈ (s, s + 1), then noting that the solution with the given data is in Bδ
p,r × Bδ−1

p,r for
any δ we have, for 0 < t < T (from Theorem 2.5)

‖Eω,n(t)‖Bδp,r×Bδ−1
p,r
≤ ‖(uω,n, ρω,n)‖Bδp,r×Bδ−1

p,r
+ ‖(uω,n, ρω,n)‖Bδp,r×Bδ−1

p,r

≤ 2‖(u0
ω,n, ρ

0
ω,n)‖Bδp,r×Bδ−1

p,r
+ ‖(uω,n, ρω,n)‖Bδp,r×Bδ−1

p,r
, (3.32)

where we have used the solution size estimate in Theorem 2.5. Now, for δ < s + 1, Eqs (3.5) and (3.6)
imply that ‖(u0

ω,n, ρ
0
ω,n)‖Bδp,r×Bδ−1

p,r
≤ Cδnδ−s and ‖(uω,n, ρω,n)‖Bδp,r×Bδ−1

p,r
≤ Cδnδ−s, where Cδ denotes a constant

that depends only on δ, for a given p and r. So (3.32) yields

‖Eω,n(t)‖Bδp,r×Bδ−1
p,r
. nδ−s . (3.33)

We use the interpolation property, item (3) from Lemma 2.3, with θ = δ−s
δ−γ

, to obtain

‖Eω,n(t)‖Bs
p,r×Bs−1

p,r
≤ ‖Eω,n(t)‖θ

Bγp,r×Bγ−1
p,r
‖Eω,n(t)‖1−θBδp,r×Bδ−1

p,r
. (3.34)

From (3.34), using (3.31) and (3.33), we obtain

‖Eω,n(t)‖Bs
p,r×Bs−1

p,r
.

(
nγ−s−1

) δ−s
δ−γ

(
nδ−s

) s−γ
δ−γ

= n−θ . (3.35)

As θ ∈ (0, 1), (3.35) implies that ‖Eω,n(t)‖Bs
p,r×Bs−1

p,r
→ 0 as n → ∞ for any s > max{2 + 1

p ,
5
2 }. This

completes the proof of Lemma 3.2.

�

When p = r = 2, Bs
2,2 and H s are equivalent by [2, Proposition 1.2], and so we obtain the following

corollary:

Corollary 3.3. The data-to-solution map for the two-component FW system (1.2) is not uniformly
continuous from any bounded subset of H s(T) × H s−1(T) into C([0,T ]; H s(T)) × C([0,T ]; H s−1(T)) for
s > 5

2 .

4. Conclusions

In this paper, we considered the two-component Fornberg-Whitham (FW) system (1.2) and used
a sequential approach to prove that its data-to-solution map is not uniformly continuous for periodic
initial data belonging to Besov spaces Bs

p,r(T) × Bs−1
p,r (T) where s > max{2 + 1

p ,
5
2 }. As a corollary, this

establishes non-uniform dependence on periodic initial data for the FW system (1.2) in Sobolev spaces
H s(T) × H s−1(T) for s > 5

2 .
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Appendix

In this appendix, we provide a lower bound on ‖ cos(nx)‖Bs
p,r for any s > 0 and 1 ≤ r < ∞. By

Definition 2.2,

‖ cos(nx)‖Bs
p,r =

∑
q≥−1

2sqr‖∆q cos nx‖rLp


1
r

. (4.1)

By Definition 2.1, ∆q cos(nx) = ϕq(n)einx . Therefore, ‖∆q cos(nx)‖Lp = ϕq(n), where 0 < ϕq(n) ≤ 1 for
all q such that 1

ln(2) ln
(

3
8n

)
≤ q ≤ 1

ln(2) ln
(

4
3n

)
and ϕq (n) = 0 otherwise, (4.1) implies that

‖ cos(nx)‖Bs
p,r =


1

ln(2) ln( 4
3 n)∑

q= 1
ln(2) ln( 3

8 n)
(2q)sr ϕr

q(n)


1
r

.

Since 2q ≥ 3
8n for all terms in the summation, from the above we have

‖ cos(nx)‖Bs
p,r ≥

(
3
8

)s

ns


1

ln(2) ln( 4
3 n)∑

q= 1
ln(2) ln( 3

8 n)
ϕr

q(n)


1
r

. (4.2)

Recall that ϕ0(ξ) = χ
(
ξ

2

)
− χ(ξ) and ϕq(ξ) = ϕ0(2−qξ) for any q > −1, where supp χ = [−4

3 ,
4
3 ] and

χ = 1 on [−3
4 ,

3
4 ]. This means that supp ϕq = [3

4 · 2
q, 8

3 · 2
q] for any q ≥ 1 and furthermore, ϕq = 1

on the interval [4
3 · 2

q, 3
2 · 2

q]. In other words, ϕq(n) = 1 for 1
ln(2) ln

(
2
3n

)
≤ q ≤ 1

ln(2) ln
(

3
4n

)
. Therefore,

from (4.2) we have

‖ cos(nx)‖Bs
p,r ≥

(
3
8

)s

ns


1

ln(2) ln( 3
4 n)∑

q= 1
ln(2) ln( 2

3 n)
1


1
r

=

(
3
8

)s

ns

(
1

ln(2)

[
ln

(
3
4

n
)
− ln

(
2
3

n
)]) 1

r

=

(
1

ln(2)
ln

(
9
8

)) 1
r
(
3
8

)s

ns = Csns,

where Cs is a constant that depends only on s, for a given p and r. The same estimate holds for
‖ sin(nx)‖Bs

p,r as well.
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