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1. Introduction

This paper aims to study the stability of the following diffusion equation with the Belousov-
Zhabotinskii (BZ) reaction:
{u,(x, 1) = Au(x,t) + u(x,t)(1 — u(x, t) — rv(x, 1)), (L.1)

vi(x, 1) = Av(x, t) — bu(x, H)v(x, t),

where r, b are positive parameters and u,v corresponds to the concentration of bromous acid and
bromide ion, respectively. The BZ chemical reaction is a famous oscillation reaction discovered by
Belousov. About ten years later, Zaikin and Zhabotinskii observed traveling wave phenomena in
such a chemical activity [32], and then Field and his coworkers [4, 5] established a model to describe
chemical wave in the BZ reaction. Later, based on experimental and numerical results, Murray [21,22]
nondimensionalized the model to be system (1.1).

Since the traveling wave solution of (1.1) is found to be an appropriate mathematical tool to describe
the chemical wave observed in the BZ reaction, it has attracted a lot of attention, for example, see the
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recent works [3,6,7, 15, 26,27,33] and references therein for the study of traveling wave solutions
of (1.1).

It is natural to ask whether the aforementioned traveling wave solutions of (1.1) are stable or not,
since the stability of traveling waves is also very important (but more difficult) to reaction diffusion
equations. There are several methods to prove the stability of traveling wave solutions, among which
three methods are frequently-used; see [8,24,31] for the spectral analysis method, see [17-20] for the
weighted energy method, and see [1,25,29] for the squeezing technique combined with the comparison
principle.

For scalar equations u, = Au + f(u),x € R, t > 0, the stability of traveling waves has been well
studied; see [8, 11, 13,23,30,31] and the references therein. For the systems of reaction diffusion
equations, Kapitula [10] considered a semi-linear parabolic system. Using semigroup theory, Kapitula
proved that the wave fronts are stable in polynomially weighted L™ spaces, and the convergence speed
is given by the detail semigroup estimate. By detail spectral analysis, Sattinger [23] proved that the
traveling wave fronts were stable to perturbations in some exponentially weighted L™ spaces. Kan-on
and Fang [9] obtained the asymptotic stability of monotone traveling waves for a competition-diffusion
system by using spectral analysis. Kessler and Levine [12] investigated linear stability as well as
nonlinear stability of the traveling wave solutions in a piecewise linear Oregonator model arising in the
BZ reaction, but they did not estimate the convergence speed of the traveling waves. Lv and Wang [16]
studied the asymptotic stability of a cooperative Lotka-Volterra system by the weighted energy method
and obtained the time decay rates, which is also valid for the BZ system. However, their results depend
mainly on the condition that the initial perturbations are in a weighted H' space. Recently, Du et al. [2]
and Wang et al. [28] also considered the stability of the BZ system with delay, but their stability results
are based on the weighted energy method or the weighted spaces.

With all the above in mind, the purpose of this article is to study the asymptotic stability of traveling
fronts of system (1.1) by the squeezing technique combined with the comparison principle. Note that
in system (1.1), r is a key parameter that decides the characteristic of the BZ system. Precisely, the BZ
system is mono-stable if r € (0, 1], while it is bistable if r > 1.

In the current paper, we always assume that r > 1 and b > 0, i.e., we study the bistable case.
Let ui(x,t) = u(x,t),ux(x,t) = 1 —v(x,1), u = (uy,up) and F(u) = (fi(w), L(0)) = (u; (1 —r —uy +
ruy), bui(1 — uy)), then system (1.1) can be rewritten as

w(x, 1) = Au(x, ) + F(u(x, 1)), x€R, t>0. (1.2)

We should emphasize that the ‘bistable’ case here is not standard. Actually, it is easy to see that (0, u,)
is a steady state of (1.2) for any u, € R, which means that (1.2) is degenerate at the equilibrium (0,0).
It is known from [7,26] that system (1.2) admits a unique (up to translation) positive traveling front

(U(©), ), U&) = (U1(&), Ux(£)), satistying U, (§) < Uz(£) and

U{ () — cUi(©) + U&= r = Uy (§) + rUx(9) = 0,
Uy (&) — cU3(&) + bU ()1 - Ua($)) = 0, (1.3)
0 < Ué) < 1,U(=00) = 0, Uy(+0c0) = 1,i = 1,2.

The main result of this paper is stated as follows.
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Theorem 1.1. Assume b > 0 and r > 1. If the initial value uy(x) € [0, 1] satisfies

lim sup |uo(x) — Ux(x)| =0 and limsup |ug(x) — Ui(x)| e =0, i=1,2, (1.4)

X—+00 X—=00
where A, = c, then the solution u(x, t;uy) of (1.2) with u(x, 0;uy) = uy(x) satisfies

lui(x, t;w9) — Ui(x + ct + &)l <
Uy (x + ct + &) -

Ce ™ xeR, t>0, i=1,2, (1.5)

where 0 < ap; < a; < 1,and C,k > 0,&, € R are some constants.

Remark: This result implies that the traveling front U(x + cf) is asymptotically stable under initial
perturbations that decay as |x| — oo, but can be possibly large in any finite intervals. The convergence
rate is exponential.

To use the comparison argument, we modify system (1.2). Let F(u) = F(u) + G(u), where G(u) =

(g1(u), g2(w)) with
gi1(w) = rup max{0, —u;}, go(w) = b(u; — 1) max{0, u, — 1}.
It is easy to check that
fim) = fi(w), 6ujf,~(u) =0, fiw) if0<u <1,i=1,2with;#1i,

and
8y fiw) >0 if (u,ur) €R* and j #i.

Thus, the comparison principle works for the following Cauchy problem:

{v,(x, 1) =V.(x 1)+ FFx, 1), xeR,t>0, 06

v(x,0) = vo(x), x eR.

That is, if we denote the solution of (1.6) by ¥(x, 7; V), then V(x, ; v}) < ¥(x,; v2) if vj(x) < vi(x). It
is also easy to see that [0, 1] is the invariant interval for the solution of (1.6), namely, if vo(x) € [0, 1],
then V(x,t;vy) € [0,1]. Thus, for vo(x) € [0,1], the solution V(x,t; vy) of (1.6) is also the solution
of (1.2) with the same initial data, i.e., V(x,z,t;vy) = v(x,z,t;vy), where v(x,z,1;vy) denotes the
solution of (1.2) with initial data vj.

The outline of this paper is as follows. In Section 2, we give some notations and known results. In
Section 3, we construct some super and sub-solutions for later use. The final section is devoted to the
proof of the main theorem.

2. Preliminary

First we introduce some notations.

For vectors x,y € R?, we define their order relationships. We use X < y to mean x; < y;,i = 1,2,
and x < y to mean x; < y;,i = 1,2. The interval is [X;,X»] := {x € R? : X; < X < X,}. Particularly, we

denote 0 = (0,0) and 1 = (1, 1).
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Now, we list the asymptotic behaviors of the wavefront profile U(£) at the space infinity; see [26,
Lemmas 13 and 14].
Ui +£1) = €€ + 0(e®29), Up(¢ +£)) = Ae™ + 0(e1=7%), ¢ — —eo,
Uj(€) = 11 + 0(eP%), Uy(é) = Alye™ + 0(eM7%), ¢ — oo,

2

where A, = ¢ and 4, is the positive root of the equation x” —cx+ 1 —r =0, and

,— 9] (L1-0)é . b #1,
b1 b-1 )+ (¢477). b #

ré+dyes  r(¢ +d)gett G- 1, —
(1_ c—20, 1 -2 )+0(€ ). b=t

(Ua€ + &0), Us(& + &) = (1= ¢4, =£167€) + 0 (977%), & — +ov,

—ASE(1,G) + (1 -
(Ui +&0), U (€ + &) =

where /] = %(c - Ve2+4)and ) = %(c — Vc2 + 4b). In the above, A > 0, o > 0, &), &1, d, and d; are
appropriate constants. Since 4; > A, it is easy to see that

U

im =A, =
e Uy(E)
We can find two positive constants L;, L, such that
L ™22 < (&), U (€) < Lye™™ ek ¢ <. 2.1)
Lie" < Uy(é), Ujyé) < Le™, &<0. (2.2)

2]

In the following of this section, we give some notations. Denote f;;(u) = gli"), and let
J

DF() = (f; (W) = ( !

—r=2u; +ru, ru
b(l — I/tz) —bl/ll )

We introduce a vector q := (g1, ¢») € (0,1) and denote its transpose by q”. Notice the fact r > 1, then
we can find an appropriate q with ¢, > rqg, such that

DF(1)-q" = (-q\ + rq2, —bgq2) < 0.

Since DF(u) is continuous in u, we can fix a small number & € (0, 1) such that
1
DFu) - q’ < 5DF(1) q" (2.3)

foranyu € [(1 —&)1,(1 + &)1].

Throughout this paper, we always denote
U3 (x)
Ux(x)

Uy (x)

u
xelg U2 (X)

Ny :=sup , h =

xeR

My := sup sup |fi;(w),
1<i,j<2 ue[-1,2]

and
MLx)i=x>—cx+1-r, IL(x):=x>-cx

Obviously, I1;(a;4,) < 0 for i = 1, 2; see Theorem 1.1 for ;.
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3. Super-sub-solutions and some technical lemmas

In this section, we establish the super and sub-solutions as well as some technical lemmas, which
will be used in the proof of the main result.
Define the operator £ by

LIvl:==v,— v, —F(v).

ming1 2 {~ 1T (e; —r
Lemma 3.1. Let r > 1 and b > 0. Denote 3, := min el i) g —rgy b} then for each fixed

Ni+1 > 16q1 8 [

B € (0,B80], there exist a positive number p = p(8) and a 6 = 6(p) such that the functions defined by

vix, ) = U+ ct + €+ pd(1 — e ) £ 5e P UY (x + ct + & £ pd(1 — e™P))

are a super-solution and a sub-solution to (1.6) on t € [0, ), respectively, where

UYE) = (U5 (). U3 (€)).

Proof. First, we prove that v* is a super-solution, i.e.,

LIv] = 07 (x,0) = 0 v (x, ) — (v (x,0) =0, i=1,2.

Letnt = x + ct + & + pd(1 — e™"). A direct computation gives that

For any t > 0, we have

Lv'];

\%

nf=c+psBe™, ni=1, ni =0,

U;iHm; = 6Be P qUs (%) + se P aiqiUs ™ () Uy m;
lfé(n+))2_+(1_l/§(n+)]
Us(n") "Us(n%)

—Ui”(77+) - 5€_ﬁICIiU(zli(77+) [ai(ai - 1)(

—£UG) + £UMD) - fi(v (x, 1)

poBe U (") + 6e P quUy (o7")| = B+ i (c + pope ™) %
U\ U A
ﬂMm—D&MTJ—ﬂ%MmJ+ﬁWnD—ﬂV@ﬁ)

poBe P U (n") + 6P q;Uy (")

- B+ ajc U3 2 (Ué(’f))z

AR

+ fi(U@") = (v (x, 1),

(Uﬁ(n*))z U
\Us() Uy ()

since poBe P U!(n*) > 0. Then, we consider three cases.

Case 1. n* < —X for X > 0 large enough.

By the fact lim,_,_., U(x) = 0, there exists a constant X; > 0 such that U,(5") < % forany n* < -Xi,
and following this we have

AIMS Mathematics

1 1
0<v;(x,t)$§+§6< I, Vg <-X.
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This implies that fi(v*(x, 1)) = fi(v*(x,1) forn* < -X; andi = 1,2.

Moreover, since 1, = lim UZ( Y and /12 = lim z(x), we have
x——c0 U2(%) Yo—oo U2(®)
U0\ U (x)
- + — 0,
Us(x) Us(x)

( Um) 0 L M) <o,

"L M

and

Uz(x) ) Uz(_x) - Hz(a’z/b) <0

as x — —oo. Thus, there exists X, > 0 large enough such that
U;(x))2 Uy (x) 1
- + < —gaid),

l@m> Us(x) ’

( U’(X)) U5(x)
—

8

(UMT Uj(x)

1
- +1-r<=I1I A2),
aj 0,00 cay 0,00 r<s; (a1 4,)

and

(%my U5 (x)

1
- < =II A
a 0,00 cay U, 2 2(ardy)

for any x < —Xj.
For the reaction term, we have

se P,

2
Siv' (x,0) = H(UG) = {Z fii (1) q;U5’ (")
=1
where 1;, := U(") + 1:0e P UY(577) with 7; € (0,1),i = 1,2. If i = 1,
q U(yl +) Zflj(nﬂ)QJ ](77 )
= fu@e) + (Ui + T16e P U5 (7)) %

< fuu(re) + r(L+ 0)Uy* (")

- 1-r

asn*t — —oo. If i = 2, by the fact that lim,,_, U;" **(x) = 0, we have

1 2 @ qi -
§ 1.)q:Us (n") = L)— U " (") + ) — 0
q1U§ll(77+) < f2](77 z)qj 2 (77 ) f21(77 2)(]2 2 (77 ) f21(77 2)

3.1

(3.2)

(3.3)
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as n* — —oo. It follows that there exists X3 > 0 large enough such that

_1 : Xjoo+ 1
a1 U1211 (+) ;ﬁj(nﬂ )qJUz n)-0-n=< _gnl(al/b)’ 3.4)
and
e Zzlf'( U0 < ~2T(asdy) (3.5)
qugz(nJr) < 2j\Ne,)q;U, (1) = 3 200212 .

for any n* < —X;.
Take X = max{X,, X», X3}. Then, for any n* < =X, (3.1)—(3.5) yield that
{%WT+WW)
Us (1) Ux(n*)

LIv'];

A%

5€_ﬁ’qu§”'(n+){ —B-a

(%WW U
—|a; + cq;
U>(11*) U>(n*)

. | 1 1
5€_ﬁt‘]iU2'(77+) {—ﬁ + gHi(Oli/lz) - Eni(%ﬂz) + gHi(a’i/lZ)}
> 0,

} + fiU@") = fiv'(x,0)

\%

provided that £ < min;-; » {~1Ti(a;2)}.

Case 2. n* > X’ for X’ > 0 large enough.

In this case, it is not difficult to see that
Uy (n")
Ua(n*)

LIv']i = 6ePqUs () (—,8 — ) + f(UMY) — (v (x,1).

Recall the definition of f;. We know

2
Fiv'(x,2)) = fi(UG) < [Z i () ;U5 () [8e7P + b6*e P Uy (1) q1 o,

=

where 7n;, 1= U(n") + T:0e P U () with 7; € (0,1),i = 1,2. Since lim,_,. U>(x) = 1, there exists
X} > 0 large enough such that

0< U™ 1< qiqquz, Vit > X, (3.6)

Moreover, there exists X > 0 large enough such that
1-9l<n, <+l

for any n* > X, provided that 6 < &. If i = 1, it follows from (2.3) that for any " > X, we have
1 2
— (1:)q,;U5 (1)
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1
= —Ln0r)ar + flr)az] + flz(nn% (1-vgap)

< —q1 +1rq> + q—1rq _ qi —”6]2.

2q, 4q, 4q,
If i = 2, it follows (2.3) and (3.6) that for any " > max{X], X}}, we have

2
1 "
— E Lim:)q,;U," (")
q2U22(77+) j:1 J 171]~2

1
= —[fue)an + fi2l1e)d2] + fu(re) L (UZ 2 Grt) - 1)
92 q>2

b
<-=.
2

Recalling the asymptotic behaviors of U,, we can choose a positive X7 large enough such that for any

n*t > X, it holds
2 4q, "2

U,(11*)
Take X’ = max{X], X, X}}. Then, for any n° > X’, we have
e - ; 1 . q1 —rq b
LIv) > sePqU; (n*){ —B-3 mln{ 0 2
+min{q1 _ rqz’ é} - bé}
4q1 2
> 0,

provided that

1 - 1 -
ﬁﬁzmin{ql4 réhg}’ 6<—min{q1 rq> é}
qi

Case3. - X <p* <X.
Let u, := min;_; , min_x<,<x U/(x). It is easy to see that

fi(v'(x,2) = £(U@) 6e P + b6’ U (" )q192

IA

2
(Z fii (1) ;U5 (")
=1

(M, + b)de™'.

IA

Then, we have

- al o Uy () .
LIv) > se” (PﬁUi ") — a8 - qi UzTn*) ) + f;(UMmM) — filvi(x,1))
> e (pBu, — 1 — Ny —2M, — b)
> 0,
provided that p > “Nz;#
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Combing the three cases above, we have proved that v*(x, t) is a super-solution. In the following,
we prove that v~ (x, 7) is a sub-solution.
Letn™ = x + ct + & — po(1 — ). Similarly, we have

) UsGr

LIVl = -pdBePU) + 5e‘ﬁ’qu;”'(n‘)[ﬁ — a;(c - pope™) %Z_;
Usa)Y  UZGr) N Feen

+ai(@; — 1)(U2(77‘)) BRATS + i) = fiv (x,0).

We also divide the whole interval into three parts.
Case 1. = < —Y for some Y > 0 large enough.
Recalling the definition of fi, we have fz(v‘ (x,0) = fo(v (x,1)) and

1 ~
m (A UG =~ A (1)

2
" Ai@e)a;Us () = vy o7) max {0, —v; (7))

Jj=

%Ulll( )[
Uy (o )+ v @O)lvy ()l
q U5 (77) qU3' (1)
v )l ()l

q U5 (1)

< fu@e) + (U100 + 116e P U5 (7))

< ful(pe) + r(1 +6gDUS (") +

- 1-r

as 7~ — —oo, since
vimo)ilv, (n—
i PTOOWRODL
Xomeo quz (77_)
Thus, there exists Y; > 0 large enough such that

s 1
ST (U@ = A @) = 0 =) < —eTh(a). (3.7)

Take Y = max{Y,, X}. It then follows from (3.1)—(3.3), (3.5), and (3.7) that

3 U,

LIV = —pspe?'Ui() + 5e‘ﬁ’qu‘2’i(n‘){ﬁ +p5ﬁe‘ﬁ’2(—n_)

Ux(m7)
+( U3 )) o ) a‘[ B (U;(:r))Q N U;'(:r)]}
U2(77 ) le(U_) l U>(m) U>(7)

+U0) = fi(v (x,1)
. 1 1 1
< 56_&%'[]3'(77_) (,3 + PBN; + EHi(a’i/lZ) - gHi(aﬂlz) - gHi(%/lz))
< 0,

provided that 6 < 1/p and 8 + BN, < mini_ » {~11Ti(@idy)}
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Case 2. = > Y’ for some Y’ > 0 large enough.

U . (044 .
Since lim,_, 0 Ex; 0, im, #((xx)) = 0, there exists Y] > 0 large enough such that

Uy(n) 1mm{q1 —rq b}'

Us(n)| 2

Us(m) N
2Q1 ’ 2

3.8
Ux(m) G5

By the definition of v~, there exists a positive Y| large enough such that v;(7) > 0 for all n~ > Y.
This implies that fl(v‘) = fi(v7). Take Y’ = max{Y|, X"}, and we have

~ U’ - UN -

2k = aeatn(p G |||+ 0 - s
< 5e‘ﬂtqu§i(ﬂ_){/3 o+ %min {QIz_qquz, g} - min{%z_(;qz, g}}
< 0,

provided that 8 < ; mln{ 22 b} :
Case3. Y <np <Y
For simplicity, we still define . := min;_; » min_y<,<y- U/(x). It is easy to see that

lg1 (v (x, )| = |rvy (x, £) max{0, —v; (x, £)}| < rée .

Thus, we have

. _ _ L Us(m7) Uy(m)
. Bt _ ’ Bt 2 2
L[v]; < 6e oBU (7)) + pdPBe Ui Q; Uoir)
+£U0@)) = fitv (x,1)

Se P (—pBu, + Ny + N, + 2My + 1)

< 0,

IA

provided that pBu, > Ni + N, + 2M, + r. Finally, let

> max 1 max{l Ny} + N> + 2My + max{b, r} |
,0 ﬁ u, ’ ’
and 0 < 6 < ¢y := min {qllﬁ_hrqz’ %, £, } The proof is completed. m|

We introduce an auxiliary lemma below before moving on.

Lemma 3.2. For any pair of super-solution and sub-solution w*(x,t) € [-1,2] with w*(x,0) >
W (x,0), there holds w* (x,t) > w™(x,1) fort > 0 and x € R. Furthermore, one has

w!(x, 1) — w; (x,1) = 00, t)f (W (y,0) — w; (y,0)dy, i=1,2, (3.9)

(J+1)

for any x € R with |x — z| < J, where 0(J,t) = W exp {—mot - } with mgy as a positive constant.
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Proof. The comparison principle for parabolic systems implies w*(x,?) > w™(x, ) directly. Let w :=
w* — w™. Then, w satisfies

\%

0,0+ F(wh) — F(w)
d.,w + DF M:,) - w,

o,w

\%

where 77;, = 7,0 + (1 — 7))w™ with 7; € (0, 1). In view of ﬁj(nT,.) > (0 fori # j, we have

6xx0~)i + ﬁi(nTi )0),’

a[w[ Z
2 ax)c(")i — Myw;,

where mg := SUpy¢(_q2)=12 |fi(w)]. Thus, we obtain

_ 1 (x—y)?
wi(x,t) > e mO’f ex {— }w,- ,0)dy,
R V4t P 4t 0.0y

and following this we get (3.9). O

Lemma 3.3. Assume r > 1 and b > 0. Let V(x,t) € [0, 1] be a solution of (1.6). If V(x, t) satisfies
Ux+cT +&6) —0U(x+cT +&) <V, T) <Ux+cT+éE+h) + 00U (x+cT +&+h)

for some T > 0, where ¢ € R, h > 0 are some constants, then for any t > T + 1, there exists a positive
number € such that

U(x + ct + &) = S()U (x + ct + &(1))
< V(x, 1)
< U(x + ct + @) + h(@D)) + 6@ U (x + ct + &) + h(@)),

where é(t), 5(1), and iz(t) satisfy
£—pd+ € min{l, h} < &(f) < & + 2pe* min{1, h},

5(7) = (€' min{1, h} + deP)e Pl-T+DI

and
0 < h(t) < h +2ps — pe* min{1, h}.

Here, 6 and p are defined as in Lemma 3.1.

Proof. Obviously, v(x,1) = V(x,t + T) is also a solution to (1.6) with v(x,0) = ¥(x, T). It then follows
from Lemma 3.1 and the comparison principle that

U(x+c(T+0+E=po(l —e™) = e P U (x+ (T +1) + &= po(1 — ™))
<V(x,t+T) sU(x+c(T+t)+§+h+p6(1 —e"‘”))
+0e P U (x + o(T + 1) + £+ h + po(1 — e))

forallx e R, > 0.
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Let g = % min;_{U/(n) : [n—cT — €& <2} > 0and h = min{1, h}. By the mean value theorem, we
obtain

1
f (Ui(y +cT+E+h) —U(y+cT + g)) dy > 2¢€h.
0

Then, at least one of the following is true:
1 -
(i) f @, T) = Uiy + cT + &) dy > € h,
0

1
(ii)f Uiy + cT + &+ h) —9:(y, T)) dy > € h.
0

We consider case (i) only, and the case (i1) is similar. Since @; < 1, we have

. U .
lim —/——=0, i=1,2.
e U ()
Thus, there exists a Mz > 0 such that
Ui L o x> My, i= 1.2 (3.10)
—— < —, x| >Ms, i=1,2. .
U%(x) ~ 2p }

LetJi =M;+c+2,z0=—cT —&and J, = J; + ¢+ 3. Now, we divide R into two intervals:
le{XERllx—Z()lSJ]} and QZZR\Ql.
If x € Qp, letting £ = 1 and 6 = 6(J, + |z, 1), then by (3.9) we have

Ui(x, T + 1)
> Ui(x+c(T + 1)+&-ps(1—e ) =0 PUY (x+c(T+1)+E-pd(1-e™))

1
18 f B0 T) = Uiy + T + £) dy
0
> Ui(x—z0+c—pS(1 —eP)) = 6ePUS (x — 29 + ¢ — pS(1 — e”)) + ey h.
Moreover, we have

Ui(x =20 + ¢ + 20 h — pd(1 — eP)) = Ui(x — 20 + ¢ — pd(1 — eP))
= 2p€"hU/(171) < e,

where 7, = x — 20 + ¢ — pd(1 — eP) + 6; - 2pe*h with 6; € (0,1) and

X . 1 . . O
€" < min{ —, min min .
2p =12 i<k 2pU](17)

Clearly, || < |x — zo| + ¢ + pd(1 — eP) + 2€*h < J,, and, thus,

b, T+1) > Ufx—z0+c+2peh—pd(l —eP))
—6e_ﬁU§”'(x — 20+ ¢ +2p€h — ps(1 — eP)).
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On the other hand, it is obvious that
ml = |x = zol = (¢ + ps(1 = &) + 2€"h)
> Ji—(c+pd(l —eP)+2e'h) > M.
Thus, by (3.10) we have
Ui(x—z0+ ¢ —pd(1 — eP)) = Ui(x — 20 + ¢ + 2p"h — p5(1 — 7))
= —2p€e'h - Uj(my) = -U"(q)€"h = —U5 (m)€’h.

Then, for x € QQ,, we have

T, T+1) > Ulx—2z9+c+2peh—pd(l —eP))—USi(m)eh
—5e‘ﬂU§”(x — 20+ ¢+ 2pe'h — pd(1 — e7P))
> Uix—z0+c+2ph—pd(l —eP))

—(e'h + 6€_ﬁ)U;i()€ — 20+ c+2p€'h — pd(1 — eP)).
Combining the above two cases, we know that
Vi, T+1) > Uix—2z0+c+2peh—psl —eP))
—(e'h + 6e "YUy (x — 20 + ¢ + 2p€'h — p5(1 — eP))

holds for all x € R and i = 1,2. Denote 1, = 2pe*h — pd(1 — e?). Then, the comparison principle
implies that

vilx,t) > U; (x +ct+&E+1,— p(€h + deP) (1 _ e—ﬁ[f—(ﬂl)}))

—(€'h + 6eP)e PHTH] Uy (x+ct+§+ 1, — p(e h+5e?) (1 — e‘ﬁ[HT“)]))
U (x+ct+&1) - 50U (x+ct+&0))

forallt > T + 1, where

() = E+2ph — ps(1 — eP) — p(e’'h + 6e7F) (1 — e‘ﬁ“_(T“”) ,

and
5(1) = (€ h+6eP)ePHTHI,

A direct computation gives that
E+peh—pd <EF)<E+2p€h, V=T +1.
Similarly, for any # > T + 1, we have
Bix.t) < Ui(x+er+é+htps(1-e 7))
+0eP DUy (x+ct+§+ h+p5(1—e‘ﬁ(’_T))

Ui (x+ct+&@)+h(0)+5()U; (x+ct+&@)+h()).

IA

where
h(f) = h +2p6 (1 - e‘ﬁ(t_T)) — p€e'h — pe*hePli=T+D1,
It is easy to verify that
0 <h—2peh+2p5(1 —eP) < h(t) < h—peh + 2ps.

The proof is completed. O
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4. Asymptotic stability of traveling fronts

We prove the main result in this section.

Lemma 4.1. Let ug(x) € C(R,[0,1]) satisfy (1.4). Then, for some constants 2,21, 22, the solution
V(x,t;u) of (1.6) satisfies

Ui(x +ct —z1) — gi(x, 1) < Vi(x, t;u9) < Ui(x + ¢t — z2) + qi(x, 1) 4.1)

forall x € R, t > 0, where qi(x,t) = go;e" min{e® 20+~ 1} with qo; = qog;,i = 1,2, and

I . [qi—rqg b .1 . fq—rg b| €
O<e< = ,—r, 0< < — R
€< 2mm{ 0 2} 90 mm{Zb mm{ 2

Proof. Let z = x + ct, and define
Wix, 1) = Uz £n(0) £ q; (x,1), i=1,2,

where g (x, 1) = go ;e minfe® 201 1} ¢ > 0 will be chosen later, and 1(7) is bounded and to be
chosen so that () > 0. To prove (4.1), we need only to prove that w*(x, 1) = (wi(x, 1), w5(x,1)) are a
pair of super and sub-solutions by the comparison principle. Precisely, we need to prove that

L] = 0f - v, - F(w*) > (2)0.
We give the proof for w™(x, t) first. A direct calculation gives that

-z[w+]i
= (7' (1) + U}z + n(®)) + O} (x, 1) = U (z + 0(1) = 8 (x, 1) — fi(w* (x, 1))
=0/ (OU(z + n(0) + 0:q; (x, 1) = 0uql (x, 1) + £i(U(z + (1)) — filw™ (x, 1),

and

—eq; (x, 1) + [~(@:d)” + c(@)]g; (x, 1), if 2 < 29 = 7(0),

8 + ’t_axxf ’t:
iq; (X, 1) g; (x,1) {—eq;r(x,t), if z > zo — n(0).

Take ¢ € (0, €] small enough, and consider three cases.
Case 1. Ui(z+n()) e lo,1 -96],i=1,2.
Define Cs := min;—; , ming,ves,1-5) U (x). Then, we have

Lo = 7 OU+n0) - eqi (x,1) + [~(d)* + c(e;d)]g] (x, 1)
+£(U(z + n(1)) - filw*(x,1)

7' (OCs — €qoie” — Mo(qo1 + qoa)e”
> 0,

€

\%

t —2et
= bqo,190,2¢

provided that 17/ (t)Cs > (€ + 2M, + max{b, r}) e™“.
Case2. Ui(z+n()=>1-9.
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By the monotonicity of U,(-), we know z + n(t) > Ul.‘l(l —0). It follows that there exists a constant
Zo such that z > zo — n(0). Thus, we have

Llw*, = 7OUz+n®) - €q; (x, 1) + fi(Uz +n®)) - filw* (x,1))
' (OU(z + n(t)) — €q; (x, 1)

v

2
= £ (UG +n0) + 1" (x.) g (x, 1) = b (x. g5 (x. 7).

J=1
It is obvious that
1-e<Ulz+n®)+1qi (x,0) <1 +e&.

Recalling (2.3), we have

- — b
Llw'], > —€qf(x,1) + goe” min {ql zrqz , %} — bq%qlqze_za
> 0,
q1-rq2 b q1-rq2

b

. 1 .
provided that € < 3 mln{ 03 }
Case 3. U;(z+n(t)) < 0.
Obviously, z < zo — 17(0) in this case for the same zy defined in Case 2. Then, we have

NS

}and qo < Zibmin{ o
Ll = —€q(x, 0D+ [—(@id)* + c(@:)]g) (x,1)

2
=" 5 UG+ () + 7ig* (x 1) g (x, D).
j=1

Recalling (2.1), we have

r(Ui(z +n(0) + 7147 (x.1))
gy (x, 1)

fiz Uz + () + 1iq"(x, 1))
q; (x,1)

g5 (x,1) = g;(x,1) = 0

as z — —oo. Thus, if i = 1, it follows that

2
1
o Zflj UG +n®) +71q") g;(x,) > 1 —r, as z—> —co.
qy (% 1) 4
Moreover,
.
M _ 201 ji-antaG=mO) (0 a5 7 — —oo,
q, (X, t) 90,2
Thus, if i = 2,
1 2
o DA (UG +n) + 119 g (x,1)) = 0, as z— —co,
g (X 1) 4
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Combing the facts above and taking 6 > 0 small enough, we have
1
Lo, 2 qf(x1) (—6 — i(aidy) + EHi(Oli/lz)) =0,

provided that € < min;_; , {—%H,-(a,-/l)} .
Now we need to prove that ug(x) < w*(x,0) for all x € R. In fact, it follows from (1.4) for any
qo.; > 0 that there exists a positive constant M large enough such that for x < —M, it holds

Ui(x) + qoie™™ = uoi(x), i=1,2.
Using (1.4) again, we can find a positive constant M’ large enough such that for x > M’, it holds
Ui(x) +qoi 2 1 2 upi(x), i=1,2.

For the case —-M < X < M’, we can choose 1(0) sufficiently large to guarantee w;(x,0) > ug;(x).
Therefore, w*(x,t) is a super-solution to (1.6).
In the following, we prove that w™(x, 7) is a sub-solution. We have

Liw 1 = =0/ (0)U(z = nt)) = 0:g; (x,1) + 0.aq; (x, 1) + fi(U(z — (1)) — fiw ™ (x, 1))
and

€q; (x,1) + [(@d)” = c(@)]g; (x, 1), if z < z9 +7(0),

—0,q; (x,1) + 0,xq; (x,1) = _ .
14; (1) 9 (1) {eqi (x, 1), if z > z9 + n(0).

Similar to the proof for w*(x, ), we consider three cases.
Case 1. Ui(z—n()) € [o,1 -96],i=1,2.
Then, we have

Llw ] < -7 OU]z-n0) + eg; (x,0) + fi(U(z = 7)) = filw (x,1))
< - (0)Cs + €qo e + Mo(qo1 + qop)e " +rqore
< 0.

Case2. Ui(z—n)>1-90,i=1,2.
Then, there exists a zo such that z > zy + 17(0). It follows that g; (x, ) = g e and

2
Lo < eqoie™ + qoe™ ) fij (U =n() = 7iq (. ) ¢ < 0

J=1

1 s lai-rgx b
for e < 2rmn{ 5o ,2}.

Case3. Ui(z—n()) <06,i=1,2.
We have z < zg + 7(0), qi—(x, 1) = qo,ie—etemﬂz(Z—zo—ﬂ(O)) and
Lo ] < eq;(x,0)+[(@d) - c(@d)]g; (x,1)
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2
+ 3 F1 (UG = n(0) = 17 (x, ) g7 (x, 1) = gi@w”).

J=1

Then, a similar discussion as in Lemma 3.1 for v~ yields that
- _ 1
Llw']i £ q;(x0) (6 + i(aidz) - EHi(a’i/lZ)) <0
for € < min;_;, {—%Hi(a/,-/lz)}. To complete the proof, we need only to prove that ug(x) > w (x,0). In
fact, by (1.4), there exists two positive numbers M and M’ large enough such that
w; (x,0) < 1= qo; < upi(x), Yx>M,

and
Ui(x) - qo,,-e""/lzx <upi(x), VYx< -M.

For —M < x < M’, we can choose 7(0) large enough such that w; (x,0) < upi(x). Thus, w™(x,1) is a
sub-solution. The proof is completed. O

Lemma 4.2. Assume the assumptions of Lemma 4.1 hold. Then, for any 6 € (0, 1), there exist T =
T () =0, & and h € R such that

Ui(x+ct + &) = 0U (x + ct + &) < Vi(x, t,u0) S U(x + ct + €+ h) + U (x +ct + €+ h) 4.2)

forxeRandt>T,i=1,2.

Proof. Recall the asymptotic behaviors of U. We know U, < 1 and U;'(x) ~ A% %Y a5 x — —o0. In
view of Lemma 4.1, there exists a constant M > 0 such that

Ui(x+ct—z1) — Me U (x + ct — z1) < Vi(x, 1,0p) < Ui(x + ¢t — 20) + Me U5 (x + ¢t — 22)

for x € R,t > 0. For any § € (0, 1), we can choose an appropriate T > 0 such that Me™T < 4.
Moreover, let ¢ = —z; and h = z; — z5. Then, (4.2) follows. O

Now, we prove the main result.
Proof of Theorem 1.1. Let 8, p, and § be as in Lemma 3.1. Let €* be defined in Lemma 3.3. Further,
we choose a 0* = ie* < 1, then it follows that 0 < k* := p(e" — 20%) < }‘. Fix a t* > 1 such that

£ 1
e P D@+ P < S <1-k.

First, we prove two claims.
Claim I. There exist 7" > 0 and £* such that

Ux+cT"+ &) =5Uy (x+cT" + &) Sui(x, 1) S Ui(x +cT"+E+ D+ U (x+cT"+E +1) (4.3)
for x € R.
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Indeed, by Lemma 4.2, there exist T = T(6*) > 0, &, and A such that
Ux+cT +&) =0"US'(x +cT + &) <ui(x, t,u0) S Ui(x +cT +E+h) + 85U (x+cT +E+h) (4.4)

for x e R. If h < 1, then by the monotonicity of U(-), Claim I holds. If 4 > 1, we can choose an integer
N > 1such that 0 < h — Nk* < k* < 1. Then, (4.4) and Lemma 3.3 together with the choice of £* and
" imply that

U(x+c(t +T)+ & +T)) =8¢ + U (x + c(t" + T) + &t + T))

<u(n ' +T)<U(x+ et + T)+ &+ T) + h(t" + 7)) (4.5)

+6(r + TYU® (x +ce(f +T)+ &t +T)+ h(r + T)),
where
St +T) = (€ +5eP)ePV <51 -k,
E—pS +€ <&t +T)<&+2€,

and
O<h(t*+T)<h-p(e -26")=h—-k"

Applying Lemma 3.3 again, we conclude that (4.5), with #* + T replaced by Nt* + T, holds for some
EeR0<6<6*(1—k)Vand0 < h < h— Nk* < 1. Let T*=Nrt* + T,&* =£. By the monotonicity of
U(+), (4.3) holds.

Claim II. Define p =pQ2€* + 6*),T,,=T* + mt*,6;, = (1 — k*)"0", and h,, = (1 — k*)",m > 0. Then,
there exists a sequence {Em};jzo with & = &* such that

it = &nl < Phy, m >0,
and
U(x+ Ty + &) = 6, U (x+ Ty + &)
<, Ty o) S U (x+ Ty + &y + ) + 5, U (x4 €Ty + &y + By (+0)

We prove Claim II by mathematical induction. Clearly, Claim I implies that (4.6) holds for m = O.
Suppose that (4.6) holds for m = [ > 0. Now, we are going to prove that (4.6) holds form = [+ 1. Let
T=T,¢(= 51, h=h,6=06andt=T;+1 =T, >T,+ 1, then Lemma 3.3 yields that

U(x+ch+$)—3(Ll"(x+ch+$)
<u(x, Thp,up) sU(x+cT,+$+ﬁ)+3(LI"(x+cT,+$+ﬁ(t)),

where

5= (e +8eP)ePTTrh = (¢ 4 5% P)e P (1 - k7
=5'@+eMe A -k <5t (1 - k) =67,
& —po; +peh <& L&+ 2p€hy,
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and

=
Il

hy + 2p6; — pehy — p(€°hy + 261 P)e PV < by — p(e'hy — 26})
h(1—p(e —26%) = (1 =k =y

Choose .ffm = é Then, we have
€11 — &l < pQeh + 67) < p(2€’ + 6"y = phy.

Thus, (4.6) holds for all m > 0.

Now, we are ready to prove the main result. For ¢t > T*, let m = [i

t*
greater than ‘;—*T*, and define

5(t) =, £ =&y —po;, (1 - P,

and
h(t) = hy + 2p8;, (1= e PCT0).
Then, T,, =T +mt* <t <T"+ (m+ 1)t* = T,,41. In view of (4.6), one has
U(x+ct+&(1) — 0(OUT (x + ct + &(1))
<u(x,t,up)
SUX+ct+ &) + he)) + 5(OUY (x + ct + E(t) + h(2))

4+

forall7 > T* and x € R. Setk := —+In(1 —k*) and g =: e~ A==k Since 0 < m < =

have .
(1 _ k*)m < (1 _ k*)%—l — qe—kt.

Thus,
8(t) =6 = (1 —k)"s* < 8°qe™,

and
h(t) < hy + 2067 < (1 +208")(1 = k)™ < (1 +2p6%)ge™ .

It follows that for all ¥ > ¢ > T*, it holds

& —po; (1= ) =&, +ps;, (1 - P)
e PU=Tw) _ e—ﬁ(z—Tm)l

E(t) — E@)| <
<&, — &l + plo;, — 65 + po,

n—1

< |$n - é:ml + 4/05:;, < Z phl + 4p5jn

l=m
n—-m—1
=L N (1 -k) +4p6,
O =0
p p % —kt
< +4)6t§(—+46 ) ,
(k* 5 T () Iz pPlge

] be the largest integer not

4.7)

<m+1, we

(4.8)

4.9)

(4.10)
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where n = ["‘*T*]. Obviously, n > m. It follows from (4.10) that & := lim,_ &(¢) is well-defined.

t
Letting ¥’ — oo, we obtain

b0 — &) < (£ +40%p)qe ™, 12T @.11)

Since £() and h(¢) are bounded, the asymptotic properties of U guarantee that

0, = - {U{ (€ +11(E@) — &) + 12h(2) U (€ +11(E(0) = &o) +T2h(f))}
T ms0nimeo] UTE+ &) ’ U+ &) :
and
e s { U™ (€ +E(0) + h(t) UP (€ + €0 + h(t))}
2T ST UTEra) T UPE+&)

are well-defined and finite. Let Cy = max{Q;, O,}. Then, (4.7) gives that

ui(x,t) — Ui(x + ct + &)
U5'(€ + &)

Thus, (1.5) follows from (4.8)—(4.12). The proof is complete.

< Co (|60 = EO] + h(r) + 6(7)) - (4.12)

5. Conclusions

In this paper, we investigated the asymptotic stability of traveling fronts of a diffusion system with
the BZ reaction. By the squeezing technique and the comparison principle, we proved that if the initial
perturbation decays to zero at the space infinity, then the perturbed solution converges to the traveling
front of the system (1.1) with an exponential rate as t — +oco. Due to the degeneracy of (1.1) at the
equilibrium (0,0), the initial perturbation as x — —co was actually relaxed. It was only asked to decay
to zero under an exponential weight. In fact, the degeneracy is caused by the second equation of (1.1).
That is why we can derive the stability result in the form of (1.5), in which U, was taken to be the
denominator at the left side of the inequality. In this point of view, we are able to present a little bit of
contributions to the stability analysis of the BZ system.
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