
https://www.aimspress.com/journal/Math

AIMS Mathematics, 9(9): 25232–25252.
DOI: 10.3934/math.20241231
Received: 15 May 2024
Revised: 22 July 2024
Accepted: 21 August 2024
Published: 29 August 2024

Research article

An efficient augmented memoryless quasi-Newton method for solving
large-scale unconstrained optimization problems

Yulin Cheng and Jing Gao*

School of Mathematics and Statistics, Beihua University, Jilin 132013, China

* Correspondence: Email: gaojingjy@163.com.

Abstract: In this paper, an augmented memoryless BFGS quasi-Newton method was proposed for
solving unconstrained optimization problems. Based on a new modified secant equation, an augmented
memoryless BFGS update formula and an efficient optimization algorithm were established. To
improve the stability of the numerical experiment, we obtained the scaling parameter by minimizing
the upper bound of the condition number. The global convergence of the algorithm was proved, and
numerical experiments showed that the algorithm was efficient.

Keywords: unconstrained optimization; quasi-Newton method; BFGS update; secant equation; global
convergence
Mathematics Subject Classification: 65K05, 90C31, 90C53

1. Introduction

In this paper, we consider the following unconstrained optimization problem:

min{ f (x) | x ∈ Rn}, (1.1)

where f : Rn → R is a continuously differentiable function and its gradient is denoted by g(x) = ∇ f (x).
Generally, (1.1) iterates along the following form:

xk+1 = xk + sk, for all k ≥ 0, (1.2)

where sk = αkdk, dk is the search direction, αk > 0 is a step length often obtained by a line search
along dk.

There are many methods to solve unconstrained optimization problem (1.1). Among these methods,
The Newton method has a second-order convergence rate when the Hessian matrix ∇2 f (xk) is positive
definite, but it cannot ensure that the direction chosen for the objective function at xk is a descent while

https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.20241231

25233

solving unconstrained optimization problems. In addition, every iterations of the Newton method
requires the second-order gradient of the objective function, namely the Hessian matrix, which is
computationally complex for large-scale problems. To address large-scale problems more effectively,
the quasi-Newton method was proposed. The quasi-Newton approach updates the search direction
using an approximation Hessian matrix instead of the true Hessian matrix used in the Newton method.
This approach can reduce the computation of second-order derivatives, lower the computational
complexity, and handle non-differentiable functions in some special cases [1].

The quasi-Newton method is recognized as one of the excellent iterative methods for solving large-
scale unconstrained optimization problems (for relevant research, see [22–25]). The fundamental
concept of the quasi-Newton technique is to substitute an approximate matrix Bk for the Hessian matrix
∇2 f (xk) in the Newton method [1]. In order to satisfy the secant equation, i.e.,

Bk+1sk = yk, (1.3)

where sk = xk+1 − xk, yk = gk+1 − gk, the approximate matrix Bk of the Hessian matrix is constructed
using the quasi-Newton update formula. The direction of the quasi-Newton method can be calculated
directly by the following formula:

d0 = −g0, dk = −Hkgk, for all k ≥ 0, (1.4)

where Hk is the approximation of ∇2 f (xk)−1 and satisfies secant equation, Hk+1yk = sk, for all k ≥ 0.
The numerical performance of the quasi-Newton method is directly impacted by the updating of Hk.

There are many updated formulas of Hk such as the DFP formula, the BFGS formula, and the SR1
formula. These methods, which are composed of different updating formulas, are particularly effective
in solving unconstrained optimization problems and they have promising computational performance
in practical problems.

The BFGS method, independently proposed by Broyden, Fletcher, Goldfarb, and Shanno [9–13],
is one of the most widely used and successful quasi-Newton methods. Bk is always positive definite
during the computation; hence, the BFGS method keeps the convergence and stability for optimization
problems. Moreover, the BFGS method has emerged as the preferred option for many applications,
including neural networks, image processing, and machine learning (see [26–28]). The BFGS formula
is as follows:

BBFGS
k+1 = Bk +

ykyT
k

sT
k yk
−

BksksT
k Bk

sT
k Bksk

, (1.5)

HBFGS
k+1 = Hk −

skyT
k Hk + HkyksT

k

sT
k yk

+

(
1 +

yT
k Hkyk

sT
k yk

)
sksT

k

sT
k yk
. (1.6)

The BFGS formula satisfies the secant equation (1.3). Many researchers have improved the
formula (1.3) to enhance numerical stability and the accuracy of the approximation Hessian matrix.
Zhang et al. [2], Zhang and Xu [3] put forward a modified secant condition

Bk+1sk = y̌k, (1.7)

AIMS Mathematics Volume 9, Issue 9, 25232–25252.

25234

y̌k = yk + τ
η̌k

sT
k wk

wk, (1.8)

η̌k = 2(fk − fk+1) + sT
k (gk + gk+1), (1.9)

where τ > 0 and wk is a vector parameter satisfying sT
k wk , 0.

On the other hand, in order to reduce memory storage and improve the computational efficiency
of the algorithm, a memoryless quasi-Newton method is proposed to solve large-scale unconstrained
optimization problems, where the inner product of multiple vectors is employed to determine the search
direction [4]. Memoryless technology has been employed in numerous works; for example, Babaie-
Kafaki and Aminifard [5], Aminifard, Babaie-Kafaki and Ghafoori [6], Babaie-Kafaki, Aminifard and
Ghafoori [7], Jourak, Nezhadhosein, and Rahpeymaii [8] have applied a memoryless technique to
design and develop new quasi-Newton methods for solving large-scale unconstrained optimization
problems, and Narushima, Nakayama, Takemura et al. [29] propose a memoryless quasi-Newton
method in Riemannian manifolds.

Our goal in this research is to present an effective augmented memoryless BFGS method for solving
unconstrained optimization problems. The major contributions of this paper have at least three aspects
as follows:

(1) To establish an effective optimization algorithm for large-scale unconstrained optimization
problems, a new augmented memoryless BFGS updating formula is provided that is based on a specific
modified secant equation.

(2) To enhance the effectiveness of the experiment, the condition number may be minimized in
order to obtain the scaling parameters.

(3) We prove the global convergence of the algorithm and numerical experiments that show the
efficiency of the algorithm.

The organization of the article is as follows. In Section 2, we present an augmented memoryless
BFGS technique along with the algorithm framework. The descent property and the global convergence
of the proposed algorithm are demonstrated in Section 3. In Section 4, the numerical experiment
demonstrates the effectiveness of our method in solving large-scale unconstrained optimization
problems and nonlinear equations. A conclusion to this work is presented in Section 5.

2. An augmented memoryless BFGS method

Inspired by Zhang and Xu [3] and Aminifard, Babaie-Kafaki, and Ghafoori [6], to improve the
precision of the solution, we select wk = yk in Eqs (1.7)–(1.9), get a modified secant equation,

Bk+1sk = ȳk, (2.1)

where ȳk = (1 + τk)yk, τk = τ
ηk

sT
k yk

and ηk = max {0, η̌k}.
We modify the BFGS iteration formula (1.5) by a rank-1 correction, which we refer to as the

augmented BFGS (ABFGS) formula

BABFGS
k+1 = BBFGS

k+1 + τk
yksT

k

sT
k sk
. (2.2)

AIMS Mathematics Volume 9, Issue 9, 25232–25252.

25235

BABFGS
k+1 sk = ȳk because BBFGS

k+1 sk = yk. Therefore, (2.2) satisfies the modified secant equation (2.1).
As is known by the quasi-Newton property, when steplength αk satifies Wolfe line search,

f (xk + αkdk) − f (xk) ≤ δαkgT
k dk, (2.3)

∇ f (xk + αkdk)T dk ≥ ρgT
k dk, (2.4)

with 0 < δ < ρ < 1, sT
k yk > 0 is established. By Theorem 5.2.2 of [1], we know (1.5) is positive definite.

Therefore, BABFGS
k is a positive definite matrix since τk ≥ 0. In other words, the positive definiteness is

passed down to the ABFGS update formula. As a result, the search directions of ABFGS are descent.
The scaled memoryless BFGS (SMBFGS) method is considered an effective tool for solving large-

scale unconstrained optimization problems. In order to obtain SMBFGS formula, Bk can be replaced
by 1

ϑk
I in (1.5), namely,

BS MBFGS
k+1 =

1
ϑk

I +
ykyT

k

sT
k yk
−

1
ϑk

sksT
k

sT
k sk
, (2.5)

where ϑk > 0 is called the scaling parameter. Similarly, by replacing Hk with ϑkI, we can get the
SMBFGS iteration formula for the inverse of the Hessian matrix

HS MBFGS
k+1 = ϑkI − ϑk

skyT
k + yksT

k

sT
k yk

+

(
1 + ϑk

yT
k yk

sT
k yk

)
sksT

k

sT
k yk
. (2.6)

In the formula (2.2), we replace BBFGS
k+1 with BS MBFGS

k+1 to make a rank-1 correction, and then, using
the Sheran-Morrison formula [1], we get the augmented memoryless BFGS formula (AMBFGS), i.e.,

BAMBFGS
k+1 = BS MBFGS

k+1 + τk
yksT

k

sT
k sk
=

1
ϑk

(
I −

sksT
k

sT
k sk

)
+

ykyT
k

sT
k yk
+ τk

yksT
k

sT
k sk
, (2.7)

HAMBFGS
k+1 = HS MBFGS

k+1 −
τk(sT

k yksksT
k − ϑksT

k ykskyT
k + ϑkyT

k yksksT
k)

(1 + τk)sT
k yksT

k yk
. (2.8)

For the selection of parameter ϑk, Babaie-Kafaki [4] came up with well-structured upper bounds for
the condition numbers of the scaled memoryless quasi-Newton formulas based on eigenvalue analysis.
It was then demonstrated that the scaling parameter suggested by Oren and Spedicato [14] is the only
value that can be found as the lowest of the upper bound given for the condition number of the scaled
memoryless BFGS update formula. On the other hand, according to Oren and Luenberger [15], the
scaling parameter is the distinct lowest value of the provided upper bound on the condition number of
the scaled memoryless DFP update algorithm.

According to [5], the choice of parameter ϑk is addressed by minimizing the given upper bound
for the condition number of the formula (2.8). Since Wolfe line search (2.4) ensures sT

k yk > 0, we
have sk , 0 and yk , 0. So a set of mutually orthogonal unit vectors q(i)

k
n−2

i=1 exists for which sT
k q(i)

k =

yT
k q(i)

k = 0, yielding BAMBFGS
k+1 q(i)

k , for i = 1, 2, ..., n − 2. Therefore, (n − 2) eigenvalues of the matrix
HAMBFGS

k+1 (BAMBFGS
k+1) are equivalent to ϑk(1

ϑk
).

AIMS Mathematics Volume 9, Issue 9, 25232–25252.

25236

Using the relationship between the determinants and traces of the matrices HAMBFGS
k+1 and BAMBFGS

k+1 ,
other eigenvalues of Bk+1 and Hk+1 can be obtained. The relationships are as follows:

ρ+k + ρ
−
k =

1
ϑk
+
∥yk∥

2

sT
k yk
+
τksT

k yk

∥sk∥
2 , (2.9)

ρ+k ρ
−
k =

ϑk∥sk∥
2

(1 + τk)sT
k yk
. (2.10)

Formulas of the two other eigenvalues of BAMBFGS
k+1 , namely, ρ+k and ρ−k , can be obtained,

ρ±k =
1
2

(
1
ϑk
+
∥yk∥

2

sT
k yk
+
τksT

k yk

∥sk∥
2

)
±

1
2

√√(
1
ϑk
+
∥yk∥

2

sT
k yk
+
τksT

k yk

∥sk∥
2

)2

− 4
ϑk∥sk∥

2

(1 + τk)sT
k yk

(2.11)

for which 0 < ρ−k < ρ
+
k . Additionally, since HAMBFGS

k+1 is positive definite, the search direction of
AMBFGS is descent. Furthermore, we have 0 < ρ−k <

1
ϑk
< ρ+k after performing a few algebraic

operations. Therefore, ∥HAMBFGS
k+1 ∥ = ρ+k and ∥HAMBFGS

k+1
−1
∥ = ρ−k . Now, from (2.9) and (2.10) we

can write

κ(HAMBFGS
k+1) =

ρ+k
ρ−k
=
ρ+2

k

ρ+k ρ
−
k

≤
(ρ+k + ρ

−
k)2

ρ+k ρ
−
k

≤
(sT

k yk∥sk∥
2 + ϑk∥sk∥

2∥yk∥
2 + τkϑk(sT

k yk)2)2

(1 + τk)ϑk(sT
k yk)3∥sk∥

2
,

(2.12)

where κ(·) expresses the spectral condition number.
It is generally acknowledged that decreasing the condition number in matrix-based computing can

enhance the stability of numerical calculations [16]. From (2.12), we derive the minimizer of the upper
bound of κ(HAMBFGS

k+1) as follows:

ϑk =
sT

k yk∥sk∥
2

τk(sT
k yk)2 + ϑk∥sk∥

2∥yk∥
2
. (2.13)

Now, we present a new augmented memoryless BFGS algorithm for solving unconstrained
optimization problems.

Algorithm 2.1. The AMBFGS algorithm
Step 1. Choose an initial point x0, choose parameters 0 < δ < ρ < 1, ϵ > 0, ϵ1 > 0. Set H0 = I,

d0 = −H0g0 and k := 0.
Step 2. If ∥gk∥ < ϵ, stop; otherwise, go to Step 3.
Step 3. Compute the step size αk, so that it satisfies Wolfe line search (2.3) and (2.4). Set xk+1 =

xk + αkdk.
Step 4. Compute ϑk, if ϑk < ϵ1, let ϑk =

sT
k yk

∥yk∥2
, otherwise, obtains ϑk by (2.13).

Step 5. Update Hk+1 by (2.8) and compute the search direction dk using (1.4).
Step 6. Set k := k + 1 and go to Step 2.

Remark 2.1. Step 4 is set this way in order to avoid ϑk falling into a dilemma during the calculation
of the algorithm.

AIMS Mathematics Volume 9, Issue 9, 25232–25252.

25237

3. The descent property and global convergence

In this section, we demonstrate that the direction is sufficiently descent and the algorithm is globally
convergent. Our analysis is based on the following assumptions.

Assumption 3.1. For arbitrary x0 ∈ R
n, L = {x | f (x) ≤ f (x0)} is a bounded set and in some

neighborhoodU of L, ∇ f (x) is Lipschitz continuous, that is, there exists a constant L > 0 such that

∥∇ f (x) − ∇ f (x̌)∥ ≤ L∥x − x̌∥,∀x, x̌ ∈ U. (3.1)

Based on Assumption 3.1, we know that there is a positive constant Φ exists such that

∥∇ f (x)∥ ≤ Φ,∀x ∈ L. (3.2)

Since AMBFGS directions are descent, from (2.4), we have {xk} ⊂ L.
The boundedness of the parameter ϑk in (2.13) is important. We will prove ϑk ∈ [m,M] in

Lemma 3.1.

Lemma 3.1. Considering f is a uniformly convex function on a neighborhood U of L, the scaling
parameter ϑk of the AMBFGS algorithm in (2.13) is well defined and bounded.

Proof. Let f be uniformly convex onU, then, by Theorem 1.3.16 of [1], for any x, y ∈ L, we have

f (y) ≥ f (x) + ⟨∇ f (x), y − x⟩ +
1
2

v∥y − x∥2, (3.3)

and

f (x) ≥ f (y) + ⟨∇ f (y), x − y⟩ +
1
2

v∥x − y∥2, (3.4)

where v > 0 is a constant. Let y = xk+1, x = xk, adding (3.3) and (3.4), we can obtain

⟨∇ f (xk+1) − ∇ f (xk), xk+1 − xk⟩ ≥ v∥xk+1 − xk∥
2,∀k ≥ 0.

In this paper, sk = xk+1 − xk, yk = ∇ f (xk+1) − ∇ f (xk), and then,

sT
k yk ≥ v∥sk∥

2,∀k ≥ 0. (3.5)

Through (3.1) and (3.5), we can get

v
L2 ≤

sT
k yk

∥yk∥
2 ≤
∥sk∥

2

sT
k yk
≤

1
v
. (3.6)

By mean value theorem, (1.9) can be rewritten by

η̌ = 2(fk − fk+1) + (gk + gk+1)T sk

= 2∇ f (θk)T (xk − xk+1) + (gk + gk+1)T sk

= −2∇ f (θk)T sk + (gk + gk+1)T sk

= (gk − g(θk) + gk+1 − g(θk))T sk,

(3.7)

AIMS Mathematics Volume 9, Issue 9, 25232–25252.

25238

where θk = hxk + (1 − h)xk+1, h ∈ (0, 1). Hence, by (3.1) we have that

|η̌| ≤ (∥gk − g(θk)∥ + ∥gk+1 − g(θk)∥)∥sk∥

≤ (L∥xk − θk∥ + L∥xk+1 − θk∥)∥sk∥

= L∥sk∥
2.

(3.8)

So, we can get 0 < τk ≤
τL
v . In this case, using (3.6) and the definition of ϑk in (2.13), we have∣∣∣∣∣ 1

ϑk

∣∣∣∣∣ =
∣∣∣∣∣∣τk∥sT

k yk∥
2 + ϑk∥sk∥

2∥yk∥
2

sT
k yk∥sk∥

2

∣∣∣∣∣∣ ≤ τksT
k yk

∥sk∥
2 +
∥yk∥

2

sT
k yk
≤ τL +

L2

v
=

1
m
. (3.9)

Moreover, ∣∣∣∣∣ 1
ϑk

∣∣∣∣∣ =
∣∣∣∣∣∣τk∥sT

k yk∥
2 + ϑk∥sk∥

2∥yk∥
2

sT
k yk∥sk∥

2

∣∣∣∣∣∣ ≥ τksT
k yk

∥sk∥
2 ≥ τkv =

1
M
. (3.10)

From (3.9) and (3.10), we have

ϑk ∈ [m,M] , (3.11)

which shows the boundedness of ϑk.

Remark 3.1. In Step 4 of the algorithm, when ϑk < ϵ1, we set ϑk =
sT

k yk

∥yk∥2
. Then, by applying Eq (3.5), it

can be deduced that ϑk is bounded.

The next lemma states an effective property of the direction (1.4).

Lemma 3.2. Let f be uniformly convex on the neighborhood U of L, then search direction {dk}

produced by Algorithm 2.1 is sufficient descent, that is

dT
k gk ≤ −ζ∥gk∥

2,∀k > 0. (3.12)

Proof. By carefully studying the proof of Lemma 3.6 of [17], we can show that tr(BAMBFGS
k+1) is bounded.

By Lemma 3.1, we get sT
k yk ≥ v∥sk∥

2,∀k ≥ 0 and |η̌| ≤ L∥sk∥
2. So, considering (2.7), (3.1), (3.2),

(3.5) and (3.11), we have

tr(BAMBFGS
k+1) = tr

(
1
ϑk

I +
ykyT

k

sT
k yk
−

1
ϑk

sksT
k

sT
k sk
+ τk

yksT
k

sT
k sk

)
=

n
ϑk
+

yT
k yk

sT
k yk
−

1
ϑk

sT
k sk

sT
k sk
+ τk

sT
k yk

sT
k sk

≤
n − 1

m
+

L2

v
+ τL

=
(n − 1)v + mL2 + τLmv

mv
.

(3.13)

So, from (1.4) and (3.13), we have

gT
0 d0 = −∥g0∥

2 (3.14)

AIMS Mathematics Volume 9, Issue 9, 25232–25252.

25239

and

gT
k+1dk+1 = −gT

k+1Hk+1gk+1 ≤ −
1

tr(BAMBFGS
k+1)

∥gk+1∥
2 ≤ −

mv
(n − 1)v + mL2 + τLmv

∥gk+1∥
2. (3.15)

Finally, according to (3.14) and (3.15), let

ζ = min
{

1,
mv

(n − 1)v + mL2 + τLmv

}
, (3.16)

then (3.12) is established and the proof is complete.
We next consider the convergence of AMBFGS algorithm. For this purpose, we make the following

additional lemma.

Lemma 3.3. Suppose that Assumption 3.1 holds. Consider iterative form xk+1 = xk + αkdk, where αk

satisfies the Wolfe conditions (2.3) and (2.4) and dk satisfies the sufficient descent condition (3.12). If

∞∑
k=0

1
||dk||

2 = ∞, (3.17)

then,

lim
k→∞

inf ∥gk∥ = 0. (3.18)

Proof. Since dk is sufficiently descent by (3.12) and αk satisfies the Wolfe conditions (2.3) and (2.4),
the Zoutendijk condition [20]

∞∑
k=0

(gT
k dk)2

∥dk∥
2 < ∞ (3.19)

holds (see Theorem 3.2 of [18]). To prove this lemma by contradiction, we suppose that there exists a
positive constant χ such that

∥gk∥ > χ,∀k > 0. (3.20)

Inequalities (3.12) and (3.20) yield gT
k dk ≤ −ζ∥gk∥

2 ≤ −ζχ2, which implies ζ
2χ4

χ4 ≤
(gT

k dk)2

∥dk∥2
. It follows

from the above inequality and (3.19) that

∞∑
k=0

ζ2χ4

∥dk∥
2 ≤

∞∑
k=0

(gT
k dk)2

∥dk∥
2 = ∞. (3.21)

Since this contradicts the Zoutendijk condition (3.19), the proof is complete.

Theorem 3.1. Suppose f is uniformly convex on the neighborhood U of L, then the Algorithm 2.1
converges in the sense that (3.18) holds.

AIMS Mathematics Volume 9, Issue 9, 25232–25252.

25240

Proof. Lemma 3.2 shows that dk , 0,∀k > 0, therefore, considering Lemma 3.3, it suffices to prove
that ∥dk+1∥ is bounded.

From (2.8), (3.1), (3.2), (3.5)–(3.7) and (3.11), we can get

∥HAMBFGS
k+1 ∥ =

∥∥∥∥∥∥HS MBFGS
k+1 −

τk(sT
k yksT

k sksksT
k − ϑksT

k yksT
k skskyT

k + ϑksT
k skyT

k yksksT
k)

(1 + τk)sT
k yksT

k yksT
k sk

∥∥∥∥∥∥
≤ vk + 2vk

∥sk∥∥yk∥

sT
k yk

+ (1 + vk
∥yk∥

2

sT
k yk

)
∥sk∥

2

sT
k yk
+
τk∥sk∥

2

(1 + τk)sT
k yk
+
ϑk∥sk∥

2∥yk∥
2

(1 + τk)∥sT
k yk∥

2
+
ϑk

1 + τk

≤ 2M + 2M
L
v
+

2
v
+ 2M

L2

v2

= Λ.

(3.22)

Hence, from (1.4) and (3.2), we get

||dk+1|| ≤ ||HAMBFGS
k+1 ||||gk+1|| ≤ ΛΦ. (3.23)

Inequality (3.23) suggests that dk is bounded. Thus, by Lemma 3.3, we can conclude that the
Algorithm 2.1 is convergent.

4. Numerical experiments

In this section, we compare the computational efficiency of SMABFGS (provided by
Aminifard et al. [6]), AMBFGS-OS (provided by Algorithm 2.1 and ϑk adopts the parameters in [14])
with AMBFGS (provided by Algorithm 2.1). All codes are written in Matlab 2017a and run on a Dell
PC with 2.50 GHz CPU processor and 16 GB RAM memory as well as Windows 11 operation system.

We employ the effective Wolfe conditions with parameters ρ = 0.99 and δ = 10−4 in the
implementations, as detailed in (2.3) and (2.4). When either k > 10000 or ∥gk∥ < 10−6, all algorithms
come to an end. The selection of τ = 1, ϵ1 = 10−6 is made for the AMBFGS parameters, the selection
of τ = 1 and ϑk =

sT
k yk

∥yk∥2
is made for the AMBFGS-OS parameters. Additionally, for SMABFGS, we set

p = 1, τ = 1, and C = 0.001, if ∥gk∥ ≥ 1, otherwise, p = 3.

4.1. Experiment I: test for unconstrained optimization problems

For experiment I, the 71 unconstrained problems are tested and compared, in which the 1–32
problems are taken from the CUTE library [21], and the others come from the unconstrained problem
collections [30, 31]. The number of iterations (Itr), the total number of gradient evaluations (Ng),
CPU time (Tcpu), and the gradient value gk at the end of iteration are also reported in Table 1. The
performance of these algorithms is visually described in terms of Tcpu, Itr, and Ng in Figures 1–3,
respectively, using the performance profiles suggested by Dolan and Moré [19] (see [19] for further
information). In general, the top curve indicates that the applicable approach is the winner for the
interpretation of the performance profiles.

AIMS Mathematics Volume 9, Issue 9, 25232–25252.

25241

Table 1. Numerical results.

SMABFGS AMBFGS-OS AMBFGS
Problems n Itr/Ng/Tcpu/∥gk∥ Itr/Ng/Tcpu/∥gk∥ Itr/Ng/Tcpu/∥gk∥

cosine 30 121/764/0.028/9.37e-07 1006/3482/0.095/9.79e-07 163/402/0.012/9.32e-07
dixmaana 6000 190/821/63.073/7.68e-07 213/1050/95.180/3.35e-07 262/1506/118.343/9.93e-08
dixmaanb 1500 211/1055/6.160/9.89e-07 127/736/4.796/8.66e-07 202/820/7.594/8.81e-07
dixmaanb 6000 148/592/51.969/2.63e-07 224/987/98.010/4.90e-07 226/1205/99.291/8.95e-07
dixmaanc 2700 192/804/15.977/6.93e-07 148/667/15.514/9.33e-07 131/580/13.602/9.91e-07
dixmaanc 5400 191/751/53.219/2.28e-07 124/537/43.716/8.44e-07 105/312/36.888/2.25e-07
dixmaand 3000 183/767/18.534/7.16e-07 184/570/22.726/9.81e-07 136/237/16.804/4.81e-07
dixmaane 2400 981/1133/61.848/9.53e-07 1050/1219/83.691/6.97e-07 792/966/64.245/8.84e-07
dixmaanf 6000 1385/1652/470.789/6.93e-07 1817/2280/841.260/9.32e-07 1580/1869/712.104/9.99e-07
dixmaang 900 480/608/6.013/8.85e-07 772/1106/11.630/9.59e-07 468/614/7.269/8.28e-07
dixmaanh 1500 912/1084/23.925/9.97e-07 577/704/19.216/8.73e-07 574/679/20.013/9.28e-07
dixmaani 360 4818/5451/7.748/8.01e-07 3702/4439/7.275/9.46e-07 3576/4178/6.944/9.88e-07
dixmaanj 600 3860/4548/25.622/9.64e-07 5469/6408/47.034/9.88e-07 3924/4550/34.264/8.72e-07
dixmaank 300 2704/3225/3.677/9.84e-07 2419/2914/3.924/5.35e-07 2340/2808/3.804/9.18e-07
dixmaanl 300 2787/3166/3.776/9.84e-07 3010/3559/4.868/9.42e-07 2382/2826/3.845/8.92e-07
dixon3dq 100 2240/2517/0.521/8.87e-07 1402/1691/0.360/7.03e-07 1850/2132/0.467/9.71e-07
dqrtic 4000 245/345/39.458/3.01e-08 173/274/35.476/9.00e-07 156/253/31.649/8.29e-07
edensch 60 276/1719/0.151/9.85e-07 316/1913/0.150/4.02e-07 53/117/0.014/5.83e-07
eg2 90 1612/6930/0.572/7.94e-07 4074/33581/2.179/4.20e-07 2164/14247/1.013/6.40e-07
fletchcr 100 1336/11340/0.715/9.99e-07 4005/37731/2.399/9.91e-07 175/354/0.050/9.86e-07
freuroth 4 NaN/NaN/NaN/NaN NaN/NaN/NaN/NaN 372/664/0.014/5.55e-07
genrose 10000 345/540/307.401/8.20e-07 256/467/301.828/8.74e-07 302/541/352.489/4.67e-07
himmelbg 7000 10/15/3.993/9.62e-89 10/15/5.002/3.73e-98 10/15/5.049/2.62e-97
liarwhd 30 200/531/0.028/7.86e-07 423/738/0.027/5.67e-07 305/833/0.026/9.99e-07
liarwhd 100 609/947/0.158/8.84e-07 1310/10452/0.734/8.18e-07 1278/7729/0.606/8.00e-07
penalty1 400 5931/62812/52.135/6.91e-07 NaN/NaN/NaN/NaN 3578/35368/47.665/9.25e-07
quartc 4000 245/345/39.672/3.01e-08 173/274/35.207/9.00e-07 156/253/31.673/8.29e-07
tridia 300 1317/1587/1.517/8.34e-07 1430/1748/2.059/8.80e-07 1297/1607/1.801/9.88e-07
woods 1200 586/987/11.051/1.58e-07 553/824/12.976/9.07e-07 456/639/9.842/8.86e-07
VARDIM 160 NaN/NaN/NaN/NaN NaN/NaN/NaN/NaN NaN/NaN/NaN/NaN
himmelh 300 NaN/NaN/NaN/NaN 174/519/0.222/6.38e-07 130/371/0.166/1.14e-07
engval1 1000 NaN/NaN/NaN/NaN NaN/NaN/NaN/NaN 2536/24677/44.083/9.98e-07
bdexp 5000 27/28/6.250/0.00e+00 27/28/7.874/0.00e+00 27/28/7.818/0.00e+00
exdenschnb 1200 166/655/3.118/7.91e-07 178/811/4.156/9.15e-07 64/205/1.459/7.75e-07
exdenschnb 3000 180/522/17.121/7.91e-07 122/426/14.506/6.98e-08 177/724/21.051/6.74e-07
exdenschnb 6000 119/447/40.595/1.37e-07 173/645/71.994/9.40e-07 118/377/48.837/8.24e-07
exdenschnf 1200 161/628/2.992/7.98e-07 135/413/3.098/1.36e-07 133/512/3.120/8.58e-07
exdenschnf 9000 192/515/139.351/1.37e-07 209/864/225.577/4.80e-07 129/313/143.359/9.11e-07
genquartic 1600 134/467/4.055/7.79e-07 156/413/5.926/3.11e-07 112/385/4.263/5.12e-07
genquartic 9000 224/516/184.527/9.43e-07 160/455/179.843/8.94e-07 167/459/192.917/7.90e-07

Continued on next page

AIMS Mathematics Volume 9, Issue 9, 25232–25252.

25242

SMABFGS AMBFGS-OS AMBFGS
Problems n Itr/Ng/Tcpu/∥gk∥ Itr/Ng/Tcpu/∥gk∥ Itr/Ng/Tcpu/∥gk∥

biggsb1 500 5191/5993/25.611/8.34e-07 4187/4921/26.456/7.89e-07 3962/4625/25.344/8.53e-07
biggsb1 1000 9326/10891/124.762/7.79e-07 7898/9011/133.143/9.26e-07 8819/10180/146.283/7.83e-07
sine 9 99/344/0.011/4.35e-07 NaN/NaN/NaN/NaN 100/364/0.006/7.25e-07
fletcbv3 120 964/1304/0.172/4.69e-07 885/1312/0.186/6.01e-07 563/854/0.127/6.22e-07
nonscomp 500 3022/3601/15.610/6.80e-07 3861/4582/26.791/5.43e-07 2304/2793/15.428/9.01e-07
nonscomp 5000 2102/2671/503.967/9.83e-07 1779/2285/534.087/9.32e-07 1948/2775/583.989/9.88e-07
power1 160 4649/5423/2.199/9.92e-07 5390/6328/3.090/7.32e-07 4178/5012/2.379/9.92e-07
raydan1 600 787/1141/5.836/9.90e-07 1103/2017/10.611/4.99e-07 759/1070/7.263/9.66e-07
raydan2 2000 NaN/NaN/NaN/NaN NaN/NaN/NaN/NaN 360/2390/19.695/9.93e-07
diagonal1 100 1553/12157/0.423/9.98e-07 NaN/NaN/NaN/NaN NaN/NaN/NaN/NaN
diagonal2 1000 665/846/9.306/9.46e-07 496/630/8.655/3.64e-07 562/677/9.774/9.94e-07
diagonal3 60 989/7265/0.197/9.99e-07 NaN/NaN/NaN/NaN 167/236/0.014/7.36e-07
diagonal8 100 142/649/0.045/6.44e-07 131/817/0.040/8.78e-07 168/1377/0.059/9.95e-07
bv 2000 129/246/8.215/9.78e-07 118/235/8.906/9.89e-07 133/250/9.927/9.98e-07
bv 20000 0/1/1.842/1.25e-08 0/1/0.672/1.25e-08 0/1/0.738/1.25e-08
ie 500 95/301/22.696/6.48e-07 105/518/39.082/7.29e-08 85/305/23.095/1.03e-07
ie 1500 125/473/317.448/5.36e-07 155/674/395.686/9.85e-07 88/293/143.732/7.95e-08
singx 1000 783/1242/14.044/1.92e-07 1367/2357/32.845/9.61e-07 827/1175/19.524/6.34e-07
singx 2000 1277/2319/84.054/8.45e-07 1056/1598/78.703/6.97e-07 939/1388/69.404/6.82e-07
lin 100 218/1368/1.121/8.25e-07 242/1720/1.344/2.49e-07 123/901/0.704/6.16e-07
lin 500 258/1515/8.617/6.69e-07 276/1830/10.716/8.19e-07 264/1609/9.544/7.68e-07
osb2 11 1164/1457/0.119/9.97e-07 1361/1701/0.095/9.49e-07 1210/1493/0.071/8.77e-07
pen1 200 NaN/NaN/NaN/NaN NaN/NaN/NaN/NaN 7019/72994/15.319/8.18e-07
pen2 120 1231/4906/1.216/9.31e-07 NaN/NaN/NaN/NaN NaN/NaN/NaN/NaN
rosex 300 997/1943/1.191/9.34e-07 1281/2176/1.770/7.14e-07 827/1963/1.245/8.88e-07
rosex 700 803/1530/12.360/4.96e-07 831/1253/13.887/1.00e-06 712/1620/13.958/9.98e-07
trid 900 151/297/2.826/8.64e-07 128/226/2.633/8.40e-07 137/247/2.882/7.66e-07
trid 9000 268/603/273.360/9.25e-07 200/489/255.239/8.67e-08 117/194/135.029/4.13e-07
ExFreudenstein 100 NaN/NaN/NaN/NaN NaN/NaN/NaN/NaN NaN/NaN/NaN/NaN
ExBeale 100 436/982/0.101/9.67e-07 231/532/0.058/8.63e-07 398/598/0.077/5.35e-07
hager 150 1225/10722/0.741/9.90e-07 290/2112/0.169/9.98e-07 134/292/0.055/8.64e-07

As can be seen from Table 1, the algorithm presented in the paper is clearly effective for solving
most of the tested problems, and it is competitive with the other two algorithms in Itr, Ng, and Tcpu
on the tested problems. Figures 1–3 also indicate that the numerical results of the AMBFGS algorithm
are better than that of the SMABFGS algorithm and the AMBFGS-OS algorithm. Compared with
the SMABFGS algorithm and AMBFGS-OS algorithm, the AMBFGS algorithm is generally in an
advantageous position, has better numerical performance, and can solve large-scale unconstrained
optimization problems quickly and effectively.

AIMS Mathematics Volume 9, Issue 9, 25232–25252.

25243

Figure 1. Performance profiles based on CPU time.

Figure 2. Performance profiles based on number of iterations.

Figure 3. Performance profiles based on number of gradient evaluation.

AIMS Mathematics Volume 9, Issue 9, 25232–25252.

25244

4.2. Experiment II: test for nonlinear equations

For experiment II, we compare the performance of SMABFGS, AMBFGS-OS with AMBFGS in
solving nonlinear equations, and the following mathematical model is considered:

min
x∈Rn

f (x) =
1
2
∥F(x)∥22.

Define F(x) = (F1(x), F2(x), . . . , Fn(x))T , x ∈ Rn and 7 problems are shown below.
Problem 1. [32] Set Fi(x) = exi − 1, for i = 1, 2, . . . , n and x ∈ Rn.
Problem 2. [32] Set

F(x) =



2.5 1 0 ... 0
1 2.5 1 ... 0
0 1 2.5 ... 0
...

...
...
. . .

...

0 0 0 1 2.5


x + (−1, . . . ,−1)T ,

and x ∈ Rn.
Problem 3. [32] Set

F(x) =



2 −1 0 ... 0
0 2 −1 ... 0
0 0 2 ... 0
...
...
...
. . .
...

0 0 0 0 2


x + (sin x1 − 1, . . . , sin xn − 1)T ,

and x ∈ Rn.
Problem 4. [32] Set Fi(x) = (exi)2 + 3 sin xi cos xi − 1, for i = 1, 2, . . . , n and x ∈ Rn.
Problem 5. [32] Set Fi(x) = (xi − 1)2 − 1.01, for i = 1, 2, . . . , n and x ∈ Rn.
Problem 6. [33] Set

F1(x) = x1(x2
1 + x2

2) − 1,
Fi(x) = xi(x2

i−1 + 2x2
i + x2

i+1) − 1, for i = 2, 3, . . . , n − 1,
Fn(x) = xn(x2

n−1 + x2
n) − 1,

and x ∈ Rn.
Problem 7. [34] Set

F1(x) =
n∑

j=1

x2
j ,

Fi(x) = −2x1xi, for i = 2, 3, . . . , n,

and x ∈ Rn.
The number of iterations (Itr), the total number of gradient evaluations (Ng), CPU time (Tcpu), and

the value Fk at the end of iteration are also reported in Tables 2–8. The performance of these algorithms

AIMS Mathematics Volume 9, Issue 9, 25232–25252.

25245

is visually described in terms of Tcpu, Itr, and Ng in Figures 4–6, respectively, using the performance
profiles suggested by Dolan and Moré [19]. In general, the top curve indicates that the applicable
approach is the winner for the interpretation of the performance profiles. For each problem, we select 4
to 5 initial points from the following 7 points, that is, x1 = (1, 1, . . . , 1)T , x2 = (0.1, 0.1, . . . , 0.1)T , x3 =

(1
2 ,

1
22 , . . . ,

1
2n)T , x4 = (0, 1

n , . . . ,
n−1

n)T , x5 = (1, 1
2 , . . . ,

1
n)T , x6 = (1

n ,
2
n , . . . , 1)T , x7 = (1− 1

n , 1−
2
n , . . . , 0)T .

Table 2. Numerical results (Problem 1).

SMABFGS AMBFGS-OS AMBFGS
x0 n Itr/Ng/Tcpu/∥Fk∥ Itr/Ng/Tcpu/∥Fk∥ Itr/Ng/Tcpu/∥Fk∥

x2 50 164/904/0.030/1.27e-06 131/807/0.021/5.69e-06 153/1002/0.022/1.71e-06
100 1/2/0.000/1.05e+00 1/2/0.001/1.05e+00 1/2/0.000/1.05e+00
500 165/933/0.733/1.29e-06 191/1127/1.188/1.22e-06 166/1095/1.135/5.70e-06

x3 50 63/197/0.015/1.80e-06 68/289/0.011/1.69e-06 41/213/0.006/3.79e-06
100 63/197/0.015/1.80e-06 68/289/0.020/1.69e-06 41/213/0.010/3.79e-06
500 63/197/0.275/1.80e-06 68/289/0.504/1.69e-06 41/213/0.353/3.79e-06

x4 50 86/342/0.017/1.17e-06 72/183/0.007/1.73e-06 74/410/0.012/1.59e-06
100 93/446/0.024/2.26e-06 77/423/0.022/1.32e-06 43/177/0.011/2.72e-06
500 132/426/0.824/1.12e-06 75/343/0.650/2.14e-06 133/533/1.130/1.44e-06

x6 50 136/356/0.030/2.31e-06 117/376/0.030/1.36e-06 178/496/0.041/3.44e-06
100 96/423/0.041/1.00e-06 114/573/0.053/1.01e-06 61/309/0.027/1.36e-06
500 111/363/0.695/1.00e-06 127/354/1.084/1.65e-06 91/390/0.788/1.29e-06

x7 50 81/335/0.021/2.06e-06 72/183/0.016/1.73e-06 74/410/0.024/1.50e-06
100 89/423/0.036/1.28e-06 77/423/0.035/1.25e-06 43/177/0.018/2.77e-06
500 147/440/0.938/1.13e-06 74/342/0.634/2.85e-06 134/544/1.142/3.52e-06

Table 3. Numerical results (Problem 2).

SMABFGS AMBFGS-OS AMBFGS
x0 n Itr/Ng/Tcpu/∥Fk∥ Itr/Ng/Tcpu/∥Fk∥ Itr/Ng/Tcpu/∥Fk∥

x2 50 200/319/0.047/2.50e-01 187/279/0.029/2.50e-01 180/274/0.022/2.50e-01
200 169/286/0.148/2.50e-01 194/356/0.204/2.50e-01 181/350/0.201/2.50e-01
600 209/342/1.659/2.50e-01 181/327/1.751/2.50e-01 213/373/2.077/2.50e-01

x5 50 197/290/0.031/2.50e-01 215/322/0.033/2.50e-01 190/301/0.033/2.50e-01
200 182/293/0.166/2.50e-01 199/310/0.212/2.50e-01 206/359/0.219/2.50e-01
600 200/403/1.537/2.50e-01 220/368/2.177/2.50e-01 190/330/1.878/2.50e-01

x6 50 214/447/0.036/2.50e-01 166/359/0.028/2.50e-01 173/341/0.028/2.50e-01
200 284/601/0.244/2.50e-01 217/514/0.217/2.50e-01 241/524/0.248/2.50e-01
600 203/375/1.599/2.50e-01 219/462/2.124/2.50e-01 239/480/2.349/2.50e-01

x7 50 169/265/0.026/2.50e-01 201/322/0.032/2.50e-01 192/318/0.028/2.50e-01
200 283/624/0.259/2.50e-01 225/540/0.246/2.50e-01 240/579/0.245/2.50e-01
600 202/440/1.545/2.50e-01 223/442/2.222/2.50e-01 214/427/2.024/2.50e-01

AIMS Mathematics Volume 9, Issue 9, 25232–25252.

25246

Table 4. Numerical results (Problem 3).

SMABFGS AMBFGS-OS AMBFGS
x0 n Itr/Ng/Tcpu/∥Fk∥ Itr/Ng/Tcpu/∥Fk∥ Itr/Ng/Tcpu/∥Fk∥

x2 60 179/632/0.064/2.69e-07 133/296/0.031/6.83e-07 118/255/0.028/4.13e-07
100 101/366/0.037/7.11e-07 101/258/0.033/6.26e-07 78/292/0.030/1.22e-06
500 109/285/0.683/5.31e-07 101/431/0.879/4.88e-07 89/194/0.762/4.85e-07

x3 60 199/596/0.049/2.77e-07 126/241/0.026/4.99e-07 128/192/0.025/3.69e-07
100 95/254/0.030/3.18e-07 142/505/0.054/3.51e-07 70/244/0.026/1.19e-06
500 145/485/0.920/3.90e-07 145/314/1.229/6.28e-07 136/426/1.167/4.31e-07

x4 60 116/427/0.033/3.10e-07 124/416/0.034/3.34e-07 149/400/0.037/4.58e-07
100 190/536/0.062/5.61e-07 55/176/0.020/5.43e-07 83/201/0.027/8.31e-07
500 109/203/0.683/2.50e-06 97/369/0.832/5.04e-07 105/181/0.884/1.16e-06

x5 60 149/230/0.029/2.74e-07 92/229/0.022/4.93e-07 110/315/0.028/3.83e-07
100 108/287/0.033/3.72e-07 130/396/0.045/7.37e-07 94/212/0.030/3.90e-07
500 125/328/0.774/5.23e-07 78/245/0.688/3.87e-06 86/262/0.748/6.28e-07

x7 60 128/283/0.031/4.34e-07 111/287/0.029/4.78e-07 111/321/0.032/3.34e-07
100 118/347/0.046/5.85e-07 62/162/0.025/8.92e-07 85/264/0.035/3.85e-07
500 109/223/0.807/3.90e-07 152/430/1.342/4.11e-07 111/193/0.925/5.41e-07

Table 5. Numerical results (Problem 4).

SMABFGS AMBFGS-OS AMBFGS
x0 n Itr/Ng/Tcpu/∥Fk∥ Itr/Ng/Tcpu/∥Fk∥ Itr/Ng/Tcpu/∥Fk∥

x1 60 212/1199/0.094/2.11e-07 180/1058/0.070/2.77e-07 193/1016/0.070/2.01e-07
200 219/1117/0.255/2.58e-07 144/1001/0.206/2.38e-07 135/773/0.180/9.55e-07
500 191/1030/1.304/2.36e-07 208/1125/1.820/2.16e-07 180/1099/1.608/2.62e-07

x2 60 144/777/0.054/7.60e-06 164/848/0.063/1.66e-06 148/873/0.062/7.31e-07
200 188/1035/0.223/2.60e-07 145/753/0.191/4.09e-06 196/1038/0.251/2.34e-07
500 202/1282/1.452/2.01e-07 147/953/1.373/9.18e-07 141/863/1.318/2.10e-07

x5 60 146/516/0.039/2.99e-07 97/364/0.022/2.39e-07 153/570/0.034/6.92e-07
200 89/263/0.071/5.99e-07 131/259/0.126/6.19e-07 131/336/0.129/4.29e-07
500 82/253/0.557/2.89e-07 89/233/0.845/2.55e-07 56/127/0.549/4.42e-07

x6 60 156/399/0.037/2.16e-07 109/495/0.024/2.90e-07 160/619/0.034/2.54e-07
200 189/639/0.181/2.10e-07 165/509/0.189/4.42e-07 81/369/0.101/2.36e-07
500 82/255/0.620/8.53e-07 137/467/1.379/2.24e-07 117/526/1.110/2.14e-07

AIMS Mathematics Volume 9, Issue 9, 25232–25252.

25247

Table 6. Numerical results (Problem 5).

SMABFGS AMBFGS-OS AMBFGS
x0 n Itr/Ng/Tcpu/∥Fk∥ Itr/Ng/Tcpu/∥Fk∥ Itr/Ng/Tcpu/∥Fk∥

x1 50 0/1/0.004/0.00e+00 0/1/0.000/0.00e+00 0/1/0.000/0.00e+00
200 0/1/0.000/0.00e+00 0/1/0.001/0.00e+00 0/1/0.000/0.00e+00
600 0/1/0.000/0.00e+00 0/1/0.000/0.00e+00 0/1/0.000/0.00e+00

x2 50 219/1315/0.047/5.46e-07 113/788/0.022/1.34e-06 165/1170/0.031/5.26e-07
200 131/972/0.122/6.45e-07 169/889/0.171/3.38e-06 134/838/0.149/3.20e-06
600 128/869/1.278/5.24e-07 129/839/1.586/6.79e-06 175/1070/1.930/5.12e-07

x3 50 84/262/0.025/6.97e-06 106/482/0.016/7.14e-07 44/167/0.009/7.72e-06
200 105/522/0.095/5.16e-07 90/289/0.084/4.12e-06 62/197/0.052/1.26e-06
600 59/287/0.501/5.99e-07 72/282/0.757/6.40e-07 28/84/0.300/5.70e-06

x5 50 101/433/0.031/1.01e+00 100/471/0.015/1.01e+00 111/347/0.013/1.01e+00
200 79/290/0.070/1.01e+00 135/426/0.133/1.01e+00 102/383/0.105/1.01e+00
600 97/292/0.819/1.01e+00 92/329/0.967/1.01e+00 55/173/0.587/1.01e+00

x6 50 47/113/0.008/8.20e-07 112/453/0.024/5.22e-08 84/373/0.019/8.33e-07
200 173/509/0.157/4.90e-07 171/602/0.189/5.13e-07 106/325/0.114/9.78e-07
600 107/321/0.813/9.48e-07 105/380/1.040/5.60e-07 125/532/1.247/6.48e-07

Table 7. Numerical results (Problem 6).

SMABFGS AMBFGS-OS AMBFGS
x0 n Itr/Ng/Tcpu/∥Fk∥ Itr/Ng/Tcpu/∥Fk∥ Itr/Ng/Tcpu/∥Fk∥

x1 50 215/347/0.074/3.84e-07 156/294/0.028/8.83e-07 179/349/0.022/7.99e-07
200 141/236/0.139/1.31e-06 208/309/0.212/5.07e-07 216/445/0.256/3.49e-07
500 236/366/2.194/6.31e-07 175/302/2.305/1.45e-06 172/402/2.117/5.08e-07

x2 50 148/293/0.026/3.86e-07 197/339/0.034/4.32e-07 159/274/0.047/4.71e-07
200 228/427/0.214/1.15e-06 117/282/0.137/1.44e-06 172/343/0.242/4.65e-07
500 198/424/1.949/1.20e-06 166/253/2.328/1.16e-06 171/279/2.677/5.59e-07

x3 50 693/761/0.163/3.10e-07 708/783/0.062/8.10e-07 412/496/0.038/7.75e-07
200 2595/2733/3.698/6.50e-07 2645/2857/4.039/2.76e-07 1466/1539/2.077/1.89e-06
500 6512/6606/55.638/3.15e-07 6425/6485/54.137/7.41e-07 3566/3639/29.952/1.89e-06

x4 50 193/260/0.016/1.62e-06 195/331/0.015/1.30e-06 215/369/0.016/6.72e-07
200 279/556/0.212/2.24e-07 270/371/0.208/1.31e-06 230/307/0.187/9.36e-07
500 256/347/1.606/9.32e-07 310/402/2.603/7.21e-07 246/344/2.026/1.45e-06

x7 50 132/247/0.014/5.59e-07 136/206/0.011/4.30e-07 156/363/0.014/6.96e-07
200 159/301/0.123/4.65e-07 193/363/0.149/2.78e-07 156/246/0.118/5.53e-07
500 171/261/1.060/5.29e-07 225/350/1.871/4.36e-07 170/268/1.386/2.69e-07

AIMS Mathematics Volume 9, Issue 9, 25232–25252.

25248

Table 8. Numerical results (Problem 7).

SMABFGS AMBFGS-OS AMBFGS
x0 n Itr/Ng/Tcpu/∥Fk∥ Itr/Ng/Tcpu/∥Fk∥ Itr/Ng/Tcpu/∥Fk∥

x2 50 81/176/0.029/6.38e-05 113/457/0.029/3.63e-05 103/450/0.029/6.93e-05
200 31/76/0.031/6.62e-05 34/145/0.041/8.57e-05 20/37/0.021/8.73e-03
500 65/147/0.392/5.95e-05 119/530/1.090/2.02e-04 20/40/0.165/1.19e-02

x4 50 69/596/0.029/9.63e-05 74/596/0.028/2.45e-04 74/643/0.031/8.24e-05
200 91/703/0.107/6.80e-05 171/1075/0.223/6.46e-05 114/796/0.152/8.24e-05
500 NaN/NaN/NaN/NaN NaN/NaN/NaN/NaN NaN/NaN/NaN/NaN

x6 50 135/253/0.024/4.99e-05 180/853/0.058/5.59e-05 132/456/0.035/7.84e-03
200 81/214/0.082/1.26e-04 59/197/0.074/6.21e-05 98/520/0.133/6.58e-05
500 93/221/0.656/3.83e-03 40/201/0.371/1.09e-04 83/219/0.769/1.29e-02

x7 50 24/91/0.006/3.18e-04 74/470/0.028/6.85e-05 21/84/0.006/3.37e-04
200 97/194/0.089/1.59e-04 269/893/0.321/1.38e-04 88/337/0.107/5.85e-05
500 73/212/0.503/3.32e-05 148/840/1.311/4.55e-05 35/126/0.295/1.98e-04

Figure 4. Performance profiles based on CPU time.

Figure 5. Performance profiles based on number of iterations.

AIMS Mathematics Volume 9, Issue 9, 25232–25252.

25249

Figure 6. Performance profiles based on number of gradient evaluation.

As can be seen from Tables 2–8, the algorithm presented in the paper is clearly effective for solving
most of the tested problems and is competitive with the other two algorithms in Itr, Ng, and Tcpu on
the tested problems. Figures 4–6 also indicate that the AMBFGS algorithm, when compared with the
SMABFGS and AMBFGS-OS algorithms, generally occupies an advantageous position. It exhibits
better numerical performance and can solve nonlinear equations quickly and effectively.

5. Conclusions

In this research, we presented an augmented memoryless BFGS algorithm based on a modified
secant condition, which ensures a descent search direction. We determined the scaling parameter
by reducing the upper bound of the condition number using an eigenvalue analysis. Global
convergence of our approach has been demonstrated under appropriate assumptions. Finally, numerical
results obtained by applying the AMBFGS method to solve large-scale unconstrained optimization
problems and nonlinear equations demonstrate its encouraging efficiency, even when compared to the
SMABFGS method and AMBFGS-OS method.

Author contributions

Yulin Cheng and Jing Gao: Methodology, Software, Visualization, Writing-original draft. All
authors of this article have been contributed equally. All authors have read and approved the final
version of the manuscript for publication.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This work is supported by the Scientific and Technological Developing Scheme of Jilin
Province (YDZJ202101ZYTS167, YDZJ202201ZYTS303, 20230508184RC); the project of education

AIMS Mathematics Volume 9, Issue 9, 25232–25252.

25250

department of Jilin Province (JJKH20210030KJ, JJKH20230054KJ); the doctoral research project
start-up fund of Beihua University; the graduate innovation project of Beihua University (2023037).

Conflict of interest

All authors declare no conflicts of interest in this paper.

References

1. W. Y. Sun, Y. X. Yuan, Optimization theory and methods: nonlinear programming, New York:
Springer, 2006. https://doi.org/10.1007/b106451

2. J. Z. Zhang, N. Y. Deng, L. H. Chen, New quasi-Newton equation and related
methods for unconstrained optimization, J. Optim. Theory Appl., 102 (1999), 147–167.
https://doi.org/10.1023/A:1021898630001

3. J. Z. Zhang, C. X. Xu, Properties and numerical performance of quasi-Newton methods
with modified quasi-Newton equations, J. Comput. Appl. Math., 137 (2001), 269–278.
https://doi.org/10.1016/S0377-0427(00)00713-5

4. S. Babaie-Kafaki, On optimality of the parameters of self-scaling memoryless quasi-Newton
updating formulae, J. Optim. Theory Appl., 167 (2015), 91–101. https://doi.org/10.1007/s10957-
015-0724-x

5. S. Babaie-Kafaki, Z. Aminifard, Two-parameter scaled memoryless BFGS methods with a
nonmonotone choice for the initial step length, Numer. Algorithms, 82 (2019), 1345–1357.
https://doi.org/10.1007/s11075-019-00658-1

6. Z. Aminifard, S. Babaie-Kafaki, S. Ghafoori, An augmented memoryless BFGS method based on a
modified secant equation with application to compressed sensing, Appl. Numer. Math., 167 (2021),
187–201. https://doi.org/10.1016/j.apnum.2021.05.002

7. S. Babaie-Kafaki, Z. Aminifard, S. Ghafoori, A hybrid quasi-Newton method with application
in sparse recovery, Comput. Appl. Math., 41 (2022), 249. https://doi.org/10.1007/s40314-022-
01962-8

8. M. Jourak, S. Nezhadhosein, F. Rahpeymaii, A new self-scaling memoryless quasi-Newton update
for unconstrained optimization, 4OR, 22 (2024), 235–252. https://doi.org/10.1007/s10288-023-
00544-6

9. C. G. Broyden, The convergence of a class of double-rank minimization algorithms 1. General
considerations, IMA J. Appl. Math., 6 (1970), 76–90. https://doi.org/10.1093/imamat/6.1.76

10. C. G. Broyden, The convergence of a class of double-rank minimization algorithms 2. The new
algorithm, IMA J. Appl. Math., 6 (1970), 222–231. https://doi.org/10.1093/imamat/6.3.222

11. R. Fletcher, A new approach to variable metric algorithms, Comput. J., 13 (1970), 317–322.
https://doi.org/10.1093/comjnl/13.3.317

12. D. Goldfarb, A family of variable-metric methods derived by variational means, Math. Comput.,
24 (1970), 23–26.

AIMS Mathematics Volume 9, Issue 9, 25232–25252.

https://dx.doi.org/https://doi.org/10.1007/b106451
https://dx.doi.org/https://doi.org/10.1023/A:1021898630001
https://dx.doi.org/https://doi.org/10.1016/S0377-0427(00)00713-5
https://dx.doi.org/https://doi.org/10.1007/s10957-015-0724-x
https://dx.doi.org/https://doi.org/10.1007/s10957-015-0724-x
https://dx.doi.org/https://doi.org/10.1007/s11075-019-00658-1
https://dx.doi.org/https://doi.org/10.1016/j.apnum.2021.05.002
https://dx.doi.org/https://doi.org/10.1007/s40314-022-01962-8
https://dx.doi.org/https://doi.org/10.1007/s40314-022-01962-8
https://dx.doi.org/https://doi.org/10.1007/s10288-023-00544-6
https://dx.doi.org/https://doi.org/10.1007/s10288-023-00544-6
https://dx.doi.org/https://doi.org/10.1093/imamat/6.1.76
https://dx.doi.org/https://doi.org/10.1093/imamat/6.3.222
https://dx.doi.org/https://doi.org/10.1093/comjnl/13.3.317

25251

13. D. F. Shanno, Conditioning of quasi-Newton methods for function minimization, Math. Comput.,
24 (1970), 647–656.

14. S. S. Oren, E. Spedicato, Optimal conditioning of self-scaling variable metric algorithms, Math.
Program., 10 (1976), 70–90. https://doi.org/10.1007/BF01580654

15. S. S. Oren, D. G. Luenberger, Self-scaling variable metric (SSVM) algorithms: Part I: Criteria
and sufficient conditions for scaling a class of algorithms, Manag. Sci., 20 (1974), 845–862.
https://doi.org/10.1287/mnsc.20.5.845

16. D. S. Watkins, Fundamentals of matrix computations, John Wiley & Sons, 2004.

17. S. Babaie-Kafaki, A modified scaled memoryless BFGS preconditioned conjugate gradient method
for unconstrained optimization, 4OR, 11 (2013), 361–374. https://doi.org/10.1007/s10288-013-
0233-4

18. J. Nocedal, S. J. Wright, Numerical optimization, 2 Eds., New York: Springer, 2006.
https://doi.org/10.1007/978-0-387-40065-5

19. E. D. Dolan, J. J. More, Benchmarking optimization software with performance profiles, Math.
Program., 91 (2002), 201–213. https://doi.org/10.1007/s101070100263

20. G. Zoutendijk, Nonlinear programming, computational methods, In: Integer and nonlinear
programming, Amsterdam: North-Holland, 1970, 37–86.

21. N. I. M. Gould, D. Orban, P. L. Toint, CUTEr and SifDec: A constrained and
unconstrained testing environment, revisited, ACM Trans. Math. Software, 29 (2003), 373–394.
https://doi.org/10.1145/962437.962439

22. Y. H. Dai, A perfect example for the BFGS method, Math. Program., 138 (2013), 501–530.
https://doi.org/10.1007/s10107-012-0522-2

23. N. Andrei, An adaptive scaled BFGS method for unconstrained optimization, Numer. Algorithms,
77 (2018), 413–432. https://doi.org/10.1007/s11075-017-0321-1

24. B. A. Hassan, I. A. R. Moghrabi, A modified secant equation quasi-Newton method
for unconstrained optimization, J. Appl. Math. Comput., 69 (2023), 451–464.
https://doi.org/10.1007/s12190-022-01750-x

25. G. L. Yuan, X. Zhao, K. J. Liu, X. X. Chen, An adaptive projection BFGS method for
nonconvex unconstrained optimization problems, Numer. Algorithms, 95 (2024), 1747–1767.
https://doi.org/10.1007/s11075-023-01626-6

26. X. M. Lu, C. F. Yang, Q. Wu, J. X. Wang, Y. H. Wei, L. Y. Zhang, et al., Improved reconstruction
algorithm of wireless sensor network based on BFGS quasi-Newton method, Electronics, 12
(2023), 1–15. https://doi.org/10.3390/electronics12061267

27. V. Krutikov, E. Tovbis, P. Stanimirović, L. Kazakovtsev, D. Karabašević, Machine learning in
quasi-Newton methods, Axioms, 13 (2024), 1–29. https://doi.org/10.3390/axioms13040240

28. A. B. Abubakar, P. Kumam, H. Mohammad, A. H. Ibrahim, T. Seangwattana, B. A. Hassan, A
hybrid BFGS-Like method for monotone operator equations with applications, J. Comput. Appl.
Math., 446 (2024), 115857. https://doi.org/10.1016/j.cam.2024.115857

AIMS Mathematics Volume 9, Issue 9, 25232–25252.

https://dx.doi.org/https://doi.org/10.1007/BF01580654
https://dx.doi.org/https://doi.org/10.1287/mnsc.20.5.845
https://dx.doi.org/https://doi.org/10.1007/s10288-013-0233-4
https://dx.doi.org/https://doi.org/10.1007/s10288-013-0233-4
https://dx.doi.org/https://doi.org/10.1007/978-0-387-40065-5
https://dx.doi.org/https://doi.org/10.1007/s101070100263
https://dx.doi.org/https://doi.org/10.1145/962437.962439
https://dx.doi.org/https://doi.org/10.1007/s10107-012-0522-2
https://dx.doi.org/https://doi.org/10.1007/s11075-017-0321-1
https://dx.doi.org/https://doi.org/10.1007/s12190-022-01750-x
https://dx.doi.org/https://doi.org/10.1007/s11075-023-01626-6
https://dx.doi.org/https://doi.org/10.3390/electronics12061267
https://dx.doi.org/https://doi.org/10.3390/axioms13040240
https://dx.doi.org/https://doi.org/10.1016/j.cam.2024.115857

25252

29. Y. Narushima, S. Nakayama, M. Takemura, H. Yabe, Memoryless quasi-Newton methods based
on the spectral-scaling Broyden family for Riemannian optimization, J. Optim. Theory Appl., 197
(2023), 639–664. https://doi.org/10.1007/s10957-023-02183-7

30. J. R. Rice, J. J. Moré, B. S. Garbow, K. E. Hillstrom, Testing unconstrained optimization software,
ACM Trans. Math. Software, 7 (1981), 17–41. https://doi.org/10.1145/355934.355936

31. N. Andrei, An unconstrained optimization test functions collection, Adv. Model. Optim., 10 (2008),
147–161.

32. P. J. Liu, X. Y. Wu, H. Shao, Y. Zhang, S. H. Cao, Three adaptive hybrid derivative-free projection
methods for constrained monotone nonlinear equations and their applications, Numer. Linear
Algebra Appl., 30 (2023), e2471. https://doi.org/10.1002/nla.2471

33. W. J. Zhou, D. M. Shen, Convergence properties of an iterative method for solving symmetric non-
linear equations, J. Optim. Theory Appl., 164 (2015), 277–289. https://doi.org/10.1007/s10957-
014-0547-1

34. X. W. Fang, Q. Ni, M. L. Zeng, A modified quasi-Newton method for nonlinear equations, J.
Comput. Appl. Math., 328 (2018), 44–58. https://doi.org/10.1016/j.cam.2017.06.024

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 9, 25232–25252.

https://dx.doi.org/https://doi.org/10.1007/s10957-023-02183-7
https://dx.doi.org/https://doi.org/10.1145/355934.355936
https://dx.doi.org/ https://doi.org/10.1002/nla.2471
https://dx.doi.org/ https://doi.org/10.1007/s10957-014-0547-1
https://dx.doi.org/ https://doi.org/10.1007/s10957-014-0547-1
https://dx.doi.org/ https://doi.org/10.1016/j.cam.2017.06.024
https://creativecommons.org/licenses/by/4.0

	Introduction
	An augmented memoryless BFGS method
	The descent property and global convergence
	Numerical experiments
	Experiment i: test for unconstrained optimization problems
	Experiment ii: test for nonlinear equations

	Conclusions

