

AIMS Mathematics, 9(9): 25232–25252. DOI: 10.3934/[math.20241231](https://dx.doi.org/ 10.3934/math.20241231) Received: 15 May 2024 Revised: 22 July 2024 Accepted: 21 August 2024 Published: 29 August 2024

https://[www.aimspress.com](https://www.aimspress.com/journal/Math)/journal/Math

Research article

An efficient augmented memoryless quasi-Newton method for solving large-scale unconstrained optimization problems

Yulin Cheng and Jing Gao*

School of Mathematics and Statistics, Beihua University, Jilin 132013, China

* Correspondence: Email: gaojingjy@163.com.

Abstract: In this paper, an augmented memoryless BFGS quasi-Newton method was proposed for solving unconstrained optimization problems. Based on a new modified secant equation, an augmented memoryless BFGS update formula and an efficient optimization algorithm were established. To improve the stability of the numerical experiment, we obtained the scaling parameter by minimizing the upper bound of the condition number. The global convergence of the algorithm was proved, and numerical experiments showed that the algorithm was efficient.

Keywords: unconstrained optimization; quasi-Newton method; BFGS update; secant equation; global convergence

Mathematics Subject Classification: 65K05, 90C31, 90C53

1. Introduction

In this paper, we consider the following unconstrained optimization problem:

$$
\min\{f(x) \mid x \in \mathbb{R}^n\},\tag{1.1}
$$

where $f : \mathbb{R}^n \to \mathbb{R}$ is a continuously differentiable function and its gradient is denoted by $g(x) = \nabla f(x)$. Generally, [\(1.1\)](#page-0-0) iterates along the following form:

$$
x_{k+1} = x_k + s_k, \text{ for all } k \ge 0,
$$
 (1.2)

where $s_k = \alpha_k d_k$, d_k is the search direction, $\alpha_k > 0$ is a step length often obtained by a line search along *d^k* .

There are many methods to solve unconstrained optimization problem [\(1.1\)](#page-0-0). Among these methods, The Newton method has a second-order convergence rate when the Hessian matrix $\nabla^2 f(x_k)$ is positive definite, but it cannot ensure that the direction chosen for the objective function at x_k is a descent while

solving unconstrained optimization problems. In addition, every iterations of the Newton method requires the second-order gradient of the objective function, namely the Hessian matrix, which is computationally complex for large-scale problems. To address large-scale problems more effectively, the quasi-Newton method was proposed. The quasi-Newton approach updates the search direction using an approximation Hessian matrix instead of the true Hessian matrix used in the Newton method. This approach can reduce the computation of second-order derivatives, lower the computational complexity, and handle non-differentiable functions in some special cases [\[1\]](#page-18-0).

The quasi-Newton method is recognized as one of the excellent iterative methods for solving largescale unconstrained optimization problems (for relevant research, see [22–25]). The fundamental concept of the quasi-Newton technique is to substitute an approximate matrix B_k for the Hessian matrix $\nabla^2 f(x_k)$ in the Newton method [\[1\]](#page-18-0). In order to satisfy the secant equation, i.e.,

$$
B_{k+1}S_k = y_k,\tag{1.3}
$$

where $s_k = x_{k+1} - x_k$, $y_k = g_{k+1} - g_k$, the approximate matrix B_k of the Hessian matrix is constructed using the quasi-Newton update formula. The direction of the quasi-Newton method can be calculated directly by the following formula:

$$
d_0 = -g_0, d_k = -H_k g_k, \text{ for all } k \ge 0,
$$
\n(1.4)

where H_k is the approximation of $\nabla^2 f(x_k)^{-1}$ and satisfies secant equation, $H_{k+1}y_k = s_k$, for all $k \ge 0$.
The numerical performance of the quasi Newton method is directly impacted by the undating of F

The numerical performance of the quasi-Newton method is directly impacted by the updating of *H^k* . There are many updated formulas of H_k such as the DFP formula, the BFGS formula, and the SR1 formula. These methods, which are composed of different updating formulas, are particularly effective in solving unconstrained optimization problems and they have promising computational performance in practical problems.

The BFGS method, independently proposed by Broyden, Fletcher, Goldfarb, and Shanno [9–13], is one of the most widely used and successful quasi-Newton methods. B_k is always positive definite during the computation; hence, the BFGS method keeps the convergence and stability for optimization problems. Moreover, the BFGS method has emerged as the preferred option for many applications, including neural networks, image processing, and machine learning (see [26–28]). The BFGS formula is as follows:

$$
B_{k+1}^{BFGS} = B_k + \frac{y_k y_k^T}{s_k^T y_k} - \frac{B_k s_k s_k^T B_k}{s_k^T B_k s_k},
$$
\n(1.5)

$$
H_{k+1}^{BFGS} = H_k - \frac{s_k y_k^T H_k + H_k y_k s_k^T}{s_k^T y_k} + \left(1 + \frac{y_k^T H_k y_k}{s_k^T y_k}\right) \frac{s_k s_k^T}{s_k^T y_k}.
$$
 (1.6)

The BFGS formula satisfies the secant equation [\(1.3\)](#page-1-0). Many researchers have improved the formula [\(1.3\)](#page-1-0) to enhance numerical stability and the accuracy of the approximation Hessian matrix. Zhang et al. [\[2\]](#page-18-1), Zhang and Xu [\[3\]](#page-18-2) put forward a modified secant condition

$$
B_{k+1}S_k = \check{y}_k,\tag{1.7}
$$

25234

$$
\check{y}_k = y_k + \tau \frac{\check{\eta}_k}{s_k^T w_k} w_k, \tag{1.8}
$$

$$
\check{\eta}_k = 2(f_k - f_{k+1}) + s_k^T(g_k + g_{k+1}),\tag{1.9}
$$

where $\tau > 0$ and w_k is a vector parameter satisfying $s_k^T w_k \neq 0$.
On the other hand, in order to reduce memory storage and

On the other hand, in order to reduce memory storage and improve the computational efficiency of the algorithm, a memoryless quasi-Newton method is proposed to solve large-scale unconstrained optimization problems, where the inner product of multiple vectors is employed to determine the search direction [\[4\]](#page-18-3). Memoryless technology has been employed in numerous works; for example, Babaie-Kafaki and Aminifard [\[5\]](#page-18-4), Aminifard, Babaie-Kafaki and Ghafoori [\[6\]](#page-18-5), Babaie-Kafaki, Aminifard and Ghafoori [\[7\]](#page-18-6), Jourak, Nezhadhosein, and Rahpeymaii [\[8\]](#page-18-7) have applied a memoryless technique to design and develop new quasi-Newton methods for solving large-scale unconstrained optimization problems, and Narushima, Nakayama, Takemura et al. [\[29\]](#page-20-0) propose a memoryless quasi-Newton method in Riemannian manifolds.

Our goal in this research is to present an effective augmented memoryless BFGS method for solving unconstrained optimization problems. The major contributions of this paper have at least three aspects as follows:

(1) To establish an effective optimization algorithm for large-scale unconstrained optimization problems, a new augmented memoryless BFGS updating formula is provided that is based on a specific modified secant equation.

(2) To enhance the effectiveness of the experiment, the condition number may be minimized in order to obtain the scaling parameters.

(3) We prove the global convergence of the algorithm and numerical experiments that show the efficiency of the algorithm.

The organization of the article is as follows. In Section 2, we present an augmented memoryless BFGS technique along with the algorithm framework. The descent property and the global convergence of the proposed algorithm are demonstrated in Section 3. In Section 4, the numerical experiment demonstrates the effectiveness of our method in solving large-scale unconstrained optimization problems and nonlinear equations. A conclusion to this work is presented in Section 5.

2. An augmented memoryless BFGS method

Inspired by Zhang and Xu [\[3\]](#page-18-2) and Aminifard, Babaie-Kafaki, and Ghafoori [\[6\]](#page-18-5), to improve the precision of the solution, we select $w_k = y_k$ in Eqs [\(1.7\)](#page-1-1)–[\(1.9\)](#page-2-0), get a modified secant equation,

$$
B_{k+1}S_k = \bar{y}_k,\tag{2.1}
$$

where $\bar{y}_k = (1 + \tau_k)y_k$, $\tau_k = \tau \frac{\eta_k}{s_k^T y_k}$ and $\eta_k = \max\{0, \check{\eta}_k\}.$
We use life the **PEGS** iteration formula (1.5) less

We modify the BFGS iteration formula [\(1.5\)](#page-1-2) by a rank-1 correction, which we refer to as the augmented BFGS (ABFGS) formula

$$
B_{k+1}^{ABFGS} = B_{k+1}^{BFGS} + \tau_k \frac{y_k s_k^T}{s_k^T s_k}.
$$
\n(2.2)

 B^{ABFGS}_{k+1} ${}_{k+1}^{ABFGS}$ $s_k = \bar{y}_k$ because B_{k+1}^{BFGS} $_{k+1}^{BFGS}$ $s_k = y_k$. Therefore, [\(2.2\)](#page-2-1) satisfies the modified secant equation [\(2.1\)](#page-2-2). As is known by the quasi-Newton property, when steplength α_k satifies Wolfe line search,

$$
f(x_k + \alpha_k d_k) - f(x_k) \le \delta \alpha_k g_k^T d_k,
$$
\n(2.3)

$$
\nabla f (x_k + \alpha_k d_k)^T d_k \ge \rho g_k^T d_k,
$$
\n(2.4)

with $0 < \delta < \rho < 1$, s_k^T
Therefore *RABFGS* is g $\chi^T y_k > 0$ is established. By Theorem 5.2.2 of [\[1\]](#page-18-0), we know [\(1.5\)](#page-1-2) is positive definite. Therefore, *B ABFGS ABFGS* is a positive definite matrix since $\tau_k \ge 0$. In other words, the positive definiteness is
to the ABFGS update formula. As a result, the search directions of ABFGS are descent passed down to the ABFGS update formula. As a result, the search directions of ABFGS are descent.

The scaled memoryless BFGS (SMBFGS) method is considered an effective tool for solving largescale unconstrained optimization problems. In order to obtain SMBFGS formula, *B^k* can be replaced by $\frac{1}{\theta}$ ϑ*k I* in [\(1.5\)](#page-1-2), namely,

$$
B_{k+1}^{SMBFGS} = \frac{1}{\vartheta_k} I + \frac{y_k y_k^T}{s_k^T y_k} - \frac{1}{\vartheta_k} \frac{s_k s_k^T}{s_k^T s_k},
$$
\n(2.5)

where $\vartheta_k > 0$ is called the scaling parameter. Similarly, by replacing H_k with $\vartheta_k I$, we can get the SMBFGS iteration formula for the inverse of the Hessian matrix

$$
H_{k+1}^{SMBFGS} = \vartheta_k I - \vartheta_k \frac{s_k y_k^T + y_k s_k^T}{s_k^T y_k} + \left(1 + \vartheta_k \frac{y_k^T y_k}{s_k^T y_k}\right) \frac{s_k s_k^T}{s_k^T y_k}.
$$
 (2.6)

In the formula [\(2.2\)](#page-2-1), we replace B_{k+1}^{BFGS} with B_{k+1}^{SMBFGS} $\frac{SMBFGS}{k+1}$ to make a rank-1 correction, and then, using the Sheran-Morrison formula [\[1\]](#page-18-0), we get the augmented memoryless BFGS formula (AMBFGS), i.e.,

$$
B_{k+1}^{AMBFGS} = B_{k+1}^{SMBFGS} + \tau_k \frac{y_k s_k^T}{s_k^T s_k} = \frac{1}{\vartheta_k} \left(I - \frac{s_k s_k^T}{s_k^T s_k} \right) + \frac{y_k y_k^T}{s_k^T y_k} + \tau_k \frac{y_k s_k^T}{s_k^T s_k},
$$
(2.7)

$$
H_{k+1}^{AMBFGS} = H_{k+1}^{SMBFGS} - \frac{\tau_k (s_k^T y_k s_k s_k^T - \vartheta_k s_k^T y_k s_k y_k^T + \vartheta_k y_k^T y_k s_k s_k^T)}{(1 + \tau_k) s_k^T y_k s_k^T y_k}.
$$
(2.8)

For the selection of parameter ϑ_k , Babaie-Kafaki [\[4\]](#page-18-3) came up with well-structured upper bounds for condition numbers of the scaled memoryless quasi Newton formulas based on eigenvalue analysis the condition numbers of the scaled memoryless quasi-Newton formulas based on eigenvalue analysis. It was then demonstrated that the scaling parameter suggested by Oren and Spedicato [\[14\]](#page-19-0) is the only value that can be found as the lowest of the upper bound given for the condition number of the scaled memoryless BFGS update formula. On the other hand, according to Oren and Luenberger [\[15\]](#page-19-1), the scaling parameter is the distinct lowest value of the provided upper bound on the condition number of the scaled memoryless DFP update algorithm.

According to [\[5\]](#page-18-4), the choice of parameter ϑ_k is addressed by minimizing the given upper bound
the condition number of the formula (2.8). Since Wolfe line search (2.4) ensures $\epsilon^T w \ge 0$, we for the condition number of the formula [\(2.8\)](#page-3-0). Since Wolfe line search [\(2.4\)](#page-3-1) ensures s_k^T $\sum_{k}^{T} y_k > 0$, we have $s_k \neq 0$ and $y_k \neq 0$. So a set of mutually orthogonal unit vectors $q_k^{(i)}$ *k n*−2 $\sum_{i=1}^{n-2}$ exists for which s_k^T $q_k^T q_k^{(i)}$ $\binom{l}{k} =$ y_k^T $R_{k}^{T}q_{k}^{(i)}$ k_k = 0, yielding B_{k+1}^{AMBFGS} $\frac{AMBFGS}{k+1}q_k^{(i)}$ $y_k^T q_k^{(i)} = 0$, yielding $B_{k+1}^{AMBFGS} q_k^{(i)}$, for $i = 1, 2, ..., n-2$. Therefore, $(n-2)$ eigenvalues of the matrix $H_{k+1}^{AMBFGS} (B_{k+1}^{AMBFGS})$ are equivalent to $\vartheta_k(\frac{1}{\vartheta_k})$. *k*+1 (*B AMBFGS* $\frac{AMBFGS}{k+1}$) are equivalent to $\vartheta_k(\frac{1}{\vartheta_k})$ ϑ*k*).

Using the relationship between the determinants and traces of the matrices H_{k+1}^{AMBFGS} $k+1$ and B_{k+1}^{AMBFGS} *k*+1 , other eigenvalues of B_{k+1} and H_{k+1} can be obtained. The relationships are as follows:

$$
\rho_k^+ + \rho_k^- = \frac{1}{\vartheta_k} + \frac{\|y_k\|^2}{s_k^T y_k} + \frac{\tau_k s_k^T y_k}{\|s_k\|^2},\tag{2.9}
$$

$$
\rho_k^+ \rho_k^- = \frac{\vartheta_k ||s_k||^2}{(1 + \tau_k)s_k^T y_k}.
$$
\n(2.10)

Formulas of the two other eigenvalues of B_{k+1}^{AMBFGS} A^{ABFGS}_{k+1} , namely, ρ_k^+ μ_k^+ and $\rho_k^ \overline{k}$, can be obtained,

$$
\rho_k^{\pm} = \frac{1}{2} \left(\frac{1}{\vartheta_k} + \frac{\|y_k\|^2}{s_k^T y_k} + \frac{\tau_k s_k^T y_k}{\|s_k\|^2} \right) \pm \frac{1}{2} \sqrt{\left(\frac{1}{\vartheta_k} + \frac{\|y_k\|^2}{s_k^T y_k} + \frac{\tau_k s_k^T y_k}{\|s_k\|^2} \right)^2 - 4 \frac{\vartheta_k \|s_k\|^2}{(1 + \tau_k) s_k^T y_k}}
$$
(2.11)

for which $0 < \rho_k^- < \rho_k^+$. Additionally, since H_{k+1}^{AMBFGS}
AMBEGS is descent. Furthermore, we have $0 < \rho_k^-$. $\frac{AMBFGS}{k+1}$ is positive definite, the search direction of AMBFGS is descent. Furthermore, we have $0 < \rho_k^-$ <
 μ_k 1 $\frac{1}{\theta_k} < \rho_k^+$ after performing a few algebraic operations. Therefore, ∥*H AMBFGS* $\left| \begin{array}{c} AMBFGS \\ k+1 \end{array} \right| = \rho_k^+$ μ_k^+ and $||H_{k+1}^{AMBFGS}$ *k*+1 $^{-1}$ || = $\rho_k^$ k_{k} . Now, from [\(2.9\)](#page-4-0) and [\(2.10\)](#page-4-1) we can write

$$
\kappa(H_{k+1}^{AMBFGS}) = \frac{\rho_k^+}{\rho_k^-} = \frac{\rho_k^{+2}}{\rho_k^+ \rho_k^-} \le \frac{(\rho_k^+ + \rho_k^-)^2}{\rho_k^+ \rho_k^-} \n\le \frac{(s_k^T y_k ||s_k||^2 + \vartheta_k ||s_k||^2 ||y_k||^2 + \tau_k \vartheta_k (s_k^T y_k)^2)^2}{(1 + \tau_k) \vartheta_k (s_k^T y_k)^3 ||s_k||^2},
$$
\n(2.12)

where $\kappa(\cdot)$ expresses the spectral condition number.

It is generally acknowledged that decreasing the condition number in matrix-based computing can enhance the stability of numerical calculations [\[16\]](#page-19-2). From [\(2.12\)](#page-4-2), we derive the minimizer of the upper bound of $\kappa(H_{k+1}^{AMBFGS})$ $\binom{AMBFGS}{k+1}$ as follows:

$$
\vartheta_k = \frac{s_k^T y_k ||s_k||^2}{\tau_k (s_k^T y_k)^2 + \vartheta_k ||s_k||^2 ||y_k||^2}.
$$
\n(2.13)

Now, we present a new augmented memoryless BFGS algorithm for solving unconstrained optimization problems.

Algorithm 2.1. The AMBFGS algorithm

Step 1. Choose an initial point x_0 , choose parameters $0 < \delta < \rho < 1$, $\epsilon > 0$, $\epsilon_1 > 0$. Set $H_0 = I$, $d_0 = -H_0g_0$ and $k := 0$.

Step 2. If $||g_k|| < \epsilon$, stop; otherwise, go to Step 3.

Step 3. Compute the step size α_k , so that it satisfies Wolfe line search [\(2.3\)](#page-3-2) and [\(2.4\)](#page-3-1). Set $x_{k+1} = \pm \alpha_k d_k$ $x_k + \alpha_k d_k$.
Step 4

Step 4. Compute ϑ_k , if $\vartheta_k < \epsilon_1$, let $\vartheta_k = \frac{s_k^T y_k}{||y_k||^2}$ $\frac{y_k y_k}{||y_k||^2}$, otherwise, obtains ϑ_k by [\(2.13\)](#page-4-3).

Step 5. Update H_{k+1} by [\(2.8\)](#page-3-0) and compute the search direction d_k using [\(1.4\)](#page-1-3).

Step 6. Set $k := k + 1$ and go to Step 2.

Remark 2.1. *Step 4 is set this way in order to avoid* ϑ_k *falling into a dilemma during the calculation* of the algorithm *of the algorithm.*

3. The descent property and global convergence

In this section, we demonstrate that the direction is sufficiently descent and the algorithm is globally convergent. Our analysis is based on the following assumptions.

Assumption 3.1. *For arbitrary* $x_0 \in \mathbb{R}^n$, $\mathcal{L} = \{x \mid f(x) \leq f(x_0)\}$ *is a bounded set and in some neighborhood* U *of* \mathcal{L} , $\nabla f(x)$ *is Lipschitz continuous, that is, there exists a constant* $L > 0$ *such that*

$$
\|\nabla f(x) - \nabla f(\check{x})\| \le L\|x - \check{x}\|, \forall x, \check{x} \in \mathcal{U}.
$$
\n(3.1)

Based on Assumption 3.1, we know that there is a positive constant Φ exists such that

$$
\|\nabla f(x)\| \le \Phi, \forall x \in \mathcal{L}.\tag{3.2}
$$

Since AMBFGS directions are descent, from [\(2.4\)](#page-3-1), we have ${x_k} \subset \mathcal{L}$.

The boundedness of the parameter ϑ_k in [\(2.13\)](#page-4-3) is important. We will prove $\vartheta_k \in [m, M]$ in mm ³ ¹ Lemma 3.1.

Lemma 3.1. *Considering f is a uniformly convex function on a neighborhood* U *of* L*, the scaling parameter* ϑ_k *of the AMBFGS algorithm in [\(2.13\)](#page-4-3) is well defined and bounded.*

Proof. Let *f* be uniformly convex on U, then, by Theorem 1.3.16 of [\[1\]](#page-18-0), for any $x, y \in \mathcal{L}$, we have

$$
f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2}v||y - x||^2,
$$
\n(3.3)

and

$$
f(x) \ge f(y) + \langle \nabla f(y), x - y \rangle + \frac{1}{2} v \|x - y\|^2,
$$
 (3.4)

where $v > 0$ is a constant. Let $y = x_{k+1}$, $x = x_k$, adding [\(3.3\)](#page-5-0) and [\(3.4\)](#page-5-1), we can obtain

$$
\langle \nabla f(x_{k+1}) - \nabla f(x_k), x_{k+1} - x_k \rangle \geq v ||x_{k+1} - x_k||^2, \forall k \geq 0.
$$

In this paper, $s_k = x_{k+1} - x_k$, $y_k = \nabla f(x_{k+1}) - \nabla f(x_k)$, and then,

$$
s_k^T y_k \ge v \|s_k\|^2, \forall k \ge 0.
$$
\n(3.5)

Through (3.1) and (3.5) , we can get

$$
\frac{\nu}{L^2} \le \frac{s_k^T y_k}{\|y_k\|^2} \le \frac{\|s_k\|^2}{s_k^T y_k} \le \frac{1}{\nu}.\tag{3.6}
$$

By mean value theorem, [\(1.9\)](#page-2-0) can be rewritten by

$$
\check{\eta} = 2(f_k - f_{k+1}) + (g_k + g_{k+1})^T s_k \n= 2\nabla f(\theta_k)^T (x_k - x_{k+1}) + (g_k + g_{k+1})^T s_k \n= -2\nabla f(\theta_k)^T s_k + (g_k + g_{k+1})^T s_k \n= (g_k - g(\theta_k) + g_{k+1} - g(\theta_k))^T s_k,
$$
\n(3.7)

where $\theta_k = hx_k + (1 - h)x_{k+1}, h \in (0, 1)$. Hence, by [\(3.1\)](#page-5-2) we have that

$$
|\check{\eta}| \le (||g_k - g(\theta_k)|| + ||g_{k+1} - g(\theta_k)||) ||s_k||
$$

\n
$$
\le (L||x_k - \theta_k|| + L||x_{k+1} - \theta_k||) ||s_k||
$$

\n
$$
= L||s_k||^2.
$$
\n(3.8)

So, we can get $0 < \tau_k \leq \frac{\tau L}{v}$. In this case, using [\(3.6\)](#page-5-4) and the definition of ϑ_k in [\(2.13\)](#page-4-3), we have

$$
\left|\frac{1}{\vartheta_k}\right| = \left|\frac{\tau_k ||s_k^T y_k||^2 + \vartheta_k ||s_k||^2 ||y_k||^2}{s_k^T y_k ||s_k||^2}\right| \le \frac{\tau_k s_k^T y_k}{||s_k||^2} + \frac{||y_k||^2}{s_k^T y_k} \le \tau L + \frac{L^2}{\nu} = \frac{1}{m}.
$$
\n(3.9)

Moreover,

$$
\left|\frac{1}{\vartheta_k}\right| = \left|\frac{\tau_k ||s_k^T y_k||^2 + \vartheta_k ||s_k||^2 ||y_k||^2}{s_k^T y_k ||s_k||^2}\right| \ge \frac{\tau_k s_k^T y_k}{||s_k||^2} \ge \tau_k \nu = \frac{1}{M}.
$$
\n(3.10)

From [\(3.9\)](#page-6-0) and [\(3.10\)](#page-6-1), we have

$$
\vartheta_k \in [m, M],\tag{3.11}
$$

which shows the boundedness of ϑ_k .

Remark 3.1. *In Step 4 of the algorithm, when* $\vartheta_k < \epsilon_1$ *, we set* $\vartheta_k = \frac{s_k^T y_k}{\|y_k\|^2}$ ∥*yk*∥ 2 *. Then, by applying Eq [\(3.5\)](#page-5-3), it can be deduced that* ϑ_k *is bounded.*

The next lemma states an effective property of the direction [\(1.4\)](#page-1-3).

Lemma 3.2. Let f be uniformly convex on the neighborhood U of \mathcal{L} , then search direction $\{d_k\}$ *produced by Algorithm 2.1 is su*ffi*cient descent, that is*

$$
d_k^T g_k \le -\zeta \|g_k\|^2, \forall k > 0.
$$
\n(3.12)

Proof. By carefully studying the proof of Lemma 3.6 of [\[17\]](#page-19-3), we can show that $tr(B_{k+1}^{AMBFGS})$ $\binom{AMBFGS}{k+1}$ is bounded.

By Lemma 3.1, we get s_k^T $\chi_k^T y_k \ge v \|s_k\|^2$, $\forall k \ge 0$ and $|\check{\eta}| \le L \|s_k\|^2$. So, considering [\(2.7\)](#page-3-3), [\(3.1\)](#page-5-2), [\(3.2\)](#page-5-5), [\(3.5\)](#page-5-3) and [\(3.11\)](#page-6-2), we have

$$
tr(B_{k+1}^{AMBFGS}) = tr\left(\frac{1}{\vartheta_k}I + \frac{y_k y_k^T}{s_k^T y_k} - \frac{1}{\vartheta_k} \frac{s_k s_k^T}{s_k^T s_k} + \tau_k \frac{y_k s_k^T}{s_k^T s_k}\right)
$$

\n
$$
= \frac{n}{\vartheta_k} + \frac{y_k^T y_k}{s_k^T y_k} - \frac{1}{\vartheta_k} \frac{s_k^T s_k}{s_k^T s_k} + \tau_k \frac{s_k^T y_k}{s_k^T s_k}
$$

\n
$$
\leq \frac{n-1}{m} + \frac{L^2}{v} + \tau L
$$

\n
$$
= \frac{(n-1)v + mL^2 + \tau Lmv}{mv}.
$$
 (3.13)

So, from [\(1.4\)](#page-1-3) and [\(3.13\)](#page-6-3), we have

$$
g_0^T d_0 = -||g_0||^2 \tag{3.14}
$$

and

$$
g_{k+1}^T d_{k+1} = -g_{k+1}^T H_{k+1} g_{k+1} \le -\frac{1}{tr(B_{k+1}^{AMBFGS})} \|g_{k+1}\|^2 \le -\frac{mv}{(n-1)v + mL^2 + \tau Lmv} \|g_{k+1}\|^2. \tag{3.15}
$$

Finally, according to [\(3.14\)](#page-6-4) and [\(3.15\)](#page-7-0), let

$$
\zeta = \min\left\{1, \frac{mv}{(n-1)v + mL^2 + \tau Lmv}\right\},\tag{3.16}
$$

then [\(3.12\)](#page-6-5) is established and the proof is complete.

We next consider the convergence of AMBFGS algorithm. For this purpose, we make the following additional lemma.

Lemma 3.3. Suppose that Assumption 3.1 holds. Consider iterative form $x_{k+1} = x_k + \alpha_k d_k$, where α_k satisfies the sufficient descent condition (3.12). If *satisfies the Wolfe conditions [\(2.3\)](#page-3-2)* and [\(2.4\)](#page-3-1) and d_k *satisfies the sufficient descent condition [\(3.12\)](#page-6-5). If*

$$
\sum_{k=0}^{\infty} \frac{1}{||d_k||^2} = \infty,
$$
\n(3.17)

then,

$$
\lim_{k \to \infty} \inf ||g_k|| = 0. \tag{3.18}
$$

Proof. Since d_k is sufficiently descent by [\(3.12\)](#page-6-5) and α_k satisfies the Wolfe conditions [\(2.3\)](#page-3-2) and [\(2.4\)](#page-3-1), the Zoutendiik condition [20] the Zoutendijk condition [\[20\]](#page-19-4)

$$
\sum_{k=0}^{\infty} \frac{(g_k^T d_k)^2}{\|d_k\|^2} < \infty \tag{3.19}
$$

holds (see Theorem 3.2 of [\[18\]](#page-19-5)). To prove this lemma by contradiction, we suppose that there exists a positive constant χ such that

$$
||g_k|| > \chi, \forall k > 0. \tag{3.20}
$$

Inequalities [\(3.12\)](#page-6-5) and [\(3.20\)](#page-7-1) yield g_k^T $\int_{k}^{T} d_k \leq -\zeta ||g_k||^2 \leq -\zeta \chi^2$, which implies $\frac{\zeta^2 \chi^4}{\chi^4}$ $\ddot{}$ $\frac{\chi^4}{4} \leq \frac{(g_k^T d_k)^2}{\|d_k\|^2}$ $\frac{g_k a_k}{\|d_k\|^2}$. It follows from the above inequality and [\(3.19\)](#page-7-2) that

$$
\sum_{k=0}^{\infty} \frac{\zeta^2 \chi^4}{||d_k||^2} \le \sum_{k=0}^{\infty} \frac{(g_k^T d_k)^2}{||d_k||^2} = \infty.
$$
\n(3.21)

Since this contradicts the Zoutendijk condition [\(3.19\)](#page-7-2), the proof is complete.

Theorem 3.1. *Suppose f is uniformly convex on the neighborhood* U *of* L*, then the Algorithm 2.1 converges in the sense that [\(3.18\)](#page-7-3) holds.*

Proof. Lemma 3.2 shows that $d_k \neq 0, \forall k > 0$, therefore, considering Lemma 3.3, it suffices to prove that $||d_{k+1}||$ is bounded.

From [\(2.8\)](#page-3-0), [\(3.1\)](#page-5-2), [\(3.2\)](#page-5-5), [\(3.5\)](#page-5-3)–[\(3.7\)](#page-5-6) and [\(3.11\)](#page-6-2), we can get

$$
||H_{k+1}^{AMBFGS}|| = \left\| H_{k+1}^{SMBFGS} - \frac{\tau_k(s_k^T y_k s_k^T s_k s_k s_k^T - \vartheta_k s_k^T y_k s_k^T s_k s_k y_k^T + \vartheta_k s_k^T s_k y_k^T y_k s_k s_k^T)}{(1 + \tau_k) s_k^T y_k s_k^T y_k s_k^T s_k} \right\|
$$

\n
$$
\leq v_k + 2v_k \frac{||s_k|| ||y_k||}{s_k^T y_k} + (1 + v_k \frac{||y_k||^2}{s_k^T y_k}) \frac{||s_k||^2}{s_k^T y_k} + \frac{\tau_k ||s_k||^2}{(1 + \tau_k) s_k^T y_k} + \frac{\vartheta_k ||s_k||^2 ||y_k||^2}{(1 + \tau_k) ||s_k^T y_k||^2} + \frac{\vartheta_k}{1 + \tau_k} (3.22)
$$

\n
$$
\leq 2M + 2M \frac{L}{v} + \frac{2}{v} + 2M \frac{L^2}{v^2}
$$

\n
$$
= \Lambda.
$$

Hence, from (1.4) and (3.2) , we get

$$
||d_{k+1}|| \le ||H_{k+1}^{\text{AMBFGS}}|| ||g_{k+1}|| \le \Lambda \Phi. \tag{3.23}
$$

Inequality [\(3.23\)](#page-8-0) suggests that d_k is bounded. Thus, by Lemma 3.3, we can conclude that the Algorithm 2.1 is convergent.

4. Numerical experiments

In this section, we compare the computational efficiency of SMABFGS (provided by Aminifard et al. [\[6\]](#page-18-5)), AMBFGS-OS (provided by Algorithm 2.1 and ϑ_k adopts the parameters in [\[14\]](#page-19-0)) with AMBFGS (provided by Algorithm 2.1). All codes are written in Matlab 2017a and run on a Dell PC with 2.50 GHz CPU processor and 16 GB RAM memory as well as Windows 11 operation system.

We employ the effective Wolfe conditions with parameters $\rho = 0.99$ and $\delta = 10^{-4}$ in the planentations as detailed in (2.3) and (2.4). When either $k > 10000$ or $||q|| \le 10^{-6}$ all algorithms implementations, as detailed in [\(2.3\)](#page-3-2) and [\(2.4\)](#page-3-1). When either $k > 10000$ or $||g_k|| < 10^{-6}$, all algorithms come to an end. The selection of $\tau = 1$ $\epsilon_0 = 10^{-6}$ is made for the AMBEGS parameters, the selection come to an end. The selection of $\tau = 1$, $\epsilon_1 = 10^{-6}$ is made for the AMBFGS parameters, the selection of $\tau = 1$ and $\vartheta_k = \frac{s_k^T y_k}{\|y_k\|^2}$ $\frac{y_k y_k}{||y_k||^2}$ is made for the AMBFGS-OS parameters. Additionally, for SMABFGS, we set $p = 1, \tau = 1$, and $\tilde{C} = 0.001$, if $||g_k|| \ge 1$, otherwise, $p = 3$.

4.1. Experiment I: test for unconstrained optimization problems

For experiment I, the 71 unconstrained problems are tested and compared, in which the 1–32 problems are taken from the CUTE library [\[21\]](#page-19-6), and the others come from the unconstrained problem collections [\[30,](#page-20-1) [31\]](#page-20-2). The number of iterations (Itr), the total number of gradient evaluations (Ng), CPU time (Tcpu), and the gradient value g_k at the end of iteration are also reported in Table 1. The performance of these algorithms is visually described in terms of Tcpu, Itr, and Ng in Figures 1–3, respectively, using the performance profiles suggested by Dolan and Moré [[19\]](#page-19-7) (see [\[19\]](#page-19-7) for further information). In general, the top curve indicates that the applicable approach is the winner for the interpretation of the performance profiles.

Table 1 Numerical results

AIMS Mathematics

Continued on next page

Volume 9, Issue 9, 25232-25252.

As can be seen from Table 1, the algorithm presented in the paper is clearly effective for solving most of the tested problems, and it is competitive with the other two algorithms in Itr, Ng, and Tcpu on the tested problems. Figures 1–3 also indicate that the numerical results of the AMBFGS algorithm are better than that of the SMABFGS algorithm and the AMBFGS-OS algorithm. Compared with the SMABFGS algorithm and AMBFGS-OS algorithm, the AMBFGS algorithm is generally in an advantageous position, has better numerical performance, and can solve large-scale unconstrained optimization problems quickly and effectively.

Figure 1. Performance profiles based on CPU time.

Figure 2. Performance profiles based on number of iterations.

Figure 3. Performance profiles based on number of gradient evaluation.

4.2. Experiment II: test for nonlinear equations

For experiment II, we compare the performance of SMABFGS, AMBFGS-OS with AMBFGS in solving nonlinear equations, and the following mathematical model is considered:

$$
\min_{x \in \mathbb{R}^n} f(x) = \frac{1}{2} ||F(x)||_2^2.
$$

Define $F(x) = (F_1(x), F_2(x), \dots, F_n(x))^T$, $x \in \mathbb{R}^n$ and 7 problems are shown below.
 phlam 1 [32] Set $F(x) = e^{x_i} = 1$ for $i = 1, 2, \dots, n$ and $x \in \mathbb{R}^n$ **Problem 1.** [\[32\]](#page-20-3) Set $F_i(x) = e^{x_i} - 1$, for $i = 1, 2, ..., n$ and $x \in \mathbb{R}^n$.
Problem 2. [32] Set Problem 2. [\[32\]](#page-20-3) Set

$$
F(x) = \begin{pmatrix} 2.5 & 1 & 0 & \dots & 0 \\ 1 & 2.5 & 1 & \dots & 0 \\ 0 & 1 & 2.5 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 1 & 2.5 \end{pmatrix} x + (-1, \dots, -1)^T,
$$

and $x \in \mathbb{R}^n$. Problem 3. [\[32\]](#page-20-3) Set

$$
F(x) = \begin{pmatrix} 2 & -1 & 0 & \dots & 0 \\ 0 & 2 & -1 & \dots & 0 \\ 0 & 0 & 2 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & 2 \end{pmatrix} x + (\sin x_1 - 1, \dots, \sin x_n - 1)^T,
$$

and $x \in \mathbb{R}^n$.

Problem 4. [\[32\]](#page-20-3) Set $F_i(x) = (e^{x_i})^2 + 3 \sin x_i \cos x_i - 1$, for $i = 1, 2, ..., n$ and $x \in \mathbb{R}^n$.
Problem 5. [32] Set $F_i(x) = (x - 1)^2 - 1$ 01, for $i = 1, 2, ..., n$ and $x \in \mathbb{R}^n$. **Problem 5.** [\[32\]](#page-20-3) Set $F_i(x) = (x_i - 1)^2 - 1.01$, for $i = 1, 2, ..., n$ and $x \in \mathbb{R}^n$.
Problem 6. [33] Set Problem 6. [\[33\]](#page-20-4) Set

$$
F_1(x) = x_1(x_1^2 + x_2^2) - 1,
$$

\n
$$
F_i(x) = x_i(x_{i-1}^2 + 2x_i^2 + x_{i+1}^2) - 1, \text{ for } i = 2, 3, ..., n - 1,
$$

\n
$$
F_n(x) = x_n(x_{n-1}^2 + x_n^2) - 1,
$$

and $x \in \mathbb{R}^n$. Problem 7. [\[34\]](#page-20-5) Set

$$
F_1(x) = \sum_{j=1}^n x_j^2,
$$

\n
$$
F_i(x) = -2x_1x_i, \text{ for } i = 2, 3, ..., n,
$$

and $x \in \mathbb{R}^n$.

The number of iterations (Itr), the total number of gradient evaluations (Ng), CPU time (Tcpu), and the value F_k at the end of iteration are also reported in Tables 2–8. The performance of these algorithms

is visually described in terms of Tcpu, Itr, and Ng in Figures 4–6, respectively, using the performance profiles suggested by Dolan and Moré [[19\]](#page-19-7). In general, the top curve indicates that the applicable approach is the winner for the interpretation of the performance profiles. For each problem, we select 4 to 5 initial points from the following 7 points, that is, $x_1 = (1, 1, ..., 1)^T$, $x_2 = (0.1, 0.1, ..., 0.1)^T$, $x_3 =$
 $\frac{(1 \quad 1 \quad 1)^T}{(1 \quad 1 \quad 1)^T}$, $x_4 = (1 \quad 1 \quad 1)^T$, $x_5 = (1 \quad 1 \quad 1)^T$, $x_6 = (1 \quad 1 \quad 1 \quad 2 \quad 0)^T$ $(\frac{1}{2})$ 2 , 1 $\overline{2^2}, \ldots,$ 1 $(\frac{1}{2^n})^T$, $x_4 = (0, \frac{1}{n})^T$ $n, \ldots,$ *n*−1 $\frac{-1}{n}$)^T, $x_5 = (1, \frac{1}{2})$ $_2,\ldots,$ 1 $(\frac{1}{n})^T$, $x_6 = (\frac{1}{n})^T$ *n* , 2 $\frac{2}{n}, \ldots, 1)^T$, $x_7 = (1 - \frac{1}{n})$ $\frac{1}{n}$, 1 – $\frac{2}{n}$ $\frac{2}{n}, \ldots, 0)^T$.

		SMABFGS	AMBFGS-OS	AMBFGS
x_0	\boldsymbol{n}	$Itr/Ng/Tcpu/ F_k $	$Itr/Ng/Tcpu/ F_k $	$Itr/Ng/Tcpu/ F_k $
\mathcal{X}_{2}	50	164/904/0.030/1.27e-06	131/807/0.021/5.69e-06	153/1002/0.022/1.71e-06
	100	$1/2/0.000/1.05e+00$	$1/2/0.001/1.05e+00$	$1/2/0.000/1.05e+00$
	500	165/933/0.733/1.29e-06	191/1127/1.188/1.22e-06	166/1095/1.135/5.70e-06
χ_3	50	63/197/0.015/1.80e-06	68/289/0.011/1.69e-06	41/213/0.006/3.79e-06
	100	63/197/0.015/1.80e-06	68/289/0.020/1.69e-06	41/213/0.010/3.79e-06
	500	63/197/0.275/1.80e-06	68/289/0.504/1.69e-06	41/213/0.353/3.79e-06
χ_4	50	86/342/0.017/1.17e-06	72/183/0.007/1.73e-06	74/410/0.012/1.59e-06
	100	93/446/0.024/2.26e-06	77/423/0.022/1.32e-06	43/177/0.011/2.72e-06
	500	132/426/0.824/1.12e-06	75/343/0.650/2.14e-06	133/533/1.130/1.44e-06
χ_{6}	50	136/356/0.030/2.31e-06	117/376/0.030/1.36e-06	178/496/0.041/3.44e-06
	100	96/423/0.041/1.00e-06	114/573/0.053/1.01e-06	61/309/0.027/1.36e-06
	500	111/363/0.695/1.00e-06	127/354/1.084/1.65e-06	91/390/0.788/1.29e-06
χ_7	50	81/335/0.021/2.06e-06	72/183/0.016/1.73e-06	74/410/0.024/1.50e-06
	100	89/423/0.036/1.28e-06	77/423/0.035/1.25e-06	43/177/0.018/2.77e-06
	500	147/440/0.938/1.13e-06	74/342/0.634/2.85e-06	134/544/1.142/3.52e-06

Table 2. Numerical results (Problem 1).

Table 3. Numerical results (Problem 2).

		SMABFGS	AMBFGS-OS	AMBFGS
x_0	\boldsymbol{n}	$Itr/Ng/Tcpu/ F_k $	$Itr/Ng/Tcpu/ F_k $	$Itr/Ng/Tcpu/ F_k $
\mathcal{X}_{2}	50	200/319/0.047/2.50e-01	187/279/0.029/2.50e-01	180/274/0.022/2.50e-01
	200	169/286/0.148/2.50e-01	194/356/0.204/2.50e-01	181/350/0.201/2.50e-01
	600	209/342/1.659/2.50e-01	181/327/1.751/2.50e-01	213/373/2.077/2.50e-01
χ_{5}	50	197/290/0.031/2.50e-01	215/322/0.033/2.50e-01	190/301/0.033/2.50e-01
	200	182/293/0.166/2.50e-01	199/310/0.212/2.50e-01	206/359/0.219/2.50e-01
	600	200/403/1.537/2.50e-01	220/368/2.177/2.50e-01	190/330/1.878/2.50e-01
χ_{6}	50	214/447/0.036/2.50e-01	166/359/0.028/2.50e-01	173/341/0.028/2.50e-01
	200	284/601/0.244/2.50e-01	217/514/0.217/2.50e-01	241/524/0.248/2.50e-01
	600	203/375/1.599/2.50e-01	219/462/2.124/2.50e-01	239/480/2.349/2.50e-01
χ_7	50	169/265/0.026/2.50e-01	201/322/0.032/2.50e-01	192/318/0.028/2.50e-01
	200	283/624/0.259/2.50e-01	225/540/0.246/2.50e-01	240/579/0.245/2.50e-01
	600	202/440/1.545/2.50e-01	223/442/2.222/2.50e-01	214/427/2.024/2.50e-01

radic π. evaluation results (1 rodiom <i>5)</i> .				
		SMABFGS	AMBFGS-OS	AMBFGS
x_0	n	$Itr/Ng/Tcpu/ F_k $	$Itr/Ng/Tcpu/ F_k $	$Itr/Ng/Tcpu/ F_k $
χ_2	60	179/632/0.064/2.69e-07	133/296/0.031/6.83e-07	118/255/0.028/4.13e-07
	100	101/366/0.037/7.11e-07	101/258/0.033/6.26e-07	78/292/0.030/1.22e-06
	500	109/285/0.683/5.31e-07	101/431/0.879/4.88e-07	89/194/0.762/4.85e-07
χ_3	60	199/596/0.049/2.77e-07	126/241/0.026/4.99e-07	128/192/0.025/3.69e-07
	100	95/254/0.030/3.18e-07	142/505/0.054/3.51e-07	70/244/0.026/1.19e-06
	500	145/485/0.920/3.90e-07	145/314/1.229/6.28e-07	136/426/1.167/4.31e-07
x_4	60	116/427/0.033/3.10e-07	124/416/0.034/3.34e-07	149/400/0.037/4.58e-07
	100	190/536/0.062/5.61e-07	55/176/0.020/5.43e-07	83/201/0.027/8.31e-07
	500	109/203/0.683/2.50e-06	97/369/0.832/5.04e-07	105/181/0.884/1.16e-06
x_5	60	149/230/0.029/2.74e-07	92/229/0.022/4.93e-07	110/315/0.028/3.83e-07
	100	108/287/0.033/3.72e-07	130/396/0.045/7.37e-07	94/212/0.030/3.90e-07
	500	125/328/0.774/5.23e-07	78/245/0.688/3.87e-06	86/262/0.748/6.28e-07
χ_7	60	128/283/0.031/4.34e-07	111/287/0.029/4.78e-07	111/321/0.032/3.34e-07
	100	118/347/0.046/5.85e-07	62/162/0.025/8.92e-07	85/264/0.035/3.85e-07
	500	109/223/0.807/3.90e-07	152/430/1.342/4.11e-07	111/193/0.925/5.41e-07

Table 4 Numerical results (Problem 3)

Table 5. Numerical results (Problem 4).

		SMABFGS	AMBFGS-OS	AMBFGS
x_0	n	$Itr/Ng/Tcpu/ F_k $	$Itr/Ng/Tcpu/ F_k $	$Itr/Ng/Tcpu/ F_k $
x_1	60	212/1199/0.094/2.11e-07	180/1058/0.070/2.77e-07	193/1016/0.070/2.01e-07
	200	219/1117/0.255/2.58e-07	144/1001/0.206/2.38e-07	135/773/0.180/9.55e-07
	500	191/1030/1.304/2.36e-07	208/1125/1.820/2.16e-07	180/1099/1.608/2.62e-07
χ_2	60	144/777/0.054/7.60e-06	164/848/0.063/1.66e-06	148/873/0.062/7.31e-07
	200	188/1035/0.223/2.60e-07	145/753/0.191/4.09e-06	196/1038/0.251/2.34e-07
	500	202/1282/1.452/2.01e-07	147/953/1.373/9.18e-07	141/863/1.318/2.10e-07
x_{5}	60	146/516/0.039/2.99e-07	97/364/0.022/2.39e-07	153/570/0.034/6.92e-07
	200	89/263/0.071/5.99e-07	131/259/0.126/6.19e-07	131/336/0.129/4.29e-07
	500	82/253/0.557/2.89e-07	89/233/0.845/2.55e-07	56/127/0.549/4.42e-07
χ_6	60	156/399/0.037/2.16e-07	109/495/0.024/2.90e-07	160/619/0.034/2.54e-07
	200	189/639/0.181/2.10e-07	165/509/0.189/4.42e-07	81/369/0.101/2.36e-07
	500	82/255/0.620/8.53e-07	137/467/1.379/2.24e-07	117/526/1.110/2.14e-07

Lable 0. INDITIONAL IUSURIS (1 FOURTH J).				
		SMABFGS	AMBFGS-OS	AMBFGS
x_0	n	$Itr/Ng/Tcpu/ F_k $	$Itr/Ng/Tcpu/ F_k $	$Itr/Ng/Tcpu/ F_k $
x_1	50	$0/1/0.004/0.00e+00$	$0/1/0.000/0.00e+00$	$0/1/0.000/0.00e+00$
	200	$0/1/0.000/0.00e+00$	$0/1/0.001/0.00e+00$	$0/1/0.000/0.00e+00$
	600	$0/1/0.000/0.00e+00$	$0/1/0.000/0.00e+00$	$0/1/0.000/0.00e+00$
x_2	50	219/1315/0.047/5.46e-07	113/788/0.022/1.34e-06	165/1170/0.031/5.26e-07
	200	131/972/0.122/6.45e-07	169/889/0.171/3.38e-06	134/838/0.149/3.20e-06
	600	128/869/1.278/5.24e-07	129/839/1.586/6.79e-06	175/1070/1.930/5.12e-07
χ_3	50	84/262/0.025/6.97e-06	106/482/0.016/7.14e-07	44/167/0.009/7.72e-06
	200	105/522/0.095/5.16e-07	90/289/0.084/4.12e-06	62/197/0.052/1.26e-06
	600	59/287/0.501/5.99e-07	72/282/0.757/6.40e-07	28/84/0.300/5.70e-06
x_{5}	50	$101/433/0.031/1.01e+00$	$100/471/0.015/1.01e+00$	$111/347/0.013/1.01e+00$
	200	79/290/0.070/1.01e+00	135/426/0.133/1.01e+00	$102/383/0.105/1.01e+00$
	600	97/292/0.819/1.01e+00	92/329/0.967/1.01e+00	55/173/0.587/1.01e+00
χ_6	50	47/113/0.008/8.20e-07	112/453/0.024/5.22e-08	84/373/0.019/8.33e-07
	200	173/509/0.157/4.90e-07	171/602/0.189/5.13e-07	106/325/0.114/9.78e-07
	600	107/321/0.813/9.48e-07	105/380/1.040/5.60e-07	125/532/1.247/6.48e-07

Table 6 Numerical results (Problem 5)

Table 7. Numerical results (Problem 6).

		SMABFGS	AMBFGS-OS	AMBFGS
x_0	\boldsymbol{n}	$Itr/Ng/Tcpu/ F_k $	$Itr/Ng/Tcpu/ F_k $	$Itr/Ng/Tcpu/ F_k $
x_1	50	215/347/0.074/3.84e-07	156/294/0.028/8.83e-07	179/349/0.022/7.99e-07
	200	141/236/0.139/1.31e-06	208/309/0.212/5.07e-07	216/445/0.256/3.49e-07
	500	236/366/2.194/6.31e-07	175/302/2.305/1.45e-06	172/402/2.117/5.08e-07
\mathcal{X}_{2}	50	148/293/0.026/3.86e-07	197/339/0.034/4.32e-07	159/274/0.047/4.71e-07
	200	228/427/0.214/1.15e-06	117/282/0.137/1.44e-06	172/343/0.242/4.65e-07
	500	198/424/1.949/1.20e-06	166/253/2.328/1.16e-06	171/279/2.677/5.59e-07
χ_3	50	693/761/0.163/3.10e-07	708/783/0.062/8.10e-07	412/496/0.038/7.75e-07
	200	2595/2733/3.698/6.50e-07	2645/2857/4.039/2.76e-07	1466/1539/2.077/1.89e-06
	500	6512/6606/55.638/3.15e-07	6425/6485/54.137/7.41e-07	3566/3639/29.952/1.89e-06
χ_4	50	193/260/0.016/1.62e-06	195/331/0.015/1.30e-06	215/369/0.016/6.72e-07
	200	279/556/0.212/2.24e-07	270/371/0.208/1.31e-06	230/307/0.187/9.36e-07
	500	256/347/1.606/9.32e-07	310/402/2.603/7.21e-07	246/344/2.026/1.45e-06
χ_7	50	132/247/0.014/5.59e-07	136/206/0.011/4.30e-07	156/363/0.014/6.96e-07
	200	159/301/0.123/4.65e-07	193/363/0.149/2.78e-07	156/246/0.118/5.53e-07
	500	171/261/1.060/5.29e-07	225/350/1.871/4.36e-07	170/268/1.386/2.69e-07

Figure 4. Performance profiles based on CPU time.

Figure 5. Performance profiles based on number of iterations.

Figure 6. Performance profiles based on number of gradient evaluation.

As can be seen from Tables 2–8, the algorithm presented in the paper is clearly effective for solving most of the tested problems and is competitive with the other two algorithms in Itr, Ng, and Tcpu on the tested problems. Figures 4–6 also indicate that the AMBFGS algorithm, when compared with the SMABFGS and AMBFGS-OS algorithms, generally occupies an advantageous position. It exhibits better numerical performance and can solve nonlinear equations quickly and effectively.

5. Conclusions

In this research, we presented an augmented memoryless BFGS algorithm based on a modified secant condition, which ensures a descent search direction. We determined the scaling parameter by reducing the upper bound of the condition number using an eigenvalue analysis. Global convergence of our approach has been demonstrated under appropriate assumptions. Finally, numerical results obtained by applying the AMBFGS method to solve large-scale unconstrained optimization problems and nonlinear equations demonstrate its encouraging efficiency, even when compared to the SMABFGS method and AMBFGS-OS method.

Author contributions

Yulin Cheng and Jing Gao: Methodology, Software, Visualization, Writing-original draft. All authors of this article have been contributed equally. All authors have read and approved the final version of the manuscript for publication.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This work is supported by the Scientific and Technological Developing Scheme of Jilin Province (YDZJ202101ZYTS167, YDZJ202201ZYTS303, 20230508184RC); the project of education department of Jilin Province (JJKH20210030KJ, JJKH20230054KJ); the doctoral research project start-up fund of Beihua University; the graduate innovation project of Beihua University (2023037).

Conflict of interest

All authors declare no conflicts of interest in this paper.

References

- 1. W. Y. Sun, Y. X. Yuan, *Optimization theory and methods: nonlinear programming*, New York: Springer, 2006. https://doi.org/10.1007/[b106451](https://dx.doi.org/https://doi.org/10.1007/b106451)
- 2. J. Z. Zhang, N. Y. Deng, L. H. Chen, New quasi-Newton equation and related methods for unconstrained optimization, *J. Optim. Theory Appl.*, 102 (1999), 147–167. https://doi.org/10.1023/[A:1021898630001](https://dx.doi.org/https://doi.org/10.1023/A:1021898630001)
- 3. J. Z. Zhang, C. X. Xu, Properties and numerical performance of quasi-Newton methods with modified quasi-Newton equations, *J. Comput. Appl. Math.*, 137 (2001), 269–278. https://doi.org/10.1016/[S0377-0427\(00\)00713-5](https://dx.doi.org/https://doi.org/10.1016/S0377-0427(00)00713-5)
- 4. S. Babaie-Kafaki, On optimality of the parameters of self-scaling memoryless quasi-Newton updating formulae, *J. Optim. Theory Appl.*, 167 (2015), 91–101. https://doi.org/[10.1007](https://dx.doi.org/https://doi.org/10.1007/s10957-015-0724-x)/s10957- [015-0724-x](https://dx.doi.org/https://doi.org/10.1007/s10957-015-0724-x)
- 5. S. Babaie-Kafaki, Z. Aminifard, Two-parameter scaled memoryless BFGS methods with a nonmonotone choice for the initial step length, *Numer. Algorithms*, 82 (2019), 1345–1357. https://doi.org/10.1007/[s11075-019-00658-1](https://dx.doi.org/https://doi.org/10.1007/s11075-019-00658-1)
- 6. Z. Aminifard, S. Babaie-Kafaki, S. Ghafoori, An augmented memoryless BFGS method based on a modified secant equation with application to compressed sensing, *Appl. Numer. Math.*, 167 (2021), 187–201. https://doi.org/10.1016/[j.apnum.2021.05.002](https://dx.doi.org/https://doi.org/10.1016/j.apnum.2021.05.002)
- 7. S. Babaie-Kafaki, Z. Aminifard, S. Ghafoori, A hybrid quasi-Newton method with application in sparse recovery, *Comput. Appl. Math.*, 41 (2022), 249. https://doi.org/10.1007/[s40314-022-](https://dx.doi.org/https://doi.org/10.1007/s40314-022-01962-8) [01962-8](https://dx.doi.org/https://doi.org/10.1007/s40314-022-01962-8)
- 8. M. Jourak, S. Nezhadhosein, F. Rahpeymaii, A new self-scaling memoryless quasi-Newton update for unconstrained optimization, *4OR*, 22 (2024), 235–252. https://doi.org/10.1007/[s10288-023-](https://dx.doi.org/https://doi.org/10.1007/s10288-023-00544-6) [00544-6](https://dx.doi.org/https://doi.org/10.1007/s10288-023-00544-6)
- 9. C. G. Broyden, The convergence of a class of double-rank minimization algorithms 1. General considerations, *IMA J. Appl. Math.*, 6 (1970), 76–90. https://doi.org/[10.1093](https://dx.doi.org/https://doi.org/10.1093/imamat/6.1.76)/imamat/6.1.76
- 10. C. G. Broyden, The convergence of a class of double-rank minimization algorithms 2. The new algorithm, *IMA J. Appl. Math.*, 6 (1970), 222–231. https://doi.org/[10.1093](https://dx.doi.org/https://doi.org/10.1093/imamat/6.3.222)/imamat/6.3.222
- 11. R. Fletcher, A new approach to variable metric algorithms, *Comput. J.*, 13 (1970), 317–322. https://doi.org/10.1093/comjnl/[13.3.317](https://dx.doi.org/https://doi.org/10.1093/comjnl/13.3.317)
- 12. D. Goldfarb, A family of variable-metric methods derived by variational means, *Math. Comput.*, 24 (1970), 23–26.
- 13. D. F. Shanno, Conditioning of quasi-Newton methods for function minimization, *Math. Comput.*, 24 (1970), 647–656.
- 14. S. S. Oren, E. Spedicato, Optimal conditioning of self-scaling variable metric algorithms, *Math. Program.*, 10 (1976), 70–90. https://doi.org/10.1007/[BF01580654](https://dx.doi.org/https://doi.org/10.1007/BF01580654)
- 15. S. S. Oren, D. G. Luenberger, Self-scaling variable metric (SSVM) algorithms: Part I: Criteria and sufficient conditions for scaling a class of algorithms, *Manag. Sci.*, 20 (1974), 845–862. https://doi.org/10.1287/[mnsc.20.5.845](https://dx.doi.org/https://doi.org/10.1287/mnsc.20.5.845)
- 16. D. S. Watkins, *Fundamentals of matrix computations*, John Wiley & Sons, 2004.
- 17. S. Babaie-Kafaki, A modified scaled memoryless BFGS preconditioned conjugate gradient method for unconstrained optimization, *4OR*, 11 (2013), 361–374. https://doi.org/10.1007/[s10288-013-](https://dx.doi.org/https://doi.org/10.1007/s10288-013-0233-4) [0233-4](https://dx.doi.org/https://doi.org/10.1007/s10288-013-0233-4)
- 18. J. Nocedal, S. J. Wright, *Numerical optimization*, 2 Eds., New York: Springer, 2006. https://doi.org/10.1007/[978-0-387-40065-5](https://dx.doi.org/https://doi.org/10.1007/978-0-387-40065-5)
- 19. E. D. Dolan, J. J. More, Benchmarking optimization software with performance profiles, *Math. Program.*, 91 (2002), 201–213. https://doi.org/10.1007/[s101070100263](https://dx.doi.org/https://doi.org/10.1007/s101070100263)
- 20. G. Zoutendijk, Nonlinear programming, computational methods, In: *Integer and nonlinear programming*, Amsterdam: North-Holland, 1970, 37–86.
- 21. N. I. M. Gould, D. Orban, P. L. Toint, CUTEr and SifDec: A constrained and unconstrained testing environment, revisited, *ACM Trans. Math. Software*, 29 (2003), 373–394. https://doi.org/10.1145/[962437.962439](https://dx.doi.org/https://doi.org/10.1145/962437.962439)
- 22. Y. H. Dai, A perfect example for the BFGS method, *Math. Program.*, 138 (2013), 501–530. https://doi.org/10.1007/[s10107-012-0522-2](https://dx.doi.org/https://doi.org/10.1007/s10107-012-0522-2)
- 23. N. Andrei, An adaptive scaled BFGS method for unconstrained optimization, *Numer. Algorithms*, 77 (2018), 413–432. https://doi.org/10.1007/[s11075-017-0321-1](https://dx.doi.org/https://doi.org/10.1007/s11075-017-0321-1)
- 24. B. A. Hassan, I. A. R. Moghrabi, A modified secant equation quasi-Newton method for unconstrained optimization, *J. Appl. Math. Comput.*, 69 (2023), 451–464. https://doi.org/10.1007/[s12190-022-01750-x](https://dx.doi.org/https://doi.org/10.1007/s12190-022-01750-x)
- 25. G. L. Yuan, X. Zhao, K. J. Liu, X. X. Chen, An adaptive projection BFGS method for nonconvex unconstrained optimization problems, *Numer. Algorithms*, 95 (2024), 1747–1767. https://doi.org/10.1007/[s11075-023-01626-6](https://dx.doi.org/https://doi.org/10.1007/s11075-023-01626-6)
- 26. X. M. Lu, C. F. Yang, Q. Wu, J. X. Wang, Y. H. Wei, L. Y. Zhang, et al., Improved reconstruction algorithm of wireless sensor network based on BFGS quasi-Newton method, *Electronics*, 12 (2023), 1–15. https://doi.org/10.3390/[electronics12061267](https://dx.doi.org/https://doi.org/10.3390/electronics12061267)
- 27. V. Krutikov, E. Tovbis, P. Stanimirović, L. Kazakovtsev, D. Karabašević, Machine learning in quasi-Newton methods, *Axioms*, 13 (2024), 1–29. https://doi.org/10.3390/[axioms13040240](https://dx.doi.org/https://doi.org/10.3390/axioms13040240)
- 28. A. B. Abubakar, P. Kumam, H. Mohammad, A. H. Ibrahim, T. Seangwattana, B. A. Hassan, A hybrid BFGS-Like method for monotone operator equations with applications, *J. Comput. Appl. Math.*, 446 (2024), 115857. https://doi.org/10.1016/[j.cam.2024.115857](https://dx.doi.org/https://doi.org/10.1016/j.cam.2024.115857)
- 29. Y. Narushima, S. Nakayama, M. Takemura, H. Yabe, Memoryless quasi-Newton methods based on the spectral-scaling Broyden family for Riemannian optimization, *J. Optim. Theory Appl.*, 197 (2023), 639–664. https://doi.org/10.1007/[s10957-023-02183-7](https://dx.doi.org/https://doi.org/10.1007/s10957-023-02183-7)
- 30. J. R. Rice, J. J. More, B. S. Garbow, K. E. Hillstrom, Testing unconstrained optimization software, ´ *ACM Trans. Math. Software*, 7 (1981), 17–41. https://doi.org/10.1145/[355934.355936](https://dx.doi.org/https://doi.org/10.1145/355934.355936)
- 31. N. Andrei, An unconstrained optimization test functions collection, *Adv. Model. Optim.*, 10 (2008), 147–161.
- 32. P. J. Liu, X. Y. Wu, H. Shao, Y. Zhang, S. H. Cao, Three adaptive hybrid derivative-free projection methods for constrained monotone nonlinear equations and their applications, *Numer. Linear Algebra Appl.*, 30 (2023), e2471. https://doi.org/10.1002/[nla.2471](https://dx.doi.org/ https://doi.org/10.1002/nla.2471)
- 33. W. J. Zhou, D. M. Shen, Convergence properties of an iterative method for solving symmetric nonlinear equations, *J. Optim. Theory Appl.*, 164 (2015), 277–289. https://doi.org/[10.1007](https://dx.doi.org/ https://doi.org/10.1007/s10957-014-0547-1)/s10957- [014-0547-1](https://dx.doi.org/ https://doi.org/10.1007/s10957-014-0547-1)
- 34. X. W. Fang, Q. Ni, M. L. Zeng, A modified quasi-Newton method for nonlinear equations, *J. Comput. Appl. Math.*, 328 (2018), 44–58. https://doi.org/10.1016/[j.cam.2017.06.024](https://dx.doi.org/ https://doi.org/10.1016/j.cam.2017.06.024)

© 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (https://[creativecommons.org](https://creativecommons.org/licenses/by/4.0)/licenses/by/4.0)