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Abstract: We investigated the dynamics of highly dispersive nonlinear gap solitons in optical fibers
with dispersive reflectivity, utilizing a conformable fractional derivative model. The modified extended
direct algebraic method was employed to obtain various soliton solutions, including bright solitons and
singular solitons, as well as hyperbolic and trigonometric solutions. The key findings demonstrated that
the fractional derivative parameter (α) can effectively control the wave propagation, causing a shift in
the wave signal while maintaining the same amplitude. This is a novel contribution, as the ability to
control soliton properties through the conformable derivative is explored for the first time in this work.
The results showcase the significant influence of fractional derivatives in shaping the characteristics of
the soliton solutions, which is crucial for accurately modeling the dispersive and nonlocal effects in
optical fibers. This research provides insights into the potential applications of fractional calculus in
the design and optimization of photonic devices for optical communication systems.
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1. Introduction

The study of solitons in optical fibers has attracted significant attention due to their potential
applications in high-speed communication systems. Solitons, which are self-sustaining wave packets,
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can propagate over long distances without undergoing significant distortion. They are characterized
by their ability to maintain their shape and amplitude during propagation, making them ideal for
transmitting information reliably. Numerous scholars have delved the study of soliton solutions, for
example, the authors in [1] derived the soliton solutions for higher-order nonlinear Schrödinger’s
dynamical equation with fourth-order dispersion and cubic-quintic nonlinearity. The authors in [2]
established the new solitons for higher order Sasa–Satsuma equation. The authors in [3] discussed the
dynamics of soliton for the Vakhneno equation in an optical fiber system. The authors in [4] discussed
the soliton resonance and burifcation for the Maccari system. The authors in [5] studied the
interaction behavior between soliton and other hyprid forms for a short pulse equation. The authors
in [6] established the soliton resonance for the Lakshmanan Daniel system. Soliton also plays an
important rule in other sciences such as fluid dynamics, such as [7, 8]. The authors [9] studied the
soliton solution in the fourth-order Schrödinger equation, which plays an important rule in optical
communication. The authors in [10] showed the gaussian and super gaussian soliton solutions. The
authors in [11, 12] studied the bright and dark soliton in optical fiber.

Soliton wave solutions have been derived with applying the more advanced techniques for acquiring
precise and efficient results from non-linear models, such as an improved modified extended tanh
function method [13, 14], extended F-expansion method [15], and Jacobi elliptic function expansion
method [16].

One of the key factors affecting the behavior of solitons in optical fibers is dispersion. Dispersion
refers to the phenomenon of propagating different wavelengths with different speeds, causing the pulse
to broaden or narrow over time. While dispersion can be managed to some extent through the use of
dispersion compensation techniques, it remains a critical challenge in the design and optimization of
optical fiber systems [17]. In recent years, the study of highly dispersive gap solitons has emerged
as an area of interest. Gap solitons refer to localized solutions that exist in the presence of periodic
or quasi-periodic structures, such as fiber Bragg gratings or photonic crystals, within the optical fiber.
These solitons can form in the spectral gaps of the linear dispersion relation, where no linear wave
propagation is allowed. The interaction between the nonlinearity of the optical fiber and the dispersive
reflectivity of the periodic structure gives rise to soliton solutions [18, 19].

In this research paper, we investigate highly dispersive gap solitons in optical fibers with dispersive
reflectivity. To analyze the behavior of these solitons, we employ a conformable fractional model,
which takes into account fractional derivatives to describe the nonlocal response of the system. The
use of fractional derivatives allows for a more accurate representation of the dynamics of the soliton
solutions and long-range interactions. The authors in [20] discussed the conformable fractional
derivative properties on the telegraph equation and the third-order Kdv equation. Also, the
conformable derivative was discussed in [21] on evolution equation in optical fiber systems to explore
the dynamics of solitons. The authors in [22] discussed the conformable fractional derivative on
modified Benjamin-Mahony equation. The paper [23] discussed the conformable fractional coupled
type Boussinesq-Burger equation. There are many other types of fractional derivatives, such as beta
derivatives [24, 25], that discussed the effect of fractional order on soliton solutions. In this work, we
study the highly dispersive coupled system of fractional nonlinear schrödinger equation (NLSE) with
a parabolic non-local law of nonlinearity. This model reads as [26]:

iDα
t q + ia1rx + a2rxx + ia3rxxx + a4rxxxx + ia5rxxxxx + a6rxxxxxx + q

(
c1

∣∣∣q|2 + d1

∣∣∣ r|2) +
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q
(
e1

∣∣∣q|4 + f1

∣∣∣ q|2|r|2 + g1|r|4
)

+ q
(
L1

(∣∣∣q|2 ) xx + m1

(∣∣∣r|2 ) xx

)
+ iα1qx + β1r + q∗r2σ1

−iγ1

(∣∣∣q|2q
)

x − iθ1

(∣∣∣q|2 ) xq − iµ1|q|
2qx = 0, (1.1)

iDα
t r + ib1qx + b2qxx + ib3qxxx + b4qxxxx + ib5qxxxxx + b6qxxxxxx + r

(
c2

∣∣∣r|2 + d2

∣∣∣ q|2) +

r
(
e2

∣∣∣r|4 + f2

∣∣∣ r|2|q|2 + g2|q|4
)

+ r
(
L2

(∣∣∣r|2 ) xx + m2

(∣∣∣q|2 ) xx

)
+ iα2rx + β2q + q2r∗σ2

−iγ2

(∣∣∣r|2r
)

x − iθ2

(∣∣∣r|2 ) xr − iµ2|r|2rx = 0. (1.2)

The wave profiles of fiber Bragg gratings are described by the functions q = q(x, t) and r = r(x, t).
The temporal evolution of the optical field is captured by the operators Dα

t q and Dα
t r. Additionally, the

complex conjugates of these functions are denoted as q∗ and r∗, where i2 = −1.
The system includes several coefficients representing different types of dispersion and nonlinear

effects:
(1) Inter-modal dispersion coefficients: a1 and b1.
(2 Chromatic dispersion (CD) coefficients: a2 and b2.
(3) Third-order dispersion coefficients: a3 and b3.
(4) Fourth-order dispersion coefficients: a4 and b4.
(5) Fifth-order dispersion coefficients: a5 and b5.
(6) Sixth-order dispersion coefficients: a6 and b6.
(7) Self-Phase Modulation (SPM) - c j and e j:
- These coefficients quantify the self-phase modulation effect, where an optical pulse modifies its own
phase due to nonlinear refractive index changes. SPM is essential in high-intensity pulse propagation.
(8) Cross-Phase Modulation (XPM) - d j and g j (where j = 1, 2):
- These coefficients are involved in cross-phase modulation, where the phase of one beam is affected
by the presence of another beam within the same medium. XPM is significant in multi-channel
communication systems.
(9) Nonlinear Terms - f j (where j = 1, 2):
- The constants f j define the strength of nonlinear effects that are not captured by SPM or XPM alone.
These nonlinearities can lead to intricate behavior such as waveform distortions and the formation of
solitons.
(10) Non-Local Law Terms - L j and m j (where j = 1, 2):
- These coefficients describe interactions that are non-local, meaning the effect at a given point is
influenced by the field at different locations. This is important in systems where long-range
interactions occur.
(11) Inter-Modal Dispersion (IMD) - α j(where j = 1, 2):
- The α j coefficients measure the dispersion between different modes within a system. IMD can cause
temporal spreading and is a key factor in the design of fiber optic systems.
(12) Detuning Parameters - β j(where j = 1, 2):
- These coefficients represent detuning parameters that affect how closely a system can resonate at a
given frequency. Detuning is crucial in maintaining system stability and performance.
(13) Four-Wave Mixing (4WM) - σ j (where j = 1, 2):
- Representing four-wave mixing, these coefficients are pivotal in processes where three interacting
waves produce a fourth wave. 4WM is integral in wavelength conversion and parametric
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amplification.
(14) Self-Steepening (SS) - γ j (where j = 1, 2):
- The γ j coefficients pertain to the self-steepening effect, leading to the steepening of pulse edges in
high-power regimes. This term becomes important for ultra-short pulse applications.
(15) Nonlinear Dispersion Terms - θ j and µ j (where j = 1, 2):
- These coefficients are associated with the nonlinear dispersion terms, which affect the linear
dispersion properties of a system in a nonlinear context. This influence is crucial for describing pulse
propagation in highly nonlinear media.

Understanding and managing these coefficients allow for the precise design and optimization of
advanced optical systems, from telecommunications to laser technology and beyond. Balancing these
effects is key to achieving desired performance and ensuring system stability. The conformable
fractional derivative, which is a generalization of the classical derivative, is defined as [27, 28].

Dα
t f (t) = lim

δ→0

f (t + δt1−α) − f (t)
δ

, t > 0, 0 < α ≤ 1.

We discuss the highly dispersive coupled system of fractional nonlinear Schrödinger equation
(NLSE) and illustrate the effect of fractional derivative on the wave. By varying the parameter α,
which controls the fractional derivative, we can investigate the influence of fractional derivative on the
soliton solutions and understand the impact of non-locality on the system dynamics. This model was
studied in ref [26] as a classical derivative point of view. This study was conducted by implementing
the extended auxiliary equation approach to derive bright, dark, and singular solitons. Authors
in [29–31] discussed this method before and how to apply it.

In this research paper, we employ the modified extended direct algebraic method (MEDAM), a
powerful analytical technique widely used in the study of nonlinear wave phenomena. This method
enables us to derive various solitons and other exact solutions. This work is organized as follows. The
proposed methodology is briefly explained in Section 2. In Section 3, the proposed method is
implemented to derive exact solutions for the investigated model. Some of the extracted solutions are
illustrated graphically in Section 4 to depict the characteristics of the propagating wave. In the final
section, we conclude the work. While the present study offers valuable insights into the dynamics of
highly dispersive nonlinear gap solitons in optical fibers using a conformable fractional derivative
model, it is important to acknowledge several key limitations. The analysis is primarily based on
theoretical modeling and analytical solutions derived using (MEDAM), which relies on specific
functional forms for the soliton solutions. This approach may not fully capture the complex and
real-world behavior of optical fibers, and its applicability is limited to certain types of NLPDE.
Furthermore, we do not consider the potential impact of higher-order effects, such as third-order
dispersion and self-steepening, on the conformable fractional soliton characteristics. The lack of
experimental validation and the exclusion of these higher-order nonlinear terms limit the direct
applicability of the findings to practical optical communication systems. Future research efforts will
need to address these limitations by incorporating more comprehensive modeling approaches and
conducting experimental investigations to bridge the gap between the theoretical predictions and the
actual system performance.
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2. The applied method and its application

2.1. The methodology: MEDAM

In this section, MEDAM is briefly discussed [32, 33].
Assume the following NLPDE :

M(u,Dα
t u, ux, uxx, utt, ....) = 0. (2.1)

To address this nonlinear partial differential equation (NLPDE) using the proposed methodology,
the following steps are taken:

**Step (A): Wave transformation**
We begin by transforming the NLPDE in Eq (2.1) into an ordinary differential equation (ODE)

through the wave transformation:

u(x, t) = A(ξ)eiψ, ξ = η

(
x −

λtα

α

)
, ψ = φ − kx +

ωtα

α
,

where k represents the wave speed. Applying this transformation to Eq (2.1) results in the following
ODE:

G(A, A′, A′′, A(3), A(4), . . .) = 0. (2.2)

**Step (B): Solution Representation**
Next, we express the solution to the transformed ODE as:

A(ξ) =

N∑
n=0

cnµ
n(ξ) +

−N∑
n=−1

d−nµ
n(ξ), (2.3)

where µ(ξ) satisfies the differential equation:

µ′(ξ) =
√

q0 + q1µ(ξ) + q2µ2(ξ) + q3µ3(ξ) + q4µ4(ξ) + q6µ6. (2.4)

**Step (C): Determine Integer N**
Then, we determine the integer N in the series expansion by applying the balancing rule to the

transformed ODE in Eq (2.2).
**Step (D): Nonlinear algebraic equations**
We substitute Eqs (2.3) and (2.4) into the transformed ODE (Eq (2.2)), collecting the coefficients

of µm(ξ) for m = 0, 1, 2, . . . and setting them to zero. This yields a set of nonlinear algebraic equations.
**Step (E): Solve algebraic system**
To determine the values of cn, d−n and k, we employ software programs like Mathematica to solve

the nonlinear algebraic equations system at hand.
**Step (F): Generating solutions**
By varying the numerical values of q0, q1, q2, q3, q4, q6, we can generate various solutions. Here are

some specific cases:
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*Case 1:* q0 = q1 = q3 = q6 = 0

µ(ξ) =

√
−

q2

q4
sech(

√
q2ξ), q2 > 0, q4 < 0,

µ(ξ) =

√
−

q2

q4
sec(
√
−q2ξ), q2 < 0, q4 > 0,

µ(ξ) =

√
−

q2

q4
csc(
√
−q2ξ), q2 < 0, q4 > 0.

*Case 2:* q1 = q3 = q6 = 0, q0 =
q2

2
4q4

µ(ξ) =

√
−q2

2q4
tanh(

√
−q2

2
ξ), q2 < 0, q4 > 0,

µ(ξ) =

√
q2

2q4
tan(

√
q2

2
ξ), q2 > 0, q4 > 0.

*Case 3:* q0 = q1 = q6 = 0

µ(ξ) =
−q2sech2(

√
q2
2 ξ)

2
√

q2q4 tanh(
√

q2
2 ξ) − q3

, q2 > 0, q2
3 , 4q2q4,

µ(ξ) =
−q2

q3
(tanh(

√
q2

2
ξ) + 1), q2 > 0, q4 =

q2
3

4q2
.

*Case 4:* q1 = q3 = 0

µ(ξ) =

√√√√√ 2q2sech2(
√

q2ξ)

2
√

q2
4 − 4q2q6 −

(√
q2

4 − 4q2q6 + q4

)
sech2(

√
q2ξ)

,

µ(ξ) =

√√√√√√ 2q2 sec2
(√
−q2ξ

)
2
√

q2
4 − 4q2q6 −

(√
q2

4 − 4q2q6 − q4

)
sec2

(√
−q2ξ

) ,

µ(ξ) =

√√√√√√√√ 8q2 tanh2
(√
−

q3
3 ξ

)
3q4

(
tanh2

(√
−

q3
3 ξ

)
+ 3

) ,

µ(ξ) =

√√√√√√√√ 8q2 tan2
(√

q3
3 ξ

)
3q4

(
3 − tan2

(√
q3
3 ξ

)) .
**Step (G): Final solutions**
Finally, by substituting the constants cn, d−n obtained in Step (E) and the general solutions of

Eq (2.4) into Eq (2.3), various solutions for Eq (2.2) are generated. This method offers a structured
approach to elucidate complex nonlinear phenomena in partial differential equations.
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2.2. Applying to studied model

To derive exact solutions in the following manner for Eqs (1.1) and (1.2), We assume the following
transformation:

q(x, t) = Q(z)eiφ , z = η

(
x −

νtα

α

)
and φ = θ − kx +

ωtα

α
. (2.5)

Assuming that r(x, t) = A q(x, t), where A is constant and A , 0 or 1.

By substituting Eq (2.5) into Eq (1.1), the fractional derivative NLPDE in Eq (1.1) is transformed
into a complete derivative ODE, yielding the following real and imaginary components:

Q(z)
(
a6(−A)k6 + a5Ak5 + a4Ak4 − a3Ak3 − a2Ak2 + a1Ak + 2A2η2m1Q′(z)2 + Aβ1 + α1k + 2η2L1Q′(z)2 − ω

)
+ Aη2

(
15a6k4Q′′(z) − 10a5k3Q′′(z) − 15a6η

2k2Q(4)(z) − 6a4k2Q′′(z) + 5a5η
2kQ(4)(z) + 3a3kQ′′(z)

+a6η
4Q(6)(z) + a4η

2Q(4)(z) + a2Q′′(z)
)

+ Q(z)3
(
A2d1 + A2δ1 + c1 − γ1k − kµ1

)
+ ηQ(z)2

(
2A2ηm1Q′′(z) + 2ηL1Q′′(z)

)
+ Q(z)5

(
A4g1 + A2 f1 + e1

)
= 0, (2.6)

η
(
Aη

(
20a6ηk3Q(3)(z) − 10a5ηk2Q(3)(z) − 6a6η

3kQ(5)(z) − 4a4ηkQ(3)(z) + a5η
3Q(5)(z) + a3ηQ(3)(z)

)
−Q′(z)

(
6a6Ak5 − 5a5Ak4 − 4a4Ak3 + 3a3Ak2 + 2a2Ak − a1A − α1 + ν

))
− ηQ(z)2 (

3γ1Q′(z) + 2θ1Q′(z) + µ1Q′(z)
)

= 0. (2.7)
Equating the coefficients of Eq (2.7) to zero yields:

k =
a5

6a6
,

ν = −6a6Ak5 + 5a5Ak4 + 4a4Ak3 − 3a3Ak2 − 2a2Ak + a1A + α1,

3γ1 + 2θ1 + µ1 = 0,
− 20a6k3 + 10a5k2 + 4a4k − a3 = 0. (2.8)

By substituting Eq (2.5) into Eq (1.2), the fractional derivative NLPDE is converted into a complete
derivative ODE, resulting in the following real and imaginary parts:

Q(z)
(
Q′(z)2

(
2A3η2L2 + 2Aη2m2

)
+ α2Ak − Aω − b6k6 + b5k5 + b4k4 − b3k3 − b2k2 + b1k + β2

)
+Q(z)2Q′′(z)

(
2A3η2L2 + 2Aη2m2

)
+Q(z)3

(
A2c2 + A

(
A2γ2(−k) − A2kµ2 + d2 + δ2

))
+AQ(z)5

(
A4e2 + A2 f2 + g2

)
+ Q(4)(z)

(
b4η

4 − 15b6η
4k2 + 5b5η

4k
)

+
(
b2η

2 + 15b6η
2k4 − 10b5η

2k3 − 6b4η
2k2 + 3b3η

2k
)

Q′′(z) + b6η
6Q(6)(z) = 0, (2.9)

Q(z)2Q′(z)
(
3A3γ2η + 2A3ηθ2 + A3ηµ2

)
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+ηQ′(z)
(
−α2A + Aν + 6b6k5 − 5b5k4 − 4b4k3 + 3b3k2 + 2b2k − b1

)
+Q(3)(z)

(
10b5η

3ik2
− b3η

3 − 20b6η
3k3 + 4b4η

3k
)

+Q(5)(z)
(
6b6η

5k − b5η
5
)

= 0. (2.10)

By setting the coefficients of Q(z) to zero, we derive the following equations:

−α2A + Aν + 6b6k5 − 5b5k4 − 4b4k3 + 3b3k2 + 2b2k − b1 = 0,
3A3γ2 + 2A3θ2 + A3µ2 = 0,
−b3 − 20b6k3 + 10b5k2 + 4b4k = 0,
6b6k − b5 = 0,

It is observed that the Eq (2.9) have the same form of Eq (2.6) under the following conditions:

b6 = a6A,

A
(
−15a6k2 − 5a5k + a4

)
= −15b6k2 − 5b5k + b4,

A
(
15a6k4 − 10a5k3 − 6a4k2 + 3a3k + a2

)
= 15b6k4 − 10b5k3 − 6b4k2 + 3b3k + b2,

A2m1 + L1 = A
(
A2L2 + m2

)
,

A
(
−a6k6 + a5k5 + a4k4 − a3k3 − a2k2 + a1k + β1

)
+ α1k − ω

= A (α2k − ω) − b6k6 + b5k5 + b4k4 − b3k3 − b2k2 + b1k + β2,

A2 (d1 + σ1) + c1 − k (γ1 + µ1) = A
(
A2c2 + d2 − kA2 (γ2 + µ2) + σ2

)
,

A4g1 + A2 f1 + e1 = AA4e2 + A2 f2 + g2. (2.11)

To determine the integer N required for the proposed technique, we equate Q(6) with Q5 in Eq (2.6)
and find N = 3

2 . To obtain an integer value for N, we perform the following mathematical
transformation:

Q(z) = U3/2(z). (2.12)

This will convert Eq (2.6) to the following equation:

U(z)5
(
U4(z)

(
96a4Aη4 − 1440a6Aη4k2 + 480a5Aη4k

)
+ 96a6Aη6U6(z) + M11U′′(z)

)
+U(z)2

(
720a6Aη6U3(z)U′(z)3 + 1620a6Aη6U′(z)2U′′(z)2 + M6U′(z)4

)
+U(z)3

(
U′(z)2

(
M7U′′(z) − 360a6Aη6U4(z)

)
− 360a6Aη6U′′(z)3 − 1440a6Aη6U3(z)U′(z)U′′(z)

)
+U(z)4(U′(z)

(
288a6Aη6U5(z) + M10U3(z)

)
+ 480a6Aη6U3(z)2 + 720a6Aη6U4(z)U′′(z)

+M9U′′(z)2 + M8U′(z)2) + 315a6Aη6U′(z)6 − 1350a6Aη6U(z)U′(z)4U′′(z) + M5U(z)8U′′(z)
+M4U(z)7U′(z)2 + M3U(z)12 + M2U(z)9 + M1U(z)6 = 0, (2.13)

where

M1 = −64
(
a6Ak6 − a5Ak5 − a4Ak4 + a3Ak3 + a2Ak2 − a1Ak − Aβ1 − α1k + ω

)
,
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M2 = 64
(
A2d1 + A2δ1 + c1 − γ1k − kµ1

)
,

M3 = 64
(
A4g1 + A2 f1 + e1

)
,

M4 = 384η2
(
A2m1 + L1

)
,

M5 = 192η2
(
A2m1 + L1

)
,

M6 = 36a4Aη4 − 540a6Aη4k2 + 180a5Aη4k,

M7 = −144a4Aη4 + 2160a6Aη4k2 − 720a5Aη4k,

M8 = 48a2Aη2 + 720a6Aη2k4 − 480a5Aη2k3 − 288a4Aη2k2 + 144a3Aη2k,

M9 = 144a4Aη4 − 2160a6Aη4k2 + 720a5Aη4k,

M10 = 192a4Aη4 − 2880a6Aη4k2 + 960a5Aη4k,

M11 = 96a2Aη2 + 1440a6Aη2k4 − 960a5Aη2k3 − 576a4Aη2k2 + 288a3Aη2k,

M12 = 96a4Aη4 − 1440a6Aη4k2 + 480a5Aη4k.

By balancing U12 with U5U (6), we find N = 1. The solution of the resulting (ODE) can be expressed
as follows:

U(z) = s0 + s1λ(z) +
s2

λ(z)
. (2.14)

λ′(z) =
√

p0 + p1λ(z) + p2λ2(z) + p3λ3(z) + p4λ4(z) + p6λ6(z). (2.15)

By Substituting Eqs (2.14) and (2.15) into the expression for Eq (2.13) and setting the coefficients
of λ(z) to zero, a system of nonlinear algebraic equations is generated. To solve this system,
Mathematica software packages are employed, resulting in the subsequent results:
Case(1): p0 = p1 = p3 = p6 = 0

s0 = 0,
s2 = 0,
M1 = −53361a6Aη6 p3

2,

M8 = 22377a6Aη6 p2
2,

M4 = 0,

p2 = −
M6

1611a6Aη6 ,

p4 =

3
√
− 1

5005
3√M3s2

1

3 3
√

a6
3√Aη2

.

As a result, Eq (1.1) permits the derivation of both bright soliton and periodic solutions.

q1(x, t) =

4√5005

√− M6

a2/3
6 A2/3η4 3√M3

sech


√
−

M6
a6Aη4

(
x− νt

α

α

)
3
√

179




3/2

5373/4 exp
(
i
(
θ − kx +

ωtα

α

))
. (2.16)
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q2(x, t) =

4√5005

√− M6

a2/3
6 A2/3η4 3√M3

sec


√

M6
a6Aη4

(
x− νt

α

α

)
3
√

179




3/2

5373/4 exp
(
i
(
θ − kx +

ωtα

α

))
. (2.17)

q3(x, t) =

4√5005

√− M6

a2/3
6 A2/3η4 3√M3

csc


√

M6
a6Aη4

(
x− νt

α

α

)
3
√

179




3/2

5373/4 exp
(
i
(
θ − kx +

ωtα

α

))
. (2.18)

Case (2): p1 = p3 = p6 = 0, p0 =
p2

2
4p4

s0 = 0,

p2 =
2p4s2

s1
,

M1 =
3415104a6Aη6 p3

4s3
2

s3
1

,

M8 =
358032a6Aη6 p2

4s2
2

s2
1

,M4 = 0,

M6 =
6444a6Aη6 p4s2

s1
,

M2 = 0,

p4 = −

3√M3s2
1

3 3√5005 3
√

a6
3√Aη2

.

Then, the following singular soliton and singular periodic solutions are obtained

q4(x, t) = 2
√

2



s2csch


2

√
3√M3 s1 s2
3√a6

3√A

(
x− νt

α

α

)
√

3 6√5005

√
−

s2
s1



3/2

exp
(
i
(
θ − kx +

ωtα

α

))
, (2.19)

q5(x, t) = 2
√

2

s1

√
s2

s1
csc


2

√
3
√
− 1

5005
3√M3 s1 s2

3√a6
3√A

(
x − νtα

α

)
√

3




3/2

exp
(
i
(
θ − kx +

ωtα

α

))
. (2.20)

Case(3): p0 = p1 = p6 = 0, p2
3 , 4p2 p4

s0 = 0,
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s2 = 0,

p2 = −
p2

3

p4
,

M1 =
52200a6Aη6 p6

3

p3
4

,

M8 =
24339a6Aη6 p4

3

p2
4

M4 = −
124740a6Aη6 p3 p4

s3
1

,

M6 =
2394a6Aη6 p2

3

p4
,

M2 = −
377370a6Aη6 p3

3

s3
1

,

M3 = −
135135a6Aη6 p3

4

s6
1

.

Then, the following soliton solution can be presented

q6(x, t) =
29
16

√
29
2

−
p3s1sech2

(
1
8

√
29
2 η

√
p2

3
p4

(
x − νtα

α

))
p4

(
4 −
√

58 tanh
(

1
8

√
29
2 η

√
p2

3
p4

(
x − νtα

α

)))


3/2

× exp
(
i
(
θ − kx +

ωtα

α

))
.

(2.21)

q7(x, t) =
29
16

√
29
2

−
p3s1sec2

(
1
8

√
29
2 η

√
−p2

3
p4

(
x − νtα

α

))
p4

(
4 −
√

58 tan
(

1
8

√
29
2 η

√
−p2

3
p4

(
x − νtα

α

)))


3/2

× exp
(
i
(
θ − kx +

ωtα

α

))
.

(2.22)

Case(4): p3 = p1 = 0

s0 = 0,

p4 =
p0s2

1

s2
2

,

p2 =
2p0s1

s2
,

p6 = 0, M1 =
3415104a6Aη6 p3

0s3
1

s3
2

,

M8 =
358032a6Aη6 p2

0s2
1

s2
2

,
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M4 = 0,

M6 =
6444a6Aη6 p0s1

s2
,

M2 = 0,

M3 = −
135135a6Aη6 p3

0

s6
2

.

Then, Eq (1.1) can have the following hyperbolic solutions

q8(x, t) =

s1

(
cosh

(
2
√

2η
√

p0 s1
s2

(
x − νtα

α

))
+ 3

) √
s2

s1

(
cosh

(
2
√

2η
√

p0 s1
s2

(x− νt
α

α )
)
−1

)


3/2

2
√

2

× exp
(
i
(
θ − kx +

ωtα

α

))
. (2.23)

q9(x, t) =

s1

(
9 coth2

(
η
√
−p3

(
x− νt

α

α

)
√

3

)
+ 19

) √
s1 s2

3 coth2
 η√−p3(x− νt

α
α )

√
3

+1

 3/2

8 33/4

× exp
(
i
(
θ − kx +

ωtα

α

))
. (2.24)

and a trigonometric solutions are obtained:

q10(x, t) =


√

p0 s2

p0 s1 cos
(
2
√

2η
√
−

p0 s1
s2 (x− νt

α
α )

)
+p0 s1

(√
p2

0 s4
1 cos

(
2
√

2η
√
−

p0 s1
s2

(
x− νt

α

α

))
+5p0 s2

1

)
p0 s1


3/2

2
√

2

× exp
(
i
(
θ − kx +

ωtα

α

))
. (2.25)

q11(x, t) =


(
9 cot2

(
η
√

p3
(
x− νt

α

α

)
√

3

)
+ 13

) √
s1 s2

3 cot2
 η√p3(x− νt

α
α )

√
3

−1


3/2

8 33/4

× exp
(
i
(
θ − kx +

ωtα

α

))
. (2.26)

3. Graphical simulations

Graphical simulations illustrating selected solutions aim to highlight key features of the results.
The following figures depict a bright soliton solution of Eq (2.16) with parameters η = 0.19, ν = 1.23,
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M6 = −1.68, M3 = 0.54, a6 = 1.7, A = 0.32, and t = 1.2. This bright soliton exhibits a localized,
bell-shaped profile with a distinct amplitude and narrow width.

Remarkably, these soliton waves can travel long distances while retaining their characteristic shape
and speed. This remarkable stability is attributed to the intricate interplay between the dispersive and
nonlinear effects in the optical fiber. The dispersive forces, which tend to stretch and weaken the pulse
over time, are precisely counterbalanced by the self-focusing nonlinear effects. This delicate balance
between these two opposing forces is what enables the solitons to propagate with minimal distortion
or decay, maintaining their compact and localized form.

The ability to control and manipulate the soliton characteristics through the fractional derivative
parameter α opens new avenues for the design and optimization of optical communication systems and
photonic devices. The influence of the fractional derivative on the soliton solutions, as demonstrated by
the graphical illustrations, shows the importance of incorporating fractional calculus in the modeling
of these dispersive and nonlocal systems.

Figure 1. α = 0.55.

Figure 2. α = 0.7.
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Figure 3. α = 1.
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Figure 4. 2 D bright soliton at different values of α.

4. Comparison with other works

While we present the first application of the conformable fractional derivative approach to
modeling nonlinear solitons in optical fibers, other researchers have investigated similar phenomena
using the standard integer-order derivative model. The authors in [26] examined the dynamics of
highly dispersive nonlinear gap solitons in optical fibers with dispersive reflectivity. Their work
predicted the formation of bright solitons and singular solitons, which share certain characteristics
with the soliton solutions obtained in this study. However, the conformable fractional derivative
model introduced here introduces an additional parameter, the fractional order α, which allows for a
more nuanced description of the highly dispersive nature of the optical fiber. Furthermore, the impact
of the fractional order parameter α on the soliton characteristics, such as the soliton amplitude, width,
and velocity, has been investigated in detail. This allows for a more comprehensive understanding of
how the degree of dispersion in the optical fiber, as governed by the fractional order, influences the
dynamics and propagation of the nonlinear solitons. By bridging the gap between the standard
integer-order derivative models and the more generalized fractional derivative approach, this work
provides a richer theoretical framework for analyzing the complex nonlinear phenomena in highly
dispersive optical fiber systems. The conformable fractional derivative model offers additional

AIMS Mathematics Volume 9, Issue 9, 25205–25222.



25219

flexibility and the potential to better capture the underlying physical processes, which may lead to
improved designs and performance optimization in future optical communication and signal
processing applications.

5. Conclusions

In this work, the MEDAM was implemented to investigate highly dispersive gap solitons in optical
fibers with a conformable fractional derivative. We successfully derived soliton solutions, including
bright, singular solitons and other solutions such as trigonometric and hyperbolic solutions. The key
finding of this research is the significant impact of the fractional derivative parameter, denoted as α, on
the characteristics of the soliton solutions.

The graphical illustrations presented in this work have clearly demonstrated the influence of the
fractional derivative on the magnitude and behavior of the soliton waves. As the value of α is varied,
the soliton solutions exhibit distinct changes in their amplitude, shape, and propagation dynamics.
This observation underscores the importance of incorporating fractional calculus in the modeling of
these dispersive and nonlocal systems, as it allows for a more accurate representation of the underlying
physical processes.

The ability to control and manipulate the soliton characteristics through the fractional derivative
parameter α opens new avenues for the design and optimization of optical communication systems and
photonic devices. The findings of this research can potentially be extended to study other nonlinear
wave phenomena in various physical systems, such as Bose-Einstein condensates, plasma physics, and
biological systems, where the influence of fractional derivatives plays a crucial role. Future work could
investigate the influence of higher-order effects, such as third-order dispersion and self-steepening,
on the dynamics of conformable fractional solitons. Incorporating these higher-order terms would
yield a more comprehensive understanding of the interplay between fractional derivatives and other
dispersive and nonlinear factors, potentially leading to the discovery of novel soliton behaviors and
applications. In summary, this research offers an invaluable understanding of the intricate and diverse
characteristics displayed by solitons within the realm of fractional calculus. Such knowledge carries
significant ramifications for both fundamental inquiry and pragmatic implementation purposes.
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