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Abstract: In this paper, we proposed a reachable set control method for a class of Markov jump
cyber-physical systems (MJCPSs) with time-varying delays, which addressed the challenges posed by
false data injection (FDI) attacks to system security. The goal was to find the set of regions where
all MJCPSs states were reachable from the origin in the presence of bounded disturbances. The
adaptive event-triggered control strategy was introduced to save network resources. It also reduced the
impact of FDI attacks and external disturbances on system security. The conservatism of the results
were reduced by constructing the Lyapunov-Krasovskii (L-K) functional with time-varying delays.
Difference terms were estimated by using the discrete Wirtinger inequality and the improved extended
reciprocally convex matrix inequality, and the ellipsoid reachable set of the MJCPS was obtained.
Then, the reachable set controller was obtained by linear matrix inequalities (LMIs) solving technique.
Finally, an example simulation proved the validity of the results.
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1. Introduction

The integration of physical systems and network systems has become a trend. This integration forms
cyber-physical systems (CPSs) [1]. CPSs realize real-time information interaction between cyber and
physical modules, which have the advantages of efficiency, convenience, and transparency. A typical
CPS consists of three parts: sensing part, network part, and control part. In the practical application
of some CPSs, external disturbances, internal failures, and changes in the working environment often
occur [2]. Those situations can lead to abrupt changes in the modes of the CPS, while also causing the
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system to not operate safely [3]. Markov jump cyber-physical systems (MJCPSs) introduce Markov
jump properties to describe the abrupt change of system modes. Scholars have paid increasing attention
to MJCPSs in recent years and have obtained some research results, such as attack-compensated output
control [4], sliding mode control [5], and adaptive resilient control [6].

MJCPSs are characterized by the openness of network transmission, thus making them vulnerable to
the threat of cyber attacks during information transmission. Common cyber attacks include deception
attacks [7] and denial of service (DOS) attacks [8]. Deception attacks are related to the state of the
system and carefully designed by the attacker. As a result, deception attacks tend to be more destructive
than DOS attacks [9], the most typical of which are false data injection (FDI) attacks. When the
system state information of MJCPSs is transmitted between physical and network modules, the attacker
tampers with the system state information by secretly injecting false information, which leads to system
paralysis. Reachable set control is an important branch of system security research and the reachable
set control can defend against FDI attacks. The existence of FDI attacks and external disturbances will
destroy the security of the system and make the system unstable. The system can be restored to normal
by reachable set control. Therefore, reachable set control has great significance in theoretical research
and practical application. The reachable set is the set of all states of the system that can be reached from
the original state under the influence of bounded disturbances [10]. Scholars have conducted reachable
set research on stealth attacks [11], deception attacks [12], and hybrid attacks [13] that MJCPSs may be
subjected to. However, there are few studies on the reachable set of discrete MJCPSs, and even fewer
on the reachable set of MJCPSs under FDI attacks. Therefore, obtaining more applicable reachable set
control results for discrete MJCPSs under FDI attacks is a motivation for this paper.

Influenced by physical factors such as material and temperature, the transmission of signals at actual
MJCPSs creates time delays that cannot be eliminated [14]. In the transmission of the signal, most
of the time delays are not constant. The magnitude of time delays varies with time because of the
physical factors, such as material and temperature change. This kind of delay is called time-varying
delay. It makes the current state information of the system also contain the state information of the
previous time [15]. The presence of system delays increases the conservatism of research results in the
reachable set of MJCPSs [16]. Therefore, reducing the conservatism that system delays bring to the
study of reachable sets of MJCPSs is another motivation for this paper.

Since MJCPSs are characterized by data exchange and sharing, remote monitoring and control, they
require continuous network transmission. However, network bandwidth is usually limited, leading to
problems such as information congestion and inefficient utilization of network resources during data
transmission. Event-triggered control strategies can effectively save network resources. Moreover,
event-triggered control strategies can also reduce the impact of cyber attacks and external disturbances
on the MJCPS [17]. There are many kinds of event-triggered control strategies, including but not
limited to hybrid-triggered security control strategies [18], dynamic event-triggered security control
strategies [19], and memory-based event-triggered security control strategies [20]. Ordinary event-
triggered control strategies give fixed trigger thresholds and consider global information. Adaptive
event-triggered control strategies introduce dynamic trigger thresholds that eliminate the need for
global data and provide more flexible trigger conditions. It can flexibly change the trigger threshold
when FDI attacks and external disturbances occur. This reduces the number of triggers and increases
the security of the MJCPS. Obtaining more effective reachable set control effects through adaptive
event-triggered control strategies is also the research motivation.
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The contributions of the paper are as follows:

1) In this paper, the reachable set problem of MJCPS with time-varying delays and external
disturbances under FDI attacks is studied for the first time. Compared to other papers [21], this
paper considers a variety of adverse effects on the MJCPS, and the results are more applicable.

2) The adaptive event-triggered control strategy is added to save network resources during data
transmission. It also reduces the impact of FDI attacks and external disturbances on the MJCPS.

3) By constructing the new Lyapunov-Krasovskii (L-K) functional with system time-varying delays
and utilizing the Wirtinger inequality and the improved extended reciprocally convex matrix
inequality, sufficient conditions of less conservative for reachable set estimation are derived. It is
transformed into the form of the linear matrix inequality (LMI) and solved to obtain the optimal
solution of the reachable set controller.

4) The validity of the results is proved by a boost converter circuit system example.

Notations: Rn stands for an n-dimensional real matrix; Z stands for nonnegative integers; and E {·}
represents the mathematical expectation. The symmetric term in a symmetric matrix is represented by
the symbol ∗, and ∥·∥ indicates the Euclidean norm. The diagonal matrix is represented by the symbol
diag {· · · }.

2. Problems formulation and preliminaries

Figure 1 shows the design diagram of the reachable set controller of the MJCPS under FDI attacks.
As can be seen from the figure, the sensor obtains the sampled signal x(k) and sends it to the event
generator. The event generator is compared the sampled signal with the trigger conditions. The signal
which meets the conditions will be sent to the network transmission. When the signal does not meet the
trigger conditions, the zero-order hold (ZOH) will keep the information of the previous time unchanged
to ensure the continuity of the signal. In the transmission process, it is assumed that the network-
induced delay of the network transmission is σ(k), which satisfies σ(k) ∈ [0, σM], and the attacker
randomly carries out FDI attacks. Finally, the controller processes the signal x̂(k − σ(k)).

Figure 1. Design diagram of reachable set controller of MJCPS under FDI attacks.
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2.1. Cyber-physical system model description

Consider the following MJCPS:{
x(k + 1) =Ark x(k)+Brku(k)+Frk x(k − d(k))+Drkw(k),
u(k) = Krk x(k),

(2.1)

where x(k) ∈ Rn, u(k) ∈ Rm,Krk represent the state vector, the controller input, and the controller gain;
d(k) is a time-varying delay; d(k) ∈ [dm, dM], where dm and dM are constant; w(k) ∈ Rl represents the
external disturbance, and the following mean bounded condition is met:

E[wT (k)w(k)] ≤ ϖ, (2.2)

where ϖ is a constant. Ark , Brk ,Crk ,Drk , Frk are constant matrices of known suitable dimensions. Here,
{rk, k ∈ Z} is a discrete-time Markov chain, which takes from a finite space N = {1, 2, . . . ,N}. The
system transition probability is πpq = Pr{rk+1 = q|rk = p}, where 0 ≤ πpq ≤ 1 for all p, q ∈ N, and∑N

q=1 πpq = 1 for all p ∈ N. Π =
[
πpq

]
is a matrix of transition probability.

2.2. Adaptive event-triggered control strategy

The adaptive event-triggered control strategy is adopted to reduce the waste of network resources.
The corresponding trigger condition is:

km+1 = km +min
k>km

{
k|[x(k) − x(km)]T Q [x(k) − x(km)] > ϑ(k)xT (km)Qx(km)

}
, (2.3)

where km represents the most recent trigger time; x(km) denotes the latest transmitted state; and Q is
the undetermined positive definite weighting matrix. The adaptive triggered threshold ϑ(k) meets:

∆ϑ(k) =
1
ϑ(k)

[
1
ϑ(k)

− ϑ0

]
[x(k) − x(km)]T Q [x(k) − x(km)] , (2.4)

where ∆ϑ(k) = ϑ(k + 1) − ϑ(k) and ϑ0 > 0. It is inevitable that there is transmission delay in the
transmission process. The delay existing in network transmission is analyzed as in references [22]
and [23]. The mechanism (2.3) can be rewritten as:

km+1 = km +min
k>km

{
k|eT

x Qex > ϑ(k)xT (k − σ(k))Qx(k − σ(k))
}
, (2.5)

where ex = x(k) − x(km). The delay is 0 ≤ σ(k) ≤ σM, and σM is a constant. So, x(k) after passing the
adaptive event-triggered control strategy can be expressed as: x̃(k − σ(k)) = x(k − σ(k)) − ex.

Remark 1. The common event-triggered control strategy relies on global information to set a fixed
trigger threshold, which may cause the loss of important information. The adaptive event-triggered
control strategy in this paper not only preserves system data as much as possible, but also helps the
system recover quickly after FDI attacks and external disturbances happened. Compared with other
adaptive laws, this adaptive law is adjusted by focusing on the difference in state near the trigger time.
When the FDI attack or the disturbance occur, ex will increase, then ∆ϑ(k) will increase, consequently
causing an increase in ϑ(k). The trigger condition will become harder, and the system will maintain
its previous trigger state unchanged under the ZOH, thereby effectively mitigating the impact of FDI
attacks and disturbances on MJCPSs state. In addition, in order to avoid Zeno behavior, the sampling
period of the system is used as the minimum time interval between two events.
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2.3. FDI attacks

FDI attacks occur during network communications such as data sharing and remote control in the
MJCPS (2.1). Different from the previous attacks from [24], the attacker eliminates the original correct
data in the system while carrying out the attacks signal input, which is more destructive to the system.
The attacks signal model can be expressed as:

x̂(k − σ(k)) = x̃(k − σ(k)) + α(k)
[
−x̃(k − σ(k)) + ξ(x̃(k − σ(k)))

]
, (2.6)

where α(k) = 0 or α(k) = 1 represent failure or success of the attack launched by the attacker at time k.
α(k) satisfies the Bernoulli distribution; E{α(k)} = Prob{α(k) = 1} = α̂,E{1−α(k)} = Prob{α(k) = 0} =
1 − α̂; and ξ(x̃(k − σ(k))) denotes the FDI attacks signal in discrete time, satisfying:

∥ξ(x̃(k − σ(k)))∥2 ≤ ∥GM x̃(k − σ(k))∥2, (2.7)

where GM is a known matrix.

Remark 2. FDI attacks pose a huge threat to the security of the MJCPS as they are well-designed by
the attackers. The attack model in this paper is to erase the original state information of the MJCPS and
inject error information. In order to avoid the attacks signal being detected and improve the success
rate of the FDI attack, the attacker sets an energy upper limit for the attacks signal. In the actual
MJCPS, the attacks signal will be affected by the external environment, signal disturbances, and other
factors. Therefore, it is random whether the FDI attacks signal can be injected into the MJCPS. In this
paper, the Bernoulli distribution function is used to describe the probability distribution of whether an
attacker launches a successful FDI attack. In order to be closer to the actual MJCPS, the system state
in this paper introduces the corresponding delay in the network transmission after the event-triggered
control strategy processing, so the FDI attacks signal should contain the corresponding delay.

2.4. Preliminary

When rk = p, there is the system such that:

x(k + 1) = Apx(k) + (1 − α(k))BpKpx(k − σ(k)) + α(k)BpKpξ(x(k − σ(k))) + Fpx(k − d(k))
+Dpw(k) − (1 − α(k))BpKpex. (2.8)

Here are the definition and a few lemmas.
Definition 1. [25] For ∀k ≥ 0, the reachable set of the MJCPS is denoted as follows:

H(x) = {x(k)|x(k) and w(k) satisfy (2.1) and (2.2)},

and the ellipsoid bound of the MJCPS can be given as:

εx(Up, 1) = {x(k)|E{xT (k)UPx(k)|x0, r0} ≤ 1, x(k) ∈ Rn,UP > 0}.

Lemma 1. [26] For a given symmetric matrix R > 0, a sequence of discrete-time variable δ :
Z[γ1, γ2]→ Rn, and integers 0 ≤ γ1 ≤ γ2,

(γ2 − γ1)
γ2−1∑
δ=γ1

xT (δ)Rx(δ) ≥ ΩT
1 RΩ1 + 3ΩT

2 RΩ2, (2.9)
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where

Ω1 = x(γ2) − x(γ1),Ω2 = x(γ2) + x(γ1) −
2

γ2 − γ1 + 1

γ2∑
δ=γ1

x(δ).

Lemma 2. [27] For a real scalar 0 < χ < 1, real matrices D1 > 0,D2 > 0 and an arbitrary matrix N,
we obtain  1

χ
D1 0
0 1

1−χD2

 ≥ [
D1 + (1 − χ)(D1 − ND−1

2 NT ) N
∗ D2 + χ(D2 − NT D−1

1 N)

]
. (2.10)

Lemma 3. [28] Consider the MJCPS (2.1) with a well-squared bounded external disturbance, assuming
that V(xk, rk) is an L-K functional satisfying the initial condition V(x0, r0) = 0 and w(k) satisfies (2.2).
If there exists a scalar β ∈ (0, 1), for any ∀k ≥ 0: E[V(xk+1, rk+1)|xk, rk]−βV(xk, rk)−

1−β
ϖ

wT (k)w(k) ≤ 0,
then E[V(xk, rk)|x0, r0] ≤ 1.

3. Reachable set estimation analysis

In this part, we give the analysis of reachable set estimation for the MJCPS (2.1). First, the range of
the reachable set for the MJCPS is obtained by estimation in Theorem 1. Second, the controller gain
of the MJCPS reachable set controller is obtained in Theorem 2. Define the following symbols:

η(k) =
[
xT (k), xT (k − dm), xT (k − d(k)) , xT (k − dM), xT (k − σ(k)) , xT (k − σM) , ξT (x̃(k − σ(k))),

mT
1 (k), mT

2 (k), mT
3 (k), mT

4 (k), mT
5 (k), eT

x , wT (k)
]T
,

with

m1(k) =
2

dm + 1

k∑
δ=k−dm

x(δ),m2(k) =
2

d(k) − dm + 1

k−dm∑
δ=k−d(k)

x(δ),m3(k) =
2

dM − d(k) + 1

k−d(k)∑
δ=k−dM

x(δ),

m4(k) =
2

σ(k) + 1

k∑
δ=k−σ(k)

x(δ),m5(k) =
2

σM − σ(k) + 1

k−σ(k)∑
δ=k−σM

x(δ).

3.1. Reachable set estimation of the MJCPS

Theorem 1. For given scalars dM, dm, σM, ϑ0, α̂, and the matrix GM, if there is a scalar 0 < β < 1,
positive definite matrices Pi(i = 1, . . . , 7),Up ∈ R

n×n, Ni(i = 1, . . . , 4) ∈ R2n×2n, such that, for ∀p ∈ N :

ΨP
1 =


Γp|d(k)=dm,σ(k)=0 φT

2 N2 φT
4 N4

∗ − 1
βdM

X2 0
∗ ∗ − 1

βσM X3

 < 0, (3.1)

ΨP
2 =


Γp|d(k)=dm,σ(k)=σM φT

2 N2 φT
5 NT

3
∗ − 1

βdM
X2 0

∗ ∗ − 1
βσM X3

 < 0, (3.2)
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ΨP
3 =


Γp|d(k)=dM ,σ(k)=0 φT

3 NT
1 φT

4 N4

∗ − 1
βdM

X2 0
∗ ∗ − 1

βσM X3

 < 0, (3.3)

ΨP
4 =


Γp|d(k)=dM ,σ(k)=σM φT

3 NT
1 φT

5 NT
3

∗ − 1
βdM

X2 0
∗ ∗ − 1

βσM X3

 < 0, (3.4)

where

Γp =


T p lT

pΠ
p
1 (e5 − e13)TGT

MUp

∗ Π2 0
∗ ∗ − Up

 ,
T p = Φ

p
1 + Φ2 + Φ3 + Φ

p
4 + Φ5 −

1 − β
ϖ

eT
14e14,

Φ
p
1 = −βe

T
1 Upe1 + ϑ(k)eT

5 Qe5 − eT
7 Upe7 − eT

13Qe13,

Φ2 = eT
1 (P1 + P2 + P3 + P4)e1 − β

dM eT
3 P1e3 − β

σM eT
6 P2e6 − β

dmeT
2 P3e2 − β

dM eT
4 P4e4 + dmMeT

1 P1e1,

Φ3 = eT
1 (d2

mP5 + d2
mMP6 + σ

2
MP7)e1 − β

dmφT
1 X1φ1 − β

dM
[
φT

2 φT
3

]
E

[
φ2

φ3

]
− βσM

[
φT

4 φT
5

]
F

[
φ4

φ5

]
,

dmM = dM − dm,

Π
p
1 = (

√
πp1Up,

√
πp2Up, ...,

√
πpNUp),

Π
p
2 = diag

{
−UpU−1

1 Up,−UpU−1
2 Up, ...,−UpU−1

N Up

}
,

Xγ =
[
Pγ+4 0
∗ 3Pγ+4

]
(γ = 1, 2, 3), φγ =

[
eγ − eγ+1

eγ + eγ+1 − eγ+7

]
(γ = 1, 2, 3), φγ =

[
e1 − eγ+1

e1 + eγ+1 − eγ+7

]
(γ = 4, 5),

E =
2dM−d(k)−dm

dmM
X2

dM−d(k)
dmM

N1 +
d(k)−dm

dmM
N2

∗
dM+d(k)−2dm

dmM
X2

 , F = 2σM−σ(k)
σM

X3
σM−σ(k)
σM

N3 +
σ(k)−σm
σM

N4

∗
σM+σ(k)
σM

X3

 ,
lp = Ape1 + (1 − α̂)BpKpe5 + α̂BpKpe7 + Fpe3 − (1 − α̂)BpKpe13 + Dpe14,

eγ = [0n×(γ−1)n, In×n, 0n×(13−γ)×n, 0n×l](γ = 1, 2, . . . , 13), e14 = [0l×13n, Il×l], (3.5)

the ellipsoid set εx(Up, 1) is a reachable set of the MJCPS (2.8).
Proof: We choose the L-K functional:

V(k, xk, rk) = V1(k, xk, rk) +
3∑

i=2

Vi(k, xk). (3.6)

where

V1(k, xk, rk) = xT (k)Upx(k),

V2(k, xk) =
k−1∑

δ=k−d(k)

βk−δ−1xT (δ)P1x(δ) +
k−1∑

δ=k−σM

βk−δ−1xT (δ)P2x(δ) +
k−1∑
δ=k−dm

βk−δ−1xT (δ)P3x(δ)

+

k−1∑
δ=k−dM

βk−δ−1xT (δ)P4x(δ) +
k−dm∑

γ=k−dM+1

k−1∑
δ=γ

βk−δ−1xT (δ)P1x(δ),
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V3(k, xk) = dm

−1∑
γ=−dm

k−1∑
δ=k+γ

βk−δ−1xT (δ)P5x(δ) + dmM

−dm∑
γ=−dM

k−1∑
δ=k+γ

βk−δ−1xT (δ)P6x(δ)

+ σM

−1∑
γ=−σM

k−1∑
δ=k+γ

βk−δ−1xT (δ)P7x(δ).

Define ∆V(k, xk, rk) as the forward difference, then we have:

∆V1(k, xk, rk) =(β − 1)V1(k, xk, rk) + xT (k)lT
p

∑
q∈N

πpqUqlpx(k) − xT (k)βUpx(k)

=(β − 1)V1(k, xk, rk) + ηT (k)(Φp
0 + Φ

p
1s)η(k), (3.7)

where Φp
0 =

∑
q∈N πpqlT

p Uqlp.

∆V2(k, xk) ≤OT WO +
k−dm∑

δ=k−dM+1

βk−δxT (δ)P1x(δ) + dmM xT (k)P1x(k) −
k−dm∑

δ=k−dM+1

βk−δxT (δ)P1x(δ),

=(β − 1)V2(k, xk) + ηT (k)Φ2η(k),
(3.8)

where

O =
[
xT (k), xT (k − d(k)), xT (k − dm), xT (k − dM)

]T
,

W = diag
{
P1 + P2 + P3 + P4,−β

dM P1,−β
dm P3,−β

dM (P2 + P4)
}
.

∆V3(k, xk) =(β − 1)V3(k, xk) + d2
mxT (k)P5x(k) + d2

mM xT (k)P6x(k) − dm

k−1∑
δ=k−dm

βk−δxT (δ)P5x(δ)

− dmM

k−dm−1∑
δ=k−dM

βk−δxT (δ)P6x(δ) − σM

k−1∑
δ=k−σM

βk−δxT (δ)P7x(δ)

≤(β − 1)V3(k, xk) + d2
mxT (k)P5x(k) + d2

mM xT (k)P6x(k) + σ2
M xT (k)P7x(k)

− dmβ
dm

k−1∑
δ=k−dm

xT (δ)P5x(δ) − dmMβ
dM

k−dm−1∑
δ=k−dM

xT (δ)P6x(δ) − σMβ
σM

k−1∑
δ=k−σM

xT (δ)P7x(δ).

(3.9)

Those can be obtained by Lemma 1:

−dmβ
dm

k−1∑
δ=k−dm

xT (δ)P5x(δ) ≤ −βdmηT (k)φ1
T X1φ1η(k). (3.10)

−dmMβ
dM

k−dm−1∑
δ=k−dM

xT (δ)P6x(δ) = −dmMβ
dM

 k−dm−1∑
δ=k−d(k)

+

k−d(k)−1∑
δ=k−dM

 xT (δ)P6x(δ)
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≤ −
dmMβ

dM

d(k) − dm
ηT (k)φ2

T X2φ2η(k) −
dmMβ

dM

dM − d(k)
ηT (k)φ3

T X2φ3η(k). (3.11)

It is estimated by Lemma 2 that:

− ηT (k)φ2
T

(
dmMβ

dM

d(k) − dm
X2

)
φ2η(k) − ηT (k)φ3

T

(
dmMβ

dM

dM − d(k)
X2

)
φ3η(k)

≤ − βdM

[
φ2η(k)
φ3η(k)

]T

E
[
φ2η(k)
φ3η(k)

]
+ βdM

dM − d(k)
dmM

(ηT (k)φ2
T N2X−1

2 NT
2 φ2η(k))

+βdM
d(k) − dm

dmM
(ηT (k)φ3

T NT
1 X−1

2 N1φ3η(k)), (3.12)

and using the same processing method as (3.12), the another integral term can be estimated as:

− σMβ
σM

k−1∑
δ=k−σM

xT (δ)P7x(δ) (3.13)

≤ − βσM

[
φ4η(k)
φ5η(k)

]T

F
[
φ4η(k)
φ5η(k)

]
+ βσM

σM − σ(k)
σM

(ηT (k)φ4
T N4X−1

3 NT
4 φ4η(k))

+βσM
σ(k)
σM

(ηT (k)φ5
T NT

3 X−1
3 N3φ5η(k)). (3.14)

Therefore, it can be obtained that:

∆V3(k, xk) ≤(β − 1)V3(k, xk) + ηT (k)(Φ3 + Φ̃3)η(k), (3.15)

where

Φ̃3 = β
dM

dM − d(k)
dmM

(φ2
T N2X−1

2 NT
2 φ2) + βdM

d(k) − dm

dmM
(φ3

T NT
1 X−1

2 N1φ3)

+ βσM
σM − σ(k)
σM

(φ4
T N4X−1

3 NT
4 φ4) + βσM

σ(k)
σM

(φ5
T NT

3 X−1
3 N3φ5).

In addition, assuming the attacks signal ξ(x(k − σ(k))) satisfies (2.7), we have:

x̃T (k − σ(k))GT
MUpGM x̃(k − σ(k)) − ξT (x̃(k − σ(k)))Upξ(x̃(k − σ(k))) ≥ 0. (3.16)

Meanwhile, from (2.5), we can get:

ϑ(k)xT (k − σ(k))Qx(k − σ(k)) − eT
x Qex ≥ 0. (3.17)

Combining (3.7)–(3.17), we get:

∆V(k, xk, rk) ≤ (β − 1)V(k, xk, rk) + ηT (k)Φpη(k), (3.18)
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where

Φp = Φ
p
0 + Φ

p
1 + Φ2 + Φ3 + Φ̃3 + Φ̃

p
4 ,

Φ
p
1 = Φ

p
1s + ϑ(k)eT

5 Qe5 − eT
7 Upe7 − eT

13Qe13, Φ̃
p
4 = (e5 − e13)TGT

MUpGM(e5 − e13).

To obtain the reachable set of the MJCPS (2.1), the following function is defined:

J = E[V(k + 1, xk+1, rk+1)|k, xk, rk] − βV(k, xk, rk) −
1 − β
ϖ

w(k)T w(k). (3.19)

Combining (3.18) and (3.19), we get:

J ≤ ηT (k)Φ̄pη(k), (3.20)

where Φ̄p = Φp −
1−β
ϖ

w(k)T w(k).
By using the Schur complement, if (3.1)–(3.4) hold, Φ̄p ≤ 0 holds, which means E[V(k +

1, xk+1, rk+1)|k, xk, rk] − βV(k, xk, rk) −
1−β
ϖ

wT w ≤ 0 holds, then based on Lemma 3, E[xT (k)Upx(k)] ≤ 1
holds. This completes the proof.

Remark 3. In general, after constructing the L-K functional, the reachable set estimation result,
which is obtained by applying the Jensen summation inequality to handle summation terms, tends
to be conservative. In order to reduce conservatism, researchers have adopted many methods, which
also increase the difficulty of computation [29]. This paper employs the Wirtinger inequality and
improved extended reciprocally convex matrix inequality to estimate the integral term, which reduce
the conservatism of the results and the complexity of the calculation. At the same time, by designing
V2(k, xk), two summation terms are cleverly eliminated in ∆V2(k, xk). In addition, more time-varying
delays and system information are introduced. These further reduce conservatism of the results and
calculation difficulty.

Remark 4. In this paper, the problem of reachable sets for the discrete-time MJCPS under FDI
attacks is studied for the first time. Unlike the result of previous studies, this paper considers the
effect of unfavorable factors such as time-varying delays information, mode jumps, and FDI attacks.
Considering these factors makes it difficult to design the controller. In addition, it is also difficult to
reduce the conservatism of the results and the complexity of the calculation at the same time. In order
to solve these difficulties, the L-K functional with more time-varying delays is constructed, and the
satisfactory results are obtained through the Wirtinger inequality and improved extended reciprocally
convex matrix inequality techniques.

3.2. Reachable set controller design

In this part, the reachable set controller is designed and obtained.
Theorem 2. For given scalars dM, dm, σM, ϑ0, α̂, and matrices GM,Θ, if there is a scalar 0 < β < 1,
positive definite matrices are P̂p

i (i = 1, . . . , 7),Hp ∈ R
n×n, N̂ip (i = 1, . . . , 4) ∈ R2n×2n, K̂p ∈ R

m×n, such
that, for ∀p ∈ N: [

−HP HP

∗ −Θ−1

]
< 0, (3.21)
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Ψ̂P
1 =


Γ̂p|d(k)=dm,σ(k)=0 φT

2 N̂2p φT
4 N̂4p

∗ − 1
βdM

X̂p
2 0

∗ ∗ − 1
βσM X̂p

3

 < 0, (3.22)

Ψ̂P
2 =


Γ̂p|d(k)=dm,σ(k)=σM φT

2 N̂2p φT
5 N̂T

3p

∗ − 1
βdM

X̂p
2 0

∗ ∗ − 1
βσM X̂p

3

 < 0, (3.23)

Ψ̂P
3 =


Γ̂p|d(k)=dM ,σ(k)=0 φT

3 N̂T
1p φT

4 N̂T
4p

∗ − 1
βdM

X̂p
2 0

∗ ∗ − 1
βσM X̂p

3

 < 0, (3.24)

Ψ̂P
4 =


Γ̂p|d(k)=dM ,σ(k)=σM φT

3 N̂T
1p φT

5 N̂T
3p

∗ − 1
βdM

X̂p
2 0

∗ ∗ − 1
βσM X̂p

3

 < 0, (3.25)

where

Γ̂P =


T̂ p l̂pΠ̂

p
1 (e5 − e13)T HT

p GT
M

∗ Π̂2 0
∗ ∗ −HT

p

 ,
T̂ p = Φ̂

p
1 + Φ̂

p
2 + Φ̂

p
3 + Φ̂

p
4 + Φ

p
5 −

1 − β
ϖ

eT
14e14,

Φ̂
p
1 = −βe

T
1 Hpe1 + ϑ(k)eT

5 Q̂e5 − eT
7 Hpe7 − eT

13Q̂e13,

Φ̂
p
2 = eT

1 (P̂p
1 + P̂p

2 + P̂p
3 + P̂p

4) − βdM eT
3 P̂p

1e3 − β
σM eT

6 P̂p
2e6 − β

dmeT
2 P̂p

3e2 − β
dM eT

4 P̂p
4e4 + dmMeT

1 P̂p
1e1,

Φ̂
p
3 = eT

1 (d2
mP̂p

5 + d2
mM P̂p

6 + σ
2
M P̂p

7)e1 − β
dmφT

1 X̂p
1φ1 − β

dM
[
φT

2 φT
3

]
Êp

[
φ2

φ3

]
− βσM

[
φT

4 φT
5

]
F̂ p

[
φ4

φ5

]
,

Π̂
p
1 = (

√
πp1,
√
πp2, ...,

√
πpN),

Π̂2 = diag {−H1,−H2, ...,−HN} ,

X̂p
γ =

[
P̂p
γ+4 0
∗ 3P̂p

γ+4

]
(γ = 1, 2, 3),

Êp =

 2dM−d(k)−dm
dmM

X̂p
2

dM−d(k)
dmM

N̂1p +
d(k)−dm

dmM
N̂2p

∗
dM+d(k)−2dm

dmM
X̂p

2

 , F̂ p =

2σM−σ(k)
σM

X̂p
3

σM−σ(k)
σM

N̂3p +
σ(k)−σm
σM

N̂4p

∗
σM+σ(k)
σM

X̂p
3

 ,
l̂p = ApHpe1 + (1 − α(k))BpK̂pe5 + α(k)BpK̂pe7 + FpHpe3 − (1 − α(k))BpK̂pe13 + Dpe14.

Then, controller gains are given by Kp = K̂pHp and the reachable set of (2.8) is defined by εx(Θ, 1).

Proof. Define Hp = U−1
P , P̂

p
i = HT

p PiHp (i = 1, . . . , 7), N̂ip = HT
p NiHp (i = 1, . . . , 4), Q̂ =

HT
p QHp, K̂p = KpH−1

p , hp = diag{Hp . . .Hp︸     ︷︷     ︸
13

, I,Hp . . .Hp︸     ︷︷     ︸
N+5

}.

By pre-multiplying and post-multiplying LMIs (3.1)–(3.4) with hT
p and hp, we get:

hT
pΨ

p
i hp = Ψ̂

p
i (i = 1, . . . , 4), (3.26)
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where Ψ̂p
i (i = 1, . . . , 4) are defined in (3.22)-(3.25). If Ψ̂p

i < 0 (i = 1, . . . , 4) hold, that means
hT

pΨ
p
i hp < 0 (i = 1, . . . , 4) are true, so Ψp

i < 0 (i = 1, . . . , 4).
Then, combining Theorem 1:

E[xT (k)Hpx(k)] ≤ 1, (3.27)

from LMI (3.21), we obtain −Hp + HT
pΘHp < 0. Due to Hp = U−1

p , we get −Up + Θ < 0. Eventually,
we get:

E[xT (k)Θx(k)] ≤ E[xT (k)Upx(k)] ≤ 1. (3.28)

Therefore, when (3.21)–(3.25) are satisfied, the reachability set of the system can be obtained, and
the controller gain Kp of the MJCPS can be obtained by solving Kp = K̂pHp. This completes the
proof. □

4. A practical example

In this part, a practical example is given to verify the validity of the reachable set control method to
the MJCPS (2.1).
Example. (Boost converter circuit system) In order to verify the validity of the result, example
Boost converter circuit system is used for verification [30]. The corresponding parameters and known
matrices are set as follows:

A1 =

[
1 −0.2
2 −0.2

]
, B1 =

[
0.2
0

]
,D1 =

[
−0.04
0.02

]
, F1 =

[
−0.1 −0.02

0 0.01

]
,

A2 =

[
1 0
0 0.8

]
, B2 =

[
0.2
0

]
,D2 =

[
0.1
−0.1

]
, F2 =

[
0.2 0.1
0.3 −0.1

]
.

Figure 2. Random Markov jump mode.
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Also, given scalars dM = 2, dm = 1, σM = 1, ϑ0 = 0.15, α̂ = 0.5, and matrices GM =

[
0.01 0

0 0.02

]
,

Θ =

[
0.5389 0

0 0.5389

]
,Π =

[
0.8 0.2
0.3 0.7

]
, one of the Markov jump processes is shown in Figure 2.

The random external disturbances signal conforming to ∥w(k)∥ ≤ 0.3 is selected and shown in

Figure 3. The FDI attacks signal is
[
− tanh(0.1x1(k))
tanh(0.01x2(k))

]T

and shown in Figure 4.

Figure 3. Disturbances signal w(k).

Figure 4. FDI attacks signal ξ(x(k − σ(k))).

The resident time and trigger time of adaptive event-triggered control strategy are shown in Figure
5. It can be found that after the adaptive event-triggered control strategy is added to the MJCPS, the
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event generator triggers a total of 59 times within 100 seconds, effectively saving network resources
and improving transmission efficiency.

Figure 5. Adaptive event-triggered control strategy release instants and intervals.

By using LMI solving technology, the value range of β is [ 0.875, 1). We select β = 0.88, then the
controller gain Kp can be solved.

K1 = [ −3.0686 0.7565 ],K2 = [ −6.4315 −0.3777 ].

The ellipsoid reachable set ε(Θ, 1) of all states that the MJCPS can reach from the initial state is
shown in Figure 6. It can be seen that all states of the MJCPS are in the ellipsoid range, which proves
that the designed controller is effective.

Figure 6. Reachable set status of the MJCPS.
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5. Conclusions

In this paper, the reachable set problem of MJCPS (2.1) with time-varying delays and external
disturbances under FDI attacks is studied for the first time. To begin, by selecting the L-K functional
with delays information and combining the discrete Wirtinger inequality and the improved extended
reciprocally convex matrix inequality, the conservatism and computational difficulty of the result are
reduced. Additionally, the adaptive event-triggered control strategy is introduced to reduce the waste
of network resources. At the same time, it reduces the impact of FDI attacks and external disturbances
on the MJCPS security. What’s more, the controller gain of the MJCPS is obtained by using LMI
technology. Finally, the validity of the research results is verified by the circuit simulation of the boost
converter circuit system.
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