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Abstract: This research considers discontinuous dynamical systems, which have related vector fields
that shift over a discontinuity surface. These systems appear in a variety of applications, including
ecology, medicine, neuroscience, and nonsmooth mechanics. The purpose of this paper is to develop
a perturbation technique that measures the effect of a nonsmooth perturbation on the period doubling
bifurcation of an unperturbed system. The unperturbed system is assumed to be close to a period
doubling orbit, such that when the bifurcation parameter varies, the response changes from a period
one to a period two limit cycle. The generalized determination of the Poincaré map associated with
perturbed systems subjected to nonsmooth transitions is derived. The main techniques used in the
proof of the results are normal forms and Melnikov functions, which are defined in two zones. Various
examples are presented to show that non-smoothness is responsible for period doubling. To illustrate
the interesting period doubling phenomenon that emerges from an existing flat periodic orbit via the
non-smooth perturbation, a simple and novel discontinuous system is provided. An additional example
is provided to show the emergence of a perturbed period doubling orbit near an unperturbed one.
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1. Introduction

In the field of physics, there has been significant attention given to disturbances affecting a nonlinear
dynamic system that approaches a period doubling bifurcation (PDB). This objective has been studied
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in such a way that the systems whose equations are either discrete or continuous. For instance, in
Josephson-junction amplifiers, the basic amplifying mechanism depends on the PDB [1]. Recently, it
has been shown that the PDB has a significant effect on subharmonics and ultra-harmonic emissions of
bubble oscillations [2]. Further, the PDB is a type of bifurcation commonly observed in many systems
corresponding to applications from different fields of science, such as biological, chemical, electrical,
hydrodynamical, and optical systems, for instances see [3–5].

The differential equations with discontinuous vector fields may show complicated nonlinear
phenomena, such as, hidden and nonclassical various types of bifurcations and chaos, which may occur
in practical mechanical models [6,7]. Therefore, the exploration of novel mathematical approaches for
analyzing discontinuous systems is intriguing, yet challenging. This is because traditional methods like
Lyapunov-Schmidt reduction and center manifold theory are no longer directly suitable for addressing
sudden alterations in the governing vector fields. There has been a lot of progress in improving the
traditional methods of bifurcations to study and classify singularities, attractors, and hidden chaotic
attractors in discontinuous systems, see [6,8–11]. Researchers are primarily focused on understanding
the division of periodic and quasi-periodic orbits, as well as the count and arrangement of limit cycles,
sliding behaviour, grazing bifurcation, and chaos in discontinuous systems defined in two or many
regions separated by single or multiple switching manifolds, see [12–17]. For example, in [12], a
smooth system with nonsmooth perturbations was shown to develop a flat cone. The Poincaré map,
the Melnikov-like function, and averaging theory have been developed as theoretically important tools
for characterizing the bifurcation to a solution of the perturbed discontinuous system [18–20]. The
Melnikov function, derived from the expansion of a Poincaré map, has been employed to examine
the existence of crossing periodic orbits in discontinuous systems, as demonstrated in previous
studies [9, 21–24]. The Melnikov functions have recently been developed for nonlinear ship rolling
systems that use delayed feedback controls and are excited by random waves [25, 26].

The main contribution of this work is to develop a perturbation technique, which measures the
effect of the nonsmooth perturbation on the PDB of the unperturbed system. To achieve this objective,
the unperturbed system is supposed to be close to PDB, such that when the bifurcation parameter
α passes through α̃, the response changes from a period one to a period two limit cycle. We turn
next to examine initially the necessary conditions for the existence of PDB in an unperturbed system
by the so-called generalized Poincaré map. In this context, we derive the generalized determination
of the Poincaré map associated to perturbed systems subjected to nonsmooth transitions. This
map, computed here, is characterized by the composition of sub-maps that take into account the
interaction with the discontinuity surface and its associated time intersection functions. We then
introduce a function involving an unknown variable, where the zeros pinpoint the PDB that remains
after the nonsmooth perturbation. Finally, we present a simple and novel discontinuous system that
demonstrates how a nonsmooth perturbation causes a period doubling orbit to emerge from a flat
periodic orbit. Another instance is given to demonstrate the formation of a perturbed period doubling
orbit near an unperturbed one.

2. Period doubling bifurcation

In a continuous nonlinear dynamical system, the slow variation of the bifurcation parameters can
lead to instability, resulting in qualitative changes in the system’s long-term behaviour. For instance,
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one of the most abundant complex and interesting behaviour is chaos. A system is classified as
chaotic if it shows sensitivity to initial conditions and exhibits an infinite number of unstable periodic
trajectories with varying periods [27, 28]. One of the main ways chaos happens in parameter space is
through a series of PDB, also known as a period doubling cascade. PDB occurs when the bifurcation
parameter α passes through α̃, an attracting periodic cycle becomes repelling and spawns an attracting
orbit having twice the period, see Figure 1. As the bifurcation parameter is further modified, this period
doubling may become unstable and give birth to a sequence of period doubling cycles.

ξ̃(α̃)

θ1(α)

θ2(α)

ξ̄
(α

)

α1 α̃ α2

Figure 1. Dynamical behaviour of the map P̃ in a neighborhood of bifurcation point ξ̃(α̃)
and period-two points.

Before stating our results for non-smooth differential models, we need to define and evaluate the
bifurcation process for the period one to period two transition for such map. The goal of the following
theorem is to outline a set of conditions that ensure the presence of PDB in a given map. Based on
the results of a classical Period doubling bifurcation theorem, for one-dimensional smooth maps (i.e.,
d = 1, see in [29, Theorem 3.5.1, p. 158]) and for the result for d > 1, see [16], we present the
following theorem to define the criteria for the existence of PDB in a continuous map.

Theorem 1. Assume that the mapping P̃(ξ, α) : Rd×R −→ Rd is smooth (i.e., it is uniformly continuous
P̃, ∈ Cr(Rd), r ≥ 1). Then, P̃ has a PDB at (ξ̃, α̃) if P̃ satisfies the following conditions:

• The point (ξ̃, α̃) is a critical (fixed) point of P̃, i.e., P̃(ξ̃, α̃) = ξ̃.
• There exist U = [u1, u2] × X ⊂ Rd and θi : [u1, u2]→ intX such that for α ∈ [α̃, α2] there holds

θ1(α̃) = θ2(α̃) = ξ̃(α̃), θ1(α) , θ2(α), α , α̃,
P̃(θ1(α), α) = θ2(α), P̃(θ2(α), α) = θ1(α),

where θ1(α), θ2(α), and ξ(α) are fixed points of P̃(2)(ξ, α).
• The Jacobian matrix DξP̃(ξ, α)|(ξ̃,α̃) has eigenvalues λc(α̃) = −1 and λ`(α̃), ` = 1, 2, ...(d − 1) with
|λ`(α̃)| , 1.
• Let us suppose ξ(α) represents the continuous curve of fixed points P̃ near ξ(α̃) and λ`(α), and` =

1, 2, ..., (d − 1) are the eigenvalues of the matrix DξP̃|(ξ(α)). Then, we have

µ =
d

dα
λc(α)|α̃ , 0.
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Therefore, there exists a smooth curve of fixed points, denoted as ξ(α), passing through ξ̃ at α̃ where
the stability of the fixed point varies at α̃ (according to varying of µ).

Proof. Let us assume that the mapping or function Λ(ξ, α) is defined as:

Λ :
c

Σ̃+
1 →

c

Σ̃+
1

= (ξ, α)→ P̃(ξ, α) − ξ,

where
c

Σ̃+
1 is an open subset ofRd, and we have Λ(ξ̃, α̃) = 0 and ∂Λ

∂ξ
(ξ̃, α̃) , 0 associated to the eigenvalue

λc(α̃) = −1. Given the second assumption that DξP̃ has no eigenvalue equal to 1, we can use that the
implicit function theorem to find a single solution of Λ(ξ, α) = 0, near (ξ̃, α̃). This implies that there
exists a curve of fixed points ξ(α) for Λ near α̃ such that ξ(α̃) = ξ̃.

Moreover, the Lyapunov-Schmidt reduction [30] can be used to obtain a bifurcation function F :
R × R ⊃ dom(F) ↔ R, whose roots correspond to the fixed points and period two points of P̃. For
further fundamental tools on the bifurcation problem, we assume that ξ = (x, y) ∈ R×R(d−1), where x is
a right eigenvector of DξP̃ associated to the eigenvalue λc(α) (note that x̃ associated to λc(α̃) = −1). Our
task here is to show that there exists a function y = y(x, α) defined on a set V = [x1, x2] × [α1, α2] with
values in Y ⊂ R(d−1) such that y−πy(P̃(2)(x, y)) = 0 for all (x, y, α) ∈ V×Y , ( P̃(2)(x, y) refers to the second
iterate of the map P̃(x, y)). Then, if DxF|(x̃,α̃) , 0, we can use the implicit function theorem to find the
solution set of the bifurcation function F(x, α) = x − πx(P̃(2)(x, y(x, α))) = 0, (x, α) ∈ V , and πx and πy

are the coordinate projections onto the first and second factors of R×R(d−1). In addition, the bifurcation
function when DxF|(x̃,α̃) has a non-trivial kernel, and then the situation can be simplified by applying the
implicit function theorem to a new bifurcation function, that is G(x, α) =

∫ 1

0
DxF(t(x−x̄(α))+x̄(α), α)dt.

This approach allows us to evaluate the solution of the bifurcation function as a regular curve and
determine the fixed points of P̃(2), i.e., the points of period two. Figure 1 is a bifurcation diagram
showing the dynamical behavior of P̃ near the PDB point. It explains that the PDB occurs when
a stable periodic orbit loses stability and undergoes bifurcation, resulting in the formation of a new
periodic orbit with twice the period of the original orbit. �

3. Perturbation of discontinuous vector fields

We consider the vector ξ ∈ Rn, with its time dependence described by the vector fields fi : Rn −→

Rn, i=1,2, and the switching function ~(ξ; ε) is a smooth function of both arguments, such that

ξ̇ =

{
f1(ξ; ε), ~(ξ; ε) < 0,
f2(ξ; ε), ~(ξ; ε) > 0,

(3.1)

where the phase space is divided into two domains separated by a hyperplane Σ̃ = {ξ ∈ Rn | ~(ξ; ε) =

0}, h(ξ; ε) is a smooth function, and ε is a small parameter representing the size of the perturbation. In
order to study (3.1), additional rules may be necessary to describe the interaction on the discontinuity
surface Σ̃, so this ensures that the flow of (3.1) is uniquely defined in the forward direction of time.
Let %(ξ; ε) =

(
nT (ξ; ε) f1(ξ; ε)

)
.
(
nT (ξ; ε) f2(ξ; ε)

)
, where the normal vector n(ξ; ε) perpendicular to the

manifold Σ̃ is given as n(ξ; ε) =
∇~(ξ;ε)
|∇~(ξ;ε)|2

, ‖n(ξ; ε)‖ = 1. Consequently, the discontinuity surface Σ̃ can
be partitioned as follows:
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(i) direct crossing region Σ̃c = {ξ ∈ Σ̃ | %(ξ; ε) > 0}, more specifically Σ̃c = Σ̃c
− ∪ Σ̃c

+ such that
Σ̃c
± = {ξ ∈ Σ̃c | ±nT (ξ; ε) f1(ξ; ε) > 0}.

(ii) sliding region Σ̃s = {ξ ∈ Σ̃ | %(ξ; ε) ≤ 0}, which in turn is divided into the attractive region
Σ̃s
− = {ξ ∈ Σ̃s | nT (ξ; ε) f1(ξ; ε) > 0}, and escaping region Σ̃s

+ = {ξ ∈ Σ̃s | nT (ξ; ε) f2(ξ; ε) > 0}. Further,
Σ̃0
− = {ξ ∈ Σ̃ | nT (ξ; ε) f2(ξ, ε) = 0}, and Σ̃0

+ = {ξ ∈ Σ̃ | nT (ξ; ε) f1(ξ, ε) = 0} are defined as the
boundaries between sliding and crossing modes. Notice that Σ̃ is the disjoint union Σ̃c ∪ Σ̃0

± ∪ Σ̃s.
The sliding flows on Σ̃s are defined by the Filippov convex [31] combination as:

ξ̇ = fs(ξ; ε) =
nT (ξ; ε) f2(ξ; ε) · f1(ξ; ε) − nT (ξ; ε) f1(ξ; ε) · f2(ξ; ε)

nT (ξ; ε)( f2(ξ; ε) − f1(ξ; ε))
. (3.2)

Our objective is to examine the persistence of period doubling when (3.1) is perturbed within the
category of all discontinuous vector fields with two regions separated by Σ̃. A crossing period doubling
of system (3.1) forms a closed path Γ, consisting of trajectories of fi, i = 1, 2 with matching directions,
where Γ ∩ Σ̃ = Σ̃c.

The following is a general system that describes the behavior of a dynamical system close to
PDB. Instead of working in the full space of the dynamical system, the dynamics are described in
the transversal crossing trajectories branch.

Assume that it is possible to rewrite (3.1) as:

ξ̇ = Xi(ξ) + εWi(ξ), (−1)i~(ξ; ε) < 0, i = 1, 2, (3.3)

where X andW are uniformly continuous and bounded functions (X,W ∈ Cr(Rn \ Σ̃), r ≥ 1). Let
Ψ(k)(t(k)

i (ξ, 0), ξ; 0) be the solutions of the unperturbed system (ε = 0)

ξ̇ = Xi(ξ), (−1)i~(ξ; 0) < 0. (3.4)

Then, the solution of (3.3) can be expressed as:

Ψ
(k)
i (τ(k)

i (ξ; ε), ξ; ε) = Ψ(k)(τ(k)
i (ξ, 0), ξ; 0) + ε

∫ τ(k)
i

τ(k)
i−1

Φ
(k)
i (τ(k)

i )

× (Φ(k)
i )−1(s)Wi(Ψ(k)(τ(k)

i (ξ, 0), ξ; 0), s) ds + o(ε2), (3.5)

where τ(k)
i (ξ, 0) = t(k)

i (ξ), i = 1, 2, k = 1, 2 are the number of solution intersections with Σ̃. The
fundamental matrix solutions Φ

(k)
i (t(k)

i ) are given by solving the following linearized equations about
(τ(k)

i , ξ; ε) = (t(k)
i , ξ

0, 0)

Φ̇
(k)
i (t(k)) −

∂Xi

∂ξ
Φ

(k)
i (t(k)

i ) = 0,Φ(k)
i (0) = I, (3.6)

where I represents the identity matrix with the same order as the number of state variables.

Hypothesis 1. The unperturbed system (ε = 0) is assumed to be close to a PDB, which means that
the corresponding Poincaré map of (3.4) (this map is defined by the general solution (3.5) at ε = 0)
satisfies Theorem 1.
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4. Poincaré map with nonsmooth transitions

Without loss of generality, let us find a direction starting from the starting position ξ ∈ Σ̃c
−. Then, the

solutions is denoted by Ψ
(1)
1 (τ(1)

1 (ξ, ε), ξ; ε) which is Cr, r ≥ 1. Moreover, assume that Ψ
(1)
1 (τ(1)

1 (ξ; ε), ξ; ε)
is within Σ̃c

+ of the minimum return time τ(1)
1 (ξ; ε) at η = Ψ

(1)
1 (τ(1)

1 (ξ; ε), ξ; ε) ∈ Σ̃c
+. Consequently, the

flow given by Ψ
(1)
2 (τ(1)

2 (η; ε), η; ε) is again within Σ̃c
−. Thus, we define the first iterate of the Poincaré

map as
P̃(1)(ξ; ε) : Σ̃c

− → Σ̃c
−, P̃

(1)(ξ; ε) = Π̃
(1)
2 ◦ Π̃

(1)
1 (ξ; ε), (4.1)

where

Π̃
(1)
1 (ξ; ε) : Σ̃c

− → Σ̃c
+, ξ

(1) → Ψ
(1)
1 (τ1(ξ; ε), ξ; ε) = η,

Π̃
(1)
2 (ξ; ε) : Σ̃c

+ → Σ̃c
−, ξ

(2) → Ψ
(1)
2 (τ1(ξ; ε), τ2(ξ; ε), η; ε) = ϑ.

The perturbed system (3.1) has a period- one orbit if and only if P̃(ξ̄(1), ε) = ξ̄(1) and τ(1)
i exist. Since

the period doubling orbit can be viewed as a fixed point of the second iteration of the Poincaré map,
we have the mapping structure

P̃(2)(ξ; ε) : Σ̃c
− → Σ̃c

−, P̃
(2)(ξ; ε) = Π̃

(2)
2 ◦ Π̃

(2)
1 (ξ; ε), (4.3)

where

Π̃
(2)
1 (ξ; ε) : Σ̃c

− → Σ̃c
+, ξ

(3) → Ψ
(2)
1 (τ(1)

2 (ξ; ε), τ(2)
1 (ξ; ε), ϑ; ε) = χ,

Π̃
(2)
2 (ξ; ε) : Σ̃c

+ → Σ̃c
−, ξ

(4) → Ψ
(2)
2 (τ(2)

1 (ξ; ε), τ(2)
2 (ξ; ε), χ; ε) = ζ.

It follows that the times of intersection exist for the first and second iteration of P̃(2)(ξ; ε) by solving
the following equations:

τ(k)
i (ξ; ε) := inf{τ > 0 | nT (ξ; ε)(Π̃(k)

i (ξ; ε)) = 0}, i, k = 1, 2. (4.5)

According to Theorem 1, we remark that ξ(1) , ξ(2) , ξ(3) , ξ(4), and that ξ depends implicitly on ε.
Because the absence of the transversality conditions at the intersection did not allow the trajectory
of (3.3) to be a submanifold of the crossing area, having some sort of singular point. Therefore,
the following argument shows that the transversality conditions are crucial to guarantee that ξ(l), l =

1, 2, 3, 4 and Π̃k
i are not tangent to Σ̃. In addition, these are sufficient conditions for an intersection to

be stable after a perturbation.

Corollary 1. Let Π̃
(k)
i : Σ̃c → Σ̃c be smooth maps, and Σ̃c a submanifold of Σ̃. Then, ξ(l) and Π̃

(k)
i are

within the direct crossing set if the following conditions hold:

%(ξ(l)) > 0, %(Π̃(k)
i ) > 0, i.e., ξ(k) ∈ Σ̃c, Π̃(k)

i ∈ Σ̃c,

In general, because of the non-linearity of (4.1), (4.3), and (4.5), it is not possible to obtain an
explicit expression for the sub-maps Π̃

(k)
i . Thus, we are studying the characteristics of Poincaré sub-

maps as they relate to the existence of period doubling orbit and the stability of the system (3.3).
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Lemma 1. We assume that the transversality conditions that are given by the Corollary 1 hold. Then,
for all ξ̄(i) ∈ Σ̃c

− and Π̃
(k)
i (ξ̄(l), ε) ∈ Σ̃c, i = 1, 2, k = 1, 2, l = 1, ..., 4, the intersection function times

τ(k)
i (ξi; ε) are differentiable to ξ(l), so we get:

(a) DξΠ̃
(1)
1 (ξ̃(1); 0) =

(
I − X1(ξ̃(1))nT

nTX1(ξ̃(1))

)
Φ

(1)
1 (t̃(1)

1 , ξ̃(1)),

(b) DξΠ̃
(1)
2 (ξ̃(2); 0) =

(
I − X2(ξ̃(2))nT

nTX2(ξ̃(2))

)
Φ

(1)
2 (t̃(1)

2 , ξ̃(2))S̃ (1)
1

×
(
I − X1(ξ̃(1))nT

nTX1(ξ̃(1))

)−1DξΠ̃
(1)
1 (ξ̃(1); 0),

(c) DξΠ̃
(2)
1 (ξ̃(3); 0) =

(
I − X1(ξ̃(3))nT

nTX1(ξ̃(3))

)
Φ

(2)
1 (t̃(2)

1 , ξ̃(3))S̃ (2)
1

×
(
I − X2(ξ̃(2))nT

nTX2(ξ̃(2))

)−1DξΠ̃
(1)
2 (ξ̃(2); 0),

(d) DξΠ̃
(2)
2 (ξ̃(4); 0) =

(
I − X2(ξ̃(4))nT

nTX2(ξ̃(4))

)
Φ

(2)
2 (t̃(2)

2 , ξ̃(4))S̃ (2)
2

×
(
I − X1(ξ̃(3))nT

nTX1(ξ̃(3))

)−1DξΠ̃
(2)
1 (ξ̃(3); 0).

Proof. Consider the partial derivatives of Π̃
(k)
i (ξ; ε) with respect to ξ at the point (τ(k)

i , ξ
(l); ε) =

(t̃i(k), ξ̃(l), 0), where Dξ = ∂
∂ξ

:

DξΠ̃
(1)
1 (ξ̃(1); 0) = Φ

(1)
1 (t̃(1)

1 , ξ̃(1)) + X1(ξ̃(1))Dξτ
(1)
1 (ξ̃(1); 0)

DξΠ̃
(1)
2 (ξ̃(2); 0) = Dτ(1)

1
Ψ

(1)
2 (t̃(1)

2 , ξ̃(2); 0)Dξτ
(1)
1 (ξ̃(1); 0) + X2(ξ̃(2))Dξτ

(1)
2 (ξ̃(2); 0)

+ Φ
(1)
2 (t̃(1)

2 , ξ̃(2))DξΠ̃
(1)
1 (ξ̃(1); 0),

DξΠ̃
(2)
1 (ξ̄(3); 0) = Dτ(1)

2
Ψ

(2)
1 (t̃(2)

1 , ξ̃(3); 0)Dξτ
(1)
2 (ξ̃(2); 0) + X1(ξ̃(3))Dξτ

(2)
1 (ξ̃(3); 0)

+ Φ
(2)
1 (t̃(2)

1 , ξ̃(3))DξΠ̃
(1)
2 (ξ̃(2); 0),

DξΠ̃
(2)
2 (ξ̄(4); 0) = Dτ(2)

1
Ψ

(2)
2 (t̃(2)

2 , ξ̃(4); 0)Dξτ
(2)
1 (ξ̃(3); 0) + X2(ξ̃(4))Dξτ

(2)
2 (ξ̃(4); 0)

+ Φ
(2)
2 (t̃(2)

2 , ξ̃(4))DξΠ̃
(2)
1 (ξ̄(3); 0).

(4.6)

In order to find the explicit formulas of DξΠ̃
(k)
i , we have to compute the terms Dξτ

(k)
i . The partial

derivatives of τ(k)
i are obtained by noting that nT DξΠ̃

(k)
i (ξ̃(l); 0) = 0. Therefore, from nT DξΠ̃

(1)
1 (ξ̃(1); 0) =

0, we obtain Dξτ
(1)
1 (ξ̃(1); 0) = −

nT Φ1(t̃1(1),ξ̃(1))
nTX1(ξ̃(1)) , and (a) holds.

At the intersection points, we have Dτ(1)
i

(ξ̃(i+1); 0)Ψ(i)
3−i = −Φ

(i)
3−iX3−i. Then, the result of the equation

nT DξΠ̃
(1)
2 = 0 implies

nT (Φ(1)
2 (t̃(1)

2 , ξ̃(2)) (I +
(X2(ξ̃(1)) − X1(ξ̃(1)))nT

nTX1(ξ̃(1))
)︸                              ︷︷                              ︸

S̃ (1)
1

Φ
(1)
1 (t̃1

(1), ξ̃(1)) + X2(ξ̃(2))Dξτ
(1)
2 (ξ̃(2); 0)

)
= 0.

Then, we obtain Dξτ
(1)
2 (ξ̃(2); 0) = −

nT Φ
(1)
2 (t̃2(1),ξ̃2)S̃ (1)

1 Φ
(1)
1 (t̃1(1),ξ̃1)

nTX2(ξ̃2) , and the direct substitution into the second
equation of (4.6) leads to statement (b).

In the same way, we are going to solve nT DξΠ̃
(2)
i (ξ̃(2+i); 0) = 0 for Dξτ

(i)
2 , which gives:

Dξτ
(2)
1 = −

nT Φ
(2)
1 (t̃(2)

1 ,ξ̃3)S̃ (1)
2 Φ

(1)
2 (t̃(1)

2 ,ξ̃2)S̃ (1)
1 Φ

(1)
1 (t̃(1)

1 ,ξ̃1)
nTX1(ξ̃3) ,

Dξτ
(2)
2 = −

nT Φ
(2)
2 (t̃2(2),ξ̃(4))S̃ (2)

1 Φ
(2)
1 (t̃1(2),ξ̃3)S̃ (1)

2 Φ
(1)
2 (t̃2(1),ξ̃2)S̃ (1)

1 Φ1(t̃1(1),ξ̃1)
nTX2(ξ̃4) .

AIMS Mathematics Volume 9, Issue 9, 25098–25113.



25105

Substituting Dξτ
(2)
i in the third and fourth formulas of (4.6), we will ultimately obtain formulas (c)

and (d), respectively. �

The following theorem illustrates that, by linearizing the Poincaré map, we can carry out explicit
analytical calculations.

Theorem 2. Assume that ξ ∈ Σ̃c
− and P̃(m) : Σ̃c

− → Σ̃c
−, such that P̃(m)(0; 0) = 0 and P̃(m)(ξ̃; 0) = ξ̃.

Then, the linearization of the Poincaré map is given by

DξP̃
(m) =

m∏
v=1

S̃ (m+1−v)
2 Φ

(m+1−v)
2 S̃ (m+1−v)

1 Φ
(m+1−v)
1 .

Further, P̃(m)(ξ̃; 0)X1(ξ̃) = X1(ξ̃) and attractivity of the period-m orbit is determined by the
remaining (n-2) eigenvalues of DξP̃

(m).

Proof. Assume that ξ̃ ∈ Σ̃c
−. The natural condition for period doubling orbit to exist in an unperturbed

system is Ψ
(1)
1 (0, ξ̃; 0) = Ψ

(1)
1 (T, ξ̃; 0), or in a compact mapping as

P̃(2)(ξ̃; 0) = Π̃
(2)
2 ◦ Π̃

(2)
1 ◦ Π̃

(1)
2 ◦ Π̃

(1)
1 (ξ̃; 0) = ξ̃,

where T =
∑2

k=1
∑2

i=1 τ
(k)
i (ξ̃; 0) =

∑2
k=1

∑2
i=1 t(k)

i (ξ). We assume that the second iteration of the Poincaré
map is provided as:

P̃(2)(ξ; ε) = Π̃
(2)
2 (ξ; ε) +

∫ τ(1)
1

τ(2)
2

(X1(ξ, s) + εW1(ξ, s; ε)) ds. (4.7)

Differentiating (4.7) with respect to ξ, we obtain

DξP̃
(2) = DξΠ̃

(2)
2 (ξ; ε) − (X1(ξ) + εW1(ξ; ε))Dξτ

(2)
2 (ξ; ε) +

∫ τ(1)
1

τ̃(2)
2

(X1(ξ, s) + εW1(ξ, s; ε)) ds.

The above derivative is estimated at (τ, ξ, ε) = (t̃, ξ̃, 0) as

DξP̃
(2) = DξΠ̃

(2)
2 (ξ; 0) − X1(ξ)Dξτ

(2)
2 (ξ; 0) +

∫ τ(1)
1

τ̃(2)
2

X1(ξ, s) ds.

Using the results of Lemma 1 and the value of the vector function Dξτ
(2)
2 (ξ; 0), we obtain

DξP̃
(2) =

2∏
v=1

S̃ (3−v)
2 Φ

(3−v)
2 S̃ (3−v)

1 Φ
(3−v)
1 +

∫ τ(1)
1

τ̃(2)
2

X1(ξ, s) ds.

At the second iteration of the Poincaré map, substituting τ(1)
1 into t̃(2)

2 ,

DξP̃
(2) =

2∏
v=1

S̃ (3−v)
2 Φ

(3−v)
2 S̃ (3−v)

1 Φ
(3−v)
1 .
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In this situation, when the unperturbed system has period-m orbits, it is simply a matter of multiplying
the matrices DξP̃

(k)
i in the correct order. Then, we obtain

DξP̃
(m) =

m∏
v=1

S̃ (m+1−v)
2 Φ

(m+1−v)
2 S̃ (m+1−v)

1 Φ
(m+1−v)
1 .

�

Remark 1. It should be noted that, when m = 1, a similar result has obtained in [9, 19].

Lemma 2. Suppose that Γ ⊂ Σ̃c
− is a period doubling orbit of the unperturbed system generated

by (3.3), and the transversality conditions that are given by Corollary 1 hold. Then, for all ξ̄(i) ∈ Σ̃c
−

and Π̃
(k)
i (ξ̄(l), ε) ∈ Σ̃c, i = 1, 2, k = 1, 2, l = 1, ..., 4, and the intersection times functions τ(k)

i (ξi; ε) are
differentiable to ε, so we get:

(a) DεΠ̃
(1)
1 (ξ̃(1); 0) =

(
I − X1(ξ̃(1))nT

nTX1(ξ̃(1))

)
DεΨ

(1)
1 (t̃(1)

1 , ξ̃(1)),

(b) DεΠ̃
(1)
2 (ξ̃(2); 0) =

(
I − X2(ξ̃(2))nT

nTX2(ξ̃(2))

)(
Φ

(1)
2 (t̃(1)

2 , ξ̃(2))S̃ (1)
1

×
(
I − X1(ξ̃(1))nT

nTX1(ξ̃(1))

)−1DεΠ̃
(1)
1 (ξ̃(1); 0) + DεΨ

(1)
2 (t̃(1)

2 , ξ̃(2))
)
,

(c) DεΠ̃
(2)
1 (ξ̃(3); 0) =

(
I − X1(ξ̃(3))nT

nTX1(ξ̃(3))

)(
Φ

(2)
1 (t̃(2)

1 , ξ̃(3))S̃ (1)
2

×
(
I − X2(ξ̃(2))nT

nTX2(ξ̃(2))

)−1DεΠ̃
(1)
2 (ξ̃(2); 0) + DεΨ

(2)
1 (t̃(2)

1 , ξ̃(3))
)
,

(d) DεΠ̃
(2)
2 (ξ̃(4); 0) =

(
I − X2(ξ̃(4))nT

nTX2(ξ̃(4))

)(
Φ

(2)
2 (t̃(2)

2 , ξ̃(4))S̃ (2)
2

×
(
I − X1(ξ̃(3))nT

nTX1(ξ̃(3))

)−1DεΠ̃
(2)
1 (ξ̃(3); 0) + DεΨ

(2)
2 (t̃(2)

2 , ξ̃(4))
)
.

Proof. Consider the partial derivatives of Π̃
(k)
i (ξ; ε) with respect to ε at the point (τ(k)

i , ξ
(l); ε) =

(t̃i(k), ξ̃(l), 0),

DεΠ̃
(1)
1 (ξ̃(1); 0) = DεΨ

(1)
1 (t̃(1)

1 , ξ̃(1)) + X1(ξ̃(1))Dετ
(1)
1 (ξ̃(1); 0),

DεΠ̃
(1)
2 (ξ̃(2); 0) = Dτ(1)

1
Ψ

(1)
2 (t̃(1)

2 , ξ̃(2); 0)Dετ
(1)
1 (ξ̃(1); 0) + X2(ξ̃(2))Dετ

(1)
2 (ξ̃(2); 0)

+ Φ
(1)
2 (t̃(1)

2 , ξ̃(2))DεΠ̃
(1)
1 (ξ̃(1); 0) + DεΨ

(1)
2 (t̃(1)

2 , ξ̃(2)),

DεΠ̃
(2)
1 (ξ̄(3); 0) = Dτ(1)

2
Ψ

(2)
1 (t̃(2)

1 , ξ̃(3); 0)Dετ
(1)
2 (ξ̃(2); 0) + X1(ξ̃(3))Dετ

(2)
1 (ξ̃(3); 0)

+ Φ
(2)
1 (t̃(2)

1 , ξ̃(3))DεΠ̃
(1)
2 (ξ̃(2); 0) + DεΨ

(2)
1 (t̃(2)

1 , ξ̃(3)),

DεΠ̃
(2)
2 (ξ̄(4); 0) = Dτ(2)

1
Ψ

(2)
2 (t̃(2)

2 , ξ̃(4); 0)Dετ
(2)
1 (ξ̃(3); 0) + X2(ξ̃(4))Dετ

(2)
2 (ξ̃(4); 0)

+ Φ
(2)
2 (t̃(2)

2 , ξ̃(4))DεΠ̃
(2)
1 (ξ̄(3); 0) + DεΨ

(2)
2 (t̃(2)

2 , ξ̃(4)).

(4.8)

To complete the computation of the above sub-maps, we need to calculate the terms Dετ
(k)
i (ξ̃(l); 0) and

DεΨ
(k)
i (t̃(k)

i , ξ̃
(l)). The derivative of (3.3) for ε is given as:

ξ̇ε = DξXi ξε +Wi(ξ; 0). (4.9)
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Note that the recurrence Eq (4.9) describes initial value problems such as ξε(0) = 0. The general
solution (3.5) is therefore equivalent to the following recurrence:

DεΨ
(k)
i =

∫ τ(k)
i

τ(k)
i−1

Φ
(k)
i (τi)(Φ

(k)
i )−1(s)Wi(Ψ

(k)
i (τ(k)

i (ξ, 0), ξ, 0), s) ds. (4.10)

In addition, the partial derivatives of Dετ
(k)
i (ξ̃(l); 0) are determined by solving the equations

nT DεΠ̃
(k)
i (ξ̃(l); 0) = 0. So, we get the following at the intersection point ξ(l) ∈ Σ̃c:

Dετ
(1)
1 = −

nT DεΨ
(1)
1

nTX1(ξ̃(1))
,Dετ

(1)
2 = −

nT (Φ(1)
2 (t̃2

(1), ξ̃(2))S̃ (1)
1 DεΨ

(1)
1 + DεΨ

(1)
2 )

nTX2(ξ̃(2))
,

Dετ
(2)
1 =

−nT

nTX1(ξ̃(3))

(
Φ

(2)
1 (t̃(2)

1 , ξ̃(3))S̃ (1)
2 Φ

(1)
2 (t̃(1)

2 , ξ̃(2))S̃ (1)
1 DεΨ

(1)
1

+ Φ
(2)
1 (t̃(2)

1 , ξ̃(3))S̃ (1)
2 DεΨ

(1)
2 + DεΨ

(2)
1

)
,

Dετ
(2)
2 =

−nT

nTX2(ξ̃(4))

(
DεΨ

(2)
2 + Φ

(2)
2 (t̃2

(2), ξ̃(4))S̃ (2)
1 DεΨ

(2)
1

+ Φ
(2)
2 (t̃2

(2), ξ̃(4))S̃ (2)
1 Φ

(2)
1 (t̃1

(2), ξ̃(3))S̃ (1)
2 Φ

(1)
2 (t̃2

(1), ξ̃(2))S̃ (1)
1 DεΨ

(1)
1

+ Φ
(2)
2 (t̃2

(2), ξ̃(4))S̃ (2)
1 Φ

(2)
1 (t̃1

(2), ξ̃(3))S̃ (1)
2 DεΨ

(1)
2

)
.

(4.11)

Through substituting (4.10) and (4.11) into (4.8), we get the equalities (a)–(d). �

The following theorem presents the derivation of the Melnikov function associated with perturbation
limit cycles and PDB of a differential system (3.3).

Theorem 3. Assume that ξ ∈ Σ̃c
− and P̃(i) : Σ̃c

− → Σ̃c
−, such that P̃(1)(0; 0) = 0 and P̃(2)(ξ̃; 0) = ξ̃. Then,

DεP̃
(1) = S̃ (1)

2

2∑
k=1

Φ
(2−k)
2 S̃ (2−k)

1

∂Ψ
(1)
k

∂ε

DεP̃
(2) =

( 2∏
v=1

S̃ (3−v)
2 Φ

(3−v)
2 S̃ (3−v)

1 Φ
2(2−v)
1

)∂Ψ
(1)
2

∂ε

+

( 2∏
v=1

S̃ 2(2−v)
2 Φ

2(2−v)
2 S̃ 2(2−v)

1 Φ
2(2−v)
1 S̃ (2−v)

1

)∂Ψ
(1)
1

∂ε

+

( 2∏
v=1

S̃ 2(2−v)
2 Φ

2(2−v)
2 S̃ 2(2−v)

1

)∂Ψ
(2)
1

∂ε
+

( 2∏
v=1

S̃ 2(2−v)
2

)∂Ψ
(2)
2

∂ε
.

Proof. Differentiating (4.7) with respect to ε at (τ, ξ, ε) = (t̃, ξ̃, 0)), we obtain

DεP̃
(2) = DεΠ̃

(2)
2 (ξ̃(4); 0) − X1(ξ̃(4))Dετ

(2)
2 (ξ̃(4); 0).

Using the results of Lemma 2 and the value of the vector function Dξτ
(2)
2 (ξ; 0) from (4.11), the proof of

the statement of this theorem is straightforward. �
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It should be noted that a similar result for the expansion of the Melnikov function DεP̃
(1) that detects

the existence of limit cycles is obtained in [9, 19]. We present the following corollary, which is based
on the concepts of orthogonal projection and related Melnikov function properties discussed in [19].

Corollary 2. Assume that ξ̃ ∈ Σ̃c
− and eT

1 ξ̃ = 0. Then, the orthogonal projection along one-dimensional
space [X1(ξ̃)] is given as ψX1V =

〈V,X1(ξ̃)〉X1(ξ̃)
〈X1(ξ̃),X1(ξ̃)〉 , and the orthogonal projection complement is given by

ψX⊥1 V = I − 〈V,X1(ξ̃)〉X1(ξ̃)
〈X1(ξ̃),X1(ξ̃)〉 . Therefore, the linearized Poincaré map of the original system is given by

Dξ
˜̃P(m) = (I − ψX1)DξP̃

(m), Dε
˜̃P(i) = (I − ψX1)DεP̃

(i). (4.12)

In the following section, we present a novel discontinuous systems that highlights how the
nonsmooth perturbation is responsible for the period doubling orbit that emerges from an existing
flat periodic orbit (or near an unperturbed one).

Because it is difficult to obtain an explicit analytical expression of the generalized Poincaré map,
the theoretical results are numerically validated using path-following techniques for discontinuous
dynamical systems. There are numerically sound techniques for approximating the solutions of
discontinuous dynamical systems. For examples, see [32–34].

5. Examples

Example 1. We consider a simple discontinuous system with a switching plane Σ̃ = {ξ ∈ R3 | eT
1 ξ = 0},

which is written as:

ξ̇ = Aiξ + εWi(ξ), (−1)ieT
1 ξ < 0, i = 1, 2, (5.1)

where Ai are 3 × 3 matrices defined as:

Ai =


0 ω 0
−ω 0 0
0 0 µ1

 ,W1(ξ) =


0
0
y2

 ,W2(ξ) =


0
µ2z2

µ3y2

 , ω, µv ∈ R, v = 1, 2, 3,

such thatWi(0) = 0, and the nonlinear perturbationsWi(ξ) = ◦(‖ ξ ‖) are Ck-maps k ≥ 1 defined on
the whole phase space R3.

We note that the origin of coordinates is still a unique equilibrium point for both systems, and the
eigenvalues of the linearized systems ξ̇ = Aiξ are given as λ1 = µ1, λ2,3 = ±īω, ī2 = −1. Further, both
linear smooth systems (ε = 0) possess an invariant plane z = 0 with constant return times τ± = π.
Therefore, if ε = 0, only one family of flat periodic orbits is generated by the eigenvector: ξ =

(0, ȳ, 0), ȳ ∈ R.
For ε , 0, µ1 = 0.15, and µ3 = −0.6, the perturbed system (5.1) has a period doubling orbit that

emerges from an existing flat periodic orbit with approximately twice the period of the flat orbit. Here,
we have Figure 2 with ω = µ2 = 1 and ε = 0.15, Figure 3 with ω = µ2 = 1 and ε = 0.2, and Figure 4
with ω = µ2 = −1 ε = 0.5.

AIMS Mathematics Volume 9, Issue 9, 25098–25113.



25109

Figure 2. The system goes onto a period doubling orbit at µ1 = 0.15 and µ3 = −0.6,
ω = µ2 = 1 and ε = 0.15.

Figure 3. The system goes onto a period doubling orbit at µ1 = 0.15 and µ3 = −0.6,
ω = µ2 = 1 and ε = 0.2.

Figure 4. The system goes onto a period doubling orbit at µ1 = 0.15 and µ3 = −0.6,
ω = µ2 = −1 ε = 0.5.

The following example illustrates the emergence of a perturbed period doubling orbit near an

AIMS Mathematics Volume 9, Issue 9, 25098–25113.



25110

unperturbed one.
Example 2. Consider the discontinuous system

ξ̇ = Xi(ξ) + εWi(ξ), (−1)ieT
1 ξ < 0, (5.2)

where

Xi(ξ) =


y
z

−az − (−1)iy2 − x

 , Wi(ξ) =


0
0

y
(
x − (−1)iz

)
 ,

a > 0, and the phase space is divided into two domains separated by a hyperplane Σ̃ = {ξ ∈ R3 |

~(ξ; ε) = x = 0}. Further, the perturbed system (5.2) has only the crossing mode and cannot exhibit
a sliding mode due to Σ̃s = ∅. By numerical computation, it is straightforward to check that the
unperturbed system of (5.2) has a PDB at a = 1.7, see Figure 5 at ε = 0. By setting the perturbation
value to ε = 0.1, numerical computations show that the perturbed system (5.2) has a period doubling
orbit near the unperturbed period doubling orbit, see Figure 5 at ε = 0.1.

Figure 5. Period doubling orbits in phase space for the (un)perturbed system (5.2) at a = 1.7.

6. Conclusions

Practical applications in the real world motivate the development of novel mathematical techniques
for analyzing the dynamics of nonsmooth systems. Existing smooth methods, for example, lack
a mechanism that explains how switching manifolds generate period-doubling orbits. This paper
describes a novel application of the Melnikov method for discontinuous differential systems separated
by a hypersurface, with the goal of determining the effect of a nonsmooth perturbation on the
period doubling bifurcation of an unperturbed system. The generalized Poincaré map for perturbed
systems undergoing nonsmooth transitions has been derived, assuming transversal intersections with
discontinuity-switching boundaries and the unperturbed system having a period-doubling orbit. The
Melnikov function is designed for systems that have discontinuities and acts as an extension of the
regular Melnikov function used in smooth scenarios. Two examples are provided to numerically
validate the theoretical results, showing how non-smooth perturbations can cause a period doubling
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orbit to emerge from an existing flat periodic orbit, as well as how a new period doubling orbit emerges
close to the original.
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