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Abstract: Clustering is essential in data analysis, with K-means clustering being widely used for its 

simplicity and efficiency. However, several challenges can affect its performance, including the 

handling of outliers, the transformation of non-spherical data into a spherical form, and the selection 

of the optimal number of clusters. This paper addressed these challenges by developing and enhancing 

specific models. The primary objective was to improve the robustness and accuracy of K-means 

clustering in the presence of these issues. To handle outliers, this research employed the winsorization 

method, which uses threshold values to minimize the influence of extreme data points. For the 

transformation of non-spherical data into a spherical form, the KROMD method was introduced, which 

combines Manhattan distance with a Gaussian kernel. This approach ensured a more accurate 

representation of the data, facilitating better clustering performance. The third objective focused on 

enhancing the gap statistic for selecting the optimal number of clusters. This was achieved by 

standardizing the expected value of reference data using an exponential distribution, providing a more 

reliable criterion for determining the appropriate number of clusters. Experimental results 

demonstrated that the winsorization method effectively handles outliers, leading to improved 

clustering stability. The KROMD method significantly enhanced the accuracy of converting non-

spherical data into spherical form, achieving an accuracy level of 0.83 percent and an execution time 

of 0.14 per second. Furthermore, the enhanced gap statistic method outperformed other techniques in 

selecting the optimal number of clusters, achieving an accuracy of 93.35 percent and an execution 

time of 0.1433 per second. These advancements collectively enhance the performance of K-means 
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clustering, making it more robust and effective for complex data analysis tasks. 
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1. Introduction 

Clustering is a cornerstone of data analysis, essential across various domains including data 

mining [1], pattern recognition [2], information retrieval [3] and engineering optimization [4,5]. 

Among the plethora of clustering algorithms, K-means is renowned for its simplicity [6], 

computational efficiency, and scalability [7]. It divides a dataset into a predetermined number of 

clusters [8,9], each anchored by its centroid, which encapsulates the average of the data points allocated 

to it. This method is widely embraced due to its straightforward implementation and ability to handle 

large datasets efficiently. In this research paper, we delve into the realm of clustering, focusing 

particularly on addressing key challenges faced by the K-means algorithm. Our aim is to enhance the 

robustness and applicability of K-means in practical scenarios. We identify three primary challenges 

that affect its performance and propose comprehensive solutions to overcome them [10,11]. The first 

challenge revolves around the sensitivity of K-means to outliers within the dataset. Outliers, or data 

points significantly deviating from the majority, can distort centroid computation and undermine 

clustering accuracy. To mitigate this, we employ outlier detection techniques and advocate for the 

application of the winsorization technique. This method replaces data values below the lower threshold 

with the value at the lower threshold and values above the upper threshold with the value at the upper 

threshold, thus mitigating the impact of outliers without data loss [12,13]. The second challenge 

emerges when K-means encounters datasets with clusters exhibiting non-spherical shapes. Traditional 

K-means operate under the assumption of spherical and isotropic clusters, which may not hold true for 

datasets containing elongated, irregular, or overlapping clusters. To address this, we employ the 

KROMD method, which combines the rank order distance (ROD) technique with Gaussian kernels to 

transform non-spherical data into a more suitable representation for K-means clustering. This 

transformation enhances the algorithm's ability to accurately capture the underlying structure of the 

data [14,15]. The third challenge pertains to determining the optimal number of clusters (k) for K-

means clustering. Selecting an appropriate value for k is pivotal in obtaining meaningful and 

interpretable clustering results. However, this task is often fraught with challenges, relying heavily on 

domain knowledge or heuristic methods prone to uncertainty and computational inefficiency. We 

propose an enhanced approach based on the gap statistic, incorporating an exponential distribution to 

automatically determine the optimal number of clusters. This approach provides a more accurate and 

effective means of selecting the optimal number of clusters compared to traditional methods [16–19]. 

The following sections are organized as follows: Section 2 reviews the relevant literature. Section 3 

describes our methodology, including outlier detection and handling outliers by using the winsorization 

method (Section 3.1), the transformation of non-spherical data (Section 3.2), and the enhanced gap 

statistic for optimal clustering (Section 3.3). Section 4 presents the experimental setup and descriptive 

statistics of the dataset. Section 5 discusses the results, covering outlier mitigation (Section 5.1), data 

transformation accuracy (Section 5.2), optimal cluster selection (Section 5.3), and research 

contributions (Section 5.4). Finally, Section 6 provides the conclusion of the research. 
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2. Related work 

This section of the paper discusses various literature reviews and related methods for outlier 

detection, transforming non-spherical data into spherical form, and selecting the optimal number of 

clusters in K-means. 

2.1. Impact of outliers in K-means 

The literature review emphasized the significance of outlier detection, particularly in contexts 

like fraud and fault detection. Resolving issues with the density peak clustering algorithm involves 

overcoming manual parameter setting and high time complexity. The proposed solution involves 

substituting density peaks with k-nearest neighbors clustering and automating the selection of 

clustering centers based on density and distance [20]. Outlier detection in batch and streaming data 

played a crucial role in data mining, but existing algorithms had shortcomings. For batch data, accuracy 

suffered due to limited data point labeling from histogram-based feature vectors. Streaming data 

algorithms were hindered by sensitivity to data distance and lengthy parameter tuning. To overcome 

these challenges, the authors introduced PDC (Probability Density-based Clustering), which leveraged 

probability density for lightweight outlier detection, ensuring accuracy and insensitivity to data 

distance [21,22]. Seismic clustering serves as a vital technique in seismology for identifying patterns 

in seismic events and offering insights into geological processes. However, its application to ongoing 

landslide-induced signals and the impact of outliers have not received much research attention. The 

paper presented a novel consensus clustering strategy with outlier removal for landslide-induced 

seismic signals. The proposed approach incorporated a parameter setting method to improve clustering 

accuracy and robustness. Experimental results demonstrated that the proposed approach outperformed 

state-of-the-art clustering methods [23]. 

2.2. Impact of non-spherical data in K-means: K-nearest neighbors (KNN) 

The data is transformed to a more spherical shape using a whitening transformation or principal 

component analysis (PCA) followed by normalization. This standardizes the data to have a zero mean 

and unit variance, removes correlations with PCA, and scales for uniform variance the dataset with 

Zi =
xi − μ

δ⁄ , 

where xI is the original data point, μ is the mean, and σ is the standard deviation. Applying PCA and 

normalization as wi =
PCA (Zi)

√λ
, where PCA(Zi) is the principal component transformation and λ is its 

eigenvalue. Transforming non-spherical data into a spherical form enhances algorithms like K-nearest 

neighbors (KNN) by improving distance measurements and overall accuracy across application [24]. 

Spectral clustering: The process begins with constructing an n×n affinity matrix A, where each 

element Aij quantifies the similarity between data points si and sj using a Gaussian kernel: 

Aij = exp (
−∥ si − sj ∥2

2δ2
) 



25073 

AIMS Mathematics  Volume 9, Issue 9, 25070–25097. 

ensuring self-similarity, Aij is zero. Next, a diagonal matrix D is defined, with D representing the sum 

of similarities in the iii-th row of A. The normalized Laplacian matrix L = D
1

2⁄ AD
−1

2⁄  is then 

computed to emphasize relationships between data points [14]. Eigenvectors 𝑥1, 𝑥2, 𝑥3, … 𝑥𝑛 of L are 

found orthogonally and arranged into matrix X. Each row Xi of X is normalized so that Yij =
Xij

√∑ Xij
−

j−

. 

In reduced dimensionality Rk, each row of matrix Y is treated as a point and clustered using 

algorithms like K-means to minimize intra-cluster and maximize inter-cluster distances. 

Principal component analysis (PCA): PCA was a method used to reduce the dimensionality of data 

while maintaining its essential structure. This was achieved by transforming the data into a new 

coordinate system defined by its principal components [25]. 

Mean calculation: Calculate the mean vector μ of the data points: μ =
1

2
∑ xi

n
i=1 . 

Covariance matrix: Compute the covariance matrix Σ to understand the relationships between the 

dimensions of the data: ∑ =
1

n
∑ (xI − μ)(xI − μ)Tn

i=1 . 

Eigen decomposition: Perform eigen decomposition on Σ to obtain its eigenvalues and eigenvectors: 

∑ = QAQT, where Q is a matrix containing orthogonal eigenvectors and Λ is a diagonal matrix of 

eigenvalues. 

Select principal components: Choose the top k eigenvectors associated with the largest eigenvalues 

to form the projection matrix W. 

Data projection: Project the original data 𝑥1, 𝑥2, 𝑥3, … 𝑥𝑛 onto the principal components W. Zi =

WT(xi − μ), where ZI represents the data point in the reduced-dimensional space. PCA is extensively 

used in various fields for dimensionality reduction and data preprocessing. It converts non-spherical 

data into a spherical form, making it suitable for clustering algorithms that assume spherical clusters, 

such as K-means. 

Rank order distance: Euclidean distance is a commonly used similarity measure in clustering, with 

a long history of application. It is calculated between two samples, a and b, as the square root of the 

sum of the squared differences between their respective features. The formula for the distance is: 

𝑑(𝑎, 𝑏) = √∑ (𝑎𝑖 − 𝑏𝑖)2
𝑖=1  where 𝑎𝑖 is i-th feature of a and 𝑏𝑖  is ith feature of b. Traditional 

clustering methods, like K-means and single-link, rely on this metric. However, when dealing with 

non-spherical data characterized by high-level noise, the effectiveness of mining data clusters is 

limited using the Euclidean distance. Consequently, researchers have explored alternative similarity 

measures, such as the Gaussian kernel and rank order distance (ROD), to address these challenges [26]. 

Unlike the Euclidean distance, they involve a structural alignment process on samples, enhancing the 

ability to uncover true data structures for clustering purposes. In this context, 𝑎𝑖  and 𝑏𝑖  are the iii-th 

features of samples a and b. Traditional clustering methods like K-means use Euclidean distance but 

struggle with non-spherical, noisy data. Researchers have explored alternatives like the Gaussian 

kernel and ROD, which better reveal true data structures. Rank order distance from a to b is calculated 

by: 𝑅(𝑎, 𝑏) = ∑ 𝑂𝑏(𝑓𝑎(𝑘))
𝑂𝑎(𝑏)

𝑘=0 . 
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In this context, fa(k) denotes the element ranked k-th in a distance list, while Oa(b) represents b 

rank in a list. For a rank order distance (ROD) between a and b, 𝑅− =
𝑅(𝑎,𝑏)+𝑅(𝑏,𝑎)

min(𝑂𝑎(𝑏),𝑂𝑏 (𝑎))
. In scenarios 

involving non-spherical data and noise challenges, ROD excels over Euclidean distance in assessing 

sample similarities by incorporating neighborhood structures. 

Clustering, especially K-means, has been widely used in signal processing for its efficiency and 

simplicity. However, K-means clustering struggles with non-spherical clusters. To address this, the 

self-weighted Euler K-means (SWEKM) model was proposed, integrating clustering and feature 

selection while using a Euler kernel to manage noisy points and outliers. Experiments on UCI datasets 

demonstrated that SWEKM outperformed state-of-the-art kernel K-means in handling non-spherical 

clusters in signal-processing tasks [27]. The resting dynamics of non-spherical particles were studied 

using a sharp interface–immersed boundary method and a kinematic-based collision model. 

Simulations showed that hydrodynamic moments, influenced by Reynolds number (Re), affected 

angular velocities but not trajectories. Using the shape factor K-n, the best scaling was achieved with 

the projected area of non-spherical particles. A linear relationship between mean K-n and Re was found, 

highlighting the effectiveness of particle-resolved simulations for modeling non-spherical particles [28]. 

2.3. Optimal number of clusters in K-means: Davies-Bouldin index (DBI) 

This index helps to determine the optimal number of clusters in a dataset by evaluating the 

similarity of each point to every cluster. It considers both the dispersion and dissimilarity within 

clusters. The index aims to find clusters that are compact and well-separated. The optimal number of 

clusters, identified by the minimum value of the index, represents the configuration where clusters are 

maximally distinct and internally cohesive [29]. 

where c represents the total number of clusters, 𝑛𝑖   represents the number of points, and 𝑐𝑖   is the 

centroid of cluster 𝑐𝑖 . This index measures the minimum distance within each cluster. 

Calinski-Harabasz index: This index calculates the average sum of squared distances between 

clusters (inter-cluster) and within clusters (intra-cluster). It provides a faster approach for determining 

the optimal number of clusters compared with other indices. The index aims to maximize the dispersion 

between clusters while minimizing it within clusters. The optimal number of clusters (ONC) is 

represented by the maximum value of this index, indicating that the clusters are both compact and 

well-separated [30]. 

CH(c) =
traceBm

traceWm
∗

N − C

C − 1
. (2) 

In the above Eq (2) Bm denotes the between-cluster scatter matrix, Wm denotes the internal scatter 

matrix, N is the total number of clustered samples, and c indicates the number of clusters. Where 

Wm = ∑ ∑ (x − ci)(x − ci)
T

xεci

c
i=1   and Bm = ∑ ni(ci − k)i (ci − k)T . CI  are the points that 

comprise cluster CI, nI  represents the number of points in cluster CI, and 𝑘 is the center of the entire 

dataset. 

DBC =
1

c
∑ maxj=1…..c   i≠j {

dia (ci) + diacj

‖ci − cj‖
} ,

c

i=1

 (1) 
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Silhouette score: The silhouette method evaluates clustering performance by considering two key 

factors: cohesion and separation. Cohesion measures how similar an object is to its own cluster, while 

separation assesses how distinct a cluster is from the others. This evaluation is quantified using the 

silhouette score, which ranges from -1 to 1. A score close to 1 indicates a strong association between 

an object and its cluster, suggesting effective clustering, while a low score indicates poor clustering 

quality [17]. A high average silhouette score across a dataset suggests that the clustering model is both 

appropriate and reliable. The silhouette score is calculated as follows: 

𝑆(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

𝑚𝑎𝑥(𝑎(𝑖), 𝑏(𝑖))
. (3) 

In Eq (3), S(i) is the silhouette score for the i-th data point, indicating its clustering quality. A(i) is 

the average distance from the i-th data point to other points within the same cluster. B(i) is the smallest 

average distance from the i-th data point to points in any other cluster. 

Elbow method: The Elbow method determines the optimal number of clusters (K) by calculating the 

squared Euclidean distances between data points and their cluster centroids, producing a series of KKK 

values. The sum of squared errors (SSE) measures clustering performance, with lower SSE indicating 

tighter clustering. As K increases, SSE decreases sharply until reaching an “elbow” point, which 

suggests the optimal cluster number [31]. However, this point can be subjective, and adding more 

clusters beyond this point does not significantly improve clustering performance. 

In Eq (4), after reaching the true cluster count, the SSE still decreases, but the rate of reduction 

slows significantly, indicating diminishing returns from adding more clusters. 

Gap statistic analysis: The gap statistic, developed by Tibshirani, determines the optimal number of 

clusters in datasets with unknown classifications. It uses Monte Carlo sampling to create reference 

distributions, which benchmark the sum of squared Euclidean distances within clusters [32,33]. By 

comparing these results to a zero-mean reference distribution, the optimal number of clusters is 

identified. The calculation is as follows: 

Gap(k)=𝐸[𝑙𝑜𝑔(𝑤𝑘)]–𝑙𝑜𝑔(𝑤𝑘). (5) 

In the above Eq (5), 𝐸[𝑙𝑜𝑔(𝑤𝑘)] represents the expected value of the logarithm of the within-

cluster dispersion 𝑤𝑘 for k clusters. The within-cluster dispersion 𝑤𝑘 typically measures how compact 

the clusters are, often quantified by the sum of squared distances of points within each cluster to their 

centroid. 𝑙𝑜𝑔(𝑤𝑘) is the logarithm of the actual within-cluster dispersion 𝑤𝑘 for k clusters. To use the 

gap statistic in practice, 𝑤𝑘 is calculated for a range of k values, 𝐸[𝑙𝑜𝑔(𝑤𝑘)] is estimated (often using 

a Monte Carlo simulation approach), and then Gap(k) is computed for each k. The k value where Gap(k) 

is maximized or shows a clear peak should be chosen as the optimal number of clusters for the dataset. 

This comprehensive review, summarized in Table 1, examines the prevalent methods used in the 

K-means algorithm, highlighting the inherent limitations of each method and their suitability for 

specific dataset types. It is evident that traditional methodologies often fail when applied to different 

datasets.  

𝑆𝑆E(𝑥)=∑∑∥𝑦𝑖–𝑑𝑖∥2 (4) 
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Table 1. Comparative analysis of methods for determining limitations in K-means clustering. 

Method/Reference Limitations 

Outliers’ detection in K-means clustering algorithm 

Winsorizing to handle outliers [34] Outliers and unbalanced data complexity. Variability in 

human development index cases. 

Entropic outlier sparsification (EOS). Mixture of 

spherically symmetric Gaussians [35] 

Outliers limit dataset usefulness in real-life scenarios. 

Challenges in finding a general method for different 

datasets. 

Self-adaptive mixture similarity function based 

on geometric distance and S divergence [36] 

Geometric distance-based similarity function struggles 

with massively overlapped data. Divergence-based 

similarity function fails to distinguish disjointed 

uncertain data. 

Non-spherical data in K-means clustering algorithm 

Original dataset clustered into high-density sub-

clusters [14] 

K-means less effective for clustering non-spherical data. 

Connectivity among sub-clusters evaluated by density 

and nearest distance class. 

Incorporate Elkan and Hamerly accelerations. 

Work directly with cosines instead of Euclidean 

distances [37] 

Acceleration techniques for Euclidean distances do not 

easily translate. Spherical K-means uses cosine 

similarities for computational efficiency. 

K-means spherical clustering [38] Limited to earthquake events in Bengkulu Province and 

surroundings. Analysis based on data from 1970 to 2019. 

Machine learning [39] Acceleration techniques for Euclidean distances do not 

easily translate. 

Selection of optimal number of clusters in K-means algorithm 

AutoML procedure that combines numeric and 

categorical dataset [40] 

Selecting optimal K in K-means algorithm is a challenge. 

AutoML procedure combines numeric and categorical 

datasets for analysis. 

Elbow method, gap statistics method, and 

Silhouette method, agglomerative hierarchical 

clustering (AHC) algorithm, and K-means 

method [41] 

The Elbow method may not always give clear optimal 

number clusters. Gap statistics method can be 

computationally expensive for large datasets. 

Optimal cluster number estimation algorithm 

(OCNE) [42] 

No need to specify maximum or range of k values. Does 

not require knee point detection in the graph. 

Elbow method, Silhouette method, gap statistic 

method, variance difference method [43] 

Energy efficiency, coverage difficulties, and network 

lifespan challenges. Accuracy diminishes with increasing 

clusters until it reaches zero. 

Euclidean distance, Manhattan distance, 

Chebychev distance, Minkowski distance, and 

estimated gap [44] 

Initial selection of K is a significant concern. Existing 

algorithms require scalable solutions for large datasets. 

Davies Bouldin index for determining optimal 

number of clusters [45] 

K-means clustering may not be optimal for large datasets. 

Davies-Bouldin index, Calinski-Harabasz index, 

and silhouette plot [30] 

KH algorithm prone to local optima, weak searchability. 

K-means affected by initial clustering center selection. 
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3. Methodology 

This study addresses three primary challenges associated with the K-means clustering algorithm: 

the detection and handling of outliers, the transformation of non-spherical data into spherical form, 

and the selection of the optimal number of clusters. The methodologies developed to tackle these 

challenges are detailed as follows: 

Detection and handling of outliers: One of the major limitations of the K-means algorithm is its 

sensitivity to outliers. To address this issue, this paper employs the winsorization method, as discussed 

in Section 3.1. 

Conversion of non-spherical data to spherical form using KROMD method: K-means performs 

poorly in the presence of non-spherical data. To mitigate this problem, this paper introduces the 

KROMD method, which combines Manhattan distance with a Gaussian kernel. The details of this 

approach are explained in Section 3.2. 

Selection of the optimal number of clusters by enhancing the gap statistic: Selecting the optimal 

number of clusters is a challenging task in K-means clustering. This paper enhances the gap statistic 

by standardizing expected reference data to overcome this limitation. The detailed methodology is 

provided in Section 3.3. 

Figure 1(a) illustrates the process of detecting outliers and handling them by applying 

winsorization methods. Figure 1(b) depicts the process of converting non-spherical data into a spherical 

form using KROMD methods, which combine ROD and Gaussian kernel techniques. Figure 1(c) 

outlines the method for selecting the optimal number of clusters in K-means by enhancing the gap 

statistic method through the standardization of reference data. The methods calculate the range of 

values within cluster sum of square for both the original and reference data. In place of expected values, 

this algorithm applies standardization methods that clearly and effectively select the optimal number 

of clusters, mathematically discussed in Section 3.3.6. 

Sequential breakdown of the flowchart in Figure 1: 

1) Winsorization of outliers 

Input: data, =dataset. Load-x=data [:2!] 

Output: Winsorization of outliers 

1: Choose methods 

z-score or IQR 

2: Reviewer outliers=[]; 

3: Set thresholds values=[]; 

4: Set lower and upper bounds do 

5: 𝑰𝑸𝑹 = 𝑄3 − 𝑄1  (I,Q.R!), 

6: Lower bound=𝑄1 − 1.5 ∗ 𝐼𝑄𝑅 

Upper bound=𝑄3 + 1.5 ∗ 𝐼𝑄𝑅 

7: Transform each data point for each value of x apply the following transformation 

8: 𝑋𝑊𝑖𝑛𝑠𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛  

9: {
𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 𝑖𝑓 𝑋 < 𝑙𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑
𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 𝑖𝑓 𝑋 > 𝑢𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑
𝑋                                            𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 



25078 

AIMS Mathematics  Volume 9, Issue 9, 25070–25097. 

10: winsorization outliers. 

2) Conversion to spherical data 

Input: Irregular dataset containing high level of noise. 

Output: Provide a cluster set 'C' and an "un-grouped" cluster 'Cun'. 

1: Initialize clusters 'C' as {C1,C2,...,CN} of data according to their similarity basis of dataset. 

Ranking of dataset according to their ascending or descending order. 

2: Repeat the following steps: 

3: For all pairs (Cj, Ci) in 'C', do the following: 

4: Calculate Ranking of dataset 

5: Calculate rank order Manhattan distance 

6: Identify ⟨Ci, Cj⟩ as a candidate merging pair. 

7: applying Gaussian kernel 

7: End the conditional statement. 

8: The process stops until all the data is converted from non-spherical to spherical form. 

3) Optimal number of clusters 

Input: data, =dataset.load-x=data[:,2!] 

Output: K, (Number of Optimal Cluster K in K-Mean) 

1: def Sample Num, P, MaxK,u, Sigma; 

2: SampleSet=[]; 

3: Size(u)=[Um,]; 

4: for i=1: Um do 

5: SampleSet= [sampleSet; munrud (u(I,!), Sigma, fix(SampleNum/Um))] 

6: Wk= log(compwWk(SampleSet, Maxk)); 

7: for b=1 :P do 

8: Wkb= log(CompuWk(RefSet(!, ! b) Maxk); 

9: for k=1: Maxk, OptimumUsk=1 

10: EGSk=
log(𝑊𝑘𝑏

∗ )−(−γ−log(λ))

=
𝜋

√6
+√1+

1

𝐵

 

11: EGSk optimal value for large k value. 
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(a) 
 

(b) 

 

(c) 

Figure 1. Flowchart for the K-means clustering algorithm. 
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3.1. Outlier detection and handling 

Outliers are data points that differ significantly from most observations, arising from natural 

variability or data collection errors. It is essential to identify and manage outliers, as they can greatly 

impact analysis results, potentially causing misleading conclusions. Winsorization is a statistical 

technique that reduces the influence of extreme values by adjusting outliers to the nearest specified 

percentile values. This method helps to lessen the effect of potentially erroneous outliers [46]. 

Winsorization of outliers: Outliers are identified within the dataset using the interquartile range (IQR) 

method, which allows for the detection of data points lying outside the typical range. Subsequently, 

the winsorization technique is employed to handle these outliers, whereby extreme values are replaced 

with the nearest value within a specified percentile range, ensuring a more balanced and representative 

dataset for analysis [47]. 

IQR = Q3 − Q1. (6) 

Where Q1 is the first quartile (25th percentile) and Q3  is the third quartile (75th percentile). 

Winsorization upper and lower bounds are defined as follows: 

Lower bound=Q1 − 1.5 × IQR, 

Upper bound=Q3 + 1.5 × IQR. 

Each data point is transformed for each value of X by applying the following transformation: 

XWinsorization = {
Lower Bound     if X < lower Bound
Upper Bound      if X > upper Bound
X                                            Otherwise

. (7) 

In the above Eq (7), to mitigate the impact of outliers on the dataset, values below the lower bound 

are set to the lower bound and values above the upper bound are set to the upper bound, while values 

within the bounds remained unchanged. This approach aided in reducing outliers using the 

winsorization technique. Outliers were identified by calculating the interquartile range (IQR) to gauge 

the data spread. Data points beyond 1.5 times the IQR were flagged as outliers, and their values were 

adjusted to extreme values outside the normal range before reintroducing them into the dataset. This 

method significantly influenced the clustering process, enabling a robust evaluation of winsorization 

combined with the K-means method. 

3.2. Conversion of non-spherical data to spherical form 

In the presence of non-spherical data, the K-means algorithm often underperforms. To address 

this challenge, this paper proposes a novel approach called KROMD, which combines the ROD (rank 

order distance) technique with a Gaussian kernel method. The performance of KROMD is evaluated 

by comparing it with established methods such as KNN (K-nearest neighbors), spectral clustering, 

PCA, and ROD.  
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3.2.1. Kernelized rank order Manhattan distance (KROMD) 

To effectively cluster non-spherical data with high noise levels, we introduce a novel similarity 

measure called Kernelized rank order Manhattan distance (KROMD). This measure integrates rank 

order distance (ROD) with a Gaussian kernel. Non-spherical data refers to clusters that deviate from 

spherical shapes, while high noise indicates numerous data points between clusters, causing them to 

overlap [14]. 

3.2.2. ROD for noise tolerance 

Traditional ROD has limited capability in handling high noise levels. We enhance ROD by 

selectively considering only two distance ranks for each sample pair, thus reducing the influence of 

noise-related ranks [48]. The refined ROD between samples a and b is defined as: 

R(a, b) = Ra(b) + Rb(a). (8) 

In the above Eq (8), rank order distances Ra(b) and Rb(a) quantify the dissimilarity between 

points a and b based on their ranks within the dataset. In this Eq (8), ROD demonstrates greater 

resilience to noise, enabling more effective structure detection in non-spherical, noisy data. 

3.2.3. Gaussian kernel 

The enhanced ROD demonstrates improved resilience to high noise levels, effectively capturing 

structures in noisy, non-spherical data. To reinforce cluster structures, KROMD integrates this 

improved ROD with a Gaussian kernel (Eq (3)), which efficiently brings samples within the same 

cluster closer together. This kernel is commonly used in clustering methods for non-spherical data. 

The Gaussian kernel between points a and b is computed as follows: 

In the above Eq (9), the Gaussian kernel k(a, b) measures the similarity between two points, a 

and b, based on their distance d(a, b ). e
−d(a,b)2

u2   ensures that closer points [small d(a, b )] receive 

higher similarity values, as e
−d(a,b)2

u2   approaches 1 for small distances. Conversely, points that are 

farther apart [large d(a, b)] receive lower similarity values, approaching 0. μ is a tunable parameter, 

often referred to as the bandwidth or scale parameter. It controls the width of the Gaussian kernel and 

significantly impacts the transformation of data. This μ in the Gaussian kernel is essential for 

controlling the extent of influence between data points, smoothing out noise, and converting non-

spherical data into a more spherical form, thus enhancing the performance of clustering algorithms 

like K-means. 

3.2.4. KROMD calculation 

KROMD combines the ROD and Gaussian kernel to provide a robust similarity measure. The 

KROMD between samples a and b is calculated as: 

k(a, b) = e
−d(a,b)2

u2 . (9) 
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KROMD = R(ab) ×
1

K(a,b)
= Ra(b) + Rb(a) ×

1

e
−

d(a,b)2

u2

. (10) 

In the above Eq (10), rank order distances Ra(b) and Rb(a) quantify the dissimilarity between 

points a and b based on their ranks within the dataset. Gaussian Kernel term e
−

d(a,b)2

u2  modifies the 

contribution of Rb(a) based on the distance d(a, b) between points a and b. It emphasizes similarity 

when d(a, b) is small (points are close) and reduces similarity when d(a, b) is large (points are far 

apart). 

3.3. Optimal number of cluster selection 

Determining the optimal number of clusters in K-means is challenging for researchers. Therefore, 

this paper enhanced the gap statistic by standardizing the expected value of the reference dataset using 

an exponential distribution. 

The enhanced gap statistic (EGS) builds upon the traditional gap statistic [44,49] by incorporating 

an adjustment factor that considers the standard deviation of the within-cluster sum of squares from 

the reference dataset. This factor addresses variations within the reference dataset, resulting in a more 

accurate determination of the optimal number of clusters (ONC). By applying an exponential 

distribution to the standardization process, EGS enhances the robustness, efficiency, and accuracy of 

clustering results, particularly in the presence of outliers. In the above Eq. 5, we standardize 𝐸[𝑙𝑜𝑔(𝑤𝑘)] 

using an exponential distribution. The probability density function (PDF) of an exponential distribution 

is expressed as f(w∗) = λe−λw∗
d(w∗), f, w∗ ≥ 0. Therefore, the probability density f(w∗ ) of an 

exponential random variable w∗ with rate parameter λ is provided in Eq (11) as follows. 

E[log(w∗)] = ∫ log(w∗) λe−λw∗
dw∗∞

0
. (11) 

Let μ = λw∗, then w∗ =
μ

λ
, dw∗ = du

λ⁄ . Substituting this into the integral, Eq (12) is obtained. 

E[log(w∗)] = ∫ log(
μ

λ⁄ ) λe−μ du

λ

∞

0
= ∫ (log(u) − log(λ))e−u∞

0
du, 

E[log(w∗)] = ∫ log(u) e−u∞

0
du − logλ∫ e−udu

∞

0
. (12) 

In Eq (12), ∫ log(u) eudu 
∞

0
is known to be the derivative of the gamma function Γ(s). The 

gamma function Γ(s) at s=1 and Γ(1−)=−γ where γ: Euler Mascheroni constant 

∫ log(u) e−udu
∞

0
= −γ, (13) 

−logλ ∫ e−udu
∞

0
= −logλ(1). (14) 
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Substituting Eqs (13) and (14) into Eq (12), ∫ e−udu
∞

0
= 1, 

E[log(w∗)] = ∫ log(u) e−u∞

0
du − logλ∫ e−udu = −γ − log(λ)

∞

0
, (15) 

E[log2(w∗)] = ∫ log2(w∗)f(w∗)dw∗∞

0
. (16) 

Substituting u = λw∗, dw∗ =
du

λ
 and w∗ =

u

λ
, log(w∗) log (

u

λ
) = log(u) − log(λ)  into Eq (16), 

then 

E[log2(w∗)] = ∫ [log(u) − log(λ)]2λe−λu
λ⁄

du

λ

∞

0

 

= ∫ [log(u) − log(λ)]2e−u∞

0
du. 

(17) 

Expanding and integrating Eq (17), 

[log(u) − log(λ)]2 = log2(u) − 2 log(u) log(λ) + log2(λ) 

The integration becomes 

=∫ [(log2(u) − 2 log(u) log(λ) + log2(λ))]
∞

0
e−udu 

E[log2(w∗)] = ∫ 2log(u) log(λ)
∞

0
e−udu + ∫ log2(λ)

∞

0
e−udu ∫ (log2(u)

∞

0
e−udu. (18) 

In the Eq (18), 

∫ (log2(u)
∞

0
e−udu=

π2

6
, (19) 

∫ 2log(u) log(λ)
∞

0
e−udu = 2 log(λ) ∫ log(u)

∞

0
e−udu=2 log(λ) (γ)=2γ log(λ), (20) 

∫ log2(λ)
∞

0
e−udu=log2(λ) ∫ e−udu

∞

0
=log2(λ). (21) 

Substituting Eqs (19)–(21) into Eq (18) will obtain Eq (22) as follows: 

E[log2(w∗)] =
π2

6
+2γ log(λ) + log2(λ)=

π2

6
+2γ log(λ) + log2(λ) =

π2

6
+(γ + log(λ))

2
. (22) 

To calculate variance, subtracting Eq (21) with the square of Eq (15) and obtaining Eq (23) as follows:  
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Variance(w∗) = E[log2(w∗)] − (E[log(w∗)])2 

=
π2

6
+(γ + log(λ))

2
— γ − log(λ) 2, 

variance(log(w∗)) =
π2

6
. (23) 

Taking square roots of Eq (23) to find the standard deviation as Eq (24): 

S. D(log(w∗) = √π2

6
=

π

√6
. (24) 

Now, subtracting log(w∗) with Eq (15) and dividing by Eq (24) to standardize as in Eq (25). 

standardization =
log(w∗) − E[log(w∗)]

S. D[log(w∗)]
=

log(Wkb
∗ ) − (−γ − log(λ))

=
π

√6

. (25) 

Substituting Eq (25) in the place of 𝐸[𝑙𝑜𝑔(𝑤𝑘)] in Eq (5), we get standardizations of reference data in 

gap statistic in the form of Eq (26), 

EGSk =
log(Wkb

∗ ) − (−γ − log(λ))

=
π

√6
+  √1 +

1
B

− log(wk). 
(26) 

The scaled gap statistic 𝐸𝐺𝑆𝑘  evaluates cluster validity by comparing the within-cluster sum of 

squares for cluster k in the bootstrap dataset 𝑙𝑜𝑔(𝑊𝑘𝑏
∗ )  to the original dataset 𝑤𝑘 . It includes 

adjustments using the Euler-Mascheroni constant γ and a scaling parameter λ from an exponential 

distribution. The standard deviation σ is estimated as 
𝜋

√6
 and scaled by √1 +

1

𝐵
 to account for 

variability, where B is the number of bootstrap samples. This statistic measures the standardized 

difference between the log-transformed within-cluster sums of squares from the bootstrap and original 

datasets, providing a robust measure of cluster consistency and distinctiveness. Table 1 below 

summarizes the discussed methods and their limitations in determining the limitations in K-means 

clustering. 

4. Experimental setup 

In this section, the limitations of K-means clustering are addressed and the experimental setup is 

described using a well log dataset consisting of 13 features: borehole size (BS), caliper log (CALI), 

corrected caliper log (CALS), density correction (DRHO), sonic travel time (DT), gamma ray (GR), 

deep laterolog resistivity (LLD), shallow laterolog resistivity (LLS), micro spherical focused log 

(MSFL), neutron porosity (NPHI), photoelectric effect (PEF), bulk density (RHOB), and spontaneous 

potential (SP). Each feature contains 2435 observations, sourced from Kaggle 

(https://kaggle.com/search?q=well+logs). The overall statistical summary is presented in Table 3. 

Outlier detection and handling: Outliers are detected using the interquartile range (IQR) method. 

https://kaggle.com/search?q=well+logs
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These outliers are then handled using the winsorization technique to mitigate their impact on the 

clustering results. 

Non-spherical data: To address this issue, an enhanced version of the rank order distance (ROD) 

method, termed Kernelized rank order distance (KROMD) is used. This new method combines ROD 

with a Gaussian kernel, effectively transforming non-spherical data into a spherical form suitable for 

K-means clustering. 

Optimal cluster selection: The paper also enhances the gap statistic method to better determine the 

optimal number of clusters. The enhanced gap statistic (EGS) standardizes the reference data using an 

exponential distribution. This standardized approach more effectively identifies the optimal number of 

clusters for K-means clustering. After addressing these issues, the enhanced methods are applied to a 

well log dataset for lithology identification. 

Table 2 utilizes descriptive statistics to effectively summarize the dataset and identify key 

characteristics. By presenting the mean, standard deviation, kurtosis, skewness, and count, researchers 

can clearly communicate their findings, setting the stage for more advanced analysis and interpretation. 

Table 2. Descriptive statistic of well log dataset. 

In Table 2, statistical measures are computed using 13 different well log data parameters: BS, 

CALI, CALS, DRHO, DT, GR, LLD, LLS, MSFL, NPHI, PEF, RHOB, and SP. Detailed data analysis 

for each parameter is provided in Table 3.  

Data/measurement Mean Standard deviation Kurtosis Skewness Count 

BS 9.875 0 0 0 2435 

CALI 10.83655 1.450557 0.267313 0.99747 2435 

CALS 11.00636 1.495335 -0.26492 0.834237 2435 

DRHO 0.063434 0.06435 1.131263 1.217352 2435 

DT 75.45593 8.95537 -0.0947 0.498675 2435 

GR 44.72057 26.60035 0.721314 1.082106 2435 

LLD 8.602187 93.10094 1236.184 33.75293 2435 

LLS 5.044212 10.50682 61.88977 6.26828 2435 

MSFL 3.33086 13.09329 262.2452 14.8937 2435 

NPHI 0.14008 0.067792 1.224401 0.438204 2435 

PEF 3.654996 1.005118 -1.49849 0.085748 2435 

RHOB 2.448815 0.163972 12.22944 -0.81415 2435 

SP -45.9933 3.431153 -0.85737 0.245552 2435 
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Table 3. Interpretation for each well log dataset given in Table 2. 

Data Mean S.D Kurtosis Skewness Interpretation 

Bs 9.875 0 0 0 All observation are identical 

CALI 10.83655 1.450557 0.267313 0.99747 Moderate variability, positively 

CALS 11.00636 1.495335 -0.26492 0.834237 Moderate variability, positively 

DRHO 0.063434 0.06435 1.131263 1.217352 Moderate variability, positively 

DT 75.45593 8.9553 -0.0947 0.498675 Moderate variability, slightly right-

skewed, close to normal distribution. 

GR 44.72057 26.60035 0.721314 1.082106 High variability, positively 

LLD 8.602187 93.10094 1236.184 33.75293 Extremely high variability, extremely 

heavy tails, and a long right tail. 

LLS 5.044212 10.50682 61.88977 6.26828 High variability, heavy tails, and a long 

right tail. 

MSFL 3.33086 13.09329 262.2452 14.8937 High variability, extremely heavy tails, 

and a long right tail. 

NPHI 0.14008 0.067792 1.224401 0.438204 Moderate variability, slightly right 

skewed with heavier tails. 

PEF 3.654996 1.005118 -1.49849 0.085748 Low variability, nearly symmetrical, 

and a flatter distribution. 

RHOB 2.448815 0.163972 12.22944 -0.81415 Low variability, left-skewed with heavy 

tails. 

SP -45.9933 3.431153 -0.85737 0.245552 Moderate variability, slightly right 

skewed, and flatter distribution. 

Variables show a mix of positive and negative skewness, mostly right skewed. Some variables 

(e.g., LLD, MSFL) exhibit high variability and heavy tails. BS shows no variability, while others range 

from low to extremely high variability. 

5. Results and discussion 

In this section, we initially identify outliers within the dataset. Subsequently, we address these 

outliers through the implementation of the winsorization technique. Following winsorization, we 

employ the KROMD method to transform non-spherical data into a spherical form, as outlined in the 

methodology section. Next, we determine the optimal number of clusters using the enhanced gap 

statistic method. Finally, the paper delves into a comprehensive discussion of the results obtained. 

5.1. Outlier detection and handling by using the winsorization method 

Outlier detection using the interquartile range (IQR) identifies extreme values based on the spread 

of the dataset. Winsorization handles outliers by replacing extreme values with the nearest non-outlier 

values within a specified range, helping to maintain the overall distribution of the data. 

In Figure 2, 

• Subplots (a), (k), and (m) illustrate the datasets for BS (elapsed time = 0.0582), PEF (running 

time = 0.0095), and SP (running time = 0.0067), respectively, without any identified outliers. 
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• Subplots (b) and (c) highlight the datasets for CALI (running time = 0.0070) and CALS 

(running time = 0.0073), where 7 outliers are observed in each dataset. 

• Subplot (d) shows the dataset for DRHO (running time = 0.0073), with 78 outliers detected. 

• Subplot (e) displays the dataset for DT (running time = 0.0068), revealing 12 identified outliers. 

• Subplot (f) presents the dataset for GR (running time = 0.0078), indicating the presence of 104 

outliers. 

• Subplots (g), (h), and (l) represent the datasets for LLD (running time = 0.0080), LLS (running 

time = 0.0097), and RHOB (running time = 0.0096), respectively, exhibiting the highest 

number of outliers among all variables, with 307, 284, and 147 outliers, respectively. 

• Subplot (j) denotes the dataset for NPHI (running time = 0.0075), indicating the presence of 20 

outliers. 

After detecting these outliers, the winsorization technique was applied to handle them. Figure 2 

represents the winsorization of outliers using IQR mentioned in Eqs (6) and (7). 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

(i) 
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(j) 

 

(k) 

 

(l) 

 

 
(m) 

 

Figure 2. Detection of outliers and handling using the winsorization method. 

5.2. Transformation of non-spherical data to spherical form 

The transformation of non-spherical data into spherical form is achieved using the kernelized rank 

order Manhattan distance (KROMD) method, which integrates the Gaussian kernel with the rank order 

distance (ROD) method. The accompanying graph compares various methods: K-nearest neighbors 

(KNN), spectral clustering, PCA, ROD, and the newly developed KROMD, for converting non-

spherical data into a spherical form. 

Figure 3 provides a comparative analysis of different methods for transforming non-spherical data 

into spherical form. Each subfigure highlights a specific method: 

• Original data (a): Serves as a baseline, showcasing the non-spherical nature of the dataset. 

• KNN (b): Converts the data into a spherical form but may not capture the intrinsic structure as 

effectively as other methods. 

• Spectral clustering (c): Demonstrates a more sophisticated approach, capturing the underlying 

patterns in the data better than KNN. 

• PCA (d): Reduces dimensionality while attempting to preserve the data's variance, 

transforming it into a spherical form. 

• ROD (e): Uses rank order distance to achieve the spherical transformation, providing an 

improved structure over traditional methods. 

• KROMD (f): The novel KROMD method integrates Gaussian kernel and rank order distance, 

offering a clear and effective spherical transformation, outperforming other methods in 

preserving the dataset's intrinsic characteristics. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 3. Conversion of non-spherical data to spherical form. 

Figure 4 illustrates the accuracy levels and execution times for converting non-spherical data 

into spherical form using KNN, spectral clustering, PCA, ROD, and KROMD methods. 

• Subfigure (a) shows the accuracy levels of each method. 

• Subfigure (b) presents the execution times for each method. 
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The results demonstrate that the newly developed KROMD method excels in both accuracy and 

efficiency, as summarized in Figure 4. 

KNN has an accuracy of 67%, making it the second-best performer in terms of accuracy. Its 

execution time is moderate at 0.52 seconds, slower than KROMD but faster than spectral clustering. 

Spectral clustering achieves a moderate accuracy of 60%. However, it has the longest execution time 

at 0.91 seconds, indicating lower efficiency compared to the other methods. PCA is the least accurate 

method, with an accuracy of 49%. Its execution time is relatively efficient at 0.42 seconds, but still not 

as efficient as KROMD or ROD. ROD provides an accuracy of 58%, slightly better than spectral 

clustering and PCA. With an execution time of 0.39 seconds, it is the second fastest method after 

KROMD, showing good efficiency. KROMD achieves the highest accuracy at 83%, significantly 

outperforming all other methods. It is also the most efficient, with the shortest execution time of 0.14 

seconds. In conclusion, KROMD demonstrates a significant advancement over existing methods for 

converting non-spherical data into spherical form, offering the best combination of high accuracy and 

low execution time. This makes KROMD the most effective and efficient method among those 

compared. 

 

(a) 

 

(b) 

Figure 4. Accuracy and execution time. 

5.3. Optimal number of clusters 

In Figure 5, several methods are used to determine the optimal number of clusters for K-means 

clustering of well log datasets: (a) Davies-Bouldin index, (b) Calinski-Harabasz index, (c) silhouette 

plot, (d) elbow method, (e) GS, and (f) EGS. Subfigures (g) and (h) show the performance of K-means 

clustering after the optimal number of clusters has been selected. The results reveal that the enhanced 

gap statistic (EGS) method performs better than the other methods. 
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(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Figure 5. Optimal number of clusters selection. 
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Figure 6 provides an analysis of different methods for selecting the optimal number of clusters in 

K-means clustering: 

• Figure 6 (a) displays various methods for determining the optimal number of clusters. 

• Figure 6 (b) shows the execution times of these methods. 

Figure 6 highlights the performance of various methods used to determine the optimal number of 

clusters in K-means clustering. 

Davies-Bouldin (D-B) index. Accuracy: High at 91.88%, making it a robust method for cluster 

analysis. Execution time: 0.1431 seconds, demonstrating quick computational performance. 

Calinski-Harabasz (C-H) index. Accuracy: Moderate at 65.39%, suitable for cluster evaluation. 

Execution time: 0.0936 seconds, the fastest among the methods. 

Silhouette plot. Accuracy: Respectable at 84.63%, showing reliable cluster assessment. 

Execution time: 0.1943 seconds, moderately efficient. 

Elbow method. Accuracy: Lowest at 27.86%, suggesting limited effectiveness in cluster 

identification. Execution time: 0.6150 seconds, slower compared to other methods. 

Gap statistic (GS). Accuracy: Relatively lower at 52.55%, indicating less optimal cluster 

determination. Execution time: 1.1805 seconds, the slowest among all methods. 

Enhanced gap statistic (EGS). Accuracy: Highest at 93.35%, demonstrating superior 

performance in cluster selection. Execution time: Efficient at 0.1433 seconds, indicating fast 

processing speed. 

In conclusion, the enhanced gap statistic (EGS) method emerges as the most effective choice for 

selecting the optimal number of clusters in K-means clustering, offering both high accuracy and 

efficient execution time. 

 

(a) 

 

(b) 

Figure 6. Accuracy and execution times. 

5.4. Research contributions 

This research significantly advances the K-means clustering algorithm by addressing three 

primary limitations. First, outlier detection and management were tackled through the implementation 

of the winsorization method. Second, a novel approach was introduced that combined the rank order 

distance (ROD) technique with a Gaussian kernel to effectively transform non-spherical data into a 
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spherical form. Last, a gap statistic method was defined for determining the optimal number of clusters 

in K-means by standardizing reference data using an exponential distribution. These enhancements 

have demonstrated superior performance compared to conventional methods, making a substantial 

contribution to the field of clustering algorithms. 

6. Conclusions 

This research focused on enhancing the foundational task of clustering, with a particular emphasis 

on K-means clustering. This paper identified three critical limitations of the K-means algorithm: 

sensitivity to outliers, difficulties with non-spherical data, and challenges in selecting the optimal 

number of clusters. To address these issues, this paper proposed innovative solutions: 

Mitigating outliers: Winsorization was employed to effectively manage the influence of outliers on 

the clustering process. 

Handling non-spherical data: Kernelized rank order distance (KROMD) was introduced to transform 

non-spherical data into a spherical form, enhancing clustering accuracy. 

Determining optimal clusters: The gap statistic method was improved to provide a more reliable 

approach for selecting the optimal number of clusters. 

Extensive experimentation demonstrated that our proposed methods outperformed traditional 

approaches, showing superior performance in handling outliers, non-spherical data, and determining 

the number of clusters. By addressing these critical challenges, this research significantly advances the 

effectiveness and applicability of K-means clustering across various domains. The paper offers 

practical solutions to enhance clustering performance, providing a more robust framework for data 

analysis and decision-making processes. For future work, we encourage the application of these 

algorithms to different datasets, focusing on each limitation individually, and comparing their 

performance with other methods in terms of accuracy and execution time. 
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