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Abstract: In order to reduce errors and enhance precision while estimating the unknown parameters
of the distributions, it is crucial to choose a representative sample. The common estimation
methods that estimate the parameters associated with the bathtub-shaped distribution include
maximum likelihood (ML), maximum product of spacings estimation (MPSE), and Cramér-von
Mises estimation (CME) methods. However, four modifications are used with the sample selection
technique. They are simple random sampling (SRS), ranked set sampling (RSS), maximum ranked set
sampling (MaxRSS), and double ranked set sampling (DBRSS), which is due to small sample sizes.
Based on the estimation methods such as ML, MPSE, and CME, the ranked set sampling techniques
do not have simple functions to manage them. The MaxRSS matrix has variable dimensions
but requires fewer observations than RSS. DBRSS requires a greater number of observations than
MaxRSS and RSS. According to simulation studies, the RSS, MaxRSS, and DBRSS estimators
were more effective than the SRS estimator for different sample sizes. Additionally, MaxRSS was
discovered to be the most efficient RSS-based technique. Other techniques, however, proved more
effective than RSS for high mean squared errors. The CM method estimated the true values of the
parameters more accurately and with smaller biases than ML and MPSE. The MPSE method was also
found to have significant biases and to be less accurate in estimating the values of the parameters when
compared to the other estimate methods. Finally, two datasets demonstrated how the bathtub-shaped
distribution could be feasible based on different sampling techniques.
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1. Introduction

McIntyre [1] introduced the concept of ranked set sampling (RSS). He used the RSS technique to
estimate forage and forage yields in agriculture. Its purpose is to preserve the characteristics of SRS
estimators while using as little information as feasible about those estimators that may be obtained
through visual examination or other low-cost techniques. To further improve inference precision,
he minimized the number of measured observations required. Here is a rundown of how the RSS
technique works: The target population is first used to choose an SRS consisting of n sets, each
with size n. Next, in a cycle j, choose the ith element from the ith collection, where {i = 1, · · · , n}
and { j = 1, · · · , r}. An RSS sample of size n can be obtained by repeating the procedure r times.
Double ranked set sampling (DBRSS) was introduced by Al-Saleh and Al-Kadiri [2] to estimate the
population mean. Using a double ranked set, the researcher must locate n3 units in order to select a
sample of size n. This may be challenging when an epidemic breaks out in a region or when data
arrives in packets of varying sizes and causes queuing issues.

In addition, there may be a lack of experimental units, or ranking may be difficult, time-consuming,
and expensive. The DBRSS technique is characterized as follows: To obtain a sample of size n, n3

units from the intended population are selected. Allocate these units across n collections of size
n2 at random. Use the RSS on n sets to generate n ranked set samples of size n each. Repeat the
RSS procedure on these n ranked sets of equal size to generate an n-by-n sample of double ranked
sets. When estimating the mean of symmetric distributions such as the normal and exponential, RSS
is more accurate than SRS, according to Al-Saleh and Al-Hadrami [3]. MaxRSS was created by
Eskandarzadeh et al. in [4]. By halving the sample of traditional RSS, this technique is successful
and can produce an estimator that is more accurate than traditional RSS. The MaxRSS technique is
explained as follows: To begin with, choose n sets from a simple random sample (SRS), where the
size of the ith set is i for i = 1, · · · , n. The top observation in each set should then be determined.
The maximum statistical measure for

∑n
i=1 i =

n(n+1)
2 units. Subsequently, execute the preceding steps

r times to produce a MaxRSS of size nr. Wang et al. [5] used the ML method to estimate the inverse
Gaussian distribution based on MaxRSS with unequal sample sizes. A few changes to RSS were
made in order to estimate the gamma/Gompertz distribution’s parameters by Hassan et al. [6]. Based
on RSS modification, Hassan et al. [7] used ML to estimate the parameters of the exponentiated
exponential distribution. The parameters of the inverted Kumaraswamy distribution based on RSS
and SRS were estimated by Nagy et al. [8] using a variety of estimation techniques, such as
maximum likelihood, maximum product of spacings, ordinary least squares, weighted least squares,
Cramer–von Mises, and Anderson–Darling. Chen [9] defined a “bathtub-shaped” distribution, or an
increasing hazard rate function (CBL) distribution, as a lifetime distribution with two parameters. This
distribution is extensively used in practice since it may depict the lifetimes of different mechanical and
electrical items. Based on Chen’s bathtub-shaped distribution, Tahmasebi and Jafari [10] developed an
expanded distribution. Estimating the unknown parameters of the CBL distribution was accomplished
by a variety of researchers using estimation methods. Zhang et al. [11] estimated the unknown
parameters of the CBL distribution based on type-I hybrid censoring and Bayesian and E-Bayesian
methods. Sarhan et al. [12] estimated the CBL distribution parameters using SRS-based Bayesian and
ML methods. For more references, one may see Sindhu et al. [13], Sindhu and Atangana [14], Dutta
and Kayal [15], Dutta et al. [16], and Dutta et al. [17].

The probability density function (PDF) and cumulative distribution function (CDF) of a
distribution with a bathtub shape are followed by

f (x;α, λ) = αλxλ−1eα(1−exλ )+xλ; x > 0, α, λ > 0, (1.1)
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and
F(x;α, λ) = 1 − eα(1−exλ ) x > 0, α, λ > 0, (1.2)

where α and λ are the scale and shape parameters, respectively (see Figure 1).

Figure 1. PDF of CBL distribution with different parameter values.

Numerous real-world studies, such as determining the strength with specific materials, the
mortality rate, or the incubation time of a fatal illness, frequently result in the study of distributions
with bathtub-shaped hazard functions. Yet, this distribution has not been applied in statistical
literature with RSS modifications and different methods of estimation. Our aim of this work is to
estimate the unknown parameters of this distribution with various method of estimation under RSS
modifications.

This article presents a comparison between the MaxRSS technique and other sampling techniques,
namely ML, MPSE, and CME estimation methods, in terms of estimating unknown parameters for
CBL distribution using the SRS technique. The following sections of this article are arranged as
follows: The PDF and CDF functions for the sampling technique are shown in Section 2. The three
different estimation methods are discussed in Sections 3, 4, and 5 for the four sampling techniques
discussed in this article. The effectiveness of the SRS-based estimators are compared to those of
its counterparts, RSS, MaxRSS, and DBRSS, in Section 6 using the results of a simulation using
the Monte Carlo method. The outcomes demonstrate that MaxRSS is more efficient than all other
methods and minimizesthe mean squared error. The CBL distribution is applied to two real datasets
in Section 7 to demonstrate the flexibility of the distribution, and Section 8 summarized the findings
from Sections 6 and 7.

2. Some sampling techniques

Various sample techniques forthe selection of a unit, including RSS, MaxRSS, and DBRSS, are
explained in this section along with the PDF and CDF functions for each. Assume that X is a
continuous random variable with PDF and CDF as f (x) and F(x), respectively.

Ranked set sampling: Suppose that {X(1)
(i;i) j} are random samples for n sets of size n. Each sample

is independent and represents an SRS sample. The ith order statistic unit is displayed, derived from
the ith sample of size n, where i = {1, · · · , n}, and it contains an amount j cycles, for j = {1, · · · , r}
see Figure 2. Then the PDF and CDF of X(1)

(i:i) j are expressed as

fn(x(1)
(i:i) j; θ) =

n!
(i − 1)!(n − i)!

f (x(i:i) j; θ) [F(x(i:i) j; θ)]i−1

× [1 − F(x(i:i) j; θ)]n−i , (2.1)

and
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Fn(x(1)
(i:i) j; θ) =

n∑
t=i

(n
t )) [F(x(i:i) j; θ)]t [1 − F(x(i:i) j; θ)]n−t . (2.2)

Figure 2. An illustrative examples for RSS with different sample sizes n = 3 and n = 2 for
r = 1.

Double ranked set sampling: Let {X(2)
(i) j} be a DBRSS, that is, X(2)

(i) j is the ith order statistic unit for
i = {1, · · · , n} and number of cycles j = {1, · · · , r} of the RSS {X(1)

(i) j} and each of X(2)
(i) j are collected from

independent ranked set samples of size n. It shows that {X(2)
(1) j, X

(2)
(2) j, · · · , X

(2)
(n) j} are the order statistics

units of the not identical independent random variables from {X(1)
(1) j, X

(1)
(2) j, · · · , X

(1)
(n) j} (see Figure 3).

Then, the CDF and PDF of X(2)
(i) j are given by

Fn(x(2)
(i) j; θ) =

n∑
t=i

∑
S t

 t∏
k=1

F(x(1)
(i)k j; θ)

n∏
k=t+1

[1 − F(x(1)
(i)k j; θ)]

 (2.3)

and

fn(x(2)
(i) j; θ) =

n∑
t=i

∑
S t

 t∏
k=1

f (x(1)
(i)k j; θ)

n∏
k=t+1

(− f (x(1)
(i)k j; θ))

 , (2.4)

where S t is the set of the entire permutations (i1, i2, · · · , in) of the integers {1, · · · , n} for which i1 <

i2 < · · · < it and it+1 < it+2 < · · · < in (see David and Nagaraja [18]).

Figure 3. An illustrative example for DBRSS with a sample size n = 3 for r = 1.

Maximum ranked set sampling: Let {Xi(1), · · · , Xi(n)} be drawn randomly from X for {i =

1, · · · , n}. In that case, Xi:i will be the Max{X(i:1), X(i:2), · · · , X(i:i)} for {i = 1, · · · , n}, see Figure 4.
The PDF and CDF of X(i:i) j are written as

fn(x(i:i) j; θ) = i f (x(i:i) j; θ)[F(x(i:i) j; θ)]i−1, (2.5)

and
Fn(x(i:i) j; θ) = [F(x(i:i) j; θ)]i. (2.6)

AIMS Mathematics Volume 9, Issue 9, 25049–25069.



25053

Figure 4. An illustrative examples for MaxRSS with different sample sizes n = 3 and n = 2
for r = 1.

3. Maximum likelihood estimation method

This section discusses parameter estimation using the maximum likelihood method of the bathtub-
shaped distribution. Using the SRS, RSS, MaxRSS, and DBRSS techniques under one cycle r = 1,
first derivative equations are discovered. In order to solve these equations to determine the typical
estimators using sampling techniques, a numerical method for a complex mathematical procedure is
required.

3.1. MLE using SRS

Let X1, X2, · · · , Xn be an independent random sample of size n from a population with a CBL

distribution with a set of unknown parameter vector ϕ =

[
α

λ

]
. Then the likelihood function of SRS

(MLS RS ) and log-likelihood function (log MLS RS ) will be

MLS RS (ϕ) =

n∏
i=1

αλxλ−1
i eα(1−exλi )+xλi ,

and

log MLS RS (ϕ) = n log(α) + n log(λ) + (λ − 1)
n∑

i=1

log(xi) +

n∑
i=1

(α(1 − exλi ) + xλi ).

First derivatives of the log MLS RS for α and λ are as follows:

∂ log MLS RS (ϕ)
∂α

=
n
α

+

n∑
i=1

(1 − exλi ) = 0, (3.1)

and
∂ log MLS RS (ϕ)

∂λ
=

n
λ

+

n∑
i=1

log(xi) +

n∑
i=1

(xλi log xi)(−αexλi + 1) = 0. (3.2)

It is not possible to analytically determine α̂S RS and λ̂S RS by solving the nonlinear equations in
Eqs (3.1) and (3.2). Numerical methods exist for solving it. The simplest form of the estimators
for the SRS look like this:

α̂S RS =
−n∑n

i=1(1 − exλi )
,

and
λ̂S RS =

−n∑n
i=1 log(xi) +

∑n
i=1(xλi lnxi)( nexλi∑n

i=1(1−exλi )
+ 1)

.
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3.2. MLE using RSS

We apply the the RSS technique to the CBL distribution by substituting Eqs (1.1) and (1.2) into
Eq (2.1) to get MLRS S . Suppose that {X(i;i) j} are random samples for n sets of size n. Each sample is
independent and represents an SRS sample. It shows the ith order statistic unit from the ith sample of
size n where i = {1, · · · , n} and has a number of cycles j where j = {1, · · · , r}. Then the likelihood
function of RSS (MLRS S ) and log-likelihood function (logMLRS S ) for one cycle j = 1 are given by

MLRS S (ϕ) =

n∏
i=1

n!
(i − 1)!(n − i)!

[αλxλ−1
(i,i) eα(1−e

xλ(i,i) )+xλ(i,i)][1 − eα(1−e
xλ(i,i) )]i−1 × [eα(1−e

xλ(i,i) )]n−i,

and

logMLRS S (ϕ) =log(
n∏

i=1

n!
(i − 1)!(n − i)!

) + n log(α) + n log(λ) + (λ − 1)
n∑

i=1

log(x(i,i))

+

n∑
i=1

(α(1 + n − i)(1 − exλ(i,i)) + xλ(i,i)) +

n∑
i=1

(i − 1)log(1 − eα(1−e
xλ(i,i) )).

First derivatives of the logMLRS S for α and λ are as follows:

∂logMLRS S (ϕ)
∂α

=
n
α

+

n∑
i=1

(1 + n − i)(1 − exλ(i,i)) +

n∑
i=1

(i − 1)
−eα(1−e

xλ(i,i) )(1 − exλ(i,i))

1 − eα(1−e
xλ(i,i) )

= 0, (3.3)

and

∂logMLRS S (ϕ)
∂λ

=
n
λ

+

n∑
i=1

log(x(i,i)) +

n∑
i=1

(xλ(i,i)lnx(i,i))(−α(1 + n − i)exλ(i,i) + 1)

+

n∑
i=1

(i − 1)
−eα(1−e

xλ(i,i) )(−αexλ(i,i) xλi lnx(i,i))

1 − eα(1−e
xλ(i,i) )

= 0. (3.4)

Nonlinear equations such as Eqs (3.3) and (3.4) cannot be solved analytically. They have a numerical
solution.

3.3. MLE using DBRSS

To obtain α̂DBRS S and λ̂DBRS S of the CBL distribution using the DBRSS technique, Eqs (1.1)
and (1.2) have been used in Eq (2.4) in this subsection. Let {X(2)

1 , · · · , X(2)
n } be a DBRSS; that is, X(2)

i
is the ith order statistic unit for i = {1, · · · , n} of the RSS {X(1)

1 , · · · , X(1)
n } and each of X(2)

i are collected
from independent ranked set samples of size n. It appears that {X(2)

1 , · · · , X(2)
n } are the order statistics

units of the not identical independent random variables from {X(1)
1 , · · · , X(1)

n }. Then the likelihood
function of DBRSS (MLDBRS S ) and log likelihood function (logMLDBRS S ) will be

MLDBRS S (ϕ) =

l∏
i=1

[αλx(1)[λ−1]
i eα(1−ex(1)λ

i )+x(1)λ
i ] ×

n∏
i=l+1

[−αλx(1)[λ−1]
i eα(1−ex(1)λ

i )+x(1)λ
i ],

and

log MLDBRS S (ϕ) =l log(α) + l log(λ) + (λ − 1)
l∑

i=1

log(x(1)
i )

AIMS Mathematics Volume 9, Issue 9, 25049–25069.



25055

+

l∑
i=1

(α(1 − ex(1)λ
i ) + x(1)λ

i ) − (n − l) log(α)

− (n − l) log(λ) − (λ − 1)
n∑

i=l+1

log(x(1)
i )

−

n∑
i=l+1

(α(1 − ex(1)λ
i ) + x(1)λ

i ).

First derivatives of the logMLDBRS S are given by:

∂ log MLDBRS S (ϕ)
∂α

=
l
α

+

l∑
i=1

(1 − ex(1)λ
i ) −

n − l
α
−

n∑
i=l+1

(1 − ex(1)λ
i ) = 0, (3.5)

and

∂ log MLDBRS S (ϕ)
∂λ

=
l
λ

+

l∑
i=1

log(x(1)
i ) +

l∑
i=1

(x(1)λ
i lnx(1)

i )(−αex(1)λ
i + 1)

−
n − l
λ
−

n∑
i=l+1

log(x(1)
i ) −

n∑
i=l+1

(x(1)λ
i lnx(1)

i )(−αex(1)λ
i + 1) = 0. (3.6)

It is not possible to determine α̂DBRS S and λ̂DBRS S analytically by solving Eqs (3.5) and (3.6). There
are numerical methods for solving them.

3.4. MLE using MaxRSS

We use the MaxRSS technique to derive ML MaxBSS estimators for the CBL distribution by
substituting Eqs (1.1) and (1.2) into Eq (2.5). Let {Xi(1), · · · , Xi(i)} be n sets drawn at random from X
for {i = 1, · · · , n}, where Xi:i= max{Xi:1, · · · , Xi:i} for i = {1, · · · , n}, and it will represent the sample
from MaxRSS,

MLMaxBS S (ϕ) =

n∏
i=1

i[αλxλ−1
i:i eα(1−exλi:i )+xλi:i][1 − eα(1−exλi:i )]i−1,

and

logMLMaxRS S (ϕ) =log(
n∏

i=1

i) + n log(α) + n log(λ) + (λ − 1)
n∑

i=1

log(xi:i) +

n∑
i=1

(α(1 − exλi:i) + xλi:i)

+

n∑
i=1

(i − 1)log(1 − eα(1−exλi:i )).

First derivatives of the logMLMaxRS S are given by:

∂logMLMaxRS S (ϕ)
∂α

=
n
α

+

n∑
i=1

(1 − exλi:i) +

n∑
i=1

(i − 1)
−eα(1−exλi:i )(1 − exλi:i)

1 − eα(1−exλi:i )
= 0, (3.7)

and

∂logMLMaxRS S (ϕ)
∂λ

=
n
λ

+

n∑
i=1

log(xi:i) +

n∑
i=1

(xλi:ilnxi:i)(−αexλi:i + 1)
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+

n∑
i=1

(i − 1)
−eα(1−exλi:i )(−αexλi:i xλi:ilnxi:i)

1 − eα(1−exλi:i )
= 0. (3.8)

Equations (3.7) and (3.8) cannot be solved through analytical methods, but they can be effectively
solved using numerical techniques.

4. Maximum product of spacings estimation method

In continuous univariate distributions, Cheng and Amin [19] proposed the maximum product of
spacings estimation method (MPSE), which was endorsed by Ranneby [20] as an alternative to the
ML method. For further details on the MPS estimation method, refer to El Sherpieny et al. [21] and
Ahmad and Almetwally [22]. It is possible to define uniform spaces for a sample of size n randomly
chosen from the bathtub-shaped distribution as Di(ϕ) = F(xi;ϕ) − F(xi−1;ϕ) for x1 < ... < xn where
i = {1, 2, · · · , n + 1}, x0 → −∞ and xn+1 → ∞. MPSE estimators of unknown parameters are the value

that maximizes the given MPSE function for unknown parameter vector ϕ =

[
α

λ

]
,

MPS E(ϕ) =
1

n + 1

n+1∑
i=1

log(F(xi;ϕ) − F(xi−1;ϕ)).

This section describes the MPSE method for estimating parameters for the bathtub-shaped
distribution. Using SRS, RSS, MaxRSS, and DBRSS techniques under one cycle j = 1, the first
derivative equations are discovered. Solving these equations and determining the estimators using
sampling techniques requires a numerical method.

4.1. MPSE using SRS

Let {x1, x2, · · · , xn} be a random sample of the MPSE function of of size n having a CBL
distribution using CDF, which is given by Eq (1.2),

MPS ES RS (ϕ) =
1

n + 1

n+1∑
i=1

log(eα(1−exλi−1 ) − eα(1−exλi )).

First derivatives of the MPS S RS for α and λ are shown in Eqs (4.1) and (4.2). These nonlinear
equations cannot be analytically resolved. They are solvable numerically.

∂MPS ES RS (ϕ)
∂α

=
1

n + 1

n+1∑
i=1

eα(1−exλi−1 )(1 − exλi−1) − eα(1−exλi )(1 − exλi )

eα(1−exλi−1 ) − eα(1−exλi )
= 0, (4.1)

and

∂MPS ES RS (ϕ)
∂λ

=
1

n + 1

n+1∑
i=1

[
eα(1−exλi−1 )(−αexλi−1 xλi−1lnxi−1)

eα(1−exλi−1 ) − eα(1−exλi )

−
eα(1−exλi )(−αexλi xλi lnxi)

eα(1−exλi−1 ) − eα(1−exλi )
] = 0. (4.2)
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4.2. MPSE using RSS

The MPSE function of {X(1;1)1, · · · , X(1;1)n1; · · · , X(n;n)1, X(n;n)2, · · · , X(n;n)nn} of n sets of size n for
each set having a CBL distribution using the CDF of the RSS technique, which is given by Eq (2.2),
can be given as

MPS ERS S (ϕ) =
1

n + 1

n+1∑
i=1

log[
n∑

t=l

(n
t )[(1 − eα(1−e

xλ(i,i) ))t(eα(1−e
xλ(i,i) ))n−t

− (1 − eα(1−e
xλ(i,i)−1 ))t(eα(1−e

xλ(i,i)−1 ))n−t]].

First derivatives of the MPS ERS S for the parameters of the CBL distribution are given by Eqs (4.3)
and (4.4). Analytical solutions are not possible for these equations. Numerical solutions are a viable
option for solving them.

∂MPS ERS S (ϕ)
∂α

=

n+1∑
i=1

n∑
t=l

(n
t )[[−t(1 − eα(1−e

xλ(i,i) ))t−1eα(1−e
xλ(i,i) )(1 − exλ(i,i))(eα(1−e

xλ(i,i) ))n−t

×
1

(1 − eα(1−e
xλ(i,i) ))t(eα(1−e

xλ(i,i) ))n−t − (1 − eα(1−e
xλ(i,i)−1 ))t(eα(1−e

xλ(i,i)−1 ))n−t
]

+
(1 − eα(1−e

xλ(i,i) ))t(n − t)(eα(1−e
xλ(i,i) ))n−t−1eα(1−e

xλ(i,i) )(1 − exλ(i,i))

(1 − eα(1−e
xλ(i,i) ))t(eα(1−e

xλ(i,i) ))n−t − (1 − eα(1−e
xλ(i,i)−1 ))t(eα(1−e

xλ(i,i)−1 ))n−t

+
t(1 − eα(1−e

xλ(i,i)−1 ))t−1eα(1−e
xλ(i,i)−1 )(1 − exλ(i,i)−1)(eα(1−e

xλ(i,i)−1 ))n−t

(1 − eα(1−e
xλ(i,i) ))t(eα(1−e

xλ(i,i) ))n−t − (1 − eα(1−e
xλ(i,i)−1 ))t(eα(1−e

xλ(i,i)−1 ))n−t

−
(1 − eα(1−e

xλ(i,i)−1 ))t(n − t)(eα(1−e
xλ(i,i)−1 ))n−t−1eα(1−e

xλ(i,i)−1 )(1 − exλ(i,i)−1)

(1 − eα(1−e
xλ(i,i) ))t(eα(1−e

xλ(i,i) ))n−t − (1 − eα(1−e
xλ(i,i)−1 ))t(eα(1−e

xλ(i,i)−1 ))n−t

=0, (4.3)

and

∂MPS ERS S (ϕ)
∂λ

=

n+1∑
i=1

n∑
t=l

(n
t )[[t(1 − eα(1−e

xλ(i,i) ))t−1eα(1−e
xλ(i,i) )(αexλ(i,i) xλ(i,i)lnx(i,i))(eα(1−e

xλ(i,i) ))n−t

×
1

(1 − eα(1−e
xλ(i,i) ))t(eα(1−e

xλ(i,i) ))n−t − (1 − eα(1−e
xλ(i,i)−1 ))t(eα(1−e

xλ(i,i)−1 ))n−t
]

+
(1 − eα(1−e

xλ(i,i) ))t(n − t)(eα(1−e
xλ(i,i) ))n−t−1eα(1−e

xλ(i,i) )(−αexλ(i,i) xλ(i,i)lnx(i,i))

(1 − eα(1−e
xλ(i,i) ))t(eα(1−e

xλ(i,i) ))n−t − (1 − eα(1−e
xλ(i,i)−1 ))t(eα(1−e

xλ(i,i)−1 ))n−t

−
t(1 − eα(1−e

xλ(i,i)−1 ))t−1eα(1−e
xλ(i,i)−1 )(αexλ(i,i)−1 xλ(i,i)−1lnx(i,i)−1)(eα(1−e

xλ(i,i)−1 ))n−t

(1 − eα(1−e
xλ(i,i) ))t(eα(1−e

xλ(i,i) ))n−t − (1 − eα(1−e
xλ(i,i)−1 ))t(eα(1−e

xλ(i,i)−1 ))n−t

+ [(1 − eα(1−e
xλ(i,i)−1 ))t(n − t)(eα(1−e

xλ(i,i)−1 ))n−t−1eα(1−e
xλ(i,i)−1 )

×
(−αexλ(i,i)−1 xλ(i,i)−1lnx(i,i)−1)

(1 − eα(1−e
xλ(i,i) ))t(eα(1−e

xλ(i,i) ))n−t − (1 − eα(1−e
xλ(i,i)−1 ))t(eα(1−e

xλ(i,i)−1 ))n−t
]

=0. (4.4)
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4.3. MPSE using DBRSS

The MPS function of {X(2)
1 , X(2)

2 , · · · , X(2)
i } of DBRSS comes from RSS of {X(1)

1 , X(1)
2 , · · · , X(1)

i } sets
having a CBL distribution. By using the CDF of the DBRSS technique, which is given by Eq (2.3),
we have

MPS EDBRS S (ϕ) =
1

n + 1
[

l∑
i=1

log((1 − eα(1−ex(1)λ
i )) − (1 − eα(1−ex(1)λ

i−1 )))

+

n+1∑
i=l+1

log(eα(1−ex(1)λ
i ) − eα(1−ex(1)λ

i−1 )).

First derivatives of the MPS EDBRS S for α and λ are in Eqs (4.5) and (4.6) given below:

∂MPS EDBRS S (ϕ)
∂α

=
1

n + 1
[

l∑
i=1

−eα(1−ex(1)λ
i )(1 − ex(1)λ

i ) + eα(1−ex(1)λ
i−1 )(1 − ex(1)λ

i−1 )

(1 − eα(1−ex(1)λ
i )) − (1 − eα(1−ex(1)λ

i−1 ))

+

n+1∑
i=l+1

eα(1−ex(1)λ
i )(1 − ex(1)λ

i ) − eα(1−ex(1)λ
i−1 )(1 − ex(1)λ

i−1 )

eα(1−ex(1)λ
i ) − eα(1−ex(1)λ

i−1 )
] = 0, (4.5)

and

∂MPS EDBRS S (ϕ)
∂λ

=
1

n + 1
[

l∑
i=1

[
eα(1−ex(1)λ

i )(αex(1)λ
i x(1)λ

i lnx(1)
i )

(1 − eα(1−ex(1)λ
i )) − (1 − eα(1−ex(1)λ

i−1 ))
−

eα(1−ex(1)λ
i−1 )(−αex(1)λ

i−1 x(1)λ
i−1 lnx(1)

i−1)

(1 − eα(1−ex(1)λ
i )) − (1 − eα(1−ex(1)λ

i−1 ))
]

+

n+1∑
i=l+1

[
eα(1−ex(1)λ

i )(−αex(1)λ
i x(1)λ

i lnx(1)
i )

eα(1−ex(1)λ
i ) − eα(1−ex(1)λ

i−1 )
−

eα(1−ex(1)λ
i−1 )(−αex(1)λ

i−1 x(1)λ
i−1 lnx(1)

i−1)

eα(1−ex(1)λ
i ) − eα(1−ex(1)λ

i−1 )
] = 0. (4.6)

These equations cannot be analytically resolved. They are solvable numerically.

4.4. MPSE using MaxRSS

The MPSE function of {Xi(1), Xi(1), · · · , Xi(i)} of n sets of size i where i = {1, · · · , n} having a CBL
distribution using the CDF of the MaxRSS technique, which is given by Eq (2.6), is given by

MPS EMaxRS S (ϕ) =
1

n + 1

n+1∑
i=1

log((eα(1−exλi:i ))i − (eα(1−exλi:i−1 ))i).

First derivatives of the MPS EMaxRS S for the parameters of the CBL distribution are given by Eqs (4.7)
and (4.8). It is not possible to find a solution to these equations using analytical methods. It can be
resolved through numerical methods,

∂MPS EMaxRS S (ϕ)
∂α

=
1

n + 1

n+1∑
i=1

(
i(eα(1−exλi:i ))i−1eα(1−exλi:i )(1 − exλi:i)

(eα(1−exλi:i ))i − (eα(1−exλi:i−1 ))i

−
i(eα(1−exλi:i−1 ))i−1(eα(1−exλi:i−1 )(1 − exλi:i−1)

(eα(1−exλi:i ))i − (eα(1−exλi:i−1 ))i
) = 0, (4.7)

and
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∂MPS EMaxRS S (ϕ)
∂λ

=
1

n + 1

n+1∑
i=1

(
i(eα(1−exλi:i ))i−1eα(1−exλi:i )(−αexλi:i−1 xλi:i−1lnxi:i−1)

eα(1−exλi ) − eα(1−exλi−1 )

−
i(eα(1−exλi:i−1 ))i−1eα(1−exλi:i−1 )(−αexλi:i−1 xλi:i−1lnxi:i−1)

eα(1−exλi:i ) − eα(1−exλi:i−1 )
= 0. (4.8)

5. Cramér-von Mises estimation method

The Cramér-von Mises method, also known as CME, is a form of minimal distance estimators,
specifically maximum goodness of fit estimators. This method is based on comparing the estimated
CDF with the empirical distribution function. Choi and Bulgren [23] supported the choice of
minimum distance estimators of the CME type by presenting empirical data showing that the bias of
these estimators is lower compared to other minimum distance estimators. The CME function for the

minimum distance of the bathtub-shaped distribution with the unknown parameter vector ϕ =

[
α

λ

]
is defined by

CME(ϕ) =
1

12n
+

n∑
i=1

(F(xi;ϕ) −
2i − 1

2n
)2.

In this part of the article, we apply the CME estimation (CME) method to estimate the unknown
parameters of the bathtub-shaped distribution. The first derivative is obtained based on the four
sampling techniques (SRS, RSS, MaxRSS, and DBRSS) under one cycle j = 1. Solving these
equations required numerical methods.

5.1. CME using SRS

Let {x1, x2, · · · , xn} be a random sample of the CM function of size n having a CBL distribution
using the CDF, which is given by Eq (1.2),

CMES RS (ϕ) =
1

12n
+

n∑
i=1

((1 − eα(1−exλi )) −
2i − 1

2n
)2.

First derivatives of the CMES RS for the unknown parameters are given in Eqs (5.1) and (5.2).
Analytical solutions are not possible for these equations. Numerical solutions are a viable option
for solving them,

∂CMES RS (ϕ)
∂α

=

n∑
i=1

2((1 − eα(1−exλi )) −
2i − 1

2n
)(−eα(1−exλi )(1 − exλi )) = 0, (5.1)

and
∂CMES RS (ϕ)

∂λ
=

n∑
i=1

2((1 − eα(1−exλi )) −
2i − 1

2n
)(eα(1−exλi )(αexλi xλi lnxi)) = 0. (5.2)

AIMS Mathematics Volume 9, Issue 9, 25049–25069.



25060

5.2. CME using RSS

The CME function of {X(1;1)1, · · · , X(1;1)n1 , · · · , X(n;n)1, X(n;n)2, · · · , X(n;n)nn} of n sets of size n for each
set having a CBL using the CDF of the RSS technique, which is given by Eq (2.2), is given by

CMERS S (ϕ) =
1

12n
+

n∑
i=1

(
n∑

t=i

(n
t ) (1 − eα(1−e

xλ(i,i) ))t(eα(1−e
xλ(i,i) ))n−t −

2i − 1
2n

)2.

First derivatives of the CMERS S for the unknown parameters of the CBL distribution are given by
Eqs (5.3) and (5.4). It is not possible to find a solution to these equations using analytical methods.
They can be resolved through numerical methods,

∂CMERS S (ϕ)
∂α

=

n∑
i=1

2(
n∑

t=i

(n
t ) (1 − eα(1−e

xλ(i,i) ))t(eα(1−e
xλ(i,i) ))n−t −

2i − 1
2n

)

×

n∑
t=i

(n
t )(−t(1 − eα(1−e

xλ(i,i) ))t−1eα(1−e
xλ(i,i) )(1 − exλ(i,i))(eα(1−e

xλ(i,i) ))n−t

+ (1 − eα(1−e
xλ(i,i) ))t(n − t)(eα(1−e

xλ(i,i) ))n−t−1eα(1−e
xλ(i,i) )(1 − exλ(i,i))) = 0, (5.3)

and

∂CMERS S (ϕ)
∂λ

=

n∑
i=1

2(
n∑

t=i

(n
t ) (1 − eα(1−e

xλ(i,i) ))t(eα(1−e
xλ(i,i) ))n−t −

2i − 1
2n

)

×

n∑
t=i

(n
t )(t(1 − eα(1−e

xλ(i,i) ))t−1eα(1−e
xλ(i,i) )(αexλ(i,i) xλ(i,i)lnx(i,i))(eα(1−e

xλ(i,i) ))n−t

+ (1 − eα(1−e
xλ(i,i) ))t(n − t)(eα(1−e

xλ(i,i) ))n−t−1eα(1−e
xλ(i,i) )

× (−αexλ(i,i) xλ(i,i)lnx(i,i)) = 0. (5.4)

5.3. CME using DBRSS

The CME function of {X(2)
1 , X(2)

2 , · · · , X(2)
i } of DBRSS comes from the RSS of {X(1)

1 , X(1)
2 , · · · , X(1)

i }

sets having a CBL distribution. By using the CDF of the DBRSS technique, which is given by
Eq (2.3), we have

CMEDBRS S (ϕ) =
1

12n
+

l∑
i=1

((1 − eα(1−ex(1)λ
i )) −

2i − 1
2n

)2 +

n∑
i=l+1

((eα(1−ex(1)λ
i )) −

2i − 1
2n

)2.

First derivatives of the CMEDBRS S for α and λ are in Eqs (5.5) and (5.6). These nonlinear equations
cannot be analytically resolved. They are solvable numerically,

∂CMEDBRS S (ϕ)
∂α

=

l∑
i=1

2((1 − eα(1−ex(1)λ
i )) −

2i − 1
2n

)(−eα(1−ex(1)λ
i ))(1 − ex(1)λ

i ))

+

n∑
i=l+1

2((eα(1−ex(1)λ
i )) −

2i − 1
2n

)(eα(1−ex(1)λ
i )(1 − ex(1)λ

i )) = 0, (5.5)

and

∂CMEDBRS S (ϕ)
∂λ

=

l∑
i=1

2((1 − eα(1−ex(1)λ
i )) −

2i − 1
2n

)(eα(1−ex(1)λ
i )
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× (αex(1)λ
i x(1)λ

i lnx(1)
i )) +

n∑
i=l+1

2((eα(1−ex(1)λ
i )) −

2i − 1
2n

)

× (eα(1−ex(1)λ
i )(−αex(1)λ

i x(1)λ
i lnx(1)

i )) = 0. (5.6)

5.4. CME using MaxRSS

The CME function of {Xi(1), Xi(1), · · · , Xi(i)} of n sets of size i where i = {1, · · · , n} having a CBL
distribution using the CDF of the MaxRSS technique, which is given by Eq (2.6), is

CMEMaxRS S (ϕ) =
1

12n
+

n∑
i=1

((1 − eα(1−exλi:i ))i −
2i − 1

2n
)2.

First derivatives of the CMEMaxRS S for α and λ are in Eqs (5.7) and (5.8), which are given below:

∂CMEMaxRS S (ϕ)
∂α

=

n∑
i=1

2((1 − eα(1−exλi:i ))i −
2i − 1

2n
)i(1 − eα(1−exλi:i ))i−1

× (−eα(1−exλi:i ))(1 − exλi:i) = 0, (5.7)

and

∂CMEMaxRS S (ϕ)
∂λ

=

n∑
i=1

2((1 − eα(1−exλi:i ))i −
2i − 1

2n
)i(1 − eα(1−exλi:i ))i−1

× eα(1−exλi:i )(αexλi:i xλi:ilnxi:i)) = 0. (5.8)

These equations are not able to be solved using analytical methods, but they can be solved numerically.

6. Simulation using the Monte Carlo method

We use Monte Carlo simulations to test how accurate the point estimation methods are. These
methods are MLE, MPSE, and CME methods under different values of n, for a single cycle r = 1.
The true values of the parameter that were chosen for the shape parameter α are {0.7, 0.5} and the
scale parameter λ are {0.5, 0.4} . The R 4.0.3 software was used to carry out the simulation with
l = 1000 repetition for SRS, RSS, MaxRSS, and DBRSS. Some major R packages were utilized
for this purpose, including VGAM [24], bbmle [25], stats4 [26] and Matrix [27]. In addition, the
estimates’ values were obtained by solving the nonlinear equations using the ‘Optim’ function in the
R software. The performance of the estimates have been compared based on mean squared error
(MSE) and bias.

The simulation results for the CBL distribution are shown inthe following tables. Tables 1, 2, and 3,
respectively, compare the point estimation results of the ML, MPSE, and CME methods. Under the
assumption that the parameters to be estimated remain constant with an increase in sample size n, we
approach the true parameter values and the mean square errors decrease. The simulation’s outcomes
are detailed below. The most accurate estimates were produced by MaxRSS-based estimators, which
were estimators with minimal bias.
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Table 1. ML-based estimators and biases for four different sampling techniques.

α λ n α̂S RS λ̂S RS α̂RS S λ̂RS S α̂MaxRS S λ̂MaxRS S α̂DBRS S λ̂DBRS S

0.7 0.5

6

7

8

9

1.0826
(−0.3826)
0.9451
(−0.2451)
0.9329
(−0.2329)
0.8574
(−0.1574)

0.7222
(−0.2222)
0.6649
(−0.1649)
0.6533
(−0.1533)
0.6217
(−0.1217)

0.7475
(−0.0475)
0.7475
(−0.0475)
0.7321
(−0.0321)
0.7237
(−0.0237)

0.5535
(−0.0535)
0.5535
(−0.0535)
0.4658
(0.0342)
0.4060
(0.0940)

0.8045
(−0.1045)
0.7669
(−0.0669)
0.7535
(−0.0535)
0.7366
(−0.0366)

0.6239
(−0.1239)
0.6014
(−0.1014)
0.5733
(−0.0733)
0.5692
(−0.0692)

0.7329
(−0.0329)
0.7252
(−0.0252)
0.7231
(−0.0231)
0.7110
(−0.0110)

0.4824
(0.0176)
0.4251
(0.0749)
0.3945
(0.1055)
0.3667
(0.1333)

0.5 0.4

6

7

8

9

0.6317
(−0.1317)
0.6352
(−0.1352)
0.5939
(−0.0939)
0.5797
(−0.0797)

0.4842
(−0.0842)
0.4802
(−0.0802)
0.4490
(−0.0490)
0.4413
(−0.0413)

0.5382
(−0.0382)
0.5328
(−0.0328)
0.5206
(−0.0206)
0.5166
(−0.0166)

0.2172
(0.1828)
0.1918
(0.2082)
0.1698
(0.2302)
0.1608
(0.2392)

0.5444
(−0.0444)
0.5275
(−0.0275)
0.5268
(−0.0268)
0.5249
(−0.0249)

0.4411
(−0.0411)
0.4278
(−0.0278)
0.4181
(−0.0181)
0.4070
(−0.0070)

0.5251
(−0.0251)
0.5154
(−0.0154)
0.5164
(−0.0164)
0.5095
(−0.0095)

0.1894
(0.2106)
0.1708
(0.2292)
0.1623
(0.2377)
0.1551
(0.2449)

Table 2. MPSE-based estimators and biases for four different sampling techniques.

α λ n α̂S RS λ̂S RS α̂RS S λ̂RS S α̂MaxRS S λ̂MaxRS S α̂DBRS S λ̂DBRS S

0.7 0.5

6

7

8

9

1.3180
(−0.6180)
1.1792
(−0.4792)
1.0799
(−0.3799)
1.0445
(−0.3445)

0.6570
(−0.157)
0.6212
(−0.1212)
0.5975
(−0.0975)
0.5838
(−0.0838)

1.1243
(−0.4243)
1.0230
(−0.3230)
0.9688
(−0.2688)
0.9333
(−0.2333)

0.5620
(−0.0620)
0.5360
(−0.0360)
0.5282
(−0.0282)
0.5331
(−0.0331)

1.1231
(−0.4231)
1.0219
(−0.3219)
0.9553
(−0.2553)
0.9290
(−0.2290)

0.5614
(−0.0614)
0.5417
(−0.0417)
0.5263
(−0.0263)
0.5196
(−0.0196)

1.0426
(−0.3426)
0.9766
(−0.2766)
0.9301
(−0.2301)
0.9106
(−0.2106)

0.5234
(−0.0234)
0.5173
(−0.0173)
0.5073
(−0.0073)
0.5040
(−0.0040)

0.5 0.4

6

7

8

9

0.8953
(−0.3953)
0.8185
(−0.3185)
0.7496
(−0.2496)
0.7038
(−0.2038)

0.5133
(−0.1133)
0.4883
(−0.0883)
0.4760
(−0.0760)
0.4670
(−0.0670)

0.7641
(−0.2641)
0.7118
(−0.2118)
0.6740
(−0.1740)
0.6441
(−0.1441)

0.4547
(−0.0547)
0.4256
(−0.0256)
0.4234
(−0.0234)
0.4167
(−0.0167)

0.7543
(−0.2543)
0.7145
(−0.2145)
0.6815
(−0.1815)
0.7268
(−0.2268)

0.4553
(−0.0553)
0.4288
(−0.0288)
0.4283
(−0.0283)
0.4178
(−0.0178)

0.7349
(−0.2349)
0.6877
(−0.1877)
0.6571
(−0.1571)
0.6456
(−0.1456)

0.4164
(−0.0164)
0.4174
(−0.0174)
0.4106
(−0.0106)
0.4068
(−0.0068)

Table 3. CME-based estimators and biases for four different sampling techniques.

α λ n α̂S RS λ̂S RS α̂RS S λ̂RS S α̂MaxRS S λ̂MaxRS S α̂DBRS S λ̂DBRS S

0.7 0.5

6

7

8

9

0.8796
(−0.1796)
0.8636
(−0.1636)
0.8594
(−0.1594)
0.8554
(−0.1554)

0.4719
(0.0281)
0.4854
(0.0146)
0.5085
(−0.0085)
0.5218
(−0.0218)

0.8065
(−0.1065)
0.7922
(−0.0922)
0.7660
(−0.0660)
0.7558
(−0.0558)

0.4925
(0.0075)
0.5061
(−0.0061)
0.5124
(−0.0124)
0.5161
(−0.0161)

0.8507
(−0.1507)
0.8619
(−0.1619)
0.8465
(−0.1465)
0.8412
(−0.1412)

0.4668
(0.0332)
0.4892
(0.0108)
0.5071
(−0.0071)
0.5147
(−0.0147)

0.8046
(−0.1046)
0.7895
(−0.0895)
0.7699
(−0.0699)
0.7646
(−0.0646)

0.4963
(0.0037)
0.5060
(−0.0060)
0.5117
(−0.0117)
0.5189
(−0.0189)

0.5 0.4

6

7

8

9

0.6296
(−0.1296)
0.5953
(−0.0953)
0.5850
(−0.0850)
0.5768
(−0.0768)

0.4171
(−0.0171)
0.4239
(−0.0239)
0.4261
(−0.0261)
0.4337
(−0.0337)

0.5525
(−0.0525)
0.5406
(−0.0406)
0.5333
(−0.0333)
0.5229
(−0.0229)

0.4142
(−0.0142)
0.4185
(−0.0185)
0.4135
(−0.0135)
0.4111
(−0.0111)

0.6174
(−0.1174)
0.5931
(−0.0931)
0.5999
(−0.0999)
0.5751
(−0.0751)

0.4202
(−0.0202)
0.4202
(−0.0202)
0.4383
(−0.0383)
0.4332
(−0.0332)

0.5518
(−0.0518)
0.5330
(−0.0330)
0.5303
(−0.0303)
0.5248
(−0.0248)

0.4162
(−0.0162)
0.4113
(−0.0113)
0.4127
(−0.0127)
0.4117
(−0.0117)

As shown in Tables 1, 2, and 3, the biases of the RSS, MaxRSS, and DBRSS techniques are almost
always much smaller than those of SRS for a variety of true parameter values. When compared to ML
and MPSE, the CME method is found to be more accurate at estimating the values of the parameters,
with small biases. Perhaps the reason why CME has the smallest bais is that it does not depend on
units chosen randomly, as happens with other methods, but rather on the value of i, which makes it

AIMS Mathematics Volume 9, Issue 9, 25049–25069.



25063

more satiable than the other methods. Furthermore, when compared to the other estimation methods,
the MPSE method is found to be less accurate at estimating the values of the parameters with large
biases. This is because it uses two different values, xi and xi−1, at the same time, which makes it
better than ML, which depends on only one value, xi. Since estimators depend on observations that
are chosen randomly, samples must be chosen very carefully to make the ML and MPSE methods
more effective than before. When the sample size n has values larger than 20, all of the estimation
methods will give the same results with differences in the MSE based on sampling techniques. In
the case of sample size n, there is no need to use RSS modifications because it will take a lot more
time to select the ranked units than the usual SRS. There are also problems in selecting units based
on the sampling techniques, which creates differences between them in the results. For example,
RSS was selected once from the equal sample sizes, while DBRSS was selected twice from the equal
sample sizes, Finally, MaxRSS was selected once from the unequal sample sizes, which makes it
better for saving time and energy than the other techniques using small sample sizes. This is the
benefit of using these kinds of sizes. Next, we determined that, for various ranges of sample sizes,
MaxRSS estimators outperform all sampling techniques, while DBRSS estimators outperform SRS
and RSS estimators based on estimation methods. In terms of (α, λ), RSS estimators outperform SRS
estimators for all sample sizes and estimation methods. The results are depicted in Table 4. This
table displays the RE for each sampling technique based on estimation techniques for the various
sample sizes. In addition, MSEs of RSS estimators are consistently bigger than MSEs of MaxRSS
and DBRSS estimators, whereas MSEs for (α, λ) using RSS, MaxRSS, and DBRSS estimators almost
always differ from MSEs of SRS estimators. Table 4 demonstrates that for various sample sizes, the
MSEs of MaxRSS estimators are consistently lower than the MSEs of the other RSS estimators for
various values of (α, λ).

Table 4. MSEs of the various sampling techniques based on estimation methods.
α λ n α̂S RS λ̂S RS α̂RS S λ̂RS S α̂MaxRS S λ̂MaxRS S α̂DBRS S λ̂DBRS S

ML 0.7 0.5
6
7
8
9

0.0858
0.4719
0.3488
0.0709

0.0250
0.0722
0.0717
0.0142

0.0134
0.1336
0.0536
0.0372

0.0146
0.0146
0.0326
0.0083

0.0069
0.0538
0.0398
0.0013

0.0011
0.0016
0.0038
0.0030

0.0123
0.0500
0.0181
0.0066

0.0013
0.0112
0.0262
0.0061

0.5 0.4
6
7
8
9

0.2748
0.3336
0.7936
0.2085

0.6078
0.0736
0.0831
0.1446

0.0274
0.1652
0.1132
0.0124

0.0274
0.0476
0.0761
0.0746

0.0150
0.0207
0.0265
0.0109

0.0097
0.0083
0.0122
0.0577

0.0904
0.0797
0.0377
0.0124

0.0270
0.0440
0.0655
0.0625

MPS E 0.7 0.5
6
7
8
9

0.0480
0.0981
0.1449
0.0868

0.0133
0.0272
0.0247
0.0110

0.0092
0.0795
0.0113
0.0198

0.0119
0.0268
0.0055
0.0072

0.0012
l0.0216
0.0062
0.0087

0.0042
0.0058
0.0021
0.0024

0.0023
0.0372
0.0083
0.0122

0.0063
0.0179
0.0021
0.0041

0.5 0.4
6
7
8
9

0.0288
0.0173
0.0685
0.0851

0.0768
0.0398
0.0239
0.0153

0.0136
0.0086
0.0124
0.0360

0.0276
0.0034
0.0085
0.0119

0.0019
0.0084
0.0019
0.0064

0.0013
0.0011
0.0073
0.0061

0.0075
0.0077
0.0020
0.0224

0.0096
0.0012
0.0080
0.0023

CME 0.7 0.5
6
7
8
9

0.0882
0.0468
0.0410
0.0234

0.0207
0.0302
0.0410
0.0176

0.0049
0.0050
0.0368
0.0027

0.0170
0.0045
0.0207
0.0112

0.0038
0.0010
0.0010
0.0007

0.0020
0.0012
0.0015
0.0017

0.0040
0.0011
0.0012
0.0014

0.0116
0.0024
0.0016
0.0020

0.5 0.4
6
7
8
9

0.0431
0.0194
0.0250
0.0876

0.0201
0.0144
0.0186
0.0452

0.0126
0.0066
0.0043
0.0128

0.0097
0.0072
0.0059
0.0133

0.0024
0.0010
0.0012
0.0106

0.0008
0.0020
0.0023
0.0015

0.0100
0.0058
0.0015
0.0112

0.0084
0.0066
0.0028
0.0023
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7. Illustrative example

In this section, we test the feasibility of the the bathtub-shaped distribution using maximum
likelihood, maximum product of spacing, and Cramér-von Mises estimation methods on two different
real datasets. Dataset I from Nichols and Padgett [28] was used for illustration. It shows the observed
fracture stress of 100 carbon fibers. Dataset II from Kundu and Raqab [29] were tested 74 fibers
under tension at gauge lengths of 20 mm. These datasets were chosen based on their suitability for
distribution, as shown in the values below, and also because they fulfill the condition of constructing
matrices with small sample sizes from which one can choose to achieve different sampling techniques.
The Kolmogorov-Smirnov (K − S t), Anderson-Darling (A − Dt), and Cramér-von Mises (C − Mt)
statistical tests were conducted on these datasets to assess distribution fit. In general, the distribution
provides an adequate fit to the data, as indicated by the p values for all three tests (see Table 5).

Table 5. The K − S t, A − Dt, C − Mt and the p values of these test for two datasets.

K − S t p value A − Dt p value C − Mt p value
Data I 0.9915 0.6232 0.4686 0.2439 0.0584 0.3926
Data II 0.9392 0.8520 0.2458 0.7498 0.0353 0.7617

Figure 5 displays the quantile-quantile (Q-Q) plot for the CBL distribution taking into account
Data I and the histogram plot with the fitted PDF. The CBL fits the available data well, as this graph
demonstrates. There are no outliers in the data, as shown in the boxplot in Figure 5.

Figure 5. Histogram, Q-Q, and boxplot for the CBL distribution fit using Data I.

We conclude, based on Figure 6, that the CBL distribution fits Data II. It shows the fitted PDF and
Q-Q diagrams along with the histogram graph for Data II. The boxplot on the graph indicates that
there are no outlier values.
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Figure 6. Histogram, Q-Q, and Boxplot for the CBL distribution fit using Data II.

In order to estimate model parameters, the ML, MPSE, and CME approaches were utilized.
Standard error (S E), mean absolute error (MAE), mean bias error (MBE), and mean squared error
(MS E) are some of the often-used error measures in this article. We have used these measures for
comparison because they were different estimation methods that needed to unite the competition.
There is no better error measure to standardize this comparison.

MS E =
1
n

n∑
i=1

(xobs − xexp)2, MAE =
1
n

n∑
i=1

|xobs − xexp|,

MBE =
1
n

n∑
i=1

(xobs − xexp), and S E =

√√
1
n

n∑
i=1

(xobs − xexp)2,

where xobs are the values from the actual datasets and xexp are the simulated values. Data I and Data II
for sample size n = 4, and a one cycle r = 1 have their S E, MAE, MBE, and MS E values displayed
in Tables 6–8. To use RSS, we created a symmetric matrix with a sample size of n = 4 from xobs

in Data I. We then chose units as usual and estimated the unknown CBL parameters. Following
that, we simulated xexp using the unknown parameters obtained from the estimate method. To use
DBRSS, we created a matrix with sample size n2 from xobs of Data I and selected n units as described
in the previous steps in Section 1. Finally, we followed the identical steps for RSS with Data I. To
use MaxRSS, we created sets with variable sample size i from xobs of Data I and selected n units as
described in the previous steps in Section 1. Finally, we followed the identical steps for RSS with
Data I. We repeated all of the steps they mentioned in selecting samples with Data II.

These tables use ML, MPSE, and CME to compare the CBL distribution to the SRS, RSS,
MaxRSS, and DBRSS techniques. Using these measures, we can compare different sampling
techniques for estimating the CBL distribution and make an informed decision on which one to
choose. Using the numerical results from several datasets, the following is a summary of the
conclusions: To begin, error measurement values calculated using the RSS, MaxRSS, and DBRSS
techniques are all smaller than those calculated using the SRS technique. Second, the MaxRSS
method works better than any other sampling strategy due to having the lowest measurement error.
Third, it is clear that SRS is not as effective as alternative sampling techniques. For all methods of
estimating, it has the greatest error measures. Fourth, the MPS method has the lowest sampling-based
error measures when compared to other estimation methods. However, the largest sampling-based
error measures are associated with the ML method. Lastly, for all estimation and sampling techniques,
MSE and MBE have the same values.
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Table 6. The estimators use sampling techniques with ML to select measures for datasets.

Data I

n Measures α̂ λ̂ MS E MAE MBE S E

4

S RS 0.1443 1.5481 0.9864 0.8547 0.9864 0.9932
RS S 0.2871 1.3695 0.8059 0.7828 0.8059 0.8977
MaxRS S 0.7160 0.9597 0.1199 0.3021 0.1199 0.3462
DBRS S 0.2500 0.66814 0.6365 0.6503 0.6365 0.7978

Data II

S RS 0.1439 0.7227 3.3270 1.5773 3.3270 1.8240
RS S 0.1087 1.2753 2.4743 1.5592 2.4743 1.5729
MaxRS S 0.4224 0.9323 1.2742 1.1158 1.2742 1.1288
DBRS S 0.1760 0.7472 1.9156 1.3191 1.9156 1.3840

Table 7. The estimators use sampling techniques with MPSE to select measures for datasets.

Data I

n Measures α̂ λ̂ MS E MAE MBE S E

4

S RS 0.6428 1.6551 0.37016 0.5764 0.3701 0.6084
RS S 0.3981 1.4109 0.3571 0.5267 0.3571 0.5975
MaxRS S 0.3981 1.4109 0.1736 0.2560 0.1736 0.4167
DBRS S 0.2352 0.8497 0.2693 0.4298 0.2693 0.5189

Data II

S RS 0.0169 1.5487 0.3870 0.5293 0.3870 0.3870
RS S 0.0400 1.9788 0.2984 0.4800 0.2984 0.5463
MaxRS S 0.0466 1.9097 0.1029 0.1882 0.1029 0.3207
DBRS S 0.0534 1.3046 0.1525 0.2883 0.1525 0.3905

Table 8. The estimators use sampling techniques with CME to select measures for datasets.

Data I

n Measures α̂ λ̂ MS E MAE MBE S E

4

S RS 0.2909 1.0369 0.2949 0.4200 0.2949 0.5430
RS S 0.4792 1.0830 0.2166 0.4039 0.2166 0.4654
MaxRS S 0.9979 1.9972 0.1718 0.3910 0.1718 0.4145
DBRS S 0.7994 0.9885 0.2079 0.3170 0.2079 0.4859

Data II

S RS 0.6285 0.5603 1.8033 1.2900 1.8033 1.3428
RS S 0.6288 0.5256 1.0413 0.8661 1.0413 1.0204
MaxRS S 0.6288 0.5256 0.9607 0.7463 0.9607 0.9801
DBRS S 0.5017 0.4554 0.9455 0.9302 0.9455 0.9723

8. Summary and conclusions

The bathtub-shaped distribution’s unknown parameters were calculated in this article utilizing
ML, MPSE, and CME methods using SRS, RSS, MaxRSS, and DBRSS techniques. There are three
sections dedicated to the conclusions. First, sampling techniques were used to obtain theoretical
results through various estimation methods. The estimators were obtained by solving the first
derivatives of these sampling-based estimation methods numerically. Second, numerical comparisons
between SRS and various RSS techniques, based on the simulation results of the comparative study,
showed that: Estimates produced with RSS, MaxRSS, and DBRSS approaches were typically more
accurate than those produced with SRS estimators. These findings were based on the simulation
results of the comparative study. Moreover, it has been demonstrated that DBRSS and MaxRSS
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techniques with high MSEs were more efficient than RSS. When it comes to varying sample sizes,
SRS-based RSS techniques were less effective than MaxRSS. It was discovered that the CME method
estimates the values of the parameter more precisely and with less bias than the ML and MPSE
methods. The MPSE method was also found to have significant biases and to be less accurate in
estimating the values of the parameters when compared to the other estimate methods. Finally, based
on the outcomes of analyzing two real data sets, all error measurements based on the RSS, MaxRSS,
and DBRSS techniques had lower values than those based on the SRS methodology. When compared
to other MaxRSS and DBRSS techniques, the RSS accquired the highest values. Of all of the sampling
techniques, the MaxRSS technique is the best. It had the lowest error measurement values, while
DBRSS estimators outperformed SRS and RSS estimators based on estimation methods.
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