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Abstract: We primarily examined the effect of leakage delays on finite-time stability problems
for genetic regulatory networks with interval time-varying delays. Since leakage delays can occur
within the negative feedback components of networks and significantly impact their dynamics, they
may potentially cause instability or suboptimal performance. The derived criteria encompass both
leakage delays and discrete interval time-varying delays through the construction of a Lyapunov-
Krasovskii function. We employed the estimation of various integral inequalities and a reciprocally
convex technique. Additionally, these models consider lower bounds on delays, which may be either
positive or zero, and allow for the derivatives of delays to be either positive or negative. Consequently,
new criteria for genetic regulatory networks with interval time-varying delays under the effect of
leakage delays are expressed in the form of linear matrix inequalities. Ultimately, a numerical
example is presented to show the effect of leakage delays and to emphasize the significance of our
theoretical findings.

Keywords: finite-time stability; genetic regulatory networks; leakage delays; lyapunov-Krasovskii
functional; interval time-varying delay
Mathematics Subject Classification: 34K20, 93D05, 93D40, 34D20

1. Introduction

Through their mRNAs, protein expression products, and other components, DNA segments
in a cell interact with each other passively, forming dynamic genetic regulatory networks (GRNs)
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that work as a sophisticated dynamic system to govern biological processes, where the systems of
regulatory linkages between DNA, RNA, and proteins comprise GRNs. Modeling genetic networks
with dynamical system models, which are a useful tool for analyzing gene regulation mechanisms in
living organisms, comes naturally. To examine genetic regulatory developments in life forms, the
mathematical models of GRNs comprise formidable tools, which can be approximately separated
into two categories, including discrete models [1, 2, 6, 16, 22] and continuous models [4, 5, 9, 10, 12].
The components in continuous models characterize the concentrations of mRNAs and proteins as
continuous data, allowing for a more complete interpretation of GRNs’ nonlinear dynamical behavior.

A differential equation is often used to describe a continuous model. Thus, erroneous estimates
could result from theoretical models that fail to consider delays. Time delays frequently occur
in various applications, and it is widely acknowledged that they can significantly impact system
performance, leading to degradation and instability. This realization has sparked significant research
interest in the field of stability analysis for systems with time delays over recent years, such as
differential equations [35], neural networks [11,13,24], bidirectional associative memory fuzzy neural
networks [36], fuzzy competitive neural networks [37], and neutral-type neural networks [14, 25, 27].
More accurate descriptions of GRNs are possible using differential equation models with delayed
states, also called delayed GRNs, which offer a better display of the nature of life. To indicate the
time needed for transcription, translation, phosphorylation, protein degradation, translocation, and
posttranslational modification, time delays are often established in cellular models. Particularly for
eukaryotes, delays may affect the firmness and dynamics of the whole system considerably. While
there are limited quantitative assessments of the delays, developments in quantifying RNA splicing
delays should be taken into account. Because the time delays in biochemical reactions align with or
surpass other important time scales defining the cellular system, and the feedback loops related to these
delays are robust, and these delays become pivotal for explaining transient processes. This suggests
that in cases where delay durations are substantial, both analytical and numerical modeling need to
consider the impact of time delays, which has led to the study of various stability forms of the system,
for example, in [5, 10, 31, 33, 38]. A common type of time delay, referred to as leakage delay (i.e., the
delay associated with leaking or forgetting items) might arise within the negative feedback components
of networks and has a substantial impact on the dynamics, potentially resulting in instability or
suboptimal performance in GRNs. In fact, various beneficial algorithms and computational tools
have been devised to address this phenomenon, with numerous notable findings published in previous
literature [7, 17, 28, 29, 32].

When a built system has been implemented in the field, there is typically some unpredictability;
be it a windy sky or a rough road, we may encounter uncertainty in the operational area. Uncertainty
can also be found in the system’s defining variables, such as torque constants and physical dimensions.
As a consequence of the dynamic nature of a system under investigation, one of the most critical
attributes of that system is stability. In general, when a system is chaotic, or simply lacks stability, it
is not especially useful. It is preferable to work with systems that are stable or offer periodic behavior,
with the caveat that chaotic behavior can be readily understood in some systems, and there can also
sometimes be good reasons for people to actively seek chaos in a system for various applications.
Therefore, we found research that demonstrated various stability criteria such as asymptotic stability
analysis, exponential stability analysis [3, 34], H infinity performance [25], finite-time stability (FTS)
analysis [15,23], and so on. The concept of FTS differs from classical stability in two significant ways.
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First, it addresses systems whose functionality is limited to a fixed finite time interval. Second, FTS
necessitates predefined constraints on system variables. This is particularly relevant for systems that are
recognized to operate exclusively within a finite time span and in cases where practical considerations
dictate that system variables must adhere to specific bounds [8].

After thorough investigation, FTS for GRNs with delays has been studied in references [21,24,26],
as well as [39]. For example, the researchers in reference [21] explored the FTS for GRNs that have
demonstrated impulsive effects, employing the Lyapunov function method. In [24], the topic of FTS
for switched GRNs with time-varying delays was examined through the use of Wirtinger’s integral
inequality. Furthermore, the effect of leakage delay has been studied in various works, including
references [14, 18, 27]. For instance, in [14], the researchers proposed sufficient conditions that
guarantee the asymptotic stability of GRNs, which have a neutral delay and are affected by leakage
delay through the application of the Lyapunov functional. Additionally, in reference [18], the authors
focused on global asymptotic stability analysis aimed at stabilizing switched stochastic GRNs that
exhibit both leakage and impulsive effects. This stabilization has depended on both time-varying delay
and distributed time-varying delay terms, utilizing contemporary Lyapunov-Krasovskii functional and
integral inequality techniques. However, it has been determined that there are no studies focusing on
analyzing the FTS while considering the effect of leakage delay for GRNs. The successful completion
of such research could contribute to a deeper comprehension of leakage delay and potentially offer
opportunities to improve the stability criteria of GRNs. This research concerns the effect of the leakage
delays on FTS criteria for GRNs with interval time-varying delays. The criteria aim to consider the
effect of leakage delays. Consequently, we employ the construction of a Lyapunov-Krasovskii (LK)
function and estimate various integral inequalities as well as reciprocally convex techniques to establish
them. These improvements enable us to specify the stability criteria concerning the effect of leakage
delays on FTS. This refinement simplifies the representation of stability criteria in the form of linear
matrix inequalities (LMIs). Ultimately, we offer a numerical example to demonstrate the effect of
leakage delays and emphasize the significance of our theoretical findings.

The principal contributions of this research can be encapsulated as follows:
(i) Targeted focus on leakage delays: We specifically address the impact of leakage delays on the

finite-time stability of GRNs, filling a gap in existing research and providing new data on the stability
dynamics influenced by these delays.

(ii) Consideration of variable delay limits: We take into account the lower limits on delays, which
can vary between positive values and zero, and accommodate the derivatives of delays ranging from
negative to positive. This comprehensive approach allows for the one that offers a better representation
of the nature of organism and modeling of real biological scenarios.

(iii) Empirical validation: A numerical example is provided to demonstrate the implications of
leakage delays on the stability criteria. This example underscores the impact of leaked delays on GNRs.

(iv) Contribution to broader fields: The insights gained from this study have the potential to
advance multiple fields, including systems biology, biotechnology, and medicine.

By addressing these aspects, this research significantly enhances our understanding of the
interplay between leakage delays and finite-time stability in genetic regulatory networks, paving the
way for future studies and applications in various scientific and medical domains.
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2. Problem formulation and preliminaries

The first step is to introduce the following symbols or notations: Rn and Rn×r represent the n-
dimensional Euclidean space and the set of all n × r real matrices, respectively; G > 0 (G ≥ 0)
signifies that the symmetric matrix G is positive (semi-positive) definite; G < 0 (G ≤ 0) signifies that
the symmetric matrix G is negative (semi-negative) definite; The quadratic from ‖ϕ(t)‖2N is defined as:
‖ϕ(t)‖2N = ϕT (t)Nϕ(t) or ‖ϕ(t)‖N =

√
ϕT (t)Nϕ(t) for any state vector ϕ(t), and N ≥ 0.

In this paper, we suggest the GRNs with interval time-varying delays and leakage delays in
the form

ṁi(t) = −aimi(t − ρa) +
∑n

j=1 wi jg j(p j(t − r(t))) + εi,

ṗi(t) = −ci pi(t − ρc) + dimi(t − h(t)), i = 1, 2, . . . , n,
(2.1)

where mi(·) and pi(·) are the concentrations of mRNA and protein of the ith node at time t, respectively.
ai> 0 and ci> 0 denotes the degradation or dilution rates of mRNAs and proteins, retrospectively. di

represents the translation. wi j is defined as follows:

wi j =

{ γi j if transcription factor j is an activator of gene i;
0 if there is no link from node j to i;
−γi j if transcription factor j is an repressor of gene i.

r(·) and h(·) are the feedback regulation and translation delays, respectively, which are
retrospectively satisfied by

0 < rm ≤ r(t) ≤ rM, rdm ≤ ṙ(t) ≤ rdM, (2.2)
0 < hm ≤ h(t) ≤ hM hdm ≤ ḣ(t) ≤ hdM, (2.3)

where ρa > 0 and ρc > 0 denote the leakage delays. g j(p j(s)) = (p j(s)/B j)H j/(1 + p j/B j)H j where H j

is the monotonic function in Hill form, εi =
∑

j∈Uk
γi j with Uk = { j| the jth transcription factor being

a repressor of the kth gene, j = 1, . . . , n}, B j > 0 is a constant which the feedback regulation of the
protein on the transcription. When we let (m∗, p∗)T be an equilibrium point of (2.1), the equilibrium
point can be shifted to the origin by transformation: xi(t) = mi − m∗i , yi(t) = pi − p∗i , and system (2.1)
can be rewritten in the vector form

ẋ(t) = −Ax(t − ρa) + W f (y(t − r(t))),
ẏ(t) = −Cy(t − ρc) + Dx(t − h(t)),
x(t) = φ(t), y(t) = ξ(t), t ∈ [ − τ, 0], τ = max{hM, rM, ρa, ρc},

(2.4)

where A = diag(a1, a2, ..., an), C = diag(c1, c2, ..., cn), W = [wi j]n×n, f (y(t)) = g(y(t))−p∗ with f (0) = 0,
φ(t), t ∈ [−max{ρa, hM}, 0] and ξ(t), t ∈ [−max{ρc, rM}, 0] are the initial conditions.
Assumption 1. The regulatory function f (ζ(t)) = [ f1(ζ1(t)), f2(ζ2(t)), ..., fn(ζn(t))]T ∈ Rn is assumed to
satisfy the following condition

℘−i ≤
fi(ζ1) − fi(ζ2)
ζ1 − ζ2

≤ ℘+
i , f (0) = 0, ζ1, ζ2 ∈ R, ζ1 , ζ2, i = 1, 2, ..., n, (2.5)

where ℘−i , ℘
+
i are real constants, and let ð− = diag(℘−1 , ℘

−
2 , . . . , ℘

−
n ), ð+ = diag(℘+

1 , ℘
+
2 , . . . , ℘

+
n ) and

℘i = diag(max{|℘−j |, |℘
+
j |}), ð = diag(℘1, ℘2, . . . , ℘n).

Then, the definition presented along with the several lemmas serves as a methodologies utilized
to prove our primary outcomes.
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Definition 2.1. (see [21]) Let G ≥ 0 be a matrix, if

‖Φ(t)‖2G + ‖Ψ(t)‖2G ≤ c1 → ‖x(t)‖2G + ‖y‖2G ≤ c2,∀t ∈ [0,T ],

where ‖Φ(t)‖G = sup−max{ρa,hM}≤t≤0{‖φ(t)‖G, ‖φ̇(t)‖G} and ‖Ψ(t)‖G = sup−max{ρc,rM}≤t≤0{‖ξ(t)‖G, ‖ξ̇(t)‖G},
then the GRNs with interval time-vary delays and leakage delays (2.4) exhibits FTS concerning positive
real numbers (c1, c2,T ).

Lemma 2.2. Let N ∈ Rn×n, N = NT > 0 and G ∈ Rn×n,G = GT be any constant matrices. Then

λmin(N−1G)ϕT Nϕ ≤ ϕTGϕ ≤ λmax(N−1G)ϕT Nϕ,

where the expressions ”λmin(N−1G)” and ”λmax(N−1G)” denote the minimum real part and the
maximum real part of the eigenvalues of N−1G respectively.

Lemma 2.3 (Jensen′s inequality [28]). Let G ∈ Rn×n, G = GT > 0 be any constant matrix, δM be
positive real constant and ϕ : [−δM, 0]→ Rn be vector-valued function. Then,

−δM

∫ t

t−δM

ϕT (s)Gϕ(s)ds ≤ −
∫ t

t−δM

ϕT (s)dsG
∫ t

t−δM

ϕ(s)ds.

Lemma 2.4 (see [30]). Let G ∈ Rn×n, G = GT > 0 be any constant matrix, δm > 0, δM > 0 are real
constants and ϕ : [−δM,−δm, ]→ Rn be vector-valued function. Then,

−(δM − δm)
∫ t−δm

t−δM

ϕT (s)Gϕ(s)ds ≤ −
∫ t−δm

t−δM

ϕT (s)dsG
∫ t−δm

t−δM

ϕ(s)ds.

Lemma 2.5 (see [20]). Let G ∈ Rn×n, G = GT > 0 be any constant matrix, and any continuously
differentiable function z : [δm, δM]→ Rn. Then,

(δM − δm)
∫ δM

δm

ϕT (s)Gϕ(s)ds ≥ ℵT
1 Gℵ1 + 3ℵT

2 Gℵ2,

(δM − δm)
∫ δM

δm

ϕ̇T (s)Gϕ̇(s)ds ≥ ℵT
3 Gℵ3 + 3ℵT

4 Gℵ4 + 5ℵT
5 Gℵ5,

where

ℵ1 =

∫ δM

δm

ϕ(s)ds, ℵ2 =

∫ δM

δm

ϕ(s)ds −
2

δM − δm

∫ δM

δm

∫ δM

θ

ϕ(s)dsdθ,

ℵ3 = ϕ(δM) − ϕ(δm), ℵ4 = ϕ(δM) + ϕ(δm) −
2

δM − δm

∫ δM

δm

ϕ(s)ds,

ℵ5 = ϕ(δM) − ϕ(δm) +
6

δM − δm

∫ δM

δm

ϕ(s)ds −
12

(δM − δm)2

∫ δM

δm

∫ δM

θ

ϕ(s)dsdθ.

Lemma 2.6 (see [19]). Let κ1, κ2, . . . , κN : Rn → R have positive values in an open subset D of Rn.
Then, the reciprocally convex combination of κi over D satisfies

min
{αi |α1>0,

∑
i αi=1}

∑
i

1
αi
κi(t) =

∑
i

κi(t) + max
ηi, j(t)

∑
i, j

ηi, j(t),
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subject to {
ηi, j : Rn ⇒ R, ηi, j = η j,i,

[
κi(t) ηi, j(t)
η j,i(t) κ j(t)

]
≥ 0

}
.

Lemma 2.7 (see [11,13]). Suppose Assumption 1 is valid, let diagonal matrices Γi > 0, i = 1, 2. Then[
ζ(t)

f (ζ(t))

]T [
−Γ1Ξ1 Γ1Ξ2

Γ1Ξ2 −Γ1

] [
ζ(t)

f (ζ(t))

]
≥ 0, (2.6)[

ζ(t − r(t))
f (ζ(t − r(t)))

]T [
−Γ2Ξ1 Γ2Ξ2

Γ2Ξ2 −Γ2

] [
ζ(t − r(t))

f (ζ(t − r(t)))

]
≥ 0, (2.7)

where Ξ1 = diag(℘−1℘
+
1 , ℘

−
2℘

+
2 , . . . , ℘

−
n℘

+
n ) and Ξ2 = diag(℘

−
1 +℘+

1
2 ,

℘−2 +℘+
2

2 , . . . ,
℘−n +℘+

n
2 ).

3. Main results

In this section, we present a theorem and a corollary related to GRNs. To begin with, the
FTS result is formulated for the GRNs with interval time-varying delays, considering the effect of
leakage delays.

Theorem 3.1. Given that Assumption 1 valid. For positive scalars c1, c2, T, α, ρa, ρc, hm, hM,
hdm, hdM, rm, rM, rdm and rdM according conditions (2.2)–(2.3), if there exist matrices Pi > 0, i =

1, 2, 3, Qi > 0, i = 1, 2, 3, 4, Ri > 0, i = 1, 2, S i > 0, i = 1, 2, 3, 4, Ui > 0, i = 1, 2, any diagonal
matrices Γi > 0, i = 1, 2, any appropriate dimensional matrices Ei,Ni, i = 1, 2, 3, 4, satisfying the
following conditions: [

S 2 X1i

∗ S 2

]
≥ 0, i = 1, 2, 3,[

S 4 X2i

∗ S 4

]
≥ 0, , i = 1, 2, 3,

Θ < 0, (3.1)
λ1

λ2
eαT c1 ≤ c2. (3.2)

Then, the system (2.4) exhibits FTS concerning N > 0 and positive real numbers (c1, c2,T ), where
Θ =

∑7
i=1 Θi is defined as

Θ1 = 2
[
e1

e5

]T [
P1 ET

1
0 ET

2

] [
e5

−e5 − A(e1 − e13) + We8

]
+ eT

1 P2e1 − eαhmeT
2 P2e2 + eαhmeT

2 P3e2

+(hdMeαhM − eαhm)eT
3 P3e3 + (eαhM − hdmeαhm)eT

3 P3e3 − eαhM eT
4 P3e4 − αeT

1 P1e1,

Θ2 = 2
[

e6

e10

]T [
P3 ET

3
0 ET

4

] [
e10

−e10 −C(e6 − e14) + De3

]
+ eT

6 Q2e6 − eαrmeT
7 Q2e7 + eαhmeT

7 Q3e7

+(rdMeαrM − eαrm)eT
8 Q3e8 + (eαrM − rdmeαrm)eT

9 Q3e9 − eαrmeT
9 Q3e9 + eT

11Q4e11

+(rdMeαrM − eαrm)eT
12Q4e12 − αeT

6 Q1e6,

AIMS Mathematics Volume 9, Issue 9, 25028–25048.



25034

Θ3 = h2
MeT

1 R1e1 + r2
MeT

6 R2e6 − ℵ
T
11(h2

mR1)ℵ11 − 3ℵT
12(h2

mR1)ℵ12 − ℵ
T
21(r2

mR2)ℵ21 − 3ℵT
22(r2

mR2)ℵ22,

Θ4 = eT
5 (h2

mS 1 + h2
MmS 2)e5 + eT

10(r2
mS 3 + r2

MmS 4)e10 − ℵ
T
31S 1ℵ31 − 3ℵT

41S 1ℵ41 − 5ℵT
51S 1ℵ51

−ℵT
32S 3ℵ32 − 3ℵT

42S 3ℵ42 − 5ℵT
52S 3ℵ52 + eαhm

(
− ℵT

61Qℵ61 − 3ℵT
71Qℵ71 − 5ℵT

81Qℵ81 − ℵ
T
62Qℵ62

−3ℵT
72Qℵ72 − 5ℵT

82Qℵ82
)

+ eαrm
(
− ℵT

91Qℵ91 − 3ℵT
101Qℵ101 − 5ℵT

111Qℵ111 − ℵ
T
92Qℵ92

−3ℵT
102Qℵ102 − 5ℵT

112Qℵ112
)

+ 2eαhm
(
− ℵT

61X11ℵ62 − 3ℵT
71X12ℵ72 − 5ℵT

81X13ℵ82
)

+2eαrm
(
− ℵT

91X21ℵ92 − 3ℵT
101X22ℵ102 − 5ℵT

111X23ℵ112
)
,

Θ5 = ρ2
aeT

5 U1e5 + ρ2
ceT

10U2e10 − eT
13U1e13 − eT

14U2e14,

Θ6 = 2
[

e6

e11

]T [
−Γ1Ξ1 Γ1Ξ2

Γ1Ξ2 −Γ1

] [
e6

e11

]
+ 2

[
e8

e12

]T [
−Γ2Ξ1 Γ2Ξ2

Γ2Ξ2 −Γ2

] [
e8

e12

]
,

Θ7 = 2
(
e1 − e3 − e21

)T M1
(
−C(e6 − e14) + De3 − e10

)T
+ 2

(
e1 − e3 − e21

)T M2e1

+2
(
e1 − e3 − e21

)T M3e3 + 2
(
e1 − e3 − e21

)T M4e21,

ℵ11 =
1

hm
e15, ℵ12 =

1
hm

(e15 − 2e22), ℵ21 =
1
rm

e16, ℵ22 =
1
rm

(e16 − 2e23), ℵ31 = e1 − e2,

ℵ41 = e1 + e2 − 2e15, ℵ51 = e1 − e2 + 6e15 − 12e22 ,ℵ32 = e6 − e7, ℵ42 = e6 + e7 − 2e16,

ℵ52 = e6 − e7 + 6e16 − 12e23, ℵ61 = e2 − e3, ℵ71 = e2 + e3 − 2e17, ℵ81 = e2 − e3 + 6e17 − 12e24,

ℵ62 = e3 − e4, ℵ72 = e3 + e4 − 2e18, ℵ82 = e3 − e4 + 6e18 − 12e25, ℵ91 = e7 − e8,

ℵ101 = e7 + e8 − 2e19, ℵ111 = e7 − e8 + 6e19 − 12e26, ℵ92 = e8 − e9, ℵ102 = e8 + e9 − 2e20,

ℵ112 = e8 − e9 + 6e20 − 12e27, hMm = hM − hm, rMm = rM − rm, β1h =
eαhm − 1

α
,

β2h =
eαhM − eαhm

α
, β3h =

eαhm − αhm − 1
α2 β4h =

eαhM − eαhm + α(hm − hM)
α2 , β1r =

eαrm − 1
α

,

β2r =
eαrM − eαrm

α
, β3r =

eαrM − 1
α

, β4r =
eαrm − αrm − 1

α2 , β5r =
eαrM − eαrm + α(rm − rM)

α2 ,

β1ρ =
eαρa − 1

α
, , β2ρ =

eαρc − 1
α

, e j =
[
0n×( j−1)n In 0n×( j−14)n

]
, j = 1, 2, . . . , 27.

Proof. First, we employ the Newton-Leibniz formula to modify system (2.4), which is as follows

ẋ(t) = −A
(
x(t) −

∫ t

t−ρa
ẋ(s)ds

)
+ W f (y(t − r(t))),

ẏ(t) = −C
(
y(t) −

∫ t

t−ρc
ẏ(s)ds

)
+ Dx(t − h(t)).

(3.3)

Second, the LK functional is designed for the system (3.3) :

V(t) =

5∑
i=1

Vi(t), (3.4)

where

V1(t) = xT (t)P1x(t) +

∫ t

t−hm

eα(t−s)xT (s)P2x(s)ds +

∫ t−hm

t−hM

eα(t−s)xT (s)P3x(s)ds,

V2(t) = yT (t)Q1y(t) +

∫ t

t−rm

eα(t−s)yT (s)Q2y(s)ds +

∫ t−rm

t−rM

eα(t−s)yT (s)Q3y(s)ds,
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+

∫ t

t−r(t)
eα(t−s) f T (y(s))Q4 f (y(s))ds

V3(t) = hm

∫ 0

−hm

∫ t

t+θ
eα(t−s)xT (s)R1x(s)dsdθ + rm

∫ 0

−rm

∫ t

t+θ
eα(t−s)yT (s)R2y(s)dsdθ,

V4(t) = hm

∫ 0

−hm

∫ t

t+θ
eα(t−s) ẋT (s)S 1 ẋ(s)dsdθ + hMm

∫ −hm

−hM

∫ t

t+θ
eα(t−s) ẋT (s)S 2 ẋ(s)dsdθ

+rm

∫ 0

−rm

∫ t

t+θ
eα(t−s)ẏT (s)S 3ẏ(s)dsdθ + rMm

∫ −rm

−rM

∫ t

t+θ
eα(t−s)ẏT (s)S 4ẏ(s)dsdθ,

V5(t) = ρa

∫ 0

−ρa

∫ t

t+θ
eα(t−s) ẋT (s)U1 ẋ(s)dsdθ + ρc

∫ 0

−ρc

∫ t

t+θ
eα(t−s)ẏT (s)U2ẏ(s)dsdθ.

Then, taking V̇i(t) along the trajectory of system (3.3) with (2.2) and (2.3), we have

V̇1(t) = 2xT (t)P1 ẋ(t) + xT (t)P2x(t) − eαhm xT (t − hm)P2x(t − hm) + eαhm x(t − hm)P3x(t − hm)
−(1 − ḣ(t))eαh(t)xT (t − h(t))P3x(t − h(t)) + (1 − ḣ(t))eαh(t)xT (t − h(t))P3x(t − h(t))
−eαhM xT (t − hM)P3x(t − hM) − αxT (t)P1x(t) + αV1(t).

Utilizing the zero equation −ẋ(t)−A
(
x(t)−

∫ t

t−ρa
ẋ(s)ds

)
+W f (y(t−r(t))) = 0, we estimate the boundary

hdm ≤ ḣ(t) ≤ hdM, and the exponential function term 1 = e0 ≤ eαhm ≤ eαh(t) ≤ eαhM , −1 = −e0 ≥ −eαhm ≥

−eαh(t) ≤ −eαhM . From this, we derive the values of V̇1(t) as follows.

V̇1(t) ≤ 2
[
x(t)
ẋ(t)

]T [
P1 ET

1
0 ET

2

]  ẋ(t)
−ẋ(t) − A

(
x(t) −

∫ t

t−ρa
ẋ(s)ds

)
+ W f (y(t − r(t)))

 + xT (t)P2x(t)

−eαhm xT (t − hm)P2x(t − hm) + eαhm xT (t − hm)P3x(t − hm) +
(
hdMeαhM − eαhm

)
×xT (t − h(t))P3x(t − h(t)) + (eαhM − hdmeαhm)xT (t − h(t))P3x(t − h(t))
−eαhM xT (t − hM)P3x(t − hM) − αxT (t)P1x(t) + αV1(t)

≤ χT (t)Θ1χ(t) + αV1(t).

Using the same method, the zero equation as −ẏ(t)−C
(
y(t)−

∫ t

t−ρc
ẏ(s)ds

)
+ Dx(t − h(t))) = 0 allows us

to obtain the derivative of V2(t), which is

V̇2(t) ≤ 2
[
y(t)
ẏ(t)

]T [
Q1 ET

3
0 ET

4

]  ẏ(t)
−ẏ(t) −C

(
y(t) −

∫ t

t−ρc
ẏ(s)ds

)
+ Dx(t − h(t)))

T

+ yT (t)Q2y(t)

−eαrmyT (t − rm)Q2y(t − rm) + eαrmyT (t − rm)Q3y(t − rm)+
(
rdMeαrM − eαrm

)
×y(t − r(t))Q3y(t − r(t)) + (eαrM − rdmeαrm)y(t − r(t))Q3y(t − r(t)))
−eαrM yT (t − rM)Q3y(t − rM) + f T (y(t))Q4 f (y(t))+(rdMeαrM − eαrm) f T (y(t − r(t)))
×Q4 f (y(t − r(t))) − αyT (t)Q1y(t) + αV2(t)

≤ χT (t)Θ2χ(t) + αV2(t).

The derivative of V3(t) is calculated to obtain

V̇3(t) ≤ xT (t)(h2
mR1)x(t) + yT (t)(r2

mR2)y(t) − hm

∫ t

t−hm

xT (s)Q1x(s)ds
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−rm

∫ t

t−rm

yT (s)Q3y(s)ds + αV3(t).

We utilize Lemma 2.5 to estimate the amount, leading to the subsequent inequality.

V̇3(t) ≤ χT (t)
(
eT

1 (h2
mR1)eT

1 + eT
6 (r2

mR2)e6 − ℵ
T
11(h2

mR1)ℵ11 − 3ℵT
12(h2

mR1)ℵ12

−ℵT
21Q(r2

mR2)ℵ21 − 3ℵT
22(r2

mR2)ℵ22

)
χ(t) + αV3(t) = χT (t)Θ3χ(t) + αV3(t). (3.5)

The derivative of V4(t) is calculated to obtain

V̇4(t) = ẋT (t)
(
h2

mS 1 + h2
MmeαhmS 2

)
ẋ(t) + ẏT (t)

(
r2

mS 3 + r2
MmeαrmS 4

)
ẏ(t)

−hm

∫ t

t−hm

ẋT (s)S 1 ẋ(s)ds − rm

∫ t

t−rm

ẏT (s)S 3ẏ(s)ds

−hMmeαhm

∫ t−hm

t−hM

ẋT (s)S 2 ẋ(s)ds − rMmeαrm

∫ t−rm

t−rM

ẏT (s)S 4ẏ(s)ds + αV3(t).

To facilitate our analysis, we decompose and examine the inequality in the derivative of V4(t) step by
step as follows. In the first part, we use Lemma 2.5 to approximate the value, resulting in the following
inequality.

−hm

∫ t

t−hm

ẋT (s)S 1 ẋ(s)ds − rm

∫ t

t−rm

ẏT (s)S 3ẏ(s)ds

≤ χT (t)
(
− ℵT

31S 1ℵ31 − 3ℵT
41S 1ℵ41 − 5ℵT

51S 1ℵ51 − ℵ
T
32S 3ℵ32 − 3ℵT

42S 3ℵ42 − 5ℵT
52S 3ℵ52

)
χ(t). (3.6)

Then, we estimate the values of the second part of the inequality as follows.

−hMmeαhm

∫ t−hm

t−hM

ẋT (s)S 2 ẋ(s)ds − rMmeαrm

∫ t−rm

t−rM

ẏT (s)S 4ẏ(s)ds

= −
hMmeαhm

(h(t) − hm)
(h(t) − hm)

∫ t−hm

t−h(t)
ẋT (s)S 2 ẋ(s)ds −

hMmeαhm

(hM − h(t))
(hM − h(t))

∫ t−h(t)

t−hM

ẋT (s)S 2 ẋ(s)ds

−
rMmeαrm

(r(t) − rm)
(r(t) − rm)

∫ t−rm

t−r(t)
ẏT (s)S 4ẏ(s)ds −

rMmeαrm

(rM − r(t))
(rM − r(t))

∫ t−r(t)

t−rM

ẏT (s)S 4ẏ(s)ds.

By utilizing Lemma 2.5 together with Lemma 2.6, we can approximate the inequality as follows

−hMmeαhm

∫ t−hm

t−hM

ẋT (s)Q2 ẋ(s)ds − rMmeαrm

∫ t−rm

t−rM

ẏT (s)Q4ẏ(s)ds

≤ χT (t)
(
eαhm

(
− ℵT

61Qℵ61 − 3ℵT
71Qℵ71 − 5ℵT

81Qℵ81 − ℵ
T
62Qℵ62 − 3ℵT

72Qℵ72 − 5ℵT
82Qℵ82

)
+eαrm

(
− ℵT

91Qℵ91 − 3ℵT
101Qℵ101 − 5ℵT

111Qℵ111 − ℵ
T
92Qℵ92 − 3ℵT

102Qℵ102 − 5ℵT
112Qℵ112

)
+2eαhm

(
− ℵT

61X11ℵ62 − 3ℵT
71X12ℵ72 − 5ℵT

81X13ℵ82
)

+2eαrm
(
− ℵT

91X21ℵ92 − 3ℵT
101X22ℵ102 − 5ℵT

111X23ℵ112
))
χ(t). (3.7)
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Estimating the derivatives of V4(t) along with approximating the values, in inequalities (3.6) and (3.7)
is a crucial part of this analysis. We obtained consistent equations in this process as follows:

V̇4(t) ≤ χT (t)Θ4χ(t) + αV4(t). (3.8)

Regarding V5(t), we derived its derivative and applied Lemma 2.4 for estimation. Additionally, when
approximating the exponential function where 1 = e0 ≤ eαρa , 1 = e0 ≤ eαρc , −1 = −e0 ≥ −eαρa ,
−1 = −e0 ≥ −eαρc , we obtain the following results

V̇5(t) ≤ ρ2
a ẋT (t)U1 ẋ(t) + ρ2

c ẏT (s)U2ẏ(t) −
∫ t

t−ρa

ẋT (s)dsU1

∫ t

t−ρa

ẋ(s)ds

−

∫ t

t−ρc

ẏT (s)dsU2

∫ t

t−ρc

ẏ(s)ds + αV5(t) = χT (t)Θ5χ(t) + αV5(t). (3.9)

Next, by adopting Eqs (2.6) and (2.7) and let Γi > 0, i = 1, 2 be diagonal matrices, we obtain[
y(t)

f (y(t))

]T [
−Γ1Ξ1 Γ1Ξ2

Γ1Ξ2 −Γ1

] [
y(t)

f (y(t))

]
+

[
y(t − r(t))

f (y(t − r(t)))

]T [
−Γ2Ξ1 Γ2Ξ2

Γ2Ξ2 −Γ2

] [
y(t − r(t))

f (y(t − r(t)))

]
= χT (t)Θ6χ(t) > 0.

Additionally, we utilize the zero equation derived from the Newton-Leibniz equation: x(t)
−x(t − h(t)) −

∫ t

t−h(t)
ẋ(s)ds = 0. Let Ni, i = 1, 2, 3, 4 be appropriate dimensional matrices, resulting in

the equation:

χT (t)
(
2
(
e1 − e3 − e21

)T M1
(
−C(e6 − e14) + De3 − e10

)T
+ 2

(
e1 − e3 − e21

)T M2e1

+2
(
e1 − e3 − e21

)T M3e3 + 2
(
e1 − e3 − e21

)T M4e21

)
χ(t) = χT (t)Θ7χ(t) = 0. (3.10)

It becomes evident that, upon estimating V̇(t) after recalling (3.1), we receive

V̇(t) − αV(t) ≤ 0, (3.11)

where V̇(t) ≤ χT (t)Θχ(t)+αV(t),
χT (t) =

[
xT (t), xT (t − hm), xT (t − h(t)), xT (t − hM), ẋT (t), yT (t), yT (t − rm), yT (t − r(t)), yT (t − rM),

ẏT (t), f T (y(t)) , f T (y(t − r(t))),
∫ t

t−ρa
ẋT (s)ds,

∫ t

t−ρc
ẏT (s)ds, 1

hm

∫ t

t−hm
xT (s)ds, 1

rm

∫ t

t−rm
yT (s)ds,

1
h(t)−hm

∫ t−hm

t−h(t)
xT (s)ds, 1

hM−h(t)

∫ t−h(t)

t−hM
xT (s)ds, 1

r(t)−rm

∫ t−rm

t−r(t)
yT (s)ds, 1

rM−r(t)

∫ t−r(t)

t−rM
yT (s)ds,

∫ t

t−h(t)
ẋT (s)ds,

1
h2

m

∫ t

t−hm

∫ t

θ
xT (s)dsdθ, 1

r2
m

∫ t

t−rm

∫ t

θ
yT (s)dsdθ, 1

(h(t)−hm)2

∫ t−hm

t−h(t)

∫ t−hm

θ
xT (s)dsdθ, 1

(hM−h(t))2

∫ t−h(t)

t−hM

×
∫ t−h(t)

θ
xT (s)dsdθ, 1

(r(t)−rm)2

∫ t−rm

t−r(t)

∫ t−rm

θ
yT (s)dsdθ, 1

(rM−r(t))2

∫ t−r(t)

t−rM

∫ t−r(t)

θ
yT (s)dsdθ

]
.

By multiplying the inequality (3.11) by e−αt and integrating from 0 to t where t belongs to the
interval [0,T ], we derive the following result:

V(t) ≤ eαtV(0),

where

V(φ(0), ξ(0)) = φT (0)P1φ(0) +

∫ 0

−hm

e−αsφT (s)P2φ(s)ds +

∫ −hm

−hM

e−αsφT (s)P3φ(s)ds
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+ξT (0)Q1ξ(0) +

∫ 0

−rm

e−αsξT (s)Q2ξ(s)ds +

∫ −rm

−rM

e−αsξT (s)Q3ξ(s)ds

+

∫ 0

−r(0)
e−αs f T (ξ(s))Q4 f (ξ(s))ds + hm

∫ 0

−hm

∫ 0

θ

e−αsφT (s)R1φ(s)dsdθ

+rm

∫ 0

−rm

∫ 0

θ

e−αsξT (s)R2ξ(s)dsdθ + hm

∫ 0

−hm

∫ 0

θ

e−αsφ̇T (s)S 1φ̇(s)dsdθ

+hMm

∫ −hm

−hM

∫ 0

θ

e−α−sφ̇T (s)S 2φ̇(s)dsdθ + rm

∫ 0

−rm

∫ 0

θ

e−αsξ̇T (s)S 3ξ̇(s)dsdθ

+rMm

∫ −rm

−rM

∫ 0

θ

e−αsξ̇T (s)S 4ξ̇(s)dsdθ + ρa

∫ 0

−ρa

∫ 0

θ

e−αsφ̇T (s)U1φ̇(s)dsdθ

+ρc

∫ 0

−ρc

∫ 0

θ

e−αsξ̇T (s)U2ξ̇(s)dsdθ

≤ λmax(N−1P1)φT (0)NφT (0) +

∫ 0

−hm

e−αsλmax(N−1P2)φT (s)Nφ(s)ds +

∫ −hm

−hM

e−αsλmax(N−1P3)

×φT (s)Nφ(s)ds + λmax(N−1Q1)ξT (0)Nξ(0) +

∫ 0

−rm

e−αsλmax(N−1Q2)ξT (s)Nξ(s)ds

+

∫ −rm

−rM

e−αsλmax(N−1Q3)ξT (s)Nξ(s)ds +

∫ 0

−r(0)
e−αsλmax(N−1Q4) f T (ξ(s))N f (ξ(s))ds

+hm

∫ 0

−hm

∫ 0

θ

e−αsλmax(N−1R1)φT (s)Nφ(s)dsdθ + rm

∫ 0

−rm

∫ 0

θ

e−αsλmax(N−1R2)ξT (s)Nξ(s)dsdθ

+hm

∫ 0

−hm

∫ 0

θ

e−αsλmax(N−1S 1)φ̇T (s)Nφ̇(s)dsdθ + hMm

∫ −hm

−hM

∫ 0

θ

e−αsλmax(N−1S 2)φ̇T (s)Nφ̇(s)dsdθ

+rm

∫ 0

−rm

∫ 0

θ

e−αsλmax(N−1S 3)ξ̇T (s)Nξ̇(s)dsdθ + rMm

∫ −rm

−rM

∫ 0

θ

e−αsλmax(N−1S 4)ξ̇T (s)Nξ̇(s)dsdθ

+ρa

∫ 0

−ρa

∫ 0

θ

e−αsλmax(N−1U1)φ̇T (s)Nφ̇(s)dsdθ + ρc

∫ 0

−ρc

∫ 0

θ

e−αsλmax(N−1U2)ξ̇T (s)Nξ̇(s)dsdθ

≤ λmax(N−1P1)‖φ(t)‖2N + β1hλmax(N−1P2)‖φ(t)‖2N + β2hλmax(N−1P3)‖φ(t)‖2N + λmax(N−1Q1)‖ξ(t)‖2N
+β1rλmax(N−1Q2)‖ξ(s)‖2N + β2rλmax(N−1Q3)‖ξ(t)‖2N + β3rλmax(N−1Q4)λmax(ðTð)‖ξ(t)‖2N
+β3hλmax(N−1R1)‖φ(t)‖2N + β4rλmax(N−1R2)‖φ(t)‖2N + β3hλmax(N−1S 1)‖ξ(t)‖2N + β4rλmax(N−1S 2)‖ξ(t)‖2N
+β4hλmax(N−1S 3)‖φ‖2N + β5rλmax(N−1S 4)‖ξ‖2N + β1ρλmax(N−1U1)‖φ(t)‖2N + β2ρλmax(N−1U2)‖ξ(s)‖2N

≤ λ1(‖Φ(t)‖2N + ‖Ψ(t)‖2N), (3.12)

where ‖Φ(t)‖N = sup−max{ρ1,hM}≤t≤0{‖φ(t)‖N , ‖φ̇(t)‖N} and ‖Ψ(t)‖N = sup−max{ρ2,rM}≤t≤0{‖ξ(t)‖N , ‖ξ̇(t)‖N},
λ1 = λmax

(
(N−1P1) +β1h(N−1P2) +β2h(N−1P3) + (N−1Q1) +β1r(N−1Q2) +β2r(N−1Q3) +β3r(N−1Q4)(ðTð)

+ β3h(N−1R1) + β4r(N−1R2) + β3h(N−1S 1) + β4r(N−1S 2) + β4h(N−1S 3) + β5r(N−1S 4) + β1ρ(N−1U1)
+ β2ρ(N−1U2)

)
, and N > 0.

In the interim,

V(t) ≥ min{λmin(P1N−1)‖x(t)‖2N + λmin(Q1N−1)‖y(t)‖2N} ≥ λ2(‖x(t)‖2N + ‖y(t)‖2N), (3.13)
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where λ2 = λmin
(
N−1P1 + N−1Q1

)
. Let c1 be a positive real number where

‖Φ(t)‖2N + ‖Ψ(t)‖2N ≤ c1.

Combining inequalities (3.11)–(3.13) we acquire:

(‖x(t)‖2N + ‖y(t)‖2N) ≤
1
λ2

eαT V(φ(0), ξ(0))

≤
1
λ2

eαTλ1c1

≤
λ1

λ2
eαT c1 ≤ c2,

where c2 be a positive real number. In accordance with Definition 2.1 of stability, finite-time stability
with respect to c1, c2,T and N can be found for the GRNs (2.4). The proof is complete. �

When the interval time-varying delays h(t) and r(t) adhere to the conditions (2.2) and (2.3), and
ρa = ρc = 0, and V5(t) = 0, the subsequent Corollary can be applied to assess the FTS of GRNs in the
following system form:

ẋ(t) = −Ax(t) + W f (y(t − r(t)))
ẏ(t) = −Cy(t) + Dx(t − h(t)),
x(t) = φ(t), y(t) = ξ(t), t ∈ (−τ̃, 0), τ̃ = max{hM, rM},

(3.14)

as describe in Corollary 3.2.

Corollary 3.2. Given that Assumption 1 valid. For positive scalars c1, c2,T, hm, hM, hdm, hdM, rm, rM,
rdm and rdM according conditions (2.2) and (2.3), if there existṁatrices Pi > 0, i = 1, 2, 3, Qi > 0,i
= 1, 2, 3, 4, Ri > 0, i = 1, 2, S i > 0, i = 1, 2, 3, 4, any diagonal matrices Γi > 0, i = 1, 2, any
appropriate dimensional matrices Ei,Ni, i = 1, 2, 3, 4, satisfying the following conditions:[

S 2 X2i

∗ S 2

]
≥ 0, n = 1, 2, i = 1, 2, 3,[

S 4 X2i

∗ S 4

]
≥ 0, n = 1, 2, i = 1, 2, 3,

Θ̃ < 0,
λ̃1

λ2
eαT c1 ≤ c2.

Then, the system (3.14) exhibits FTS concerning N > 0 and positive real numbers (c1, c2,T ), where
Θ̃ =

∑6
i=1 Θi is defined:

Θ̃1 = Θ1 −
(
eT

1 ET
1 + eT

5 ET
2 )

(
Ae13), Θ̃2 = −

(
eT

6 ET
3 + eT

10ET
4 )

(
Ce14),

Θ̃3 = Θ3, Θ̃4 = Θ4, Θ̃5 = Θ6, Θ̃6 = Θ7, x λ̃1 = λ1 −
(
β1ρλmax(N−1U1) + β2ρλmax(N−1U2)

)
.

Proof. The Corollary 3.2 can be derived using a similar reasoning as that employed in the proof of
Theorem 3.1.
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4. Numerical examples

In this section, we employ a numerical instance to showcase the efficiency of the criteria outlined
as follows:

Example 4.1. Consider the GRNs (2.4) and (3.14) with the following parameters:

A = diag(2, 2, 2), C = diag(3, 3, 3), D = diag(1, 1, 1), and W = 1.5 ×


0 0 −1
−1 0 0
0 −1 0

 .
The gene regulation function is represented by fi(yi) =

y2
i

1+y2
i
, ð− = diag(0, 0, 0), and ð+ = diag(0.65,

0.65, 0.65). The time delays h(t) and r(t) are assumed as follows: r(t) = 0.5 + 0.7sin2t, h(t) = 1 + cos2t.
We can derive the parameters as follows: rm = 0.7, rM = 1.2, rdm = −0.7, rdM = 0.7, hm =

1, hM = 2 hdm = −1 hdM = 1. Furthermore, we demonstrate that the system exhibits FTS by
defining the parameters as follows: α = 0.01, T = 5, c1 = 0.4, and c2 = 6.0. It is crucial to
emphasize that the Theorem 3.1 becomes feasible by utilizing MATLAB to solve LMIs (3.1) and (3.2),
which enables us to attain a viable solution. As a result, the GRNs (2.4) exhibit FTS, with ρa = ρc = 0.1
representing the allowable value. From this, we can derive the feasible solutions as follows:

P1 =


0.8300 0.0002 0.0002
0.0002 0.8300 0.0002
0.0002 0.0002 0.8300

 , P2 =


1.2037 0.0026 0.0026
0.0026 1.2037 0.0026
0.0026 0.0026 1.2037

 ,
P3 =


0.0067 −0.0000 −0.0000
−0.0000 0.0067 −0.0000
−0.0000 −0.0000 0.0067

 , Q1 =


0.5386 0.0003 0.0003
0.0003 0.5386 0.0003
0.0003 0.0003 0.5386

 ,
Q2 =


0.1992 0.0008 0.0008
0.0008 0.1992 0.0008
0.0008 0.0008 0.1992

 , Q3 =


0.0246 −0.0000 −0.0000
−0.0000 0.0246 −0.0000
−0.0000 −0.0000 0.0246

 ,
Q4 =


3.0795 −0.0004 −0.0004
−0.0004 3.0795 −0.0004
−0.0004 −0.0004 3.0795

 , R1 =


0.3466 0.0004 0.0004
0.0004 0.3466 0.0004
0.0004 0.0004 0.3466

 ,
R2 =


0.2473 0.0005 0.0005
0.0005 0.2473 0.0005
0.0005 0.0005 0.2473

 , S 1 =


0.0297 −0.0000 −0.0000
−0.0000 0.0297 −0.0000
−0.0000 −0.0000 0.0297

 ,
S 2 =


0.2547 0.0001 0.0001
0.0001 0.2547 0.0001
0.0001 0.0001 0.2547

 , S 3 =


0.0446 −0.0000 −0.0000
−0.0000 0.0446 −0.0000
−0.0000 −0.0000 0.0446

 ,
S 4 =


0.1249 0.0001 0.0001
0.0001 0.1249 0.0001
0.0001 0.0001 0.1249

 , U1 =


10.8856 −0.0428 −0.0428
−0.0428 10.8856 −0.0428
−0.0428 −0.0428 10.8856

 ,
U2 =


10.8619 0.0117 0.0117
0.0117 10.8619 0.0117
0.0117 0.0117 10.8619

 , N =


16.0427 0 0

0 16.0427 0
0 0 16.0427

 ,
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Γ1 =


6.4410 0 0

0 6.4410 0
0 0 6.4410

 , Γ2 =


0.3886 0 0

0 0.3886 0
0 0 0.3886

 ,
X1 =


−0.0090 0.0001 0.0001
0.0001 −0.0090 0.0001
0.0001 0.0001 −0.0090

 , X2 =


−0.0127 −0.0002 −0.0002
−0.0002 −0.0127 −0.0002
−0.0002 −0.0002 −0.0127

 ,
X3 =


0.0098 0.0000 0.0000
0.0000 0.0098 0.0000
0.0000 0.0000 0.0098

 , X4 =


−0.0283 0.0003 0.0003
0.0003 −0.0283 0.0003
0.0003 0.0003 −0.0283

 ,
X5 =


−0.0017 −0.0000 −0.0000
−0.0000 −0.0017 −0.0000
−0.0000 −0.0000 −0.0017

 , X6 =


0.0024 0.0000 0.0000
0.0000 0.0024 0.0000
0.0000 0.0000 0.0024

 ,
E1 =


−0.0159 −0.0001 −0.0001
−0.0001 −0.0159 −0.0001
−0.0001 −0.0001 −0.0159

 , E2 =


0.4132 −0.0006 −0.0006
−0.0006 0.4132 −0.0006
−0.0006 −0.0006 0.4132

 ,
E3 =


−0.0070 0.0001 0.0001
0.0001 −0.0070 0.0001
0.0001 0.0001 −0.0070

 , E4 =


0.1779 0.0002 0.0002
0.0002 0.1779 0.0002
0.0002 0.0002 0.1779

 ,
N1 =


−0.0590 −0.0009 −0.0009
−0.0009 −0.0590 −0.0009
−0.0009 −0.0009 −0.0590

 , N2 =


−2.6266 −0.0009 −0.0009
−0.0009 −2.6266 −0.0009
−0.0009 −0.0009 −2.6266

 ,
N3 =


2.6944 0.0007 0.0007
0.0007 2.6944 0.0007
0.0007 0.0007 2.6944

 , N4 =


2.6951 −0.0002 −0.0002
−0.0002 2.6951 −0.0002
−0.0002 −0.0002 2.6951

 .
Moreover, we found that system (2.4), under the specified conditions and Theorem 3.1, remains FTS
up to T = 9.9225 (α = 0.1).

The simulation results are illustrated in Figures 1–6, depicting the trajectories of variables x(t)
and y(t) for the GRNs (3.14) and (2.4). These figures showcase the impact of leakage delays on system
stability. The initial conditions are set as x(0) = (0.2, 0.4, 0.6) and y(0) = (0.1, 0.3, 0.5).

Figure 1 presents the solutions for GRN (3.14) in the absence of leakage delays. We observe
that the solution for x(t) approaches 0 as t approaches 4, and the solution for y(t) approaches 0 as t
approaches 5. In this case, the system converges to 0.

Figures 2–4 present the solutions for GRN (2.4), incorporating leakage delays. These figures
clearly illustrate the interference caused by the system’s leakage delays, impacting the convergence to
the equilibrium point. We found that an increase in the leakage parameter has led to a corresponding
rise in the frequency of the oscillations.

Figure 5 demonstrates the solutions of the GRNs (3.14) over the time interval t ∈ [0, 10]. The
solution for x(t) approaches 0 as t approaches 4, and the solution for y(t) approaches 0 as t approaches 5.
In this case, the system converges to 0. While similar to Figure 1, the solution’s behavior is observed
over a shorter time interval in this instance.

Figure 6 shows the solutions of GRN (2.4) over the time interval t ∈ [0, 15]. Notably, a disturbance
in the solution is observed around t = 3, where both x(t) and y(t) begin to oscillate. Despite this
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disturbance, the system remains stable. This scenario shows a similar solution trajectory to Figure 3
but over a shorter time span, which reduces the frequency of oscillations.

This comprehensive analysis of the simulation results provides valuable insights into the influence
of leakage delays on the dynamics of GRNs (2.4) and (3.14). The analysis demonstrates the importance
of considering such delays in the design and analysis of these systems. The leakage delay has a
significant effect on the dynamic behaviors of the model, often leading to instability. It is therefore
crucial to study stability while taking into account the impact of leakage delays.

Additionally, we examine the leakage delays effects by substituting the following values: In
Case 1, we investigate the value of hM at rm = 0.7, rM = 1.2, rdm = −0.7, rdM = 0.7, hm = 1,
hdm = −1, hdM = 1, α = 0.01, T = 5, and varying leakage delays ( ρa and ρc ) as shown in Table 1.
In Case 2, we will explore the value of rM at rm = 0.7, rdm = −0.7, rdM = 0.7, hm = 1, hM = 2, hdm = −1,
hdM = 1, α = 0.01, T = 5, and varying leakage delays as indicated in Table 2.

We observed that as the values of leakage delays ρa and ρc increases, the times delays hM and
rM both decrease. Hence, it can be stated that the effects of leakage delays lead to a decrease in the
FTS boundary.

Table 1. The upper bound for hM with different values of ρa and ρc.

ρa = ρc 0.00 0.01 0.05 0.10 0.12
Corollary 3.2 2.8741 - - - -
Theorem 3.1 2.8734 2.8067 2.5490 2.2491 2.1371

Table 2. The upper bound for rM with different values of ρa and ρc.

ρa = ρc 0.00 0.01 0.05 0.10 0.12
Corollary 3.2 6.6890 - - - -
Theorem 3.1 6.6890 6.6243 6.3692 6.0493 5.9209

(i) (ii)
Figure 1. (i) mRNA concentrations x(t). (ii) Protein concentrations y(t).
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(iii) (iv)
Figure 2. (iii) mRNA concentrations x(t) with ρa = 0.05. (iv) Protein concentrations y(t)
with ρc = 0.05.

(v) (vi)
Figure 3. (v) mRNA concentrations x(t) with ρa = 0.1. (vi) Protein concentrations y(t) with
ρc = 0.1.

(vii) (viii)
Figure 4. (vii) mRNA concentrations x(t) with ρa = 0.5. (viii) Protein concentrations y(t)
with ρc = 0.5.
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(ix) (x)
Figure 5. (ix) mRNA concentrations x(t). (x) Protein concentrations y(t).

(xi) (xii)
Figure 6. (xi) mRNA concentrations x(t) with ρa = 0.1. (xii) Protein concentrations y(t)
with ρc = 0.1.

5. Conclusions

In this paper, our focus is on investigating how leakage delays affect FTS in GRNs characterized
by interval time-varying delays. To begin, we introduce GRNs that incorporate interval time-varying
delays as well as leakage delays. These models consider lower bounds on delays, which may be either
positive or zero, and allow for the derivatives of delays to be either positive or negative. Subsequently,
we delve into the consequences of leakage delays through the construction of a LK function. We
then enhance the criteria for FTS by employing estimates of integral inequalities and a reciprocally
convex technique. This refinement enables us to express the new finite-time stability criteria for genetic
regulatory networks in the form of LMIs. Finally, we present a numerical example to demonstrate the
effect of leakage delays and validate the significance of our theoretical findings.
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