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Poincaré inequality
Mathematics Subject Classification: 35Q30, 76D03, 76D05

1. Introduction

Let Ω ⊂ R2 be a bounded and simply connected domain with a smooth boundary ∂Ω whose outward
unit normal vector is denoted by n. For any L > 0, we consider the following problem for the 2D
Navier–Stokes system: Find {u, p, h(t)} that satisfy the following conditions:

∂tu + u · ∇u + ∇p − ∆u = 0, div u = 0 in Ω × (0,∞), (1.1)
u · n = 0, ω := curl u = h(t) on ∂Ω × (0,∞), (1.2)∫

Ω

ωdx = L in (0,∞) and u(·, 0) = u0 in Ω. (1.3)

Here u : Ω × (0,∞)→ R2 is the velocity, p : Ω × (0,∞)→ R is the pressure, and ω : Ω × (0,∞)→ R

is the vorticity given by ω := curl u := ∂1u2 − ∂2u1 for u :=
(

u1

u2

)
, and h(t) is the unknown applied

vorticity on the boundary which is independent of the space variable x :=
(

x1

x2

)
∈ R2.

In fact, the problem (1.1)–(1.3) is an inverse problem. We think it is also a control problem. Can
we find a simple boundary control (1.2) such that (1.3) holds true?

We refer to [1] for a study of the direct problem of the 2D Navier–Stokes in a bounded domain.
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The first aim of this short note is to formulate an open problem:
Open problem: Show the well-posedness of solutions to the boundary value problem (1.1)–(1.3).

Remark 1.1. A similar problem has been solved for the 2D time-dependent Ginzburg–Landau model
in superconductivity [2, 3], in which the magnetic potential A satisfying A · n = 0, curl A = h(t) on ∂Ω

and
∫

Ω

curl Adx = L.

Next, we consider the time-periodic solutions to the problem (1.1)–(1.3). We will prove it.

Theorem 1.1. Let {u, p, h(t)} be time-periodic smooth solutions with period T > 0 to the problem
(1.1)–(1.3). Then we have

∂tu = 0, h′(t) = 0, and ω(x, t) = h(t) =
L
|Ω|

for any (x, t) ∈ Ω × (0,∞). (1.4)

Remark 1.2. Here we assume that

u ∈ L∞(0,T ; H1) ∩ L2(0,T ; H2), ∂tu ∈ L2(0,T ; L2),
∇p ∈ L2(0,T ; L2), and h ∈ L∞(0,T ).

Corollary 1.1. Let Ω := {(x1, x2); x2
1 + x2

2 < 1}. Then the unique time-periodic (stationary) solutions
are given by

u =
h
2

(
−x2

x1

)
, p =

h2

4
(x2

1 + x2
2), h =

L
π
. (1.5)

2. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1.
First, taking the curl of (1.1), we see that

∂tω + u · ∇ω − ∆ω = 0. (2.1)

Using the fact that h(t) is independent of x, we have

∂t(ω − h) + u · ∇(ω − h) − ∆(ω − h) = −h′(t). (2.2)

Testing (2.2) by (ω − h) over Ω × [0,T ], we obtain

1
2

∫ T

0

∫
Ω

∂t(ω − h)2dxdt +
1
2

∫ T

0

∫
Ω

div [u(ω − h)2]dxdt +

∫ T

0

∫
Ω

|∇(ω − h)|2dxdt

= −

∫ T

0

∫
Ω

h′(ω − h)dxdt

= −

∫ T

0
(h′L − |Ω|hh′)dt

= −

∫ T

0

d
dt

(
hL −

|Ω|

2
h2

)
dt = 0,
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where we have used the time periodicity of h.
By the time periodicity of ω and h,∫ T

0

∫
Ω

∂t(ω − h)2dxdt = 0.

By the Gauss integral formula and (1.2),∫
Ω

div[u(ω − h)2]dx = 0.

Therefore, ∫ T

0

∫
Ω

|∇(ω − h)|2dxdt = 0. (2.3)

Using Poincaré inequality
‖ω − h‖L2 . ‖∇(ω − h)‖L2 = 0, (2.4)

we conclude that
ω = h(t) in Ω × (0,∞). (2.5)

It follows from (1.3) and (2.5) that

h(t) =
L
|Ω|

(2.6)

and thus
∂tω = h′(t) = 0. (2.7)

Now using the vector Poincaré type inequality [4, Page 75]:

‖u‖L2 . ‖div u‖L2 + ‖curl u‖L2 (2.8)

with u · n = 0 on ∂Ω applied to ∂tu shows
∂tu = 0. (2.9)

This completes the proof.
�

Proof of Corollary 1.1: By Theorem 1.1, it is easy to show the uniqueness of stationary solutions, and
then it is easy to show that (1.5) is the only solution. In fact, the stationary solutions satisfy

div u = 0, curl u =
L
|Ω|

in Ω and u · n = 0 on ∂Ω,

which yields that u is unique due to (2.8).
�

3. Conclusions

To summarize, in this paper, we first formulated an open question: Show the existence of strong
solutions to the initial boundary value problem (1.1)–(1.3). Next, we proved a Liouville-type theorem
for the time-periodic solutions to the problem. Finally, we show that the stationary problem has a
unique solution and give the exact form when Ω is a unit ball in R2.
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