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Abstract: Let R be a ring with identity. An element r was called to be nil-clean if r was a sum of
an idempotent and a nilpotent element in R. The nil-clean graph of R was a simple graph, denoted by
GNC(R), whose vertex set was R, where two distinct vertices x and y were adjacent if, and only if, x+ y
was a nil-clean element of R. In the absence of the condition that vertex x is not the same as y, the
graph defined in the same way was called the closed nil-clean graph of R, which may contain loops,
and was denoted by GNC(R). In this short note, we completely determine the diameter of GNC(Zn).
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1. Introduction

Using special elements to characterize the properties and structure of rings is a very common
method, and it is also a very popular research field, which has attracted widespread attention by many
researchers. Idempotents, nilpotent elements, and units are three very important types of elements that
play a crucial role in characterizing the properties and structure of rings, and have also sparked many
new concepts and the classes of rings, for example, clean rings, nil-clean rings, 2-good rings, and fine
rings (see [8, 9, 13, 17]).

On the other hand, using graphic properties and invariants to characterize the structure and
properties of rings has been a hot research field in recent decades. After Beck [6] introduced the
zero-divisor graph of a commutative ring in 1998, especially after Anderson and Livingston [3]
modified the definition in 1999, various graph structures on rings were defined and studied, for
example, unit graphs of rings, total graphs of rings, comaximal ideal graph of rings, zero-divisor
graphs with respect to ideals of rings, and cozero divisor graphs (see [2, 5, 12, 14, 18]). This greatly
enriches the methods for studying the properties and structures of rings. In 2017, Basnet and
Bhattacharyya [7] introduced the nil-clean graph of a ring and studied its basic properties. Due to the
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complexity of the nil-clean elements of a ring, the properties of the nil-clean graph of the ring are less
known. Even the diameter of the nil-clean graph for a basic finite commutative ring, such as the
residue class ring of integers modulo n, is not completely clear. As usual, we use Zn to denote the
residue class ring of integers modulo n. In [7], the authors have only showed that diam(GNC(Z2k)) = 1;
diam(GNC(Z2k3l)) = 2 for k ≥ 0 and l ≥ 1; diam(GNC(Zp)) = p − 1 for a prime p; and
diam(GNC(Z2p)) = diam(GNC(Z3p)) = p − 1 for an odd prime p. Let n = pα1

1 · · · p
αs
s be a prime

factorization and p1 < · · · < ps. We show that diam(GNC(Zn)) = ps − 1.
Diameter is one of the important invariants of a graph. Many papers are devoted to the diameter of

the resulting graph in this research area (see [1, 4, 11, 15]). For the unit graph of a ring, Heydari and
Nikmehr [10] proved that the diameter of the unit graph of an Artinian ring only has four possibilities:
1, 2, 3,∞, and they classified all Artinian rings via its diameter of unit graphs. In 2019, Su and Wei
generalized the result to self-injective rings in [16]. They also proved that there exists a ring such that
the diameter of its unit graph is more than three.

Let R be a ring with identity. We use Id(R) and Nil(R) to denote the set of all idempotents and the
set of all nilpotent elements of R, respectively. An element r is said to be a nil-clean element if r is a
sum of an idempotent and a nilpotent element in R. The set of all nil-clean elements of R is denoted
as the notation NC(R). The nil-clean graph of R, denoted by GNC(R), is a simple graph with R as its
vertex set, and two distinct vertices x and y are adjacent if, and only if, x + y ∈ NC(R). In the absence
of the condition that vertex x is not same as y, the graph defined in the same way is called the closed
nil-clean graph of R, which may contain loops, and is denoted by GNC(R). Some basic properties are
studied in [7], for example, they have showed that GNC(R) is a complete graph if, and only if, R is a
nil-clean ring; the degree of a vertex x in GNC(R) is either | NC(R) | −1 or | NC(R) | depending on if 2x
belongs to NC(R) or not; and GNC(R) is a bipartite graph if, and only if, R is a field.

We recall some necessary notions in graph theory. Let G be a simple graph, meaning it has no
loops and multi-edges. We use the symbol x ∼ y to denote when two vertices x and y in a graph G are
adjacent. A walk of lengths k with endpoints v0 and vk in G is a sequence of vertices (v0, v1, . . . , vk−1, vk),
in which vi−1 ∼ vi for every i = 1, . . . , k. A path in a graph is a walk that has all distinct vertices (except
the endpoints). A graph G is connected if there is a path between each pair of the vertices of G;
otherwise, G is disconnected. The distance between two vertices x and y, denoted by d(x, y), is the
length a shortest path between x and y. If there is no path connecting two vertices, the distance between
them is defined as infinite. The longest distance between all pairs of vertices of G is called the diameter
of G, and is denoted by diam(G). Let G1,G2 be two graphs. Their tensor product, denoted by G1 ⊗G2,
is a graph with vertex set G1 ×G2, where (x1, x2) ∼ (y1, y2) if, and only if, x1 ∼ y1 in G1 and x2 ∼ y2 in
G2.

2. Main results and proofs

To begin, we decompose the graph GNC(Zn) into GNC(Zpα1
1

) ⊗ · · · ⊗ GNC(Zpαs
s

) for the prime
factorization n = pα1

1 · · · p
αs
s . On this basis, we mainly provide a complete characterization of

diam(Zn). In addition, a mechanical way to find a path between two vertices x and y in GNC(Zn) is
given.

For two isomorphic rings, their nil-clean graphs are clearly isomorphic as well. Due to the Chinese
remainder theorem, there is an isomorphism of the rings, Zn � Zpα1

1
× · · · × Zpαs

s
, where n = pα1

1 · · · p
αs
s
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is the prime factorization. Therefore, we are now investigating the nil-clean graph of the ring Zpα1
1
×

· · · × Zpαs
s

, and denoting it by GNC(Zn) by abuse of notation.
Let R1 and R2 be two rings. We have that Nil(R1×R2) = Nil(R1)×Nil(R2) and Id(R1×R2) = Id(R1)×

Id(R2). For a prime p and a positive integer α, Zpα is a commutative local ring, having the unique
maximal ideal Nil(Zpα) = (p), and Id(Zpα) is trivial. Then, NC(Zpα) is the disjoint union (p) ∪ 1 + (p),
where 1 + (p) =

{
1 + x ∈ Zpα | x ∈ (p)

}
. We have that NC(Zpα1

1
× Zpα2

2
) = NC(Zpα1

1
) × NC(Zpα2

2
). The

following proposition characterizes the form of nil-clean elements in Zpα1
1
× · · · × Zpαs

s
.

Proposition 2.1. Give x = (x1, . . . , xs) ∈ Zpα1
1
× · · · ×Zpαs

s
. Then, x is a nil-clean element of Zpα1

1
× · · · ×

Zpαs
s

if, and only if, xi is a nil-clean element of Zpαi
i

, for every i = 1, . . . , s.

Proof. Suppose x = (x1, . . . , xs) is a nil-clean element in Zpα1
1
×· · ·×Zpαs

s
, then there exists an idempotent

y = (y1, . . . , ys) and a nilpotent element z = (z1, . . . , zs), such that x = y + z = (y1 + z1, . . . , ys + zs).
Note that yi is an idempotent element of Zpαi

i
and zi is a nilpotent element of Zpαi

i
, for every i = 1, . . . , s.

Thus, xi is a nil-clean element of Zpαi
i

, for every i = 1, . . . , s.
Conversely, suppose that xi is a nil-clean element of Zpαi

i
, for each i = 1, . . . , s. Then, there exist

an idempotent element yi ∈ Zpαi
i

and a nilpotent element zi ∈ Zpαi
i

, such that xi = yi + zi, for each
i = 1, . . . , s. Note that y = (y1, . . . , ys) is an idempotent and z = (z1, . . . , zs) is a nilpotent element in
Zpα1

1
× · · · × Zpαs

s
. The equality x = y + z implies that x is a nil-clean element in Zpα1

1
× · · · × Zpαs

s
. □

We can determine the adjacency relation of GNC(Zn) completely by Proposition 2.1.

Corollary 2.1. Suppose that x = (x1, . . . , xs) and y = (y1, . . . , ys) are distinct vertices of GNC(Zn).
Then, x and y are adjacent if, and only if, xi + yi is a nil-clean element of Zpαi

i
, for every i = 1, . . . , s.

More precisely, x and y are adjacent if, and only if, xi + yi ∈ (pi) ∪ 1 + (pi), for every i = 1, . . . , s. In
short, GNC(Zn) � GNC(Zpα1

1
) ⊗ · · · ⊗GNC(Zpαs

s
).

It is a fact that Zpα/(p) � Zp, and it is easy to study the nil-clean graph of Zp. In particular, we can
determine the diameter of GNC(Zp), as stated in Proposition 2.2 below, which has been shown in [7].

Proposition 2.2. Let p be a prime. Then, GNC(Zp) is a path with p vertices and its diameter is p − 1.

Proof. Zp is a field with characteristic p. There are only two nil-clean elements, 0 and 1, in Zp. For any
vertex x ∈ GNC(Zp), the only adjacent vertices are p − x and p − x + 1. This implies that GNC(Zp) is a
path. For two vertices x and y in GNC(Zp), the path between them is unique. Note that d(0, p+1

2 ) = p−1.
Therefore, diam(GNC(Zp)) = p − 1. □

Proposition 2.3. Let p be a prime and α be a positive integer. Then, diam(GNC(Zpα)) = p − 1.

Proof. The facts that Zpα/(p) � Zp and Nil(Zpα) = (p) are evident. Let x, y ∈ Zpα and x, y ∈ Zpα/(p).
Thus, by Proposition 2.2, there is a unique path from x to y in the graph GNC(Zp). We may assume that
the path is (x1, x2, . . . , xl−1, xl}, where x1 = x and xl = y. It is easy to see that (x, x2, . . . , xl−1, y} is a path
from x to y in GNC(Zpα). Thus, diam(GNC(Zpα)) ≤ diam(GNC(Zp)) = p − 1.

Next, we show that d(0, p+1
2 ) = p − 1 in the graph GNC(Zpα). Assume, to the contrary, there exists a

path from 0 and p+1
2 to a length less than p− 1. This forces that d(0, p+1

2 ) < p− 1 in the graph GNC(Zp),
which contradicts Proposition 2.2. This completes the proof. □
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Lemma 2.1. Let p be a prime, q be an odd positive integer, and q ≥ p, x and y be two vertices in
GNC(Zpα). Then, there exists a sequence {βk}

k=q
k=1 consisting q elements (allowing repeat) of Zpα , where

β1 = x, βq = y, such that βk + βk+1 is a nil-clean element of Zpα , for every k = 1, . . . , q − 1.

Proof. In the case p = 2, Z2α is a nil-clean ring, and GNC(Z2α) is a complete graph with 2α vertices. Let
β1 = · · · = βq−1 = x, βq = y.

For p is an odd prime, we discuss the case where q = p since we just need to repeat the last two
elements of the sequence when q > p. Without loss of generality, suppose that
d(0, x) = min{d(0, x), d(x, p+1

2 ), d(0, y), d(y, p+1
2 )} in GNC(Zp). There exists a unique shortest path from

x to 0 in GNC(Zp) by Proposition 2.2, denoted by (v1, . . . , vd(0,x)+1), where x = v1 and vd(0,x)+1 = 0.
Similarly, there exists a unique shortest path from 0 to y, denoted by (u1, . . . , ud(0,y)+1), where u1 = 0
and ud(0,y)+1 = y.

Let β1 = x, β2 = v2, · · · , βd(0,x) = vd(0,x) = 1, βd(0,x)+1 = · · · = βq−d(0,y) = 0, βq−d(0,y)+1 = u2 =

1, βq−d(0,y)+2 = u3 = p − 1, · · · , βq−1 = ud(0,y), βq = y. The sequence {βk}
k=q
k=1 is desired. □

Now, we prove the main result in this note.

Theorem 2.1. Let n = pα1
1 · · · p

αs
s be the prime factorization, where p1 < · · · < ps. Then,

diam(GNC(Zn)) = ps − 1.

Proof. It holds for the case n = 2α, and GNC(Z2α) is a complete graph. In other cases, give two vertices
(x1, . . . , xs), (y1, . . . , ys) ∈ Zpα1

1
× · · · × Zpαs

s
.

For i = 1, p = p1, and q = ps, there exists a sequence
{
α1

k

}k=ps

k=1
by Lemma 2.1, where α1

1 = x1,
α1

ps = y1, such that α1
k + α

1
k+1 ∈ NC(Zpα1

1
), for every k = 1, . . . , ps − 1.

For i = 2, p = p2, and q = ps, there exists a sequence
{
α2

k

}k=ps

k=1
by Lemma 2.1, where α2

1 = x2,
α2

ps = y2, such that α2
k + α

2
k+1 ∈ NC(Zpα2

2
), for every k = 1, . . . , ps − 1.

Continuing this process, for i = s, p = ps, and q = ps, there exists a sequence
{
αs

k

}k=ps

k=1
by Lemma

2.1, where αs
1 = xs, αs

ps = ys, such that αs
k + α

s
k+1 ∈ NC(Zpαs

s
), for every k = 1, . . . , ps − 1.

We obtain the sequence
{
(α1

k , . . . , α
s
k)
}k=ps

k=1
, where (α1

1, . . . , α
s
1) = (x1, . . . , xs) = x and (α1

ps
, . . . , αs

ps
) =

(y1, . . . , ys) = y. In addition, (α1
k + α

1
k+1, . . . , α

s
k + α

s
k+1) is a nil-clean element in Zpα1

1
× · · · × Zpαs

s
, for

every k = 1, . . . , ps − 1. Then, there exists a path from x to y according the above sequence by
removing those consecutive duplicate vertices (if applicable). Thus, diam(GNC(Zn)) ≤ ps − 1. On the
other hand, it is clear that d

(
(0, . . . , 0, 0), (0, . . . , 0, ps+1

2 )
)

is ps − 1 in GNC(Zn) by Proposition 2.3, and
diam(GNC(Zn)) ≥ ps − 1. This completes the proof. □

We finish this note with an example to helping in understanding Theorem 2.1.

Example 2.1. Let n = 2473112 = 664048, Z664048 � Z24 ×Z73 ×Z112 . Given (1, 339, 20), (12, 55, 114) ∈
Z24 × Z73 × Z112 , then 1 = 1, 12 = 0 ∈ Z2, 339 = 3, 55 = 6 ∈ Z7, 20 = 9, 114 = 4 ∈ Z11.

For p = 2 and q = 11, we obtain the sequence {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 12} by Lemma 2.1.
For p = 7 and q = 11, then d(3, 4) = min{d(0, 6), d(0, 3), d(3, 4), d(6, 4)} in the graph GNC(Z7). We

obtain the sequence {339, 4, 4, 3, 5, 2, 55, 2, 55, 2, 55} by Lemma 2.1.
For p = 11 and q = 11, then d(4, 5) = min{d(0, 9), d(0, 4), d(4, 5), d(9, 4)} in the graph GNC(Z11).

We obtain the sequence {20, 3, 8, 4, 7, 6, 5, 5, 6, 7, 114} by Lemma 2.1.
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According to the proof of Theorem 2.1, we obtain the sequence: β1 = (1, 339, 20), β2 = (1, 4, 3),
β3 = (1, 4, 8), β4 = (1, 4, 4), β5 = (1, 4, 7), β6 = (1, 4, 5), β7 = (1, 4, 6), β8 = (1, 3, 6), β9 = (1, 5, 5),
β10 = (1, 2, 7), β11 = (12, 55, 114). We do not need to delete any vertices of this sequence, and obtain
the path from (1, 339, 20) to (12, 55, 114) in the graph GNC(Z24 × Z73 × Z112).

Remark 2.1. For a finite commutative ring R, we have the Artin’s decomposition in local rings of
R � R1 × · · · ×Rs. Next, we may study the nil-clean graph of the finite product of finite fields, ignoring
the impact of nilpotent elements on calculating the diameter. For a finite field GF(pk), GNC(GF(pk))
is the union of a path with p vertices and pk−1−1

2 2p-cycles [7]. In particular, diam(GNC(GF(pk))) =
∞ when k > 1. Note that graph G ⊗ H is disconnected when one of G and H. In other words,
diam(GNC(R)) = p − 1 for some prime p or∞.
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17. P. Vámos, 2-good rings, Q. J. Math., 56 (2005), 417–430. https://doi.org/10.1093/qmath/hah046

18. H. J. Wang, Graphs associated to co-maximal ideals of commutative rings, J. Algebra, 320 (2008),
2917–2933. https://doi.org/10.1016/j.jalgebra.2008.06.020

© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 9, 24854–24859.

https://dx.doi.org/https://doi.org/10.1080/00927870903095574
https://dx.doi.org/https://doi.org/10.1016/0021-8693(88)90202-5
https://dx.doi.org/https://doi.org/10.1142/S1005386717000311
https://dx.doi.org/https://doi.org/10.1142/S0219498816501735
https://dx.doi.org/https://doi.org/10.1016/j.jalgebra.2013.02.020
https://dx.doi.org/https://doi.org/10.1007/s10474-012-0250-3
https://dx.doi.org/https://doi.org/10.1016/j.jalgebra.2006.01.019
https://dx.doi.org/https://doi.org/10.1080/00927870500441858
https://dx.doi.org/https://doi.org/10.2307/1998510
https://dx.doi.org/https://doi.org/10.47443/dml.2023.215
https://dx.doi.org/https://doi.org/10.4153/CMB-2016-014-7
https://dx.doi.org/https://doi.org/10.11650/tjm/180602
https://dx.doi.org/https://doi.org/10.1093/qmath/hah046
https://dx.doi.org/https://doi.org/10.1016/j.jalgebra.2008.06.020
https://creativecommons.org/licenses/by/4.0

	Introduction
	Main results and proofs

