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Abbreviations Symbols
pdf Probability density function
cdf Cumulative distribution function
NXLD New X-Lindley distribution
UNXLD Unit new X-Lindley distribution
mrl Mean residual life
sf Survival function
hrf Hazard rate function
LF(x) Lorenz curve
BF(x) Bonferroni curve
Gi(x) Gini index
J(X) Extropy of X
Re(δ) Rényi entropy of X
Te(λ) Tsallis entropy of X
HCe (β) Havrda and Charvat entropy of X
ML Maximum likelihood
LS Least-squares
WLS Weighted least-squares
MLE ML estimate
LSE LS estimate
MSE Mean square error
RMSE Root mean square error
AIC Akaike information criterion
AICc Akaike information criterion corrected
CAIC Consistent Akaike information criterion
BIC Bayesian information criterion
KS Kolmogorov-Smirnov
BD Beta distribution
TLD Topp-Leone distribution
KD Kumaraswamy distribution
ETLD Exponentiated Topp-Leone distribution
ULD Unit Lindley distribution
UBD Unit Burr-III distribution
QQ Quantile–quantile
P-P Probability–probability
TTT Total test time

1. Introduction

The introduction of new distributions allows statisticians and researchers to better model a
variety of data types, from symmetric to skewed, and from positive to bi-directional distributions.
These distributions provide tools for understanding data variability, estimating parameters, making
predictions, and conducting statistical hypothesis testing across diverse fields of study. For instance,
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percentages, proportions, and other quantities that have limits between 0 and 1 are better represented by
bounded distributions. Overall, distributions with bounded support offer practical tools for accurately
modeling a wide range of data types and phenomena, supplying information, enabling analysis, and
supporting decision-making in a variety of sectors. In the scientific literature, bounded distributions are
noticeably scarce compared to unbounded distributions, despite the ubiquity of actual scenarios with
bounded data.

The beta distribution, renowned for its versatility and applicability, holds a distinct place in
statistical modeling due to its ability to represent data with a range from 0 to 1. The beta distribution
was revitalized when Karl Pearson identified it as a member of the Pearson distribution family,
specifically as a Pearson Type I distribution. While the beta distribution is a valuable tool, it’s not
a one-size-fits-all solution. As a result, there are more studies on unit modeling in the literature.
The transformation of well-known continuous distributions has typically been used to introduce the
newly proposed unit distributions. The benefit of these unit distributions is that they increase the basic
distribution’s flexibility throughout the unit interval without requiring the addition of new parameters.
Such as, the Kumaraswamy Kumaraswamy distribution [1], the log-xgamma distribution [2], the
one parameter unit-Lindley distribution [3], the unit-Gompertz distribution [4], the unit Weibull
distribution [5], the unit Burr-III distribution [6], the unit-Rayleigh distribution [7], the unit Burr-XII
distribution [8], the unit half normal distribution [9], the exponentiated unit Lindley distribution [10],
the unit Teissier distribution [11], the unit two parameters Mirra distribution [12] and the two
parameters unit Muth distribution [13], etc.

The NXLD proposed by [14], which is obtained as a special case of the new one-parameter
polynomial exponential distribution introduced by [15], is used as the baseline distribution in this
article to introduce a new bounded distribution, namely the unit new X-Lindley distribution (UNXLD).
Here, it is necessary to mention the NXLD. A continuous random variable (rv) X is said to have the
NXLD with parameter θ > 0 if its pdf is of the form:

f (x; θ) =
θ(1 + θx)e−θx

2
, x > 0. (1.1)

The cdf of X is given by

F(x; θ) = 1 −
(1
2
θx + 1

)
e−θx, x > 0.

The NXLD is important for its ability to model positive real data, [14] explored the NXLD’s
applicability in actuarial science by examining its actuarial properties. Due to its qualities, it is a useful
tool for statistical analysis, research, and practical applications in a variety of fields. For numerous real-
world datasets, the NXLD demonstrated its uniqueness when compared to other models. Moreover,
the Lindley distribution has been applied in numerous fields, such as finance, environmental studies,
and medical research. Its ability to handle various types of data makes it a valuable tool in statistical
modeling. This NXLD offers a unique combination of features from both the Lindley and exponential
distributions. These are the motivations for introducing the NXLD on the unit interval.

Numerous probability distributions are created in the literature by combining, expanding, and
changing well-known distributions, which makes it possible to describe lifetime data with a more
flexible hrf. The bathtub curve is an idealized representation that helps in understanding and modeling
the behavior of systems. In the case of real-life datasets that vary over the positive real line, possess
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bathtub shaped hrf. [16–18] etc are examples of the same. In the latter case, it was demonstrated that
the unit inverse Gaussian distribution and the logit Slash distribution both produce hrfs with a bathtub
shape, as shown in [19] and [20], respectively. Due to the log function’s inclusion in their density
functions, these two distributions are more complex, and as a result, the cdf is not calculated in closed-
form. As a result, modeling studies using these two distributions are quite challenging. Another one is
the unit Burr-XII distribution [8], which has two parameters, and the Meijer G-function’s presence in
the formulation of its moments makes it slightly more difficult to understand the model’s flexibility.

The Lambert-uniform distribution with only one-parameter, proposed by [21], faces complications
in calculating associated properties due to the presence of the principal branch of the Lambert W
function and the logarithm function in its pdf. The unit Muth distribution [13] is another two-parameter
distribution. Similarly, the definition of moments comprises the gamma function, which causes
complexity. The unit generalized half-normal distribution was recently presented by [22], although it
lacks closed-form formulas for the cdf and quantile function. Less parameterized models are typically
easier to comprehend and interpret. This facilitates understanding of the underlying relationships and
implications of the model by researchers, analysts, and stakeholders.

These problems are improved by our newly defined UNXLD. It presents closed-form expression for
cdf, hrf, and all its statistical measures, even when a logarithmic function is present in its pdf. More
over, it possesses a monotonically increasing and bathtub-shaped hrf with only one parameter. After
all, the supremacy of the suggested model is confirmed by fitting a well-known bathtub-shaped dataset
that varies over a unit interval with a few other bounded distributions in the unit interval.

The rest of the paper is presented as follows: In Section 2, moments, incomplete moments, and
other properties are explored together with the introduction of the UNXLD. In Section 4, we explore
different estimation approaches, such as ML, LS, and WLS. Additionally, a simulation exercise is
conducted to assess the effectiveness of model parameter estimates obtained through these methods.
Two datasets are used in Section 5 to clarify the recommended distribution. Finally, Section 6 presents
the conclusions.

2. The unit new X-Lindley distribution

The UNXLD is obtained by the exponential transformation, X = e−Y , of the NXLD. A rv X is said
to follow the UNXLD with parameter θ > 0, if its pdf is of the following form:

f (x; θ) =
θ

2
xθ−1(1 − θ log x

)
, x ∈ (0, 1), θ > 0. (2.1)

The corresponding cdf is given by

F(x; θ) = xθ −
θxθ log x

2
. (2.2)

For any θ > 0, limx→0 f (x; θ) = 0 and limx→1 f (x; θ) =
θ

2
. Figure 1 displays the pdf of the UNXLD for

various values of the parameter θ.
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Figure 1. Pdfs of the UNXLD for different values of θ.

Furthermore, from Figure 1, it is clear that it serves as an appropriate probability model for modeling
right-skewed measurements within the unit interval.

2.1. Moments

Assume that X is a rv with UNXLD. The kth non-central moment of X for k = 1, 2, 3... is given by

E(Xk) =
θ(k + 2θ)
2(k + θ)2 . (2.3)

From (2.3), the mean and variance of UNXLD is obtained as

E(X) =
θ(2θ + 1)
2(θ + 1)2 , (2.4)

and

V(X) =
7θ4 + 20θ3 + 16θ2 + 4θ

4(θ + 2)2(θ + 1)4 .

Additionally, the skewness and kurtosis of UNXLD are given by

S kewness(X) =
4(2 + θ)2(−24 + θ(−130 + θ(−244 + θ(−154 + 3θ(13 + θ(22 + 5θ))))))2

θ(3 + θ)4(4 + θ(16 + θ(20 + 7θ)))3 ,

and

Kurtosis(X) =
1

θ(3 + θ)2(4 + θ)2(4 + θ(16 + θ(20 + 7θ)))2 3(2 + θ)2(384 + θ(2880

+ θ(8864 + θ(14704 + θ(15272 + θ(12100 + θ(8324 + θ(4099 + 3θ(362 + 370))))))))).

The behavior of the mean, variance, skewness, and kurtosis coefficients for various values of the
parameter is graphically depicted in Figures 2 and 3. It is evident that as θ increases, the mean also

AIMS Mathematics Volume 9, Issue 9, 24810–24831.



24815

increases. Additionally, the variance initially increases for certain values of θ, but then it begins to
decrease. As for skewness, it increases with θ, indicating a right skew. Additionally, the kurtosis also
increases as θ increases.

Figure 2. Mean and variance of the UNXLD for different values of θ.

Figure 3. Skewness and kurtosis of the UNXLD for different values of θ.

Proposition 2.1. The kth incomplete moment at x of a rv X with the UNXLD is for any non-negative
integer k and for any value of x ∈ (0, 1) is given by

mk(x; θ) =
θ2xk+θ[(k + θ) log x − 1

]
2(k + θ)2 .

Proof. According to the definition of the kth incomplete moment, there are

mk(x; θ) =

∫ x

0
tk f (t; θ)dt

=

∫ x

0
tk θ

2
tθ−1(1 − θ log t)dt

=
θ2xk+θ[(k + θ) log x − 1

]
2(k + θ)2 .

�
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2.2. Hazard rate function

The hrf provides insight into the risk of an event happening at a particular time, considering the
history of events up to that time.

Using (2.2), the sf and hrf of X are given by

s(x; θ) = 1 − xθ +
θxθ log x

2
,

and

h(x; θ) =
θxθ−1(1 − θ log x

)
2
(
1 − xθ +

θxθ log x
2

) . (2.5)

Additionally, for any θ > 0, limx→0h(x; θ) = 0 and limx→1h(x; θ) = ∞.
The reversed hrf of X is given by

τ(x; θ) =
θ(1 − θ log x)
x(2 − θ log x)

.

Figure 4 illustrates the hrf for various values of the parameter θ, providing a general understanding of
the different forms of the hrf (2.5). It is evident that the UNXLD can exhibit increasing, and bathtub-
shaped hrf.
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Figure 4. The hrf of the UNXLD for different values of θ.

Similarly, mrl provides the average time a system or component can be expected to continue
functioning before reaching a specific condition, which is valuable for making informed decisions
about maintenance, replacement, and resource allocation.

Proposition 2.2. The mrl of a rv having the UNXLD is given by

r(t; θ) =
1

s(t; θ)

(
1 − t −

1
θ + 1

+
tθ+1

θ + 1
−
θtθ+1 log t
2(θ + 1)

−
θ

2(θ + 1)2 +
θtθ+1

2(θ + 1)2

)
, 0 < t < 1,

where s(x; θ) = 1 − F(x; θ) is the sf, 0 < x < 1.
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Proof. Let X be a rv with a UNXLD with cdf (2.2). The mrl of X can be stated as follows:

r(t; θ) = E(X − t|X > t)

=
1

s(t; θ)

∫ 1

t
s(x; θ)dx

=
1

s(t; θ)

(
1 − t −

1
θ + 1

+
tθ+1

θ + 1
−
θtθ+1 log t
2(θ + 1)

−
θ

2(θ + 1)2 +
θtθ+1

2(θ + 1)2

)
.

�

2.3. Inequality measures and Gini index

Lorenz and Bonferroni curves serve as essential tools for measuring income inequality and have
broad applications beyond economics, extending into diverse fields such as reliability analysis,
demography, medicine, and insurance. For the UNXLD, we will derive Lorenz and Bonferroni curves
in this section.

Proposition 2.3. The Lorenz and Bonferroni curves and Gini index of the UNXLD are given
respectively as follows:

(1)

LF(x) =
xθ+1(2θ + 1 − (θ + 1)θ log x

)
2θ + 1

;

(2)

BF(x) =
x
(
2θ + 1 − (θ + 1)θ log x

)
(2θ + 1)(1 −

θ log x
2

)
;

(3)

Gi(x) = 1 −
θ(θ(θ(16θ + 21) + 8) + 1)

(2θ + 1)4 , θ > −
1
2
.

Proof. By using the first incomplete moment m1(x; θ) and the E(X), one can determine the Lorenz and
Bonferroni curves.

(1)

LF(x; θ) =
m1(x; θ)

E(x)
. (2.6)

Now,

m(x;θ) =

∫ x

0
t f (t; θ)dt (2.7)

=
θxθ+1(2θ + 1 − (θ + 1)θ log x

)
2(θ + 1)2 .

By substituting (2.7), and (2.4) into (2.6), we have

LF(x; θ) =
xθ+1(2θ + 1 − (θ + 1)θ log x

)
2θ + 1

.
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(2)

BF(x; θ) =
m1(x; θ)

F(x; θ)E(X)
. (2.8)

By substituting (2.7), (2.4), and (2.2) into (2.8), we have

BF(x) =
x
(
2θ + 1 − (θ + 1)θ log x

)
(2θ + 1)

(
1 −

θ log x
2

) .

(3) The proof is obtained directly by using the cdf in Eq (2.2) and the mean in (2.4) of the UNXLD
and is given by

Gi(x) = 1 −

∫ 1

0
(1 − F(x, θ))2 dx

µ
.

�

2.4. Mode

Proposition 2.4. The pdf of the UNXLD has the mode given by

xM = e
1

(1−θ)θ .

Proof. To find the mode, take the log of the UNXLD pdf as:

log( f (x; θ)) = log(θ/2) + log(x(θ−1)) + log(1 − θlog(x)).

Differentiate log( f (x; θ)) with respect to x to obtain:

∂log( f (x; θ))
∂x

=
θ − 1

x
−

θ

x(1 − θ log(x))
.

Equating this equation to zero and solving for x, we obtain

xM = e
1

(1−θ)θ .

�

3. Extropy and entropy measures

Let X be a non-negative absolutely continuous rv with pdf f (x). In this section, the extropy measure
suggested by [23] and three entropy measures, include, the Tsallis entropy proposed by [24], the Rényi
entropy introduced by [25], and the Havrda and Charvat entropy suggested by [26] for the UNXLD,
are presented.

Proposition 3.1. If X ∼ UNXLD, then the extropy of X is defined as:

J(X) =
θ2(2(3 − 5θ)θ − 1)

8(2θ − 1)3 . (3.1)
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Proof. Using the pdf of the UNXLD in Eq (2.1) and the definition of extropy J(X) = −1
2

∫ 1

0
f 2(x) dx,

the proof is given by

J(X) = −
1
2

1

∫
0

f 2(x)dx

= −
1
2

1

∫
0

1
4
θ2x2θ−2

(
(θ log(x))2

− 2θ log(x) + 1
)

dx

= −
1
2

(∫ 1

0

θ2

4
x2θ−2dx −

∫ 1

0

θ3

2
x2θ−2 log(x)dx +

∫ 1

0

θ4

4
x2θ−2log2(x)dx

)
= −

1
2

(
θ4

2(2θ − 1)3 +
θ3

2(1 − 2θ)2 +
θ2

4(2θ − 1)

)
=
θ2(2(3 − 5θ)θ − 1)

8(2θ − 1)3 .

�

Proposition 3.2. If X ∼ UNXLD, then the Rényi entropy of X is defined as:

Re(δ) =
1

1 − δ
log

 θ2δe
δ(θ−1)+1

θ

2δ(δ(θ − 1) + 1)δ+1 Γ

(
δ + 1,

δ(θ − 1) + 1
θ

) , δ > 0, δ , 1. (3.2)

Proof. Using the pdf of the UNXLD in Eq (2.1) and the definition of Rényi entropy Re(δ) =

1
1−δ log

 ∞∫
0

f δ(x)dx
 , δ > 0, δ , 1, the proof can be obtained. �

Proposition 3.3. If X ∼ UNXLD, then the Tsallis entropy of X is defined as:

Te(λ) =
1

λ − 1

1 − θ2λe
(θ−1)λ+1

θ

2λ((θ − 1)λ + 1)λ+1 Γ

(
λ + 1,

(θ − 1)λ + 1
θ

) , λ > 0, λ , 1. (3.3)

Proof. Using the pdf of the UNXLD in Eq (2.1) and the definition of Tsallis entropy Re(λ) =
1
λ−1

(
1 −

∫ ∞
0

f λ(x) dx
)
, λ > 0, λ , 1, the proof can be obtained. �

Proposition 3.4. If X ∼ UNXLD, then for β > 0, β , 1 the Havrda and Charvat entropy of X is defined
as:

HCe (β) =
1

21−β − 1

 θ2βe
β(θ−1)+1

θ

2β(β(θ − 1) + 1)β+1 Γ

(
β + 1,

β(θ − 1) + 1
θ

)
− 1

 . (3.4)

Proof. Using the pdf of the UNXLD in Eq (2.1) and the definition of Havrda and Charvat entropy

HCe (β) = 1
21−β−1

 ∞∫
0

f β(x)dx − 1
 , β > 0, β , 1, the proof can be obtained. �

4. Estimation of parameters

The estimation of the UNXLD parameter is covered in this section. The ML approach is described
in Subsection 4.1. The LS and WLS approaches are described in Subsection 4.2. Section 4.3 compares
the effectiveness of these techniques using a Monte Carlo simulation analysis.
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4.1. Maximum likelihood estimation

Let X1, X2, ..., Xn be a random sample of size n taken from the UNXLD with parameter θ.
x1, x2, ..., xn are the observed values. Then the likelihood function is given by

L(x; θ) =

n∏
i=1

f (xi; θ).

Then the derivative of the log-likelihood function is given by

∂

∂θ
log L(x; θ) =

n
θ

+

n∑
i=1

log xi −

n∑
i=1

log xi

1 − θ log xi
. (4.1)

The MLE of θ is obtained by maximizing the log L(x; θ) with respect to θ. Which is done by solving
the equation ∂

∂θ
log L(x; θ) = 0. Due to the difficulty in solving this, we can use the optim function in R

to obtain the MLE numerically.

4.2. Ordinary and weighted least-squares estimation

Let X1, X2, ..., Xn be a random sample taken from the UNXLD with parameter θ. Let
X1:n, X2:n, ..., Xn:n be the order statistics and are denoted by x1:n, x2:n, ..., xn:n the ordered observed data.
Let us set

R(θ) =

n∑
i=1

[
F(xi:n; θ) −

i
n + 1

]2

.

Then, the LSE of θ, say θ̂LS , is acquired by minimizing R(θ) with respect to θ. Practically the LSE is
obtained by solving

∂

∂θ
R(θ) = 2

n∑
i=1

[
F(xi:n; θ) −

i
n + 1

]
D(xi:n, θ) = 0,

where

D(xi:n, θ) =
∂

∂θ
F(xi:n; θ)

= xθi:n log xi:n

(1 − θ log xi:n

2

)
.

Similarly, the WLS estimate (WLSE) of θ, say θ̂WLS , is acquired by minimizing the non-linear function

W(θ) =

n∑
i=1

(n + 1)2(n + 2)
i(n − i + 1)

[
F(xi:n; θ) −

i
n + 1

]2

,

with respect to θ, that is acquired by solving

∂

∂θ
W(θ) = 2

n∑
i=1

(n + 1)2(n + 2)
i(n − i + 1)

[
F(xi:n; θ) −

i
n + 1

]
D(xi:n, θ) = 0.

The LSE and WLSE can be evaluated numerically using the optim function in R.
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4.3. Simulation study

In the simulation study, the Monte Carlo simulation was carried out to demonstrate the model’s
efficiency using several estimating techniques, including ML, LS, and WLS. For N = 10000 samples
of sizes n = 50, 75, 200, 300, 500, and 1000, the estimates for the true values of the parameters were
determined. These random samples from the UNXLD are generated by applying the inverse cdf to
uniformly distributed random numbers. The following quantities were computed:

• Mean of the estimates : Mean(η) =
1
N

∑N
i=1 ηi;

• Average bias of the estimates, Bias(η) =
1
N

∑N
i=1(ηi − θ);

• Mean square error of the estimates, MS E(η) =
1
N

∑N
i=1(ηi − θ)2 ;

• Root mean square error of the estimates, RMSE(η) =
1
N

∑N
i=1
|ηi − θ|

θ
,

where η ∈ (θ̂ML, θ̂LS , θ̂WLS ), i denotes the number of the sample. The simulation results for the ML, LS,
and WLS estimation methods are displayed in Tables 1–3. From these tables, it can be concluded that,
for MLEs, there is a noticeable decline in both absolute bias and MSE as the sample size increases.
Consequently, the performance of MLE proves to be consistently reliable. Figure 5 shows a graphical
comparison of the MSEs derived using the three approaches.

Table 1. Simulation results: MLEs, bias, MSE, and RMSE.

θ = 0.6 θ = 1.0

n MLE Bias MSE RMSE MLE Bias MSE RMSE

50 0.53725 0.06275 0.00394 0.10458 0.92859 0.07141 0.00510 0.07141
75 0.57799 0.02201 0.00048 0.03668 0.96221 0.03779 0.00143 0.03779

200 0.56584 0.03416 0.00117 0.05693 0.95166 0.04834 0.00234 0.04834
300 0.58957 0.01043 0.00011 0.01739 0.98068 0.01932 0.00037 0.01932
500 0.62133 0.02133 0.00046 0.03556 1.04315 0.04315 0.00186 0.04315

1000 0.60301 0.00301 0.00001 0.00502 1.00761 0.00761 0.00006 0.00761
θ = 1.5 θ = 2.1

n MLE Bias MSE RMSE MLE Bias MSE RMSE

50 1.39245 0.10755 0.01157 0.07170 1.94940 0.15060 0.02268 0.07171
75 1.44324 0.05676 0.00322 0.03784 2.02057 0.07943 0.00631 0.03782

200 1.42729 0.07271 0.00529 0.04848 1.99820 0.10180 0.01036 0.04848
300 1.47088 0.02912 0.00085 0.01942 2.05923 0.04077 0.00166 0.01941
500 1.56445 0.06445 0.00415 0.04297 2.19025 0.09025 0.00814 0.04297

1000 1.51125 0.01125 0.00013 0.00750 2.11575 0.01575 0.00025 0.00750

AIMS Mathematics Volume 9, Issue 9, 24810–24831.



24822

Table 2. Simulation results: LSEs, bias, MSE, and RMSE.

θ = 0.6 θ = 1.0

n LSE Bias MSE RMSE LSE Bias MSE RMSE

50 0.58156 0.02189 0.00034 0.03073 0.96916 0.03695 0.00095 0.03084
75 0.56095 0.03777 0.00153 0.06509 0.93485 0.06326 0.00425 0.06515

200 0.55214 0.03869 0.00229 0.07977 0.92020 0.06476 0.00637 0.07980
300 0.58601 0.01329 0.00020 0.02331 0.97663 0.02252 0.00055 0.02337
500 0.62936 0.03077 0.00086 0.04893 1.04890 0.05116 0.00239 0.04890

1000 0.59583 0.00176 0.00002 0.00696 0.99300 0.00315 0.00005 0.00700
θ = 1.5 θ = 2.1

n LSE Bias MSE RMSE LSE Bias MSE RMSE

50 1.45373 0.05543 0.00214 0.03084 2.03526 0.07757 0.00419 0.03083
75 1.40227 0.09490 0.00955 0.06515 1.96319 0.13284 0.01872 0.06515

200 1.38028 0.09719 0.01433 0.07981 1.93241 0.13605 0.02809 0.07981
300 1.46495 0.03379 0.00123 0.02337 2.05093 0.04731 0.00241 0.02337
500 1.57335 0.07672 0.00538 0.04890 2.20270 0.10743 0.01055 0.04890

1000 1.48950 0.00474 0.00011 0.00700 2.08531 0.00662 0.00022 0.00699

Table 3. Simulation results: WLSEs, bias, MSE, and RMSE.

θ = 0.6 θ = 1.0

n WLSE Bias MSE RMSE WLSE Bias MSE RMSE

50 0.57811 0.02189 0.00048 0.03649 0.96305 0.03695 0.00137 0.03695
75 0.56223 0.03777 0.00143 0.06296 0.93674 0.06326 0.00400 0.06326

200 0.56131 0.03869 0.00150 0.06448 0.93524 0.06476 0.00419 0.06476
300 0.58671 0.01329 0.00018 0.02216 0.97748 0.02252 0.00051 0.02252
500 0.63077 0.03077 0.00095 0.05129 1.05116 0.05116 0.00262 0.05116

1000 0.59824 0.00176 0.00000 0.00294 0.99685 0.00315 0.00001 0.00315

θ = 1.5 θ = 2.1

n WLSE Bias MSE RMSE WLSE Bias MSE RMSE

50 1.44457 0.05543 0.00307 0.03695 2.02243 0.07757 0.00602 0.03694
75 1.40510 0.09490 0.00901 0.06326 1.96716 0.13284 0.01765 0.06326

200 1.40281 0.09719 0.00945 0.06479 1.96395 0.13605 0.01851 0.06478
300 1.46621 0.03379 0.00114 0.02253 2.05269 0.04731 0.00224 0.02253
500 1.57672 0.07672 0.00589 0.05114 2.20743 0.10743 0.01154 0.05115

1000 1.49526 0.00474 0.00002 0.00316 2.09338 0.00662 0.00004 0.00315
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Figure 5. Graphical comparison of the MSEs obtained from ML, LS, and WLS estimation
methods for different values of the parameter.

5. Application

5.1. Methodology

In this section, two real-life datasets are used to demonstrate the advantages of the UNXLD. After
the data were fitted with the UNXLD, the outcomes were compared to those offered by other probability
distributions specified in the unit interval based on the AIC, AICc, CAIC, and BIC together with
the MLE. In addition, the KS test and the corresponding p−value were used to assess the models’
goodness-of-fit, which are listed below

• Akaike information criterion:

AIC = 2k − 2 log l;

• Akaike information criterion corrected:

AICc = AIC +
2k(k + 1)
n − k − 1

;

• Consistent Akaike information criterion:

CAIC = −2 log l + k(log n + 1);
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• Bayesian information criterion:

BIC = k log n − 2 log l.

Here, log l denotes the estimated value of the maximum log-likelihood, k denotes the number of
parameters and n denotes the number of observations

For comparison, the following probability distributions were taken into account: BD, TLD proposed
by [27], KD suggested by [28], ETLD introduced by [29], and UBD suggested by [6].

The pdf of the compared distributions that are used to compare with the UNXLD on the unit
interval (0, 1).

• Beta distribution:

f (x;α; β) =
Γ(α + β)
Γ(α)Γ(β)

xα−1(1 − x)β−1, x ∈ (0, 1), α > 0, β > 0.

• Topp-Leone distribution:

f (x;α) = 2α(1 − x)xα−1(2 − x)α−1, α > 0.

• Kumaraswamy distribution:

f (x;α; β) = αβxα−1(1 − xα)β−1, α > 0, β > 0.

• Exponentiated Topp-Leone distribution:

f (x;α; β) = 2αβ(1 − x)
(
x(2 − x)

)α−1(1 − xα(2 − x)α
)β−1

, α > 0, β > 0.

• Unit Burr-II distribution:

f (x;α; β) = αβx−1(− log x)β−1(1 + (− log x)β
)−α−1

, x ∈ (0, 1), α > 0, β > 0.

5.2. Data description and inference

The first dataset here considered relates to a comparison of the SC 16 and P3 unit capacity factor
estimation techniques. [30] and [31] has already been investigated this dataset. The data are displayed
in Table 4.

Table 4. The observations of the dataset 1.

0.853 0.759 0.866 0.809 0.717 0.544 0.492 0.403
0.344 0.213 0.116 0.116 0.092 0.070 0.059 0.048
0.036 0.029 0.021 0.014 0.011 0.008 0.006

The second set of data comprises the initial 58 observations documenting the time of failure for
Kevlar 49/epoxy strands tested at a stress level of 90%. This data was used by [32] and is presented in
Table 5. Figures 6–9 show the density plot, QQ plot, PP plot, box plot, estimated pdfs, and TTT plot
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proposed by [33] may be used for obtaining empirical behavior of the hrf for both datasets considered
here.

Table 5. The observations of the dataset 2.

0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.04 0.05
0.06 0.07 0.07 0.08 0.09 0.09 0.1 0.1 0.11
0.11 0.12 0.13 0.18 0.19 0.2 0.23 0.24 0.24
0.29 0.34 0.35 0.36 0.38 0.4 0.42 0.43 0.52
0.54 0.56 0.6 0.6 0.63 0.65 0.67 0.68 0.72
0.72 0.72 0.73 0.79 0.79 0.8 0.8 0.83 0.85
0.9 0.92 0.95 0.99 0.01
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Figure 6. The density, box, and TTT plots based on the first dataset.

AIMS Mathematics Volume 9, Issue 9, 24810–24831.



24826

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

Quantiles Theoretical

E
m
pi
ric
al
Q
ua
nt
ile
s

(a) QQ (b) Est.pdfs

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

ProbabilitiesTheoretical

E
m
pi
ric
al
P
ro
ba
bi
lit
ie
s

(c) PP

Figure 7. The QQ, PP, and estimated pdfs based on the first dataset.
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Figure 8. The density, box, histogram and TTT plots based on the second dataset.
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Figure 9. The QQ, PP, and estimated pdfs based on the second dataset.

The results for dataset 1 and dataset 2 are summarized in Tables 6 and 7. These tables specifically
provide the log-likelihood value, MLEs, measures AIC, AICc, CAIC, BIC, and the value of the KS
statistic together with the corresponding p−value for each fitted model. The UNXLD offers a better fit
with the smallest values for the AIC, AICc, CAIC, and BIC criteria, as well as the smallest value for
the KS statistic and the largest p−value, as can be observed.
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Table 6. The MLE and goodness-of-fit results of the dataset 1.

Model log L ML estimates S.Es AIC AICc CAIC BIC KS statistic p − value

UNXLD 9.9915 θ̂ = 0.6824 0.1244 -17.9830 -17.7925 -15.8475 -16.8475 0.1663 0.5483

UBD 5.8728
α̂ = 0.7848 0.1919

-7.745593 -7.145593 -3.474604 -5.474604 0.2394 0.1433
β̂ = 1.5049 0.2951

ETLD 9.3913
α̂ = 0.4624 0.1389

-14.7827 -14.1827 -10.5117 -12.5117 0.1933 0.3562
β̂ = 0.6806 0.1717

TLD 8.1151 α̂ = 0.5943 0.1239 -14.2303 -14.0398 -12.0948 -13.0948 0.1690 0.5272

BD 9.6075
α̂ = 0.4869 0.1208

-15.2149 -14.6149 -10.9439 -12.9439 0.1836 0.4203
β̂ = 1.1679 0.3578

KD 9.6708
α̂ = 0.5044 0.1288

-15.3416 -14.7416 -11.0706 -13.0706 0.1790 0.4529
β̂ = 1.1862 0.3265

Table 7. The MLE and goodness-of-fit results of the dataset 2.

Model log L ML estimates S.Es AIC AICc CAIC BIC KS statistic p − value

UNXLD 5.7959 θ̂ = 0.9861 0.1138 -9.5917 -9.5203 -6.5313 -7.5313 0.1013 0.5911

UBD 0.4600
α̂ = 1.1262 0.1581

3.0799 3.2981 9.2008 7.2008 0.1304 0.2778
β̂ = 1.3741 0.1571

ETLD 5.4371
α̂ = 0.6450 0.1305

-6.8742 -6.6560 -0.7533 -2.7533 0.1107 0.4765
β̂ = 0.5639 0.0879

BD 5.6714
α̂ = 0.6777 0.1107

-7.3427 -7.1245 -1.2218 -3.2218 0.1038 0.5592
β̂ = 1.0412 0.1873

KD 5.6824
α̂ = 0.6825 0.1145

-7.3648 -7.1467 -1.2439 -3.2439 0.1036 0.5628
β̂ = 1.0472 0.1794

6. Conclusions

By using an exponential transformation, we established a bounded form of the NXLD in this study
called the UNXLD. Certain important distributional properties, such as the behavior of the pdf and
hrf, along with some tractable statistical properties such as moments, incomplete moments, mode, and
quantile function, are proposed. Moreover, all the statistical measures are in closed form. The ML
approach, LS, and WLS were used to estimate the model parameters, and simulation studies were
used to test the estimates. The UNXLD can be thought of as a good contender in distributions in unit
interval, when the dominance of the proposed model has been demonstrated using two real datasets. In
future work, it would be intriguing to identify the quantile function and extend the research to develop
quantile regression models.
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A. Appendix

The R-code for the empirical study of UNXLD is given below.

library(fitdistrplus)

data<-NULL

n<-length(data)

n
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duxl <- function(x,theta){

((theta/2)*(xˆ(theta-1))*(1-(theta*log(x))))

}

### CDF ###

puxl<- function(q,theta){

((qˆtheta)-((theta*(qˆtheta)*(log(q)))/(2)))

}

prefit(x, "uxl", "mle", list(theta=initial), lower=c(0), upper=c(Inf))

est <- fitdist(x,"uxl", start=list(theta=initial),optim.method="Nelder-Mead")

est

summary(est)

ks.test(x,"puxl",est$estimate)

logl=est$loglik

AIC=2*1-2*logl

AIC

BIC=-2*logl+1*(log(length(x)))

BIC

k=number of parameter

CAIC=-2*logl+k*(log(length(x))+1)

CAIC

AICC=AIC+(2*k*(k+1)/(length(x)-k-1))

AICC
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