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1. Introduction

Uncertainty permeates every aspect of human life. Zadeh [24] first presented the concept of a fuzzy
set in response to the limitations of classical set theory in accommodating such uncertainties. These
studies characterized a fuzzy set by a membership function graded across a unit interval. However,
subsequent scrutiny revealed this definition’s inadequacy when confronted with membership and non-
membership degrees. To address this ambiguity, Atanassov [2] formulated intuitionistic fuzzy theory as
an extension of the fuzzy set framework. Despite its broad approach and real-world application [1,23],
this theory encounters several challenges in practical applications. Consequently, Smarandache [19]
proposed a neutrosophic set to confront ambiguous and inconsistent data problems. Since then,
research has dealt with it, whether in the study of algebraic structures [5, 7, 11, 21] or life applications,
for example, see [9, 10].

The exploration of algebraic constructions in the realm of neutrosophics has garnered considerable
interest from researchers. For instance, Kandasamy et al. [14] delved into the study of neutrosophic
rings. In [18], Salama et al. defined the notion of neutrosophic ideal topology, while Saber et al.
introduced the notion of single-valued neutrosophic ideals set in Sostak’s sense, which is considered a
generalization of fuzzy ideals in Š ostak’s sense and intuitionistic fuzzy ideals in [17]. In the context
of the notion of neutrosophic subalgebras in BCK/BCI-algebras introduced in [12], Young et al.
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introduced neutrosophic ideals in BCK/BCI-algebras, see [16].
At the same time, Vildan et al. [5] proposed an approach to a single-valued neutrosophic ideal

within a classical ring, extending the discourse on neutrosophic algebraic structures outlined in [4,
6, 13]. This approach uses min/ min/ max and ⩾ / ⩾ / ⩽, respectively. Due to the importance and
diversity of neutrosophic applications in life and the processing of uncertain and unlimited data, it was
necessary to develop this approach, which has become urgent in light of these applications. Recently,
Elrawy et al. [7] introduced a novel perspective on defining and analyzing neutrosophic sub-rings and
ideals. This approach utilizes min/ max/ max and ⩾ / ⩽ / ⩽. This consideration is better since the
component µ represents a positive quality. In contrast, γ and ζ denote negative qualities, thus justifying
the employment of max/ max and ⩾ / ⩽, respectively, for γ and ζ.

Our study of the concepts of ideal and prime ideal in the context of neutrosophic sets has two
primary motivations. First, we explore the possibilities and limits of extending classical ideal and
prime ideal theory to the neutrosophic ideal and the neutrosophic prime ideal by allowing elements
to satisfy the prime condition with varying degrees of truth, indeterminacy, and falsity. Second, the
neutrosophic ideals and neutrosophic prime ideal provide a more flexible framework for dealing with
uncertain, incomplete, or conflicting information, which is essential and significant in applications such
as artificial intelligence, economics, social sciences, and decision-making where data or conditions are
uncertain. Classical ideals and prime ideals impose strict membership criteria, whereas neutrosophic
and prime ideals allow partial and uncertain membership. The latter leads to more affluent and
adaptable algebraic structures that sufficiently reflect the complexity of the real world. Also, this article
builds on and extends the approach taken in [7]. Moreover, we delve into applying neutrosophic ideals
within regular rings. Additionally, we present and scrutinize neutrosophic prime ideals. Furthermore,
we deduce various properties and characterizations of neutrosophic ideals over the set of integers Z.

The subsequent section of this article is structured as follows: In Section 2, fundamental definitions
and outcomes are delineated, which serve as valuable groundwork for the main findings of this article.
Section 3 presents the concept of a neutrosophic ideal within a regular ring. Furthermore, we explore
the notion of a neutrosophic prime ideal and analyze all instances of neutrosophic prime ideals in Z. To
culminate our discussion, Section 3 encapsulates the findings and conclusions drawn throughout this
article.

2. Some basic concepts

In this part, we will explore certain principles and outcomes that serve as the foundation for the
subsequent section.

Definition 2.1. [20] A neutrosophic set N on R is given by:

N = {< Θ,µ(Θ),γ(Θ), ζ(Θ) >: Θ ∈ R} ,

where R is a universe set, and µ,γ,ζ : R→ [0,1].

Definition 2.2. [19, 21] Presume N1 = {< Θ,µ1(Θ),γ1(Θ), ζ1(Θ) >: Θ ∈ R}, and N2 =

{< Θ,µ2(Θ),γ2(Θ), ζ2(Θ) >: Θ ∈ R} are two neutrosophic sets on R. Then,

1) N1 ⊆ N2 = {< Θ,µ1(Θ) ≤ µ2(Θ),γ1(Θ) ≥ γ2(Θ), ζ1(Θ) ≥ ζ2(Θ) >: Θ ∈ R};
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2) N1∪N2 = {< Θ,µ1(Θ)∨µ2(Θ),γ1(s)∧γ2(Θ), ζ1(Θ)∧ ζ2(Θ) >: Θ ∈ R};
3) N1∩N2 = {< Θ,µ1(Θ)∧µ2(Θ),γ1(Θ)∨γ2(Θ), ζ1(Θ)∨ ζ2(Θ) >: Θ ∈ R}.

Definition 2.3. [8] PresumeW⊆N . For 0 ⩽ α ⩽ 1, then the set

Wα = {< Θ,µ(Θ),γ(Θ), ζ(Θ) >: Θ ∈ R, µ(Θ) ≥ α,γ(Θ) ≤ α,ζ(Θ) ≤ α} ,

is a level subset ofW.

Theorem 2.4. [8] Suppose that G is a group with identity e andW is a neutrosophic sub-group of G,
then the level subsetWα, for α ∈ [0,1], α ⩽ µ(e), α ⩾ γ(e), and α ⩾ ζ(e) is a sub-group of G.

Certainly,Wα1 ⊆Wα2 , when α1 > α2, andWα1 ,Wα2 sub-groups of G with the same conditions
in Theorem 2.4.

Definition 2.5. [7] A neutrosophic subset S of R is said to be a neutrosophic sub-ring of R when the
following conditions are met:
1) µ(Θ1−Θ2) ⩾min(µ(Θ1),µ(Θ2)),
2) µ (Θ1Θ2) ⩾min(µ(Θ1),µ(Θ2)),
3) γ(Θ1−Θ2) ⩽max(γ(Θ1),γ(Θ2)),
4) γ (Θ1Θ2) ⩽max(γ(Θ1),γ(Θ2)),
5) ζ(Θ1−Θ2) ⩽max(ζ(Θ1), ζ(Θ2)),
6) ζ (Θ1Θ2) ⩽max(ζ(Θ1), ζ(Θ2)),
where Θ1,Θ2 ∈ R.

Example 2.6. Let (R,+, .) be a classical ring of real numbers. Then, a neutrosophic subset R = {<
Θ,µ(Θ),γ(Θ), ζ(Θ) >: Θ ∈ R} is defined as follows:

µ(Θ) =

0.6 if Θ = 0,
0.8 if Θ , 0,

γ(Θ) =

0.5 if Θ , 0,
0.2 if Θ = 0,

ζ(Θ) =

0.6 if Θ , 0,
0.4 if Θ = 0,

is a neutrosophic sub-ring for all conditions of Definition 2.5 are held.

Definition 2.7. [7] A neutrosophic sub-ring I is called a neutrosophic left ideal if the next conditions
are met:
1) µ(Θ1Θ2) ⩾ µ(Θ2),
2) γ(Θ1Θ2) ⩽ γ(Θ2),
3) ζ(Θ1Θ2) ⩽ ζ(Θ2).
Again, I is called a neutrosophic right ideal when
1) µ(Θ1Θ2) ⩾ µ(Θ1),
2) γ(Θ1Θ2) ⩽ γ(Θ1),
3) ζ(Θ1Θ2) ⩽ ζ(Θ1).
Also, I is called a neutrosophic ideal when it is a neutrosophic right and left ideal.
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Proposition 2.8. [7] A neutrosophic subset I of R is called a neutrosophic ideal when the following
axioms are met:

1) µ(Θ1−Θ2) ⩾min(µ(Θ1),µ(Θ2)),
2) µ (Θ1Θ2) ⩾max(µ(Θ1),µ(Θ2)),
3) γ(Θ1−Θ2) ⩽max(γ(Θ1),γ(Θ2)),
4) γ (Θ1Θ2) ⩽min(γ(Θ1),γ(Θ2)),
5) ζ(Θ1−Θ2) ⩽max(ζ(Θ1), ζ(Θ2)),
6) ζ (Θ1Θ2) ⩽min(ζ(Θ1), ζ(Θ2)),
where Θ1,Θ2 ∈ R.

Example 2.9. Presume (Z8,⊕8,⊗8) is a ring. Then, a neutrosophic subset I = {<Θ,µ(Θ),γ(Θ), ζ(Θ) >:
Θ ∈ Z8} is defined as follows:

µ(Θ) =


0.8 if Θ = 0,
0.4 if Θ ∈ {2,4,6},
0.5 otherwise,

γ(Θ) =


0.4 if Θ = 0,
0.6 if Θ ∈ {2,4,6},
0.7 otherwise,

ζ(Θ) =


0.3 if Θ = 0,
0.7 if Θ ∈ {2,4,6},
0.6 otherwise,

is a neutrosophic ideal for all conditions of Proposition 2.8 are held.

Definition 2.10. [7] Let S be a neutrosophic ideal (sub-ring) of a ring R with 0 ≤ α ≤ µ(0) and
0 ≤ γ(0), ζ(0) ≤ α. The ideal (sub-ring) Sα is said to be a level ideal (level sub-ring) of S.

Definition 2.11. [7] Let I1 and I2 be two neutrosophic ideals of R. Then, the product of I1 and I2
is defined as follows:

(µ1 •µ2)(⋉) = sup
⋉=
∑

i siti
(mini(min(µ1(si),µ2(ti)))),

(γ1 •γ2)(⋉) = inf
⋉=
∑

i siti
(maxi(max(γ1(si),γ2(ti)))),

(ζ1 • ζ2)(⋉) = inf
⋉=
∑

i siti
(maxi(max(ζ1(si), ζ2(ti)))),

where ⋉, si, ti ∈ R.

Definition 2.12. [22] A ring R is termed regular if for every element a ∈ R ∃ s ∈ R such that a = asa.

Theorem 2.13. [3] A ring R is regular iff IJ = I ∩ J, where I is the right ideal and J is the left ideal
over R.
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3. Main results

In this part, we introduce the idea of a neutrosophic ideal within a conventional ring. Additionally,
we investigate the notion of a neutrosophic prime ideal and examine all occurrences of neutrosophic
prime ideals in Z. We start with the following subsection:

3.1. Neutrosophic ideal over regular ring

Next, we explain that the property characteristic of regularity in a classical ring can be defined with
the help of neutrosophic ideals of the ring.

Lemma 3.1. Let I1 be a neutrosophic left ideal and I2 be the neutrosophic right ideal; then I1 •I2 ⊆

I1∩I2.

Proof. Since
(µ1 •µ2)(⋉) = sup

⋉=
∑

i siti
(mini(min(µ1(si),µ2(ti)))),

(γ1 •γ2)(⋉) = inf
⋉=
∑

i siti
(maxi(max(γ1(si),γ2(ti)))),

(ζ1 • ζ2)(⋉) = inf
⋉=
∑

i siti
(maxi(max(ζ1(si), ζ2(ti)))),

and I1 is a neutrosophic left ideal and I2 is a neutrosophic right ideal, then we obtain

µ1(ti) ⩽ µ1(siti) = µ1(⋉),
γ1(ti) ⩾ γ1(siti) = γ1(⋉),
ζ1(ti) ⩾ ζ1(siti) = ζ1(⋉),

and
µ2(si) ⩽ µ2(siti) = µ2(⋉),
γ2(si) ⩾ γ2(siti) = γ2(⋉),
ζ2(si) ⩾ ζ2(siti) = ζ2(⋉),

so,
(µ1 •µ2)(⋉) = sup

⋉=
∑

i siti
(mini(min(µ1(si),µ2(ti)))) ⩽min(µ1(⋉),µ2(⋉)),

(γ1 •γ2)(⋉) = inf
⋉=
∑

i siti
(maxi(max(γ1(si),γ2(ti)))) ⩾max(γ1(⋉),γ2(⋉)),

(ζ1 • ζ2)(⋉) = inf
⋉=
∑

i siti
(maxi(max(ζ1(si), ζ2(ti)))) ⩾max(ζ1(⋉), ζ2(⋉)),

Therefore, I1 •I2 ⊆ I1∩I2. □

Theorem 3.2. A ring R is considered regular iff I1 •I2 = I1∩I2, for any neutrosophic left ideal I1
and any neutrosophic right ideal I2 over R.

Proof. Assume that R is regular, and let ⋉, ι, ς ∈ R with ⋉ = ις. Then,

(µ1 •µ2)(⋉) = sup
⋉=ις

(min(µ1(ι),µ2(ς))),

(γ1 •γ2)(⋉) = inf
⋉=ις

(max(γ1(ι),γ2(ς))),

(ζ1 • ζ2)(⋉) = inf
⋉=ις

(max(ζ1(ι), ζ2(ς))).
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Since ⋉ = ⋉⋊⋉ for some ⋉ ∈ R, then,

µ2(⋉) = µ2(⋉⋊⋉) ⩾ µ2(⋉⋊) ⩾ µ2(⋉),
γ2(⋉) = γ2(⋉⋊⋉) ⩽ γ2(⋉⋊) ⩽ γ2(⋉),
ζ2(⋉) = ζ2(⋉⋊⋉) ⩽ ζ2(⋉⋊) ⩽ ζ2(⋉).

So, µ2(⋉⋊) = µ2(⋉), γ2(⋉⋊) = γ2(⋉), and ζ2(⋉⋊) = ζ2(⋉). Taking ι = ⋉ and ς = ⋉⋊ so that

(µ1 •µ2)(⋉) = sup
⋉=ις

(min(µ1(ι),µ2(ς)))

⩾min(µ1(⋉),µ2(⋉⋊))
=min(µ1(⋉),µ2(⋉)).

(γ1 •γ2)(⋉) = inf
⋉=ις

(max(γ1(ι),γ2(ς)))

⩽max(γ1(⋉),γ2(⋉⋊))
=max(γ1(⋉),γ2(⋉)).

(ζ1 • ζ2)(⋉) = inf
⋉=ις

(max(ζ1(ι), ζ2(ς)))

⩽max(ζ1(⋉), ζ2(⋉⋊))
=max(ζ1(⋉), ζ2(⋉)).

Hence, I1∩I2 ⊆ I1 •I2. Again, I1 •I2 ⊆ I1∩I2 from Lemma 3.1. Therefore, I1 •I2 = I1∩I2.
In the other direction, suppose that I1 • I2 = I1 ∩I2 for any neutrosophic left ideal I1, and any
neutrosophic right ideal I2, then by Theorem 2.13, it is found that R is regular. □

3.2. Neutrosophic prime ideal

Here, we define and study the neutrosophic prime ideal.

Definition 3.3. A neutrosophic ideal P = {< ⋉,µ(⋉),γ(⋉), ζ(⋉) >: ⋉ ∈ R} of R is called prime for any
neutrosophic idealsA = {< ⋉,µ1(⋉),γ1(⋉), ζ1(⋉) >: ⋉ ∈ R}, and B = {< ⋉,µ2(⋉),γ2(⋉), ζ2(⋉) >: ⋉ ∈ R},

µ1(⋉)•µ2(⋉) ⩽ µ(⋉)⇒ µ1(⋉) ⩽ µ(⋉) or µ2(⋉) ⩽ µ(⋉),

γ1(⋉)•γ2(⋉) ⩾ γ(⋉)⇒ γ1(⋉) ⩾ γ(⋉) or γ2(⋉) ⩾ γ(⋉),

ζ1(⋉)• ζ2(⋉) ⩾ ζ(⋉)⇒ ζ1(⋉) ⩾ ζ(⋉) or ζ2(⋉) ⩾ ζ(⋉).

Equivalent formulations: for any two elements ⋉,⋊ ∈ R, then P is a neutrosophic prime ideal if

< ⋉,µ(⋉),γ(⋉), ζ(⋉) > • < ⋊,µ(⋊),γ(⋊), ζ(⋊) >∈ P,

then either < ⋉,µ(⋉),γ(⋉), ζ(⋉) >∈ P or < ⋊,µ(⋊),γ(⋊), ζ(⋊) >∈ P.

Example 3.4. Suppose that (Z6,⊕6,⊗6) is a ring. Then, define a neutrosophic subset S = {<
u,µ(u),γ(u), ζ(u) >: u ∈ Z6} as follows:

µ(u) =


0.8 if u = 0,
0.5 if u ∈ {2,4},
0.3 otherwise,
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γ(u) =


0.3 if u = 0,
0.7 if u ∈ {2,4},
0.9 otherwise,

ζ(u) =


0.1 if u = 0,
0.7 if u ∈ {2,4},
0.6 otherwise.

Thus, S is a neutrosophic ideal. Also, we get P = {< 0,0.8,0.3,0.1 >,< 2,0.5,0.7,0.7 >,<
4,0.5,0.7,0.7 >} is a neutrosophic prime ideal.

Theorem 3.5. Let P be a proper prime ideal in R; then a neutrosophic sub-ring P over P is a
neutrosophic prime ideal.

Proof. Suppose thatP1 = {<⋉,µ1(⋉),γ1(⋉), ζ1(⋉)>:⋉ ∈R}, andP2 = {<⋉,µ2(⋉),γ2(⋉), ζ2(⋉)>:⋉ ∈R}
are neutrosophic ideals over R with

µ1(⋉)•µ2(⋉) ⩽ µ(⋉),
γ1(⋉)•γ2(⋉) ⩾ γ(⋉),
ζ1(⋉)• ζ2(⋉) ⩾ ζ(⋉),

where P = {< ⋉,µ(⋉),γ(⋉), ζ(⋉) >: ⋉ ∈ P}, P1 ⊈1 P, and P2 ⊈1 P. So, ∃ ι,ς ∈ R such that one of the
following held µ1(ι) ≰ µ(ι), γ1(ι) ≱ γ(ι), ζ1(ι) ≱ ζ(ι), and µ2(ς) ≰ µ(ς), γ2(ς) ≱ γ(ς), ζ2(ς) ≱ ζ(ς). Now,
µ1(ι) , 0, γ1(ι) , 0, ζ1(ι) , 0, and µ2(ς) , 0, γ2(ς) , 0, ζ2(ς) , 0, but µ(ι) = 0,γ(ι) = 0, ζ(ι) = 0, and
µ(ς)= 0,γ(ς)= 0, ζ(ς)= 0. Thus, ι < P and ς < P. Suppose that ϱ= ιες, with ε ∈R, now, µ(ϱ)= 0,γ(ϱ)=
0, ζ(ϱ) = 0, thus,

(µ1 •µ2)(ϱ) = 0,
(γ1 •γ2)(ϱ) = 0,
(ζ1 • ζ2)(ϱ) = 0,

but
(µ1 •µ2)(ϱ) = sup

ϱ=lk
(min(µ1(l),µ2(k)))

⩾min(µ1(ι),µ2(ες))
⩾min(µ1(ι),µ2(ς)),

(γ1 •γ2)(ϱ) = inf
ϱ=lk

(max(γ1(l),γ2(k)))

⩽max(γ1(ι),γ2(ες))
⩽max(γ1(ι),γ2(ς)),

(ζ1 • ζ2)(ϱ) = inf
ϱ=lk

(max(ζ1(l), ζ2(k)))

⩽max(ζ1(ι), ζ2(ες))
⩽max(ζ1(ι), ζ2(ς)),

which gives contradictions, this means either P1 ⊆1 P or P2 ⊆1 P. □

Example 3.6. Consider Z6 as a classical ring, since P = {0,3} prime ideal, the neutrosophic ideal
P = {< 0,0.8,0.2.0.1 >,< 3,0.3,0.5,0.4 >} is also a neutrosophic prime ideal.
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Theorem 3.7. Let P ⊆ R be an ideal where P is a neutrosophic prime ideal over P, then P is a prime
ideal.

Proof. Suppose that P is a neutrosophic prime ideal over P ,R and P1 ⊆R, P2 ⊆R are two ideals with
P1P2 ⊆ R. Then, we can define two neutrosophic ideals P1 and P2 over P1 and P2, respectively. Let
(µ1 •µ2)(ι) , 0, (γ1 •γ2)(ι) , 0, and (ζ1 • ζ2)(ι) , 0. This leads to

(µ1 •µ2)(ι) = sup
ι=lk

(min(µ1(l),µ2(k))) , 0,

(γ1 •γ2)(ι) = inf
ι=lk

(max(γ1(l),γ2(k))) , 0,

(ζ1 • ζ2)(ι) = inf
ι=lk

(max(ζ1(l), ζ2(k))) , 0.

So, µ1(l),γ1(l), ζ1(l), 0, and µ2(k),γ2(k), ζ2(k), 0, then µ1(l),γ1(l), ζ1(l)= 1, and µ2(k),γ2(k), ζ2(k)=
1, this we drive that l ∈ P1 and k ∈ P2 and ι ∈ P1P2 ⊆ P, hence µ(ι),γ(ι), ζ(ι) = 1. Therefore, P is a
neutrosophic prime ideal, and either P1 ⊆ P or P2 ⊆ P. This also leads to either P1 ⊆ P or P2 ⊆ P.
Again, presume ι ∈ R, and when (µ1 •µ2)(ι) = 0, (γ1 •γ2)(ι) = 0 and (ζ1 • ζ2)(ι) = 0 then we obtain

(µ1 •µ2)(ι) ⩽ µ(ι),
(γ1 •γ2)(ι) ⩾ γ(ι),
(ζ1 • ζ2)(ι) ⩾ ζ(ι).

Hence, P1 •P2 ⊆ P. Since P is a neutrosophic ideal, either P1 ⊆ P or P2 ⊆ P. This leads to either
P1 ⊆ P or P2 ⊆ P. □

Theorem 3.8. Let P = {< ℓ,µ(ℓ),γ(ℓ), ζ(ℓ) >: ℓ ∈ R} be a neutrosophic ideal over R, and define P0 =

{ς : ς ∈ R,µ(ς) = µ(0),γ(ς) = γ(1), ζ(ς) = ζ(1)}. Then, P0 ⊆ R is a prime ideal.

Proof. First, we show that P0 is an ideal. Suppose that ℓ, ι ∈ P0, then we explain ℓ− ι ∈ P0 as follows:

µ(ℓ− ι) ⩾min(µ(ℓ),µ(ι)) = µ(0),
γ(ℓ− ι) ⩽max(γ(ℓ),γ(ι)) = γ(1),
ζ(ℓ− ι) ⩽max(ζ(ℓ), ζ(ι)) = ζ(1),

conversely,
µ(0) = µ(0.(ℓ− ι))
⩾min(µ(0),µ(ℓ− ι))
= µ(ℓ− ι),

γ(1) = γ((ℓ− ι)(ℓ− ι)−1)

⩽max(γ(ℓ− ι),γ(ℓ− ι)−1)
= γ(ℓ− ι),

ζ(1) = ζ((ℓ− ι)(ℓ− ι)−1)

⩽max(ζ(ℓ− ι), ζ(ℓ− ι)−1)
= ζ(ℓ− ι).
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Now, we show ςℓ,ℓς ∈ P0 for all ς ∈ R and ℓ ∈ P0 as follows:

µ(ςℓ) ⩾ µ(ℓ) = µ(0),
γ(ςℓ) ⩽ γ(ℓ) = γ(1),
ζ(ςℓ) ⩽ ζ(ℓ) = ζ(1),

similarly, ℓς ∈ P0. Assume that I1, I2 are two ideals of R with I1I2 ⊆ P0. Define the neutrosophic ideals
I1 = {< ι,µ(0)µ1(ι),γ(1)γ1(ι), , ζ(1)ζ1(ι) >: ι ∈ I1}, and I2 = {< ι,µ(0)µ2(ι),γ(1)γ2(ι), , ζ(1)ζ2(ι) >: ι ∈ I2}.
Next, we show that I1 •I2(ς) ⊆ P(ς) ∀ς ∈ R.

(µ(0)µ1 •µ(0)µ2)(ς) = sup
ς=uv

(min(µ(0)µ1(u),µ(0)µ2(v))),

(γ(1)γ1 •γ(1)γ2)(ς) = inf
ς=uv

(max(γ(1)γ1(u),γ(1)γ2(v))),

(ζ(1)ζ1 • ζ(1)ζ2)(ς) = inf
ς=uv

(max(ζ(1)ζ1(u), ζ(1)ζ2(v))),

then, we obtain µ(0)µ1(u) = µ(0)µ2(v) = µ(0), γ(1)γ1(u) = γ(1)γ2(v) = γ(1), and ζ(1)ζ1(u) = ζ(1)ζ2(v) =
ζ(1), also this implies µ1(u) = 1,γ1(u) = ζ1(u) = 0, and µ2(v) = 1,γ2(v) = ζ2(v) = 0. Hence, u ∈ I1 and
v ∈ I2, so that ς ∈ I1I2 ⊆ P0, so µ(ς) = µ(0),γ(ς) = γ(1), ζ(ς) = ζ(1), and I1 • I2(ς) ⊆ P(ς). Again,
since P is a neutrosophic ideal and I1,I2 are two neutrosophic ideals, then either I1 ⊆ P or I2 ⊆ P.
Presume I1 ⊆ P, then,

µ(0)µ1(ι) ⩽ µ(ι),γ(1)γ1(ι) ⩾ γ(ι), and ζ(1)ζ1(ι) ⩾ ζ(ι).

Next, we explain that I1 ⊆ P0. by contradiction. Assume that I1 ⊈ P0 then we obtain u ∈ I1 and
u < P0, which means one of the following:

µ(u) , µ(0),γ(u) , γ(1), and ζ(u) , ζ(1).

Now,
µ(0.u) ⩾ µ(u),γ(u.u−1) ⩽ γ(u), and ζ(u.u−1) ⩽ ζ(u).

So, µ(u) < µ(0), γ(u) > γ(1), and ζ(u) > ζ(1), then µ(0)µ1(u) = µ(0) > µ(u), γ(1)γ1(u) < γ(u), and
ζ(1)ζ1 < ζ(u) this gives a contradiction; therefore, I1 ⊆ P0. The same way, I2 ⊆ P0. Hence, the theorem
claimed. □

3.3. Neutrosophic prim ideal over Z

In this part, our aim is to define the neutrosophic prime ideals over Z. Suppose P represents a
neutrosophic ideal over Z. As per Theorem 3.8, it can be inferred that P0 is indeed an ideal in Z.
Consequently, there exists a positive integer n with P0 equals nZ.

Theorem 3.9. Let P = {< ℓ,µ(ℓ),γ(ℓ), ζ(ℓ) >: ℓ ∈ Z} be a neutrosophic ideal over Z, and define P0 = {ς :
ς ∈ Z,µ(ς) = µ(0),γ(ς) = γ(1), ζ(ς) = ζ(1)} = nZ , (0), then for ϱ a positive divisor of n, P can accept
most values of ϱ.
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Proof. Suppose that κ ∈ Z and ⋉ = κϱ+no for some ϱ,o ∈ Z. We obtain

µ(⋉) = µ(κϱ− (−no)) ⩾min(µ(κϱ),µ(−no))
⩾min(µ(κ),µ(n)),

γ(⋉) = γ(κϱ− (−no)) ⩽max(γ(κϱ),γ(−no))
⩽max(γ(κ),γ(n)),

ζ(⋉) = ζ(κϱ− (−no)) ⩽max(ζ(κϱ), ζ(−no))
⩽max(ζ(κ), ζ(n)).

Since n ∈ P0 = nZ, then we obtain:

µ(n) = µ(0) = µ(0⋉) ⩾ µ(⋉),

γ(n) = µ(1) = µ(⋉⋉−1) ⩽ γ(⋉),

ζ(n) = ζ(1) = ζ(⋉⋉−1) ⩽ ζ(⋉).

Thus, µ(⋉) ⩾ µ(κ), γ(⋉) ⩽ γ(κ), and ζ(⋉) ⩽ ζ(κ). Also, ⋉|κ this leads to κ = l⋉, l ∈ Z, now,

µ(κ) = µ(l⋉) ⩾ µ(⋉),
γ(κ) = γ(l⋉) ⩽ γ(⋉),
ζ(κ) = ζ(l⋉) ⩽ ζ(⋉).

Therefore, µ(κ) = µ(⋉), γ(κ) = γ(⋉) and ζ(κ) = ζ(⋉). So, for every integer κ there is a positive factor ⋉
of n where µ(κ) = µ(⋉), γ(κ) = γ(⋉), and ζ(κ) = ζ(⋉). □

Theorem 3.10. Let P = {< ℓ,µ(ℓ),γ(ℓ), ζ(ℓ) >: ℓ ∈ Z} be a neutrosophic ideal over Z and define P0 =

{ς : ς ∈ Z,µ(ς) = µ(0),γ(ς) = γ(1), ζ(ς) = ζ(1)} , (0). Then, P has two distinct values.

Proof. Assume P is a neutrosophic ideal over Z, with P0 = pZ , (0). By Theorem 3.8, we obtain
P0 is a prime ideal; this leads to p being a prime integer. Now, p has exacted two distinct positive
divisors. Again, by Theorem 3.9, we find that P has at most two distinct values. So, P has two distinct
values. □

Theorem 3.11. Let P = {< ℓ,µ(ℓ),γ(ℓ), ζ(ℓ) >: ℓ ∈ Z} be a neutrosophic subset over Z such that µ(n) =
γ(n) = ζ(n) = ℓ1 when p|n and µ(n) = γ(n) = ζ(n) = ℓ2 when p ∤ n, where p is a prime integral and
ℓ2 < ℓ1. Then, P is a neutrosophic prime ideal on Z with P0 = {ς : ς ∈ Z,µ(ς) = µ(0),γ(ς) = γ(1), ζ(ς) =
ζ(1)} , (0).

Proof. Assume P is a neutrosophic subset over Z with the above conditions. Suppose that x,y ∈ Z, then
we have:
Case 1: When x− y is a multiple of p, then

ℓ1 = µ(x− y) ⩾min(µ(x),µ(y)),
ℓ1 = γ(x− y) ⩽max(γ(x),γ(y)),
ℓ1 = ζ(x− y) ⩽max(ζ(x), ζ(y)),
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for ℓ2 < ℓ1.
Case 2: When x− y is not a multiple of p, then either p ∤ x or p ∤ y, this drives µ(x) = γ(x) = ζ(x) = ℓ2
or µ(y) = γ(y) = ζ(y) = ℓ2. So,

µ(x− y) ⩾min(µ(x),µ(y)),
γ(x− y) ⩽max(γ(x),γ(y)),
ζ(x− y) ⩽max(ζ(x), ζ(y)).

Case 3: When p|xy, then we obtain:

µ(xy) ⩾ µ(y), γ(xy) ⩽ γ(y), ζ(xy) ⩽ ζ(y).

Case 4: When p ∤ xy, then neither p|x nor p|y. So,

µ(xy) ⩾ µ(y), γ(xy) ⩽ γ(y), ζ(xy) ⩽ ζ(y).

Therefore, P is a neutrosophic ideal with P0 = pZ , (0). The proof is complete in Theorem 3.5. □

Some results of the classical theories of ideals and prime ideals are not fully applicable to the
theories of neutrosophic ideals and neutrosophic prime ideals. The main difference is that neutrosophic
ideals integrate the independent aspects of truth, indeterminacy, and falsity, introducing a level of
complexity that is missing in the binary structure of classical ideals. The following remark explains
one of the differences.

Remark 3.12. In the context of classical prime ideals, the prime avoidance lemma [15] asserts that in
a commutative ring, if an ideal is contained in a finite union of prime ideals, then it must be contained
in one of them. However, this result does not hold in neutrosophic settings. The following example
illustrates this discrepancy.

Example 3.13. Define three neutrosophic prime ideals over Z6 as follows:
Si = {< u,µi(u),γi(u), ζi(u) >: u ∈ Z6}, where i = 1,2,3,

µ1(u) =

0.8 if u = {0,2,4}
0.3 otherwise

, µ2(u) =

0.8 if u = {0,3}
0.3 otherwise

, µ3(u) =

0.8 if u = {0,5}
0.3 otherwise

,

γ1(u) =

0.1 if u = {0,2,4}
0.4 otherwise

, γ2(u) =

0.1 if u = {0,3}
0.4 otherwise

, γ3(u) =

0.1 if u = {0,5}
0.4 otherwise

,

ζ1(u) =

0.2 if u = {0,2,4}
0.4 otherwise

, ζ2(u) =

0.2 if u = {0,3}
0.4 otherwise

, ζ3(u) =

0.2 if u = {0,5}
0.4 otherwise

.

Now, consider the neutrosophic ideal S0 = {< u,µ0(u),γ0(u), ζi(u) >: u ∈ Z6}, defined as follows:

µ0(u) =max(µ1,µ2,µ3), γ0(u) =min(γ1,γ2,γ3), ζ0(u) =min(ζ1, ζ2, ζ3).

It is obvious that µ0 is not fully contained in µ1, for µ0(5) = 0.8 and µ1(5) = 0.3. Again, µ0 is not
fully contained in µ2 and µ3, and so on in case γ0(ζ0) are not fully contained in γ1(ζ1), γ2(ζ2), and
γ3(ζ3), respectively. Therefore, S0 is not contained in any single Si, i = {1,2,3}.
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Remark 3.14. Finally, we compare our results to classical, fuzzy, and intuitive fuzzy set theories,
emphasizing the distinctive contributions of neutrosophic sets.

First: Neutrosophic sets provide a more comprehensive representation because they account for
truth, indeterminacy, and falsity independently. This allows for a more nuanced and flexible modeling
of uncertainties compared to classical and intuitionistic fuzzy sets.

Second: The ability to handle a wider range of uncertainties makes neutrosophic ideals particularly
useful in complex real-world scenarios where the data is not always precise or complete. This includes
applications in areas such as artificial intelligence, decision-making, and information systems.

Third: By extending classical algebraic structures to the neutrosophic context, we open up new
avenues for theoretical research. Neutrosophic ideals and prime ideals offer new perspectives and
solutions to long-standing problems in algebra under conditions of uncertainty.

4. Conclusions

The study of neutrosophic ideals and prime ideals represents a significant advance in the field of
algebra and provides powerful tools for modeling and analyzing uncertain environments. This work
introduces and thoroughly explores the concept of neutrosophic ideals within the framework of ring
theory. We have successfully extended the classical, fuzzy, and intuitionistic fuzzy ideal concepts to
neutrosophic sets, thus accounting for a wider range of uncertainties through the independent treatment
of truth, indeterminacy, and falsity. We also investigated the correlation between the regularity
property of a ring and neutrosophic ideals and showed how the regularity condition interacts with
the neutrosophic components. This investigation provided new insights into how traditional algebraic
properties can be reinterpreted and extended in a neutrosophic context. In addition, we provided a
comprehensive characterization of all neutrosophic prime ideals in the ring of integers Z. This concrete
enumeration illustrates how neutrosophic prime ideals can be identified and analyzed within a familiar
algebraic structure.

The ability to manage degrees of truth, indeterminacy, and falsity independently not only increases
the flexibility and applicability of algebraic structures, such as the study of neutrosophic prime ideals
in Noetherian rings and Artinian rings, but also paves the way for future research and practical
applications in various fields such as cryptography, coding theory, and computational algebra, which
could provide valuable innovations and insights.
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