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1. Introduction

Compartment models have been used extensively to study infectious diseases. Among them,
susceptible-exposed-infectious-recovered (SEIR) models have been extensively used to study disease
dynamics impacted by vertical transmission [1,2], vaccination strategies [3], delayed infectiousness [4],
multistage infectiousness [5], and treatment strategies [6], and most recently, were applied to
COVID-19 [7-9]. These models often include parameters for which numerical values are unknown a
priori and cannot be directly measured. Since many parameters in a given model are not directly
measurable, researchers often obtain parameters from outbreak data.

Parameter estimation relies on comparing empirical observations of the modeled system with the
corresponding model output. Many computational techniques can be employed for parameter estimation.
Most of these techniques rely on minimizing the difference between model output and observed data.
However, before numerically estimating parameter values, it is important to address whether the
parameters of the model are identifiable. Identifiability analysis determines to what extent and with what
level of certainty the parameters of a model can be recovered from the available empirical data [10].
These relate to two general types of identifiability analysis: structural and practical identifiability.
Structural identifiability is the theoretical possibility of determining the true values of parameters of
a model from observations of its outputs and knowledge of its dynamic equations [11-13]. On the
other hand, practical identifiability provides information on the accuracy with which parameters can be
estimated from the available discrete and noise-corrupted measurements [14]. So, for an infinite amount
of noise-free data, structural identifiability implies (the maximum) practical identifiability [15].

Three common methods for evaluating the practical identifiability of models are Monte Carlo
simulations [16, 17], correlation matrices [18—20], and the profile likelihood [21-25]. The Monte Carlo
approach can be applied to evaluate disparate model structures each with different observation schema
by implementing a random sampling algorithm [16]. While Monte Carlo simulations offer conceptual
and algorithmic simplicity, their computational cost can be very high, as many samples are required
to obtain a good approximation. The Correlation Matrix approach assesses the correlation between
parameter estimates [ 18—20]. It is much less computationally intensive than the Monte Carlo method
but only provides a pairwise analysis of model parameters. Likelihood profiling is a common way to
perform a practical identifiability analysis when using a likelihood-based estimation procedure (e.g.,
approximate Bayesian computation or maximum likelihood estimation) because the profiles are used
for quantifying uncertainty in parameter estimates (i.e., to approximate confidence intervals) [23].

Epidemiological data plays a critical role in infectious disease surveillance, as it describes how
infectious diseases are distributed within populations and what factors contribute to transmission [26].
Several mathematical models have been established during the last decades to forecast disease
progression using epidemiological data [27-32]. There are many technical challenges in implementing
a standardized epidemiological data framework. The way data is reported and collected, and the type
and frequency of data available through data-sharing institutions (public health departments, ministries
of health, data collection, or aggregation services) differ significantly. For example, different data types
(including prevalence, incidence, cumulative incidence, and mortality) are reported at differing time
intervals (such as daily, weekly, monthly, or even more infrequently). As a result, understanding how
these factors affect parameter identifiability and estimation is critical.

In this study, we systematically examined the influence of different data types (prevalence, incidence,
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and cumulative incidence) and sampling frequencies (daily, weekly, and monthly) on the practical
identifiability of SEIR model parameters. We explored four scenarios with different peak infection
times and data collection windows to assess the impact of different data collection strategies on
parameter identifiability. Discrepancies between Monte Carlo and correlation matrix results highlight
the importance of considering multiple criteria for identifiability. Overall, our results show that incidence
data yielded the most identifiable parameters, prevalence data exhibited intermediate identifiability,
and cumulative incidence data resulted in the least identifiable parameters. Varying data collection
frequencies affected parameter identifiability, with longer time series and higher sampling rates generally
improving identifiability.

In Section 2, we present the SEIR model and the structural identifiability results. Sections 3.1 and 3.2
outline the use of MC and CM methods to assess parameter identifiability, respectively. In Section 4,
we present the results of our analysis, with Section 4.1 detailing the outcomes of the MC simulations,
Section 4.2 illustrating the CM results, and Section 4.3 comparing the results from both MC and CM
methods. In Section 5, we discuss our finding, their implications, and limitations. Finally, in Section 6,
we provide a concise summary of our findings.

2. The SEIR model

The overarching goal of our study is to examine how different data types and collection frequencies
influence parameter identifiability under structural and practical identifiability paradigms. To this end,
we chose a simple SEIR model framework containing a small number of parameters as the foundation
for our study. Here, the SEIR model is a closed population with no vital dynamics (i.e., no births or
deaths):

S(t)=-BS1, E(t)y=BS1-yE, I(t)=vE —al, Rt)=al, C(t)=pSI, 2.1

where N(t) = S(¢t)+ E(t) + I(t) + R(¢?) is the total population, the parameter £ is the transmission rate from
susceptible to infected, vy is the rate of transition from exposed to infectious, and « is the recovery rate
from infected to recovered (Figure 1). The state variable /() represents the prevalence of the infectious
disease at time ¢. The auxiliary variable C(¢) tracks the cumulative number of infectious individuals
at time ¢ since the start of the outbreak. C(¢) is not a state of the system but rather a class to track
cumulative incidence, from which incidence can be derived. Thus, the instantaneous number of new
infections (i.e., incidence) at time ¢ is C(¢). In practice, the incidence of new cases is measured over a
time interval [#;,_;, t;], and therefore can be computed using the difference of the cumulative incidence
at these time points: C(#;) — C(t,_;). Initial conditions for the S, E, I, and R states will be noted by
S(0), E(0), 1(0), and R(0), respectively.

S -

Figure 1. Flowchart for the general SEIR framework.

R |
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The SEIR model Eq (2.1) is well studied and often presented as an entry-level educational tool [33].
As individuals progress through the compartments, eventually the number of susceptible individuals
may be insufficient to sustain transmission. This leads to the disease-free equilibrium, which is
globally asymptotically stable when SN/a < 1 and unstable when BN/« > 1. This cutoff is the basic
reproduction number Ry, which is commonly used to characterize the infectiousness of a disease that
is freshly introduced into a completely susceptible population. Importantly, this reproduction number
Ro, along with other epidemiological metrics, are calculated from model parameters. If a model is
non-identifiable, then researchers risk reaching incorrect conclusions about disease persistence that
follow from incorrect parameter values.

2.1. Structural identifiability

Structural identifiability addresses the question of whether the parameters of a model can be uniquely
determined from “perfect” input-output data, assuming the underlying model correctly represents the
input-output data. Here, perfect data means the data is continuous in time and without noise. Structural
identifiability serves as a prerequisite for practical identifiability analyses as it sets the foundation on
whether the model parameters can be distinctly ascertained. Without first establishing local or global
identifiability, the results attained in practical identifiability analysis can be challenging to interpret due
to uncertainty in the numerical optimization. Consider a general compartment model:

x(t) = f(x(®),p),
x(0) = x, 2.2)

y(®) = g(x(1), p),

where the n state variables at time ¢ are represented by the state vector x(¢) € R”, parameters are denoted
by the vector p € R*, the initial condition vector is denoted as X, € R”, and the m observation variables
are represented by y(¢) € R™. The system Eq (2.2) is globally structurally identifiable for the parameter
vector p; if for every parameter vector p,,

y(t,p1) =y(t,p2) = pi =p2.

We say that system Eq (2.2) is locally structurally identifiable for the parameter vector p; if, for every

P2,
y(t,p1) = y(t,p2), and p, € B(p;) = p; = p», where B(p,) is a ball centered at p;.

Otherwise, system Eq (2.2) is unidentifiable. An equivalent characterization of local identifiability is if
there are at least two or more finite parameter values of p that yield the same observations y. Here, the
state variables denoted by x are specifically [x;, x5, x3, x4, x5] = [S, E, [, R, C].

There are several well-established methods for determining the structural identifiability of disease
models such as the direct test [34,35] and the similarity transformation method [36—38], which can be
applied to autonomous (no external input) systems. Alternatively, the Taylor series approach [39],
differential algebra [40,41], the generating series approach [42], implicit functions approach [43], or
differential geometry [44] are applicable to external input. Various software tools have been developed
to perform structural identifiability analysis, such as the observability test [45], differential algebra for
identifiability of systems (DAISY, [40]), exact arithmetic rank (EAR, [46]), COMBOS [47],
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Data2Dynamics [48], STRIKE-GOLDD [44], GenSSI2 [49], structural identifiability analyser
(SIAN, [50]), and Structualldentifiablity.jl [5S1]. These toolboxes provide a broad range of features and
implement methods based on differential algebra, semi-numerical differential algebra, generating series,
local algebraic observability, and identifiability tables. However, some of these toolboxes have limited
performance or can be time-consuming to use [52].

We establish the structural identifiability of the prevalence and cumulative incidence data types using
the  differential algebra approach with the aid of the software package
StructuralIdentifiability.jl. The details are given in the following propositions.

Proposition 1. The system Eq (2.1) is locally identifiable to prevalence data and globally identifiable if

initial conditions are known.

Proof. Given the observation is prevalence data (), that is, y(¢) = I(¥), the input-output equation derived
by Structuralldentifiability.jl is:

" =11 +(a+YI" + BT — (@ +y)I') + (a +y)BIPT + afyl’ = 0.

In this equation, I’ represents the derivative of the state variable /(r). Using the definition of being
globally identifiable, we set y(¢, p1) = y(¢, p2), where p; = [@1,81, 1], and p; = [, B2, ¥»] which yields
the following equations:

ar+yr=a+y, (g +y)Bi = (@ +y2)B2,  Bi1=pH2 a1y = aryfs.

Solving the system of equations above using the Groebner basis approach in terms of p; in Python, we
obtain two sets of solutions:

{ar = y2,81 = B2,y = a2} and lar = @z, B1 = Ba,y1 = 72}

Hence, the system Eq (2.1) is locally identifable given prevalence data. Furthermore, the function find
ioequations within StructuralIdentifiability. j1 outputs all identifiable equations including
the initial conditions which are listed below:

0, g, SOy, ay, a+y, E@Qy+I1Q0)y.

It is clear to see that, with the initial condition S (0), £(0), and 1(0) known, the identifiable equation
S (#)y combined with ay implies that both & and y become globally identifiable. O

Proposition 2. The system Eq (2.1) is locally identifiable to cumulative data and globally identifiable if
initial conditions are known.

Proof. Given the observation being the prevalence data C(¢), that is, y(f) = C(¢), we can obtain the
input-output equation using StructuralIdentifiability. j1. Following a similar procedure as in
Proposition 2.1, we obtain the following set of equations:

aryr = @y, Piyi =By, Bi+yi =B+ 7.

We solve this system using the Groebner basis approach in terms of p; in Python and obtain two sets of
solutions:
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Thus, the system Eq (2.1) is locally identifiable given cumulative data.
Furthermore, to investigate the impact of initial conditions, we can find all identifiable equations
including the initial conditions:

Cc@®, S@, 10, py, 1o, E@)+I11), a+vy.

It is clear to see that, with the initial condition S (0), E(0), and /(0) known, the identifiable equation
1(1)B, By combined with @ + y implies all three parameters become globally identifiable. |

As far as we know, all of these packages can only handle observations when explicitly expressed
as functions of the state variables at any time. Consequently, we are unable to examine the structural
identifiability of the SEIR model for incidence defined as a difference in time, so its analysis will be
limited to practical identifiability. Table 1 summarizes the outcomes of these assessments. In cases with
specified initial conditions, all parameters of the SEIR model exhibit structural identifiability concerning
both prevalence and cumulative incidence outputs. However, when initial conditions are unspecified,
only S is structurally identifiable with respect to prevalence, while the remaining parameters are only
locally identifiable. Cumulative incidence shows all parameters are only locally identifiable.

Table 1. Structural identifiability of 5, vy, and a with or without initial conditions (ICs) for
different observables. The results for the cases without ICs using both STAN and DAISY
were identical.

Observables Globally Identifiable Locally Identifiable
Prevalence (I) B Y, o
Prevalence (I with ICs) B,y,a
Cumulative (C) B,Y,a
Cumulative (C with ICs) B,y,a

3. Methods for practical identifiability

Compared to structural identifiability analysis, practical identifiability analysis accounts for the
sampling rates and noisiness of experimental data [53]. For this reason, practical identifiability analyses
typically involve fitting models to epidemic data. In general, a model is considered practically identifiable
if a unique parameter vector for a given model can be consistently obtained. Researchers may use
real or simulated epidemic data to assess practical identifiability [17,54-56], and there are different
approaches and criteria for assessing identifiability. In this study, we apply two approaches to analyze
the practical identifiability of a SEIR model with hypothetical “true” parameters. We first use a Monte
Carlo approach to consider the practical identifiability of our system of ODEs before conducting a
similar analysis using a correlation matrix approach.

In general, practical identifiability can be defined for the dynamical model in Eq (2.2). In this study,
we consider x = [S,E,I,R,C] and f(x(¢), p) the right-hand side of Eq (2.1). We assume that x; is
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known but that all parameters p = [8, ¥, @] must be recovered from data. For practical identifiability,
observations y(¢) at a finite set of time points #; are modeled by:

y(@) = g(x(1), p)(1 + (1)), (3.1)

with random measurement noise €(t;) drawn from a normal distribution with zero mean and standard
deviation o, i.e., € ~ N(0,0). The set of time points ¢; are sampled at different frequencies and time
spans depending on the scenario. In this study, we denote y as prevalence, incidence, or cumulative
incidence data and define g(x(z), p) to select the appropriate state: g(x(t;), p) = x3(t;) for prevalence,
g(x(,), p) = xs5(t;) for cumulative incidence, and g(x(z,), p) = xs(t;) — x5(¢;_) for incidence. A model is
practically identifiable if there is a unique parameter vector p = p that minimizes the difference between
the model output g and the data y.

Data collection plays a key role when estimating parameters for an epidemic model. For example,
case data may be collected on a daily, weekly, or monthly basis. To determine how various time
series data impact the practical identifiability of the model parameters, we explored four scenarios with
different peaks of the epidemic curve and lengths of data collection. See Supplemental Figure 3 for
plots of each scenario.

Scenario 1: The peak for the epidemic curve occurred at day 109 with the time span of 365 days,
where 8 = 0.0001, ¥ = 0.2, and @ = 0.03.

Scenario 2: The peak for the epidemic curve occurred at day 25 with the time span of 50 days,
where 8 = 0.001, y = 0.2, and a = 0.03.

Scenario 3: The peak for the epidemic curve occurred at day 109 with the time span of 100 days.

Scenario 4: The peak for the epidemic curve occurred at day 25 with the time span of 20 days.

Note that the time spans for Scenarios 1 and 2 were chosen to include roughly twice the time it takes
for incidence (new infections) to drop below one. We selected this cutoff as a balance between capturing
the entire prevalence curve and avoiding many observations near the steady state for incidence and
cumulative incidence. Scenarios 3 and 4 simulate the effect of only having access to data before the
peak of the epidemic.

3.1. Monte Carlo simulations

The history of Monte Carlo (MC) simulations can be traced back to the work of [57]. The MC method,
as a sampling technique using random numbers and probability distributions, can be used to determine
the practical identifiability of a model. This approach is due to its versatility and straightforward
implementation. We perform MC simulations by generating M =10,000 synthetic data sets using the
true parameter vector p and adding noise to the data in increasing amounts. MC simulations are outlined
in the following steps:

(1) Solve the SEIR ODEs (Eq 2.1) numerically with the true parameter vector p to obtain the output
vector g(x(7), p) at the discrete data time points {£;}., .

(2) Generate M =10,000 data sets with a given measurement error. We assume the error follows a
normal distribution with mean 0 and variance o(¢); that is, the data are described by

yij = &(x(%), p)(1 + € ),
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where € ~ N(0, o) at the discrete data time points {z;}?_, for all j = 1,2, ..., M data sets.

(3) Estimate the parameter vector p; by fitting the dynamical model to each of the M simulated data
sets. This is achieved by minimizing the difference between model output and the data generated
for the specific scenario:

N (v:) — 8x(t:). p))’
min Z ExO).p)P

This optimization problem is solved in MATLAB R2021a using the built-in function
fminsearchbnd, which is part of the Optimization toolbox. Since fminsearchbnd is a local
solver, the optimized minimum value can be influenced by the starting point. To avoid issues
related to the starting value, we use the true parameter values as the initial parameter starting point
provided to fminsearchbnd. Furthermore, we used the optimization function fmincon to test
the consistency of the results in the methodology. Both functions produced the same qualitative
results with similar AREs (the detailed ARE results are provided in the Supplemental document).
For the remainder of the manuscript, the results shown refer to AREs from fminsearchbnd.

(4) Calculate the average relative estimation error (ARE) for each parameter in the set p following [16]:

k
'()_pf‘

ARE(p") = 100% x — Z , (3.2)

j=1

where p® is the k-th parameter in the set p, p®) is the k-th parameter in the true parameter vector
p., and pg.k) is the k-th element of p;.

(5) Repeat steps 1 through 4, increasing the level of noise (o = 0, 1, 5, 10, 20, 30%).

Following the convention in [17], we assume that a given parameter is practically identifiable if the
ARE of the parameter is less than or equal to the measurement error, o

3.2. Correlation matrix method

Although the MC simulation approach is easy to understand and simple to implement, the associated
computational cost is high due to a large number of repetitions and the associated optimization costs.
One alternative is to utilize the sensitivity matrix of the model to compute the coefficient matrix for
parameters of interest [20, 58, 59]. This requires much less computation and is relatively simple if
measurement errors follow an identical and independent distribution. The correlation matrix (CM)
method assesses the correlation between estimated parameters using a matrix of output sensitivities to
model parameters. If estimated parameters are highly correlated, then they are considered practically
unidentifiable.

CM assessments of identifiability are local to a particular parameter. The assessment also depends on
the type of model observation, frequency of data collection, and assumed distribution of measurement
noise. However, CM does not incorporate realizations of noisy observations, as in the MC approach.
Instead, these considerations are incorporated in the following steps:

(1) Solve the SEIR model sensitivities numerically, for model observations g(x(¢), p) at the discrete
collection times {#;}?_, with respect to each parameter in p.
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(a) For prevalence and cumulative incidence, this is obtained from the SEIR model sensitivity
equations and the extracted solutions for x; (/) and x5 (C):

dox _ofox of
dtdp 9xdp dp’

(b) For incidence, this is obtained from numerically integrating the quantity

0 li+1 li+1 ol oS o
— ,BSIdt:f [,BS—+( —+—'8S)I]dt,
ap J, . op \ dp Ip
ol ) e .
where % and % come from solutions to the sensitivity equations.

(2) Construct a sensitivity matrix where the i, /" component corresponds to the sensitivity of the model
output g(x(¢), p) at time #; to the j parameter in p. This is denoted by

og
F;: = —=(x(t,),p).
J 0pj(()p)

(3) Compute the inverse of the weighted Fisher information matrix, IM = (FTWF)~!, where W is the
diagonal weighted matrix for the least squares error. For the assumed distribution of error in Eq
(3.1), the weights are g(x(t;), p).

(4) Compute the correlation coefficients y;; = IM;;/ \JIM;IM;; for all i,j = 1,2,3 and i # J,
corresponding to correlations between the three parameters in p.

(5) If the correlation coeflicients are below 0.9 for all parameter pairs, then the parameter is practically
identifiable for the assumed model observations.

The choice of 0.9 for the identifiability threshold in step five is chosen to reflect that a value close to
unity represents a non-identifiable parameter pair (that is, these parameters are perfectly correlated) [17].
However, one of the challenges of the CM approach is that the determination of identifiability is
qualitative in nature, and to make it quantitative requires the user to choose a value for this threshold.
We conduct the CM approach for all data types described at the start of Section 3, to assess the practical
identifiability of the model for the true parameters. We also repeat this process for estimated parameters
p; obtained in Step 3 of the MC approach (Section 3.1). This allows us to assess the perceived
identifiability of parameter estimates obtained from noisy data.

4. Results

In this section, we will examine the output of the MC and CM methods described in Section 3 when
applied to the SEIR model described in Section 2. For all of the estimated parameters, we chose the
search bounds in the fminsearchbnd algorithm to be [0, 1]. Although, in practice, we may not know
the true bounds of the parameters, this interval encompasses biologically feasible values with respect
to their epidemiological definitions. For this model, the upper search bound corresponds to a highest
possible transmission rate of 1000 new infections per infected individual each day and the shortest

AIMS Mathematics Volume 9, Issue 9, 24722-24761.



24731

possible exposure and recovery times of 1 day each. We are interested in how different factors impact
practical identifiability results and whether these results are aligned for both methods (MC and CM).
We do not expect to have a one-to-one relationship in each scenario; however, it is beneficial to examine
when and why we obtain matching outcomes when they occur in the simulations.

4.1. Monte Carlo (MC) results

Using the MC algorithm in Section 3.1, we tested the practical identifiability of the SEIR model
parameters with respect to different data types, sampling frequencies, and time periods of available data.
A model parameter is said to be practically identifiable if the ARE values given by Eq (3.2) are less
than or equal to the noise percentage o for the given noise level. For example, if the ARE values for all
levels of noise for S are less than the corresponding noise level, we say £ is practically identifiable. If the
ARE for g is more than its corresponding noise level for any noise level, we would say this parameter is
not practically identifiable. If all parameters are practically identifiable in a given scenario, then the
model is practically identifiable. This is consistent with the definition of practical identifiability used
in [17]. The identifiability results from the MC approach are summarized in Table 2, and the details of
the ARE values can be found in the Supplemental Tables 5-16.

Table 2. Practical identifiability results for all scenarios: prevalence, incidence, and cumulative
incidence were using fminsearchbnd and fmincon with 10,000 iterations. Both methods yield
the same identifiability results. A blue-shaded cell indicates that the parameter highlighted is
practically identifiable.

Prevalence Daily Weekly Monthly
Scenario 1 B 0% a B 0% a B 0% a
Scenario 2 B 0% a B 0% a

Scenario 3 B Yy a B 0% o’ B Yy a
Scenario 4 B y a

Incidence Daily Weekly Monthly
Scenario 1 B 0% a B 0% a B 0% a
Scenario 2 B 0% a B 9% a

Scenario 3 B Yy a B 0% a B Yy a
Scenario 4 B y a
Cumulative

Incidence Daily Weekly Monthly
Scenario 1 B y a B 0% a B 0% a
Scenario 2 B 0% a B 0% a

Scenario 3 B Yy a | B 0% a B Y a
Scenario 4 B 0% o’

Before examining the ARE values, we generate violin plots for each scenario to observe the
distribution of parameter values as noise is introduced in the MC procedure. Although we are not using
the violin plots as a condition for practical identifiability, it does provide insight into how the values for
each parameter change as we incorporate noise. Figure 2 represents the violin plots for prevalence,
incidence, and cumulative incidence in Scenario 1 with respect to 8. Predictably, as more noise is added
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to the data set, we observe a larger dispersion of parameter values for 3, especially for 20% and 30%
noise levels. The remaining plots for the other scenarios, data type, and parameters can be found in the
Supplemental Figures 4, 5, 6, and 11.

10 Prevalence Scenario 1 LA Incidence Scenario 1 1073 CumulativeIncidence Scenario 1

o
S
@

e = S TR

I TR

: 1.l |
0.1 (x--*.-'-O'Ln--om SO0 08 0.5 L
0 06 0 OCOPOQOP O 6& OAA

§0 P R 0 SR gt R g SRR g e R g &0 P 0P g T g g g e g e g g e P e g, 7 g P S R R St g P g gl g s

Daily Weekly Monthly Daily Weekly Monthly Daily Weekly Monthly

Figure 2. Violin Plots for prevalence, incidence, and cumulative incidence in Scenario 1.

As summarized in Table 2, a higher data density and longer temporal data availability tend to result in
greater parameter identifiability overall. Moreover, the parameter vy had the fewest identifiable individual
scenarios, with the highest number of identifiable scenarios being 8 and « depending on the disease data
metric used. More scenarios of o were identifiable when using prevalence, while incidence resulted
in more scenarios of 8 being identifiable. Additionally, the incidence scenarios had the most cases
where parameters were identifiable, while only § is identifiable in some cases with cumulative incidence
data. In particular, one special case where shorter temporal data yields better identifiability results
occurred for parameter 8 with cumulative incidence data. This may be attributed to the performance of
the optimization algorithm. It is also worth noting that comparing the weekly (monthly) results from
Scenarios 1 and 2 with the daily (weekly) results from Scenarios 3 and 4, one could conclude that
knowing more about the whole epidemic curve is more important for obtaining an identifiable model
than obtaining dense data for a shorter period of time. A detailed discussion and reasoning about these
findings are presented in Section 5.

4.2. Correlation matrix (CM) results

We next test the practical identifiability of the same scenarios as in the MC results, using the CM
approach. Since CM reports identifiability of parameter pairs, instead of individual parameters, we
holistically define a problem to be identifiable if all three parameter pairs have a correlation below 0.9. If
any pair is more correlated, then the remaining estimates may be affected and result in an unidentifiable
problem. In Supplemental Tables 29-31, we report these correlation results and, in Table 3, we
summarize the resulting assessments of practical identifiability. We find that the most identifiable data
type is incidence data, which leads to identifiable problems for any sampling rate in Scenario 1 and
daily sampling rates in Scenarios 3 and 4. Estimating from prevalence data is an identifiable problem
for daily and weekly sampling rates in Scenario 3, and problems using cumulative incidence are never
identifiable.
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Table 3. Practical identifiability for the CM approach for different scenarios and data types. A
blue-shaded cell indicates that all parameters are identifiable for the given scenario and data
type. Cumulative incidence is not shown, since all results were “not identifiable”.

Prevalence Incidence
Daily Weekly Monthly Daily Weekly Monthly
Scenario 1 No No No Yes Yes Yes
Scenario 2 No No No No
Scenario 3 Yes Yes No Yes No No
Scenario 4 No Yes

In most cases, parameter correlation values do not significantly change with sampling frequency.
Only six correlation values increase by more than 0.1 between daily and monthly data, and none of
these changes cross the 0.9 threshold for identifiability. Four correlation values increase past the 0.9
threshold between daily and monthly data, changing the assessment of identifiability for two data types
(monthly prevalence and incidence data in Scenario 3). We therefore find two cases (out of nine) where
increased sampling frequency improves the CM assessment of identifiability. However, this is a limited
number of occurrences and it does not suggest an overall relationship between sampling frequency and
identifiability under the CM criteria. In all other cases, the CM results are not sensitive to the frequency
of data collection. Contrary to expectations, four correlation values decrease between daily and monthly
data, although the change is less than 0.1 and does not cross the 0.9 threshold for identifiability.

4.3. Comparing MC and CM

In Supplemental Tables 32-34, we assess identifiability using the CM criteria for all estimates
obtained in the MC process, under 0% and 30% noise levels, and then report the percentage of MC
estimates that would be considered identifiable. At a 0% noise level, the CM results for the MC estimates
match the results for the true parameters, since the estimates are very close to the true parameters.
However, at a 30% noise level, the MC estimates may be far from the true parameter. For example,
using daily prevalence data, the true parameter vector for Scenario 3 is identifiable by the CM approach.
However, only 18% of the MC parameter estimates at 30% noise are identifiable by the CM criteria.
Although 8 and « are identifiable by the MC criteria and remain close to their true values, there is a
higher error in the estimate for y. Because the CM results are affected by these incorrect y values, the
entire problem is considered unidentifiable. In other cases, incorrect MC estimates may be considered
identifiable by the CM criteria. For example, using daily or weekly cumulative incidence data, the
true parameter vector for Scenario 1 is not identifiable by the CM criteria. Under the MC criteria, 3 is
identifiable using daily data, but is very close to the cutoff, and all other parameters are not identifiable.
Using weekly data, none of the parameters are identifiable. However, 66% of the MC parameter
estimates using daily data and 34% of the MC estimates using weekly data are identifiable by the CM
criteria.

We next consider parameter correlations in four different cases, which correspond to all possible
assessments of identifiability compared across the MC and CM criteria. The cases include daily
prevalence data from Scenario 1, weekly prevalence data from Scenario 3, daily incidence data from
Scenario 1, and daily cumulative incidence data from Scenario 1. In Supplemental Figure 13, we
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plot the normalized error of MC estimates using data with 30% noise, for estimated pairs of S:y,
B:a, and ary. We fit a straight line through the parameter error and report the slope, as a numerical
assessment of correlation between MC parameter estimates. We consider two parameters correlated
if the lines are sufficiently different from a strictly horizontal or vertical fit, which we define to be
when the magnitude of the slope is between 0.5 and 2. This threshold is selected for symmetry around
slopes with magnitude 1 and bounded away from horizontal and vertical lines, which would indicate no
correlation. We select the specific bounds such that the two cases identifiable under the MC criteria
also have uncorrelated parameter estimates. We compare these values to the CM results and present the
correlations and identifiability in Table 36. We find that the sign of the correlation matches across the
MC estimates and CM calculations in all but one case (a:y for daily cumulative incidence data from
Scenario 1). However, there is not a consistent match in the correlation magnitudes across MC estimates
and CM calculations. The overall classification of “correlated” matches for nine (out of 12) pairs, but
the thresholds for both criteria are somewhat arbitrary. For example, in Supplemental Tables 35 and 36,
we assume wider and narrower ranges for MC slopes to be classified as “correlated”, where the overall
classification of “correlated” only matches in eight or seven cases.

Table 4. Parameter correlations for four cases, corresponding to different assessments of
identifiability. For the MC approach, the “correlation” is the slope of a best-fit line between
parameter estimates. For the CM approach, the correlation comes from calculations in
Section 4.2. A blue-shaded cell indicates that the two parameters are classified as “not
correlated”.

Scenario Identifiability Correlations
MC CM MC CM
By B ay By B ay
S1 Prevalence daily yes no -286 -022 6.12 -098 -0.66 0.54
S3 Prevalence weekly  no yes -1.17 1 0.15 | -1.27 | -0.87 089  -0.57
S1 Incidence daily yes yes 977  -020 251 -0.84 -0.14 0.64
S1 Cumulative daily no no -1.83  0.38 0.10 -097 092 | -0.81

5. Discussion

In this study, we systematically investigated the impact of different data types (prevalence, incidence,
and cumulative incidence) and sampling frequencies (daily, weekly, and monthly) on the practical
identifiability of the SEIR model parameters, using two identifiability methods: the Monte Carlo (MC)
method and the correlation matrix (CM) method. We found that incidence data, sampled at a higher
frequency, resulted in the greatest degree of identifiability. While more data (as obtained at a higher
sampling frequency) should intuitively lead to greater identifiability (although some exceptions are
discussed in more detail below), it is less clear why incidence data should lead to greater identifiability
compared to cumulative data. As such, we examine more closely the structure of these data types, and
how they relate to model parameters. The disease metrics incidence and cumulative incidence are related
to the flow into the exposed compartment, E, which depends on the transmission rate parameter 5. On
the other hand, prevalence is the result of integrating over the flows into and out of the infectious class,
I, which are directly impacted by disease-progression rate y and recovery rate @, and only indirectly by
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B. Because cumulative incidence “smooths out” the information encoded in incidence, it is possible
that different combinations of disease progression and recovery rates can yield very similar cumulative
incidence curves. For example, if a decrease in the incubation period causes an increased rate of flow
into the infected class, this could be balanced out by an increase in the recovery rate out of the infected
class and thus lead to similar values of the cumulative incidence at the current time. This hypothesis is
further supported by the transmission rate being the only identifiable parameter for cumulative incidence.

A more significant contributor, however, to the unidentifiability of cumulative incidence data is how
cumulative incidence is generated. We argue that the method for adding measurement error in the
case of cumulative data is patently unrealistic. The error model presented in our work (motivated by
other studies on identifiability in outbreak models) assumes that the mean of the measurement error is
proportional to the solution curve C(¢), resulting in very large measurement errors late in the epidemic.
A more realistic way to generate the bootstrapped cumulative data would be to add measurement error
to the incidence data and accumulate the incidence to obtain the corresponding cumulative incidence
data, which results in much smaller measurement errors later in the epidemic compared with the first
approach described here—a result of incidence tapering off after the peak of the epidemic. The challenge
with the second approach is that the accumulated incidence data produces measurement errors that are
not independent across time.

There are identifiable parameters in each of the various levels of data collection frequency, but the
same cannot be said for each scenario. That is, given the low enough noise in our data, we are able to
identify at least one parameter for each frequency of data collection, but we find that supplying data
for only a portion of an epidemic is a limiting factor for practical identifiability. This is evident in
Scenarios 3 and 4, where truncated time series data is used in the estimation process, resulting in few,
if any, practically identifiable parameters. Since these scenarios mimic what would occur during an
outbreak, care should be taken when estimating parameters before the epidemic has reached its peak, as
there is likely to be a great deal of uncertainty in the estimates, and therefore, in the trajectories that
follow. Projections of hypothetical control problems should take this uncertainty into consideration.

There are more identifiable problems by the CM criteria than problems where all parameters are
identifiable by the MC criteria. However, CM does not allow for partially identifiable problems, and
there are more cases where the MC approach classifies some parameters as independently identifiable
than fully identifiable problems under the CM approach. The MC and CM assessments of “completely
identifiable” problems seldom match, except for Scenario 1 daily incidence data. The assessments do,
however, agree on the “completely unidentifiable” problems for Scenarios 1 and 2 using weekly or
monthly cumulative incidence data, Scenario 3 monthly data of all types, and Scenario 4 daily prevalence
data. For both assessments, we find that problems using incidence data are most often identifiable and
problems using cumulative incidence data are least often identifiable. The assessments do not appear to
follow similar patterns across sampling rates or cutoff dates. The MC approach more often follows the
pattern that increased sampling rates (daily versus monthly) or longer time series (Scenario 3 versus
Scenario 1) lead to more identifiable problems, while CM is less sensitive to sampling rates and is
inconsistent in its response to longer time series.

Overall, we find that more data does correspond to more identifiable problems for the MC approach
or does not affect identifiable problems for the CM approach. However, contrary to expectations, we
find some cases where recovering parameters using shorter time series (Scenarios 3 or 4) are identifiable
problems, where problems using longer time series (Scenarios 1 or 2) were not identifiable. Under
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the MC criteria, when using weekly cumulative incidence data, S is identifiable for Scenario 3 but not
Scenario 1. This also occurs under the CM criteria using daily incidence data, where Scenario 4 is an
identifiable problem but Scenario 2 is not. These results suggest that long tails without change in the
time series may reduce identifiability. For the MC approach, the long tails may present an opportunity
for the minimization to “fit to noise”. This is supported by the difference across error levels, where the
estimates have more error at lower noise levels for Scenario 3 (Supplemental Table 15) but as noise
increases, the estimates for Scenario 1 have more error (Supplemental Table 13). Intuitively, this also
makes sense for the CM approach, which relies on the model’s sensitivity matrix; once the model
solution reaches zero or levels off, there is less sensitivity to the model parameters. This explanation
does not hold for prevalence data, which does not level off in our scenarios, but we find that under the
CM criteria, when using daily or weekly prevalence data, Scenario 3 is an identifiable problem but
Scenario 1 is not. We do not have an explanation for this outcome, except that Scenario 3 is borderline
unidentifiable (0.89 correlation, in Supplemental Table 29) and that the 0.9 cutoff for identifiability may
not be appropriate.

In Section 4.3, we further examine how MC and CM assessments of identifiability are related. In
general, we found little overlap between the two, and by applying the CM criteria to MC estimates, we
found that the CM criteria can lead to misleading results about parameter estimates. Most importantly,
we found that parameter estimates that did not meet MC criteria for identifiability were sometimes
identifiable by the CM criteria. This indicates that in practice, it is possible to estimate incorrect
values for unidentifiable parameters but conclude by the CM criteria that the recovered parameters were
identifiable. In other cases, the true parameter vector was identifiable by the CM criteria and the MC
remained close to the true parameters, but the MC estimates were unidentifiable by the CM criteria.
This discrepancy would also carry over to sensitivity-based confidence intervals, making it possible to
have low confidence in a well-estimated parameter due to relatively small changes in the parameter
space. However, it is important to note that our MC results represent a best case, in which numerical
minimization starts from the true parameter estimate; in practice, the high sensitivities that affect the
CM approach may affect estimates that start from other parts of the parameter space. In assessing
the correlations of MC estimates, we found that the sign of correlation between parameters matched
the results from the CM approach, but there was not a clear relationship between the magnitude of
correlation for both approaches.

For the MC method, we tested two optimizers, fmincon and fminsearchbnd, from MATLAB
for numerically finding the optimal parameters. fmincon is a function typically used for constrained
optimization where the parameter space is limited through equality and inequality constraints and
the objective function is at least second-order differentiable. It uses an interior point algorithm to
find the optimal solution by default unless otherwise specified. On the other hand, fminsearchbnd
requires upper and lower bounds for the parameter spaces, but cannot handle any other constraints
on the parameters. It uses the Nelder-Mead simplex direct search algorithm, which does not require
differentiability of the objective function. We implemented these two functions not to directly compare
the numerical results, but to determine if they provided similar identifiability outputs.

We computed the AREs six times with different optimization algorithms, number of iterations,
and data generation processes for each of the 27 cases (9 cases for each of the three data types as
shown in Table 2) and presented the results for the run with the most iterations using fminsearchbnd
and fmincon in the Supplemental Material. Notably, these computations exhibit both qualitative and
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quantitative variations. The first two times, we generate 1000 simulated data for each case, employing the
fmincon and fminsearchbnd optimization methods separately. These two optimizers give different
identifiability for 5 cases. To mitigate the stochastic variability arising from data generation, we
computed the AREs two additional times using the same 1000 simulated data for each case across both
optimizers. Then, the number of different cases is only one, though a different case than the previous 5.
Furthermore, to reduce inter-case stochastic variability resulting from the utilization of partial data
from Scenarios 1 and 2 in Scenarios 3 and 4, we conduct the final two rounds of computations. In
these rounds, we initially generated 10,000 simulated data sets for Scenarios 1 and 2 and subsequently
extracted the required data sets for all other cases. We observe that both optimizers yielded consistent
qualitative outcomes across all cases. Based on this observation, we recommend increasing the number
of simulated data sets whenever feasible, in order to enhance the reliability of the results.

Quantitatively, there are cases where AREs fluctuate around the 30% threshold over these six times.
For example, the ARE corresponded to 30% noise data for 8 with prevalence as observation ranged
from 28.3% to 30.9%. It would be difficult to assert practical identifiability in such cases. There are
arguments that practical identifiability can be assessed as long as these thresholds are relatively on the
same level. However, we found there is one case where the AREs ranged from 16% to 63%, while
in another case, the AREs only vary from 16.1% to 17.1%. This poses a difficulty in the certainty
of the results from the MC method. Our intensive computations suggest that the typically used 1000
simulations for the MC method may be insufficient in practice.

In addition, two distinct computational behaviors emerge when computing AREs for the same data:
1) In some cases, when the parameters are not identifiable, fmincon produces notably larger ARE than
fminsearchbnd; 2) There are occurrences where the ARE computed from fminsearchbnd is nearly
zero while the results from fmincon distinctly deviate from zero. The first phenomenon is likely due to
the utilization of an unbounded search region by the fmincon optimizer, which arises from the absence
of constraints on the parameter space. In contrast, when employing the fminsearchbnd optimizer,
we impose a range of [0, 1] for all parameters, thereby obtaining less AREs by confining the search
within a bounded parameter space. The second phenomenon could be attributed to the search algorithm
employed by these two optimizers. Our investigation indicates that, in instances where a non-zero ARE
is obtained for zero noise data, the fmincon optimizer generates optimal parameter values that deviate
from the accurate ones, even when the initial parameter values are set to the accurate values. Notably,
the resulting parameters yield a larger error compared to the accurate values. This suggests that the
algorithm encounters random deviations from the initial search point and is unable to converge back to
the accurate parameters, potentially due to the intricate landscape of the error function.

6. Conclusions

In this study, we found that, for a range of parameter values, sampling rates, and criteria for practical
identifiability, parameters estimated from incidence data are most often identifiable and parameters
estimated from cumulative incidence data are least often identifiable. In practice, estimates obtained
from cumulative incidence data should be treated with caution. However, it is important to note that
identifiability was sensitive to underlying parameters across different scenarios. Additionally, we found
that assessments of identifiability seldom agreed across the MC and CM approaches, with each method
relying on cutoffs for identifiability that may be arbitrary. A further complication is that parameter
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estimation and identifiability results were sensitive to the choice of minimization algorithm, even
after implementing common safeguards through numerical tolerances. Taken together, sensitivities to
parameter values, the definition of identifiability, and numerical algorithms demonstrate that a single
assessment of identifiability may be misleading or incomplete. We recommend a range of tests for
identifiability to ensure confidence in the results. Finally, we note that our results are obtained for a
relatively simple epidemic model under a best-case scenario, in which the model perfectly matches the
processes generating the data, and were generated with knowledge of the underlying parameter vector,
allowing for numerical searches to begin from the desired solutions. These conditions are impossible to
meet in practice, and we still found fewer identifiable problems than expected. Parameter estimation for
more complex models must be treated with significant caution and may require more rigorous testing of
identifiability than is currently practiced. Although challenging, work in this area would greatly benefit
from concrete guidelines for assessing practical identifiability from an array of methods.
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Figure 3. Plots for each scenario. In Scenario 1, the peak occurs on day 109 with the time
span of 365 days. In Scenario 2, the peak occurs on day 25 with the time span of 50 days.
In Scenario 3, the peak still occurs on day 109, but the time span is reduced to 100 days.
Similarly, in Scenario 4, the peak is at day 25 with a time span of 20 days.
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Figure 4. Violin plots for 3, y, and @ using prevalence data for all four scenarios. The first
column presents results for S, the second column for vy, and the third column for @. These
distributions are generated from the MC algorithm using 10,000 iterations.
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Figure 5. Violin plots for 3, y, and « using incidence data for all four scenarios. The first
column presents results for S, the second column for vy, and the third column for @. These
distributions are generated from the MC algorithm using 10,000 iterations.
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Figure 6. Violin plots for §, v, and « using cumulative incidence data for all four scenarios.
The first column presents results for 8, the second column for vy, and the third column for «.
These distributions are generated from the MC algorithm using 10,000 iterations.
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Figures 7 through 10 plot normalized objective function value (fval) and normalized ARE for a
given iteration versus other metrics of instance. Normalized ARE for a given scenario was obtained
by dividing the given ARE value by the noise level for the scenario. Thus normalized ARE values
below 1 are considered identifiable while values greater than 1 are unidentifiable. The normalized fval
was calculated as

f ValTrue Params — f ValEst Params

f ValTrue Params

With this in mind, positive values indicate the estimated parameter values fit the data better than the
true parameter values while negative values indicate the true parameters provided a lower objective
function value.

Figure 7 shows ARE values plotted on a log scale against our normalized objective function value
(fval). The data is further stratified by parameter type and noise level. The normalized objective function
values tend to be above 0 indicating that the estimated parameters fit the noisy data better than the
true parameter values. Scenarios with the lowest ARE and fval values with the smallest variation tend
to correspond to scenarios with a larger number of data points. This indicates that the optimization
procedure struggles to identify the true parameters when noise is added to a small number of data points.
Increasing ARE values tend to be associated with scenarios that have fewer data points and fvals that
take on a larger range of values.

We notice similar dynamics in Figure 8, where the number of data points on a log scale is plotted
against the normalized fval for different noise levels and data types. The normalized fval tending to
be above 0 indicates that the estimated parameter values provide a better fit relative to true parameter
values. As the number of data points decreases, the fval shows a wider range, again demonstrating how
adding noise to a small number of data points complicates the parameter estimation process.

Figures 9 and 10 plot the number of data points in a given scenario on the log scale versus ARE
as broken down by parameter and noise level. ARE values below 1 are considered identifiable while
values greater than 1 are unidentifiable. Beta clearly produced the lowest ARE values across all noise
levels and data types. We see that as long as there are enough data points, beta is the most likely to be
identifiable.

as numeric(N_DataPoints)
200
200

100

050-
025-

0.00-

Figure 7. Normalized function values (fval) plotted against ARE on a log scale, for different
noise levels across columns (1%, 10%, and 30%) and parameters across rows (a, 3, and 7).
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Figure 11. Estimates of 8, v, and « from 10,000 MC iterations at different noise levels
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Figure 12. Comparison between the Scenario 1 and Scenario 3 model outputs when 30%
noise is added to the data. This figure demonstrates that more information does not necessarily
imply better fitting results.
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Supplemental tables —Monte Carlo (MC) results from fminsearchbnd

Table 5. Average relative errors in parameter estimates from MC simulations using
fminsearchbnd for Prevalence data in Scenario 1. The results are displayed for error
levels ranging from 0% to 30% and various data sampling frequencies. The bottom row
assesses identifiability, with blue-shaded cells indicating identifiable parameters.

Error level ‘ Daily ‘ Weekly | Monthly
o B V4 @ B V4 @ B V4 @
0 % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1 % 0.09 0.42 0.04 0.24 1.10 0.11 0.51 2.37 0.24
5% 0.47 2.16 0.26 1.21 5.55 0.59 2.50 11.64  1.18
10 % 1.03 4.45 0.79 2.50 11.20 1.25 5.52 24.69 236
20% 2.69 9.96 2.88 6.27 2312 314 17776  59.51  4.58
30 % 5.77 17.15  6.19 1428 3638 592 2970 85.60 6.51

Identifiable Yes Yes Yes Yes No Yes Yes No Yes

Table 6. Average relative errors in parameter estimates from MC simulations using
fminsearchbnd for Prevalence data in Scenario 2. The results are displayed for error
levels ranging from 0% to 30% and various data sampling frequencies. The bottom row shows
the identifiability assessment, with blue-shaded cells indicating identifiable parameters.

Error level ‘ Daily ‘ Weekly
o B b4 @ B b4 @
0 % 0.00 0.00 0.00 0.00 0.00 0.00
1% 1.06 1.32 0.24 2.85 3.53 0.58
5% 543 7.03 1.27 15.60 32.60 2.89
10% 11.69 21.42 2.76 28.37 69.06 5.80
20 % 24.40 74.11 7.25 45.12 98.03 12.26
30 % 32.74 117.37 14.49 59.74 110.75 19.18
Identifiable No No Yes No No Yes

Table 7. Average relative errors in parameter estimates from MC simulations using
fminsearchbnd for Prevalence data in Scenario 3. The results are displayed for error
levels ranging from 0% to 30% and various data sampling frequencies. The bottom row shows
the identifiability assessment, with blue-shaded cells indicating identifiable parameters.

Error level ‘ Daily ‘ Weekly ‘ Monthly
o B 04 @ B Y « B 04 @
0% 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 0.00
1% 0.53 1.11 0.65 1.32 2.89 1.56 4.25 9.36 4.42
5% 2.63 5.75 324  6.69 1501 7.86 23.00 70.17 21.24
10% 521 1255 648 1381 3567 1569 4920 133.19 3441

20% 10.72 38.33 1345 3324 9575 28.93 76.36 168.39 52.20
30% 16.44 10642 2123 4727 147.87 37.13 1287.14 178.02 68.08
Identifiable | Yes No Yes No No No No No No
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Table 8. Average relative errors in parameter estimates from MC simulations using
fminsearchbnd for Prevalence data in Scenario 4. The results are displayed for error
levels ranging from 0% to 30% and various data sampling frequencies. The bottom row shows
the identifiability assessment, with no parameters identified as identifiable.

Error level ‘ Daily
o B v (7
0% 0.09 0.14 0.17
1% 7.55 12.52 19.24
5% 19.57 37.17 48.05
10% 25.50 59.28 59.90
20% 34.91 106.81 78.40
30% 43.04 144.20 91.45
Identifiable No No No

Table 9. Average relative errors in parameter estimates from MC simulations using
fminsearchbnd for Incidence data in Scenario 1. The results are displayed for error levels
ranging from 0% to 30% and various data sampling frequencies. The bottom row shows the
identifiability assessment, with blue-shaded cells indicating identifiable parameters.

Error level ‘ Daily | Weekly | Monthly
o B 4 @ B Y @ B Y a
0% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1% 0.04 0.37 0.10 0.10 0.99 0.27 0.20 2.03 0.53
5% 0.19 1.87 0.52 0.48 4.92 1.36 0.98 10.38 2.70
10% 0.41 3.81 1.03 0.96 10.07 2.68 1.97 23.36 5.47
20% 1.03 8.07 1.97 1.99 22.32 5.13 3.75 61.51 10.80
30% 2.03 13.36 2.65 3.13 38.75 7.08 5.73 99.28 16.78
Identifiable Yes Yes Yes Yes No Yes Yes No Yes

Table 10. Average relative errors in parameter estimates from MC simulations using
fminsearchbnd for Incidence data in Scenario 2. The results are displayed for error levels
ranging from 0% to 30% and various data sampling frequencies. The bottom row shows the
identifiability assessment, with blue-shaded cells indicating identifiable parameters.

Error level ‘ Daily ‘ Weekly
o B Y « B 04 @
0% 0.00 0.00 0.00 0.00 0.00 0.00
1% 0.29 0.54 0.61 0.78 1.49 1.60
5% 1.46 2.73 3.07 3.95 7.46 8.15
10% 3.07 5.64 6.45 6.45 12.44 13.25
20% 5.64 10.23 11.80 10.01 19.21 20.48
30% 2.03 13.36 2.65 12.36 24.00 24.94
Identifiable Yes Yes Yes Yes Yes Yes
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Table 11. Average relative errors in parameter estimates from MC simulations using
fminsearchbnd for Incidence data in Scenario 3. The results are displayed for error levels
ranging from 0% to 30% and various data sampling frequencies. The bottom row shows the
identifiability assessment, with blue-shaded cells indicating identifiable parameters.

Error level ‘ Daily ‘ Weekly ‘ Monthly
4 B 04 a B 04 a B Y «
0% 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00
1% 0.37 1.45 0.54 1.50 5.65 1.89 8.91 40.28 11.26
5% 1.86 7.32 2.71 7.26 36.33 9.56 32.58 175.46 32.72
10 % 3.82 14.65 5.39 12.90 76.38 17.62 48.46 205.18 49.26
20% 8.73 30.68 11.01 21.30 111.74  33.87 75.24 193.70 90.65
30% 1551  45.53 19.16  28.22 121.14  53.24 133.93 164.62 156.34
Identifiable Yes No Yes Yes No No No No No

Table 12. Average relative errors in parameter estimates from MC simulations using
fminsearchbnd for Incidence data in Scenario 4. The results are displayed for error levels
ranging from 0% to 30% and various data sampling frequencies. The bottom row shows the
identifiability assessment, with no parameters identified as identifiable.

Error level ‘ Daily
o B v (17
0% 2.26 3.93 5.46
1% 7.46 13.18 18.50
5% 19.16 38.24 45.39
10% 25.85 60.22 57.45
20% 36.36 103.55 76.31
30% 45.01 133.93 90.46

Identifiable No No No

Table 13. Average relative errors in parameter estimates from MC simulations using
fminsearchbnd for Cumulative Incidence data in Scenario 1. The results are displayed for
error levels ranging from 0% to 30% and various data sampling frequencies. The bottom row
shows the identifiability assessment, with blue-shaded cells indicating identifiable parameters.

Error level Daily ‘ Weekly ‘ Monthly
o B Y @ B 04 « B Y @
0% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1% 0.60 2.34 0.69 1.62 6.34 1.83 5.65 29.82 6.21
5% 3.12 12.04 3.39 8.31 55.85 9.40 19.07 137.41 20.68
10 % 7.08 30.59 6.80 15.07 107.18 17.29  28.51 170.83 37.45
20 % 18.37  63.31 16.27 26.41 141.72  40.16  39.89 182.41 64.83
30% 29.67  76.41 4844  35.10 13842 6345 47.30 170.29  79.50
Identifiable Yes No No No No No No No No
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Table 14. Average relative errors in parameter estimates from MC simulations using
fminsearchbnd for Cumulative Incidence data in Scenario 2. The results are displayed for
error levels ranging from 0% to 30% and various data sampling frequencies. The bottom row
shows the identifiability assessment, with blue-shaded cells indicating identifiable parameters.

Error level Daily ‘ Weekly
4 B 04 a B 04 a
0% 0.00 0.00 0.00 0.00 0.00 0.00
1% 0.92 6.59 51.18 5.53 4791 150.65
5% 3.62 21.28 141.23 20.28 145.39 210.88
10% 7.19 34.65 183.97 32.61 179.75 284.48
20% 14.00 52.83 179.59 54.39 193.97 359.43
30% 20.50 68.05 156.92 69.78 195.01 326.25

Identifiable Yes No No No No No

Table 15. Average relative errors in parameter estimates from MC simulations using
fminsearchbnd for Cumulative Incidence data in Scenario 3. The results are displayed for
error levels ranging from 0% to 30% and various data sampling frequencies. The bottom row
shows the identifiability assessment, with blue-shaded cells indicating identifiable parameters.

Error level Daily ‘ Weekly ‘ Monthly
o B 4 « B 4 « B 4 @

0% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1% 0.70 3.62 0.89 1.86 9.72 2.33 7.60 54.17 6.95
5 % 3.50 19.11 4.53 8.90 80.27 13.36 19.24 188.96 37.96
10% 7.19 45.52 9.93 13.98 140.76 3095 24.06  215.03 61.91
20 % 1453  77.25 2555  20.70 174.66 5582  39.16 21627 95.20
30 % 23770  83.67 43.67  28.60 182.85 7499  62.51 210.04 145.29

Identifiable Yes No No Yes No No No No No

Table 16. Average relative errors in parameter estimates from MC simulations using
fminsearchbnd for Cumulative Incidence data in Scenario 4. The results are displayed for
error levels ranging from 0% to 30% and various data sampling frequencies. The bottom row
shows the identifiability assessment, with blue-shaded cells indicating identifiable parameters.

Error level ‘ Daily
o B % 17
0% 0.01 0.12 0.88
1% 0.94 6.84 53.09
5% 3.67 23.59 154.27
10% 7.36 45.10 225.45
20 % 14.43 80.58 284.47
30 % 21.38 95.99 291.84
Identifiable Yes No No
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Supplemental tables —Monte Carlo (MC) results from fmincon

Table 17. Average relative errors in parameter estimates from MC simulations using fmincon
for Prevalence data in Scenario 1. The results are displayed for error levels ranging from 0%
to 30% and various data sampling frequencies. The bottom row assesses identifiability, with
blue-shaded cells indicating identifiable parameters.

Error level ‘ Daily ‘ Weekly ‘ Monthly
o B Y @ B V4 «@ B Y «

0% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1% 0.05 0.18 0.04 0.19 0.84 0.11 0.46 2.16 0.24
5% 0.40 1.87 0.23 1.13 5.32 0.57 2.40 11.46 1.16
10 % 0.91 4.07 0.72 2.39 10.99 1.21 5.28 24.59 2.33
20% 247 9.38 2.79 5.99 22.86 3.07 17.08 59.54 4.55
30 % 5.39 16.33 6.10 13.51 36.05 5.85 28.85 85.52 6.49

Identifiable Yes Yes Yes Yes No Yes Yes No Yes

Table 18. Average relative errors in parameter estimates from MC simulations using fmincon
for Prevalence data in Scenario 2. The results are displayed for error levels ranging from 0%
to 30% and various data sampling frequencies. The bottom row assesses identifiability, with
blue-shaded cells indicating identifiable parameters.

Error level ‘ Daily ‘ Weekly
o B b4 @ B Y @
0 % 0.01 0.01 0.00 0.02 0.02 0.00
1% 1.06 1.32 0.24 2.85 3.53 0.58
5% 5.44 7.05 1.27 15.60 32.17 2.89
10% 11.70 2141 2.76 28.35 67.98 5.80
20 % 24.41 73.83 7.25 45.01 95.99 12.26
30 % 32.74 116.67 14.49 69.30 106.77 19.20
Identifiable No No Yes No No Yes

Table 19. Average relative errors in parameter estimates from MC simulations using fmincon
for Prevalence data in Scenario 3. The results are displayed for error levels ranging from 0%
to 30% and various data sampling frequencies. The bottom row assesses identifiability, with
blue-shaded cells indicating identifiable parameters.

Error level ‘ Daily ‘ Weekly ‘ Monthly
o B 04 « B Y @ B Y @
0% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1% 0.50 0.91 0.66 1.36 3.01 1.62 3.85 8.93 4.24
5% 2.73 6.03 341 6.63 15.21 7.94 21.99 68.52 21.20
10% 5.38 13.17 6.76 13.70 36.26 15.88 47.07 129.59  34.81
20% 10.98 39.95 13.94  32.05 95.21 29.14 73.95 163.65 52.35
30% 16.80 108.70 2193 45091 14596  37.28 2851.12 173.97 68.07

Identifiable Yes No Yes No No No No No No
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Table 20. Average relative errors in parameter estimates from MC simulations using fmincon
for Prevalence data in Scenario 4. The results are displayed for error levels ranging from 0%
to 30% and various data sampling frequencies. The bottom row assesses identifiability, with
blue-shaded cells indicating identifiable parameters.

Error level ‘ Daily
o B v (7
0% 2.26 3.93 5.46
1% 7.46 13.18 18.50
5% 19.16 38.24 45.39
10% 25.85 60.22 57.45
20% 36.36 103.55 76.31
30% 45.01 133.93 90.46
Identifiable No No No

Table 21. Average relative errors in parameter estimates from MC simulations using fmincon
for Incidence data in Scenario 1. The results are displayed for error levels ranging from 0%
to 30% and various data sampling frequencies. The bottom row assesses identifiability, with
blue-shaded cells indicating identifiable parameters.

Error level Daily ‘ Weekly ‘ Monthly
o B 4 a B Y « B 4 «

0% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1% 0.01 0.03 0.02 0.07 0.52 0.19 0.20 1.87 0.51
5% 0.20 1.65 0.48 0.49 4.90 1.35 0.97 10.49 2.71
10% 0.45 3.89 1.01 0.97 10.20 2.69 1.96 23.65 5.49
20% 1.10 8.42 1.97 2.01 22.71 5.13 3.72 61.78 10.80
30% 2.12 13.89 2.65 3.16 39.27 7.08 5.69 99.19 16.78

Identifiable Yes Yes Yes Yes No Yes Yes No No

Table 22. Average relative errors in parameter estimates from MC simulations using fmincon
for Incidence data in Scenario 2. The results are displayed for error levels ranging from 0%
to 30% and various data sampling frequencies. The bottom row assesses identifiability, with
blue-shaded cells indicating identifiable parameters.

Error level Daily ‘ Weekly
o B 04 « B 04 «
0% 0.00 0.00 0.00 0.00 0.00 0.00
1% 0.13 0.24 0.28 0.30 0.60 0.66
5% 0.56 1.08 1.26 1.70 3.31 3.71
10% 1.22 2.30 2.73 3.39 6.45 7.32
20% 2.78 5.01 6.11 6.55 11.57 13.58
30% 5.20 8.51 10.83 9.50 16.26 18.81
Identifiable Yes Yes Yes Yes Yes Yes
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Table 23. Average relative errors in parameter estimates from MC simulations using fmincon
for Incidence data in Scenario 3. The results are displayed for error levels ranging from 0%
to 30% and various data sampling frequencies. The bottom row assesses identifiability, with
blue-shaded cells indicating identifiable parameters.

Error level Daily ‘ Weekly ‘ Monthly
o B 04 @ B 04 a B 04 a
0% 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00
1% 0.33 1.33 0.55 1.44 5.63 1.92 5.61 30.30 7.85
5% 1.79 7.20 2.76 7.14 38.76 9.66 28.82  154.69 30.21
10 % 3.67 14.51 5.42 12.75 79.46 1771  46.28 188.07 47.96
20% 8.47 30.64 11.08  21.02 111.28  33.81 68.55 182.10 85.63
30% 15.19 4531 19.21 28.01 119.14 5323  93.48 154.56 125.72
Identifiable Yes No Yes Yes No No No No No

Table 24. Average relative errors in parameter estimates from MC simulations using fmincon
for Incidence data in Scenario 4. The results are displayed for error levels ranging from 0%
to 30% and various data sampling frequencies. The bottom row assesses identifiability, with
blue-shaded cells indicating identifiable parameters.

Error level ‘ Daily
o B v 17

0% 0.01 0.00 0.00
1% 0.52 2.25 14.04
5% 2.57 10.02 58.51
10% 5.24 18.75 99.72
20% 10.85 36.77 155.21
30% 16.92 49.96 183.86

Identifiable Yes No No

Table 25. Average relative errors in parameter estimates from MC simulations using fmincon
for Cumulative Incidence data in Scenario 1. The results are displayed for error levels
ranging from 0% to 30% and various data sampling frequencies. The bottom row assesses
identifiability, with blue-shaded cells indicating identifiable parameters.

Error level Daily ‘ Weekly ‘ Monthly
o B 4 @ B 04 « B 04 @

0% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1% 0.43 1.54 0.63 1.48 6.12 1.78 4.90 29.22 5.54
5% 2.69 10.82 3.36 7.90 54.30 9.24 18.30 131.12  20.40
10% 6.43 28.93 6.87 14.64 103.96 17.28 29.64 162.19  39.33
20% 1775  61.80 16.55  26.46 138.19  40.81 47.06 170.81 72.01
30% 2935 76.12  48.68  35.54 135.64  64.31 1839.19 157.51 98.54

Identifiable Yes No No No No No No No No
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Table 26. Average relative errors in parameter estimates from MC simulations using fmincon
for Cumulative Incidence data in Scenario 2. The results are displayed for error levels
ranging from 0% to 30% and various data sampling frequencies. The bottom row assesses
identifiability, with blue-shaded cells indicating identifiable parameters.

Error level ‘ Daily ‘ Weekly
o B 04 @ B 04 @
0% 1.23 13.89 105.71 0.12 1.89 9.89
1% 0.99 8.07 61.47 5.90 52.39 158.97
5% 3.66 21.79 139.17 20.27 143.20 226.75
10% 7.28 35.27 182.15 32.51 174.51 305.53
20% 14.12 53.18 179.58 173.07 187.73 389.63
30% 20.60 67.95 155.22 1977.03 188.83 413.24

Identifiable Yes No No No No No

Table 27. Average relative errors in parameter estimates from MC simulations using fmincon
for Cumulative Incidence data in Scenario 3. The results are displayed for error levels
ranging from 0% to 30% and various data sampling frequencies. The bottom row assesses
identifiability, with blue-shaded cells indicating identifiable parameters.

Error level Daily ‘ Weekly ‘ Monthly
o B 4 a B Y « B Y «

0% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1% 0.50 2.04 0.84 1.62 8.62 2.43 6.26 44.92 7.50
5% 3.06 17.52 4.55 8.55 76.71 13.34 18.25 170.24 36.76
10% 6.65 43.63 9.82 13.67 135.67  30.67 23.80 201.17 60.30
20 % 1396  75.08 2529  20.52 169.93 5542 38.55 206.35 92.92
30 % 23.18 82.04 4328 2847 178.60  74.76 1009.17  201.16 143.25

Identifiable Yes No No Yes No No No No No

Table 28. Average relative errors in parameter estimates from MC simulations using fmincon
for Cumulative Incidence data in Scenario 4. The results are displayed for error levels
ranging from 0% to 30% and various data sampling frequencies. The bottom row assesses
identifiability, with blue-shaded cells indicating identifiable parameters.

Error level ‘ Daily
o B % 17
0% 0.02 0.30 2.18
1% 1.01 8.24 62.80
5% 3.72 23.96 151.22
10% 7.44 45.34 221.31
20 % 14.54 80.70 284.35
30 % 21.53 96.19 296.40
Identifiable Yes No No
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Supplemental tables —correlation matrix results

The following tables contain the correlation coefficients for the different scenarios and data types,
rounded to two decimal places. If the correlation coefficient is above 0.9 for any pair of parameters, the
parameter vector is “not identifiable” for the scenario and data type.

Table 29. The correlation matrix identifiability results for Prevalence data are presented.
Key correlation coeflicients, those approaching or exceeding the 0.9 threshold for parameter
identifiability, are highlighted in blue-shaded cells. For comparison, the identifiable parameters
from the MCMC results are included in the final row.

Scenario 1 | 2 | 3 | 4
Sampling D W M D W D W M D
098 098 098 099 -0.99 095 -1.00

B,y correlation

BB, a correlation 0.94 -0.97

v, a correlation 0.99
Identifiable No No No No

MCMC Results B, a B, a @ a B, a - - -

Table 30. The correlation matrix identifiability results for Incidence data are presented.
Key correlation coefficients, those approaching or exceeding the 0.9 threshold for parameter
identifiability, are highlighted in blue-shaded cells. For comparison, the identifiable parameters
from the MCMC results are included in the final row.

Scenario 1 | 2 | 3 | 4
Sampling D w M D w D W M D
B,y correlation -090  -0.97

B, a correlation
v, a correlation
Identifiable
MCMC Results

Table 31. The correlation matrix identifiability results for Cumulative Incidence data are
presented. Key correlation coefficients, those approaching or exceeding the 0.9 threshold for
parameter identifiability, are highlighted in blue-shaded cells. For comparison, the identifiable
parameters from the MCMC results are included in the final row.

Scenario 1 | 2 | 3 | 4
Sampling D W M D W D w M D
B,y correlation -097  -097 -0.99 -092 -092 -098
B, a correlation 0.92 0.92 0.97

y.acorrelation [ 081 081 | 093 097 099
Identifiable No No No No No No No No No
MCMC Results - - - - - - - - -
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The following tables report the percent of identifiable parameters from MCMC iterates. In three
scenarios, we omit parameter estimates, which result in a noninvertible Fischer information matrix. This
happens for monthly Prevalence data under Scenario 3 (984 parameters omitted), weekly Cumulative
Incidence data under Scenario 2 (4 parameters omitted), and monthly Cumulative Incidence data under
Scenario 2 (641 parameters omitted). The corresponding results are indicated with an asterisk in the

tables below.

Table 32. Correlation matrix identifiability rates for MCMC parameter estimates, using
Prevalence data. For comparison, we include results for true parameters in the last row. The
asterisk indicates a case where parameter estimates were omitted due to noninvertible Fisher

matrices.
Scenario 1 2 3 4
Sampling D w M D w D w M D
0% Error Estimates 0% 0% 0% 0% 0% 100% 100% 0% 0%
30% Error Estimates 0% 0% 0% 0% 033% 18% 10% 5.2%% 1.5%
True Parameter Values No No No No No Yes Yes No No

Table 33. Correlation matrix identifiability rates for MCMC parameter estimates, using
Incidence data. For comparison, we include results for true parameters in the last row.

3 4

Scenario 1 2
Sampling D W M D W D w M D
0% Error Estimates 100% 100% 100% 0% 0% 100% 0% 0% 100%
30% Error Estimates 100% 100% 96% 0% 0% 86% 45%  6.2% 63%
True Parameters Yes Yes Yes No No Yes No No Yes

Table 34. Correlation matrix identifiability rates for MCMC parameter estimates, using
Cumulative Incidence data. For comparison, we include results for true parameters in the last
row. The asterisks indicate cases where parameter estimates were omitted due to noninvertible

Fisher matrices.

Scenario 1 2 3 4

Sampling D w M D w D w M D
0% Error Estimates 0% 0% 0% 100% 100% 0% 0% 0% 100%
30% Error Estimates ~ 66% 34% 13% 17% 3*% 38% 15% 1.8%% 25%
True Parameters No No No No No No No No No
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Table 35. Parameter correlations for four cases, corresponding to different assessments of
identifiability. For the MC approach, the “correlation” is the slope of a best-fit line between
parameter estimates, where “correlated” requires a slope range between 0.2 < |m| < 5. For
the CM approach, the correlation comes from calculations in Section 4.2. A blue-shaded cell
indicates that the two parameters are classified as “not correlated”.

Scenario Identifiability Correlations
MC CM MC CM
By B:a ay By B:a ay
S1 Prevalence daily yes no -2.86 -0.22 6.12 -0.98 -0.66 0.54
S3 Prevalence weekly no yes -1.17 0.15 -1.27 -0.87 0.89 -0.57
S1 Incidence daily yes yes -9.77 -0.20 2.51 -0.84 -0.14 0.64
S1 Cumulative daily no no -1.83 0.38 0.10 -0.97 0.92 -0.81

Table 36. Parameter correlations for four cases, corresponding to different assessments of
identifiability. For the MC approach, the “correlation” is the slope of a best-fit line between
parameter estimates, where “correlated” requires a slope range between 0.8 < |m| < 1.25. For
the CM approach, the correlation comes from calculations in Section 4.2. A blue-shaded cell
indicates that the two parameters are classified as “not correlated”.

Scenario Identifiability ‘ Correlations
MC CM MC CM
By B ay By B ay
S1 Prevalence daily yes no -2.86 -0.22 6.12 -0.98 -0.66 0.54
S3 Prevalence weekly no yes -1.17 0.15 -1.27 -0.87 0.89 -0.57
S1 Incidence daily yes yes -9.77 -0.20 2.51 -0.84 -0.14 0.64
S1 Cumulative daily no no -1.83 0.38 0.10 -0.97 0.92 -0.81
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