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Abstract: Financial engineering problems hold considerable significance in the academic realm,
where there remains a continued demand for efficient methods to scrutinize and analyze these
models. Within this investigation, we delved into a fractional nonlinear coupled system for option
pricing and volatility. The model we examined can be conceptualized as a fractional nonlinear
coupled wave alternative to the governing system of Black-Scholes option pricing. This introduced
a leveraging effect, wherein stock volatility aligns with stock returns. To generate novel solitonic
wave structures in the system, the present article introduced a generalized Ricatti mapping method and
new Kudryashov method. Graphical representations, both in 3D and 2D formats, were employed to
elucidate the system’s response to pulse propagation. These visualizations enabled the anticipation of
appropriate parameter values that align with the observed data. Furthermore, a comparative analysis
of solutions was presented for different fractional order values. Additionally, the article showcases the
comparison of wave profiles through 2D graphs. The results of this investigation suggested that the
proposed method served as a highly reliable and flexible alternative for problem-solving, preserving
the physical attributes inherent in realistic processes. To sum up, the main objective of our work was to
conceptualize a fractional nonlinear coupled wave system as an alternative to the Black-Scholes option
pricing model and investigate its implications on stock volatility and returns. Additionally, we aimed
to apply and analyze methods for generating solitonic wave structures and compare their solutions for
different fractional order values.
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1. Introduction

In recent decades, corporations have sought crucial instruments to manage financial securities.
Within the realm of financial securities, options play a pivotal role in mitigating risks arising from
fluctuations in stock prices [1]. To delve into the diverse alternatives available for these options,
Lesmana and Wang [2] categorize them into two primary types: European options, which can be
executed solely on a specific date, known as the expiry date, and American options, which offer the
flexibility of exercise either on or before the expiry date. A crucial economic concern for both traders
and investors revolves around establishing a reliable methodology for pricing options, determining
the suitable theoretical value for call or put options. Over time, the conceptualization of options as a
comprehensive financial instrument was not common place among traders, and the valuation of options
remained a formidable and intricate challenge. In [3], pricing options involves the application of
mathematical models that frequently pose significant challenges in terms of solution.

Over the past five decades, various endeavors have been made to introduce alternative methods for
option pricing. Notably, a groundbreaking advancement occurred in 1973 when Black and Scholes [4]
proposed a mathematical model to compute a fair value for options. According to their seminal
work [4], the Black-Scholes model represents a pure log-normal diffusion model, resulting in a
parabolic partial differential equation within the framework of Ito’s calculus. Another noteworthy
contribution came from Merton [5], who expanded upon the model equation initially proposed by
Black and Scholes. Black and Scholes demonstrated that their formulae related to partial differential
equations which effectively determine a fair value for both call and put options. The well-known
Black-Scholes option pricing model, commonly referred to as Black-Scholes-Merton, is defined by the
equation [6]

A(t) + σ2 2s2Axx

r
+ rAx − rA = 0. (1.1)

The stock price S follows a geometric Brownian motion, described by the stochastic differential
equation:

dS = µS dt + σS dW(t), (1.2)

where µ represents the instantaneous mean return, σ is the stock volatility, and W(t) is a Wiener
process. The Black-Scholes model has sparked significant interest, leading to advancements in
financial mathematics and engineering. However, it has limitations in pricing unconventional option
types such as American or Asian options due to its inability to account for exercise features and path
dependencies. Moreover, an obstacle highlighted by Lesmana and Wang [2] is the diminished validity
of the Black-Scholes option pricing methodology in the presence of transaction costs associated with
trading in risk-free securities or stocks. To address this point, different models have been introduced by
researchers such as Boyle and Vorst [7], Leland [8], Barles and Soner [9] and Kusuoka [10]. Ivancevic
has recently introduced an option pricing model [11]. This model is grounded in the Elliott wave market
theory [12], Lo’s contemporary adaptive market hypothesis [13], and the quantum neural computation
approach [14]. Ivancevic’s model is read as [15–17]

ιB(t) + σ2Bxx + β|B|2B = 0, (1.3)
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which aims to capture the behavioral complexities and efficient market dynamics. Here, σ denotes
volatility (which can be constant or a stochastic process), B(x, t) represents the option price wave
function, and β signifies the adaptive market potential coefficient.

The Black-Scholes model, defined by Eqs (1.1) and (1.2), assumes constant volatility and is
primarily suited for European options, however it fails to capture market behaviors such as stochastic
volatility and path dependencies. Ivancevic’s model introduces nonlinear dynamics with Eq (1.3)
and further proposes a coupled nonlinear model for both volatility and option pricing, as detailed
in [18, 19], thereby capturing the independencies between these factors. By introducing an adaptive
market potential coefficient β that varies with market conditions, this model offers a more accurate and
realistic approach to option pricing, expressed as follows:

ιUt +
1
2

Uxx + β(|U |2 + |V |2)U = 0, (1.4)

ιVt +
1
2

Vxx + β(|U |2 + |V |2)V = 0. (1.5)

In its fractional form, the model is written as [19]

ιDM,α
t U +

1
2

Uxx + β(|U |2 + |V |2)U = 0, (1.6)

ιDM,α
t V +

1
2

Vxx + β(|U |2 + |V |2)V = 0. (1.7)

Here, Eqs (1.6) and (1.7) represent the volatility model and the option pricing model, respectively.
U(x, t) represents the option pricing wave function, while V(x, t) represents the volatility wave function.
DM,α

t denotes the M-truncated fractional derivative [20] having order α.
Fractional calculus, originally designed for the formulation of non-integer derivatives and

integrals, presents a robust mathematical framework for explicating a myriad of phenomena across
different scientific domains [21, 22]. This increasing prominence is fueled by the escalating
demand for precise simulations of both historical and contemporary physical phenomena [23–25].
Studies have demonstrated the utility of fractional operators in modeling natural phenomena,
highlighting that fractional-order models surpass non-integer (classical) systems in effectiveness and
productivity [26, 27].

Different techniques are used to solve the nonlinear fractional partial differential equations such as
the extended hyperbolic function method [28–30], Sardar sub-equation method [31,32], Kudryashov’s
method [33, 34], Bernoulli sub-ODE method [35, 36], Jacobi’s elliptic function [37, 38], new extended
direct algebraic method [39, 40], mapping method [41–44], and the ϕ6-expansion method [45]. In the
present paper, the option pricing model in the sense of M-truncated fractional derivative [20] is solved
by using the generalized Ricatti equation mapping method (GREM) [46, 47] and new Kudryashov
method (NKM) [48]. To our knowledge, there is currently no literature addressing analytical solutions
for the model under consideration by using these approaches. To fill this void, we utilize these methods
to derive comprehensive analytical solutions. The main research questions of our study are: How can
a fractional nonlinear coupled wave system serve as an alternative to the Black-Scholes option pricing
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model? How effective are the generalized Ricatti mapping method and the new Kudryashov method
in generating novel solitonic wave structures in the fractional nonlinear coupled system? What are the
differences in the system’s response to pulse propagation when visualized through 3D and 2D graphical
representations? How do solutions vary for different fractional order values, and what insights can be
drawn from comparing wave profiles through 2D graphs?

The contribution made by this paper holds significant relevance in several respects. First of all, it
broadens the analytical toolbox for solving nonlinear fractional partial differential equations, which are
used in a variety of scientific fields and go beyond financial modeling. Second, by concentrating on
option pricing, a crucial component of financial markets–the study tackles a relevant issue that traders
and investors encounter in the real world. Third, the model gains sophistication from the use of M-
truncated fractional derivatives, which better captures the dynamics of volatility and option pricing.
Lastly, the derivation of thorough analytical solutions closes a significant gap in the literature and
provides information that may help financial market decision-making processes.

The remaining paper is structured as follows: Section 2 defines the M-truncated fractional derivative
with properties. Section 3 provides mathematical calculation of the governed system. In Section 4, the
description and application of GREM are given, while Section 5 describes the NKM with applications.
Section 6 is of results and discussion. The conclusion of the paper is provided in Section 7.

2. Preliminary: M-truncated fractional derivative

A completely new variant of the M-fractional derivative is M-truncated fractional derivative [20].
M-truncated fractional differentiation provides a more flexible option by getting rid of the drawbacks
of conventional derivatives.
Definition 2.1. Given function u : [0,∞) → R and an order α, such an M-truncated fractional
derivative is defined as follows:

DM,α
t u(t) = lim

ϵ→0

u(tEM(ϵt−α)) − u(t)
ϵ

, t > 0, α > 0.

Here, EM(t) indicates a truncated Mittag-Liffler function, and taking value in the interval (0,1) [49]:

EM(t) =
∞∑

n=0

tn

Γ(Mn + 1)
.

Properties: Suppose that 0 < α ≤ 1, and l,m ∈ R. Let u, v be functions such that α-differentiable
when t > 0:
• DM,α

t (lu + mv) = lDM,α
t (u) + mDM,α

t (v),
• DM,α

t (uv) = uDM,α
t (v) + vDM,α

t (u),
• DM,α

t ( u
v ) = vDM,α

t (u)−uDM,α
t (v)

v2 ,

• DM,α
t (c)=0.

3. Mathematical analysis

Suppose the following transformation [19]:

U(x, t) = Q(ψ)eι(x+t+θ), V(x, t) = P(ψ)eι(x+t+θ), ψ = x −
Γ(γ + 1)

α
(ctα). (3.1)
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The wave function for option pricing is represented by U(x, t). We define the volatility wave function as
V(x, t). The phase component, denoted by θ, determines the wave functions’ phase shift. The velocity,
or the speed at which the wave travels, is shown by the symbol c. The wave functions’ behavior is
influenced by the positive parameter γ. The order of the fractional derivative, denoted by α, indicates
how persistent or memory-like the price dynamics are. By using (3.1), the following expressions are
obtained [19]:

DM,α
t U = (cQ′ + ιQ)eι(x+t+θ), Ux = (Q′ + ιQ)eι(x+t+θ),

Uxx = (Q′′ + 2ιQ′ − Q)eι(x+t+θ), |U | = UU = U2, |V | = VV = P2. (3.2)

By using (3.2) in (1.6) and (1.7), we get

−ιcQ′ +
1
2

Q′′ + ιQ′ −
3
2

Q + β(Q2 + P2)Q = 0,

−ιcP′ +
1
2

P′′ + ιP′ −
3
2

P + β(Q2 + P2)P = 0. (3.3)

The derivation of (3.3) utilizes the definition of the M-truncated fractional derivative as outlined in
Section 2 of our paper. The imaginary parts of (3.3) are

−ιcQ′ + ιQ′ = 0 ⇒ c = 1,
−ιcP′ + ιP′ = 0 ⇒ c = 1. (3.4)

The real parts of (3.3) are

1
2

Q′′ −
3
2

Q + β(Q2 + P2)Q = 0,

1
2

P′′ −
3
2

P + β(Q2 + P2)P = 0. (3.5)

Now, suppose the following transformation [19]:

Q = P + κ, (3.6)

where κ is a real constant. By putting this transformation in the second part of (3.5), we acquire

1
2

P′′ −
3
2

P + β(2P2 + κ2 + 2κP)P = 0. (3.7)

By simplifying, we get

P′′ + 4βP3 + 4βκP2 + (2βκ2 − 3)P = 0. (3.8)

4. Description of generalized Riccati equation mapping method

Suppose the solution of (3.8) is

P(ψ) = ω0 +

M∑
i=1

ωi(Z(ψ))i, (4.1)
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where ω0, ωi are arbitrary constants and Z(ψ) satisfies the following ODE [46]:

Z′ = k1 + k2Z + k3Z2, (4.2)

where ω0, ωi (i = 1, 2, ...,M), k1, k2, k3 are constants that need to be evaluated. The positive integer M
can be determined by using the balancing number. By putting (4.1) and (4.2) into (3.8), we will be able
to get a set of algebraic equations from which the ω0, ωi (i = 1, 2, ...,M), k1, k2, k3 can be determined.
The solution of (4.2) has the following cases.
Family 1: When k2

2 − 4k1k3 > 0,

Z1 =
−1
2k3

k2 +

√
k2

2 − 4k3k1 tanh


√

k2
2 − 4k3k1

2
ψ


 , (4.3)

Z2 =
−1
2k3

k2 +

√
k2

2 − 4k3k1 coth


√

k2
2 − 4k3k1

2
ψ


 , (4.4)

Z3 =
−1
2k3

(
k2 +

√
k2

2 − 4k3k1

(
tanh

(√
k2

2 − 4k3k1ψ
)
± sech

(√
k2

2 − 4k3k1ψ
)))

, (4.5)

Z4 =
−1
2k3

(
k2 +

√
k2

2 − 4k3k1

(
coth

(√
k2

2 − 4k3k1ψ
)
± csch

(√
k2

2 − 4k3k1ψ
)))

, (4.6)

Z5 =
−1
4k3

2k2 +

√
k2

2 − 4k3k1

tanh


√

k2
2 − 4k3k1

4
ψ

 ± coth


√

k2
2 − 4k3k1

4
ψ



 , (4.7)

Z6 =
1

2k3

−k2 +

√
(A2 + B2)(k2

2 − 4k3k1) − A
√

k2
2 − 4k3k1 cosh

(√
k2

2 − 4k3k1ψ
)

A sinh
(√

k2
2 − 4k3k1ψ

)
+ B

 , (4.8)

Z7 =
1

2k3

−k2 −

√
(A2 + B2)(k2

2 − 4k3k1) + A
√

k2
2 − 4k3k1 cosh

(√
k2

2 − 4k3k1ψ
)

A sinh
(√

k2
2 − 4k3k1ψ

)
+ B

 , (4.9)

where A, B , 0 are arbitrary constants and satisfy the condition A2 > B2,

Z8 =

2k3 cosh
( √

k2
2−4k3k1

2 ψ

)
−k2 cosh

( √
k2

2−4k3k1

2 ψ

)
+

√
k2

2 − 4k3k1 sinh
( √

k2
2−4k3k1

2 ψ

) , (4.10)
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Z9 =

−2k3 sinh
( √

k2
2−4k3k1

2 ψ

)
k2 sinh

( √
k2

2−4k3k1

2 ψ

)
−

√
k2

2 − 4k3k1 cosh
( √

k2
2−4k3k1

2 ψ

) , (4.11)

Z10 =

2k3 cosh
( √

k2
2−4k3k1

2 ψ

)
√

k2
2 − 4k3k1 sinh

(√
k2

2 − 4k3k1ψ
)
− k2 cosh

(√
k2

2 − 4k3k1ψ
)
± ι

√
k2

2 − 4k3k1

, (4.12)

Z11 =

2k3 sinh
( √

k2
2−4k3k1

2 ψ

)
−k2 sinh

(√
k2

2 − 4k3k1ψ
)
+

√
k2

2 − 4k3k1 cosh
(√

k2
2 − 4k3k1ψ

)
± ι

√
k2

2 − 4k3k1

, (4.13)

Z12 =
4k3 sinh (Cψ) cosh (Cψ)

−2k2 sinh (Cψ) cosh (Cψ) + 2
√

k2
2 − 4k3k1 cosh2 (Cψ) −

√
k2

2 − 4k3k1

, (4.14)

where C =
√

k2
2−4k3k1

4 .
Family 2: When k2

2 − 4k1k3 < 0,

Z13 =
1

2k3

−k2 +

√
4k3k1 − k2

2 tan


√

4k3k1 − k2
2

2
ψ


 , (4.15)

Z14 =
−1
2k3

k2 +

√
4k3k1 − k2

2 cot


√

4k3k1 − k2
2

2
ψ


 , (4.16)

Z15 =
1

2k3

(
−k2 +

√
4k3k1 − k2

2

(
tan

(√
4k3k1 − k2

2ψ
)
± sec

(√
4k3k1 − k2

2ψ
)))

, (4.17)

Z16 =
−1
2k3

(
k2 +

√
4k3k1 − k2

2

(
cot

(√
4k3k1 − k2

2ψ
)
+ csc

(√
4k3k1 − k2

2ψ
)))

, (4.18)

Z17 =
1

4k3

−2k2 +

√
4k3k1 − k2

2

tan


√

4k3k1 − k2
2

4
ψ

 − cot


√

4k3k1 − k2
2

4
ψ



 , (4.19)
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Z18 =
1

2k3

−k2 +

±

√
(A2 − B2)(4k3k1 − k2

2) − A
√

4k3k1 − k2
2 cos

(√
4k3k1 − k2

2ψ
)

A sin
(√

4k3k1 − k2
2ψ

)
+ B

 , (4.20)

Z19 =
1

2k3

−k2 −

±

√
(A2 − B2)(4k3k1 − k2

2) + A
√

4k3k1 − k2
2 cos

(√
4k3k1 − k2

2ψ
)

A sin
(√

4k3k1 − k2
2ψ

)
+ B

 , (4.21)

where A, B , 0 are arbitrary constants and satisfy the condition A2 > B2,

Z20 = −

2k3 cos
( √

4k3k1−k2
2

2 ψ

)
k1cos

( √
4k3k1−k2

2
2 ψ

)
+

√
4k3k1 − k2

2 sin
( √

4k3k1−k2
2

2 ψ

) , (4.22)

Z21 =

2k3 sin
( √

4k3k1−k2
2

2 ψ

)
k1 sin

( √
4k3k1−k2

2
2 ψ

)
+

√
4k3k1 − k2

2 cos
( √

4k3k1−k2
2

2 ψ

) , (4.23)

Z22 = −

2k3 cos
( √

4k3k1−k2
2

2 ψ

)
√

4k3k1 − k2
2 sin

(√
4k3k1 − k2

2ψ
)
+ k1 cos

(√
4k3k1 − k2

2ψ
)
± ι

√
4k3k1 − k2

2

, (4.24)

Z23 =

2k3 sin
(

1
2

√
4k3k1 − k2

2ψ
)

−k2 sin
(√

4k3k1 − k2
2ψ

)
−

√
4k3k1 − k2

2 cos
(√

4k3k1 − k2
2ψ

)
± ι

√
4k3k1 − k2

2

, (4.25)

Z24 =

4k3 sin
( √

4k3k1−k2
2

4 ψ

)
cos

( √
4k3k1−k2

2
4 ψ

)
−2k2 sin

( √
4k3k1−k2

2
4 ψ

)
cos

( √
4k3k1−k2

2ψ

4

)
+ 2

√
4k3k1 − k2

2 cos2

( √
4k3k1−k2

2ψ

4

)
−

√
4k3k1 − k2

2

. (4.26)

Family 3: When k3 = 0 and k2k1 , 0,

Z25 =
−k2d

k1(d + cosh(k2ψ) − sinh(k2ψ))
, (4.27)

Z26 =
k2(cosh(k2ψ) + sinh(k2ψ))

k1(d + cosh(k2ψ) + sinh(k2ψ))
, (4.28)
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where d is any arbitrary constant.
Family 4: When k2 = 0, k3 = 0, and k1 , 0,

Z27 =
−1

c1 + k1ψ
, (4.29)

where c1 is an arbitrary constant. By inserting these cases and values of constant in (4.1), we can obtain
the solutions of (1.6) and (1.7).
Note: The Families 1–4 represent specific sets of solutions that satisfy (4.2) under certain conditions.
These families are not only identified within the context of our study but have also been extensively
studied and utilized in the literature [46].

4.1. Application of generalized Riccati equation mapping method

By employing the homogeneous balancing rule on Eq (3.8), focusing on the terms with the highest
order and nonlinearity, namely, P′′ and P3, we deduce the equation M + 2 = 3M, which gives M = 1.
Thus, referencing (4.1), we deduce

P(ψ) = ω0 + ω1Z(ψ). (4.30)

Now, by putting (4.30) and (4.2) into (3.8), and equating the coefficients of (Z(ψ))i, i=0,1,2,3 to zero,
we establish the following algebraic system:

(Z(ψ))0 :
(
3βκ2 − 2

)
ω0 + 4βκω2

0 + 4βω3
0 + k1k2ω1 = 0,

(Z(ψ))1 : ω1

(
3βκ2 − 2

)
+ 8βκω0ω1 + 12βω2

0ω1 + 2k1k3ω1 + r2ω1 = 0,

(Z(ψ))2 : 4βκω2
1 + 12βω0ω

2
1 + 3k2k2ω1 = 0,

(Z(ψ))3 : 4βω3
1 + 2k2

3ω1 = 0.

By solving this system, the following values of constants are obtained:

k3 =
ω1

(
10βω0 +

√
30
√
β
)

√
5
√
−10βω2

0 − 2
√

30
√
βω0 − 3

, k1 = −
2ω0

(
5
√
βω0 +

√
30

) √
−10βω2

0 − 2
√

30
√
βω0 − 3

5ω1

(
2
√

5
√
βω0 +

√
6
) ,

k2 = −2

√
−2βω2

0 − 2

√
6
5

√
βω0 −

3
5
, κ =

3
√

3
10
√
β
.

In the given solution sets, ω0 andω1 are indeed known constants, while the values of the other constants
depend on them. Typically, these values are chosen in accordance with the conditions of the method.
While they can be selected somewhat randomly, it is important to ensure that their values do not violate
the conditions necessary for the method to be applied effectively. Now, by inserting these values of
constants in (4.3)–(4.29) and by using (4.30) and (3.6), we can find the following solutions of (1.6)
and (1.7). For j=1,2,...,27, the solutions of (1.6) and (1.7) can be obtained as

V j = (ω0 + ω1Z j)eι(x+t+θ),

U j = (ω0 + ω1Z j + κ)eι(x+t+θ),

where Z j’s are given in (4.3)–(4.29).
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5. New Kudryashov’s method

Let the solution of (3.8) be

P(ψ) =
M∑

i=1

ai(G(ψ))i, (5.1)

where ai (i = 1, 2...,M) are constants. M can be obtained by using the homogeneous balancing rule
and G(ψ) satisfies the following ODE [48]:

G′(ψ)2 = δ2G(ψ)2(1 − χG(ψ)2), (5.2)

where δ, χ are constants and the solution of (5.2) is

G(ψ) =
4L

4eδψL2 + e−δψχ
, (5.3)

where L is the integration constant [48]. Now, by inserting (5.1) and (5.2) into (3.8), the system of
equations is attained, and by solving it, we get the values of constants.

5.1. Application of new Kudryashov’s method

By using the homogeneous balancing rule as discussed in Section 4.1, we let the following be the
solution of (3.8):

P(ψ) = a0 + a1G(ψ). (5.4)

Now, by putting (5.4) and (5.3) into (3.8), and equating the coefficients of (G(ψ))i, i=0,1,2,3 to zero,
we establish the following algebraic system:

(G(ψ))0 : 4a3
0β + 4a2

0βκ + 2a0βκ
2 − 3a0 = 0,

(G(ψ))1 : 12a2
0βa1 + 8a0βa1κ + 2βa1κ

2 + a1δ
2 − 3a1 = 0,

(G(ψ))2 : 12a0βa2
1 + 4βa2

1κ = 0,
(G(ψ))3 : 4βa3

1 − 2a1δ
2χ = 0.

We get the following values of constants by solving the above system:

δ =

√
6
5
, a0 = −

1√
10β

, κ =
3
√

3
10
√
β
, a1 = −

√
3χ
5β
.

Now, by inserting these values of constants in (5.4) and by using (3.6), we can find the following
solutions of (1.6) and (1.7):

V1,1(x, t) =

− 1√
10β
−

4L
√

3χ
5

√
β
(
4L2e

√
6
5ψ + χe

√
6
5ψ

)
 eι(x+t+θ),
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U1,1(x, t) =

− 1√
10β
−

4L
√

3χ
5

√
β
(
4L2e

√
6
5ψ + χe

√
6
5ψ

) + κ
 eι(x+t+θ).

In the given set of equations, the parameter χ represents a real-valued constant upon which the value
of a1 depends. In our methodology, we typically consider χ = ±4L2 to ensure a variety of solutions. If
we take χ = ±4L2, the obtained solutions are

V1,2(x, t) =

−
√

10sech
(√

6
5ψ

)
+ 1√

10β

 eι(x+t+θ),

U1,2(x, t) =

−
√

10sech
(√

6
5ψ

)
+ 1√

10β
+ κ

 eι(x+t+θ).

V1,3(x, t) =

−
√

10csch
(√

6
5ψ

)
+ 1√

−10β

 eι(x+t+θ),

U1,3(x, t) =

−
√

10csch
(√

6
5ψ

)
+ 1√

−10β
+ κ

 eι(x+t+θ).

6. Results and discussion

Our study introduces the option pricing model within the context of fractional calculus. To be more
precise, we add M-truncated fractional derivatives to the conventional option pricing framework, and
give a more realistic depiction of the dynamics of financial markets in the option pricing model. To
generate analytical solutions for the option pricing model, we apply GREM and NKM. To the best of
our knowledge, this is the first time that the particular model under consideration has been used with
these solution methods. In [19], the authors first extracted soliton solutions of this model using the ϕ6

method. In our current study, we applied two different methods, GREM and NKM, which allowed
us to extract a wider variety of soliton solutions. While the ϕ6 method provided an initial framework,
our application of GREM and NKM resulted in a more comprehensive set of solutions, including kink,
combined dark-bright, combined dark-singular, periodic-singular, and bright solitons. This comparison
highlights the enhanced capability of our approach to model complex dynamics within the option
pricing framework.

The details of GREM and NKM methods are given in Table 1.
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Table 1. Description of methods.

Method Originality Advantages and limitations
GREM Modified version of G′/G

expansion method which satisfies
G′′ + k2G + k3G2 [50]. It gives
fewer solutions than GREM.

GREM gives 27 different solutions in the
form kink, singular, periodic-singular, and
combined solution, while it is unable to
generate bright soliton solution.

NKM Modified version of Kudryashov’s
method which satisfies ϕ′(ψ) =

ϕ′(ψ)(ϕ(ψ) − 1) [34].

Generates hyperbolic solutions of different
types by changing the values of constants
in the form of bright, and singular solitons.
This method is unable to extract periodic-
singular solutions.

In the ever-evolving landscape of financial markets, the exploration of wave profiles in the option
pricing system opens up new frontiers for shaping future finances. The concept of the fractional
derivative is used to redefine how we perceive and engage with option pricing and has practical
applications across various facets of the financial industry. The integration of fractional calculus into
option pricing models enhances risk management strategies, allowing traders and investors to make
more informed decisions. By reflecting the complex fractional dynamics present in the market, these
models offer more accurate and robust valuation frameworks for options. This optimization ensures that
option prices are better aligned with market realities, reduces valuation errors, and improves pricing
decisions.

The application of solitons in the Ivancevic option pricing model [11] offers a profound exploration
of the nonlinear dynamics having financial derivatives. Solitons play a significant role in unraveling
the complexities of option pricing within the context of the proposed model. This investigation into
the Ivancevic option pricing model yields diverse range of soliton solutions, including kink, bright,
combined dark-bright, combined dark-singular, periodic, and periodic-singular solitons, as shown in
Figures 1–6. The visual representation of solitons are given by both 3D and 2D graphical analyses
in which the 3D graphs present the perspective on their interaction and behavior in the option pricing
system. In a 2D graph, a detailed comparison of two profiles is presented, which focuses on the nuanced
changes in amplitude and phase components. Another 2D plot shows the comparison of solutions at
different values of fractional order, which illustrates how changes in the order parameter impact soliton
properties in the option pricing system.

In Figures 1–6, it is noticed that greater leftward movements are associated with higher α values,
suggesting that the form and location of the soliton are more influenced by historical data. On the
other hand, smaller α values cause movements to the right, which indicate that historical data has had
less of an impact. Furthermore, profile comparison amplitude discrepancies show how the soliton’s
strength or intensity varies, with larger amplitudes denoting more noticeable disturbances. Through
this comparison, traders and investors can gain significant insights into how variations in the fractional
order parameter affect the properties of the kink soliton solution within the financial model. The detail
of each figure is given below.

The kink soliton solution for V1 and U1 is shown in Figure 1. It includes comparisons of V1 at
α = 0.7 and α = 0.4, as well as 3D plots showing V1 and U1 at α = 0.7. The term kink soliton
in finance refers to a limited wave or disturbance that moves forward without changing its form.
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Variations in the position of the soliton graph are noticed in its shifting behavior with changes in the α.
The kink soliton solution’s use in finance is limited to its ability to forecast specific financial market
events. Solitons are waves that move without altering shape and can be related to particular asset price
patterns. These might include sudden shifts, which investors must comprehend and account for in their
methods. Through the use of the kink soliton solution, analysts may increase the understanding of
market phenomena and make better-informed investment choices.

(a) 3D plot V1 at α = 0.7. (b) 3D plot U1 at α = 0.7.

(c) (V1) (U1) at α = 0.7. (d) V1 at (α = 0.7) (α = 0.4).

Figure 1. Graphical representation of kink soliton solution for V1 and U1 with β = 1, γ = 0.6,
c = 1, θ = 0.8, ω0 = 0.1, ω1 = 0.1, and different values of α.

The combined dark-bright soliton solution for V3 and U3 is shown graphically in Figure 2. 3D
graphs of V3 and U3 at α = 0.9, a comparison of their solutions, and a comparison of V3 at α = 0.9 and
α = 0.7 make up this presentation. Understanding the way that the variables interact in the financial
model requires a knowledge of these diagrams. A single soliton structure includes both dark and bright
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solitons. In financing, this structure can be utilized to clarify complex events in the market involving
favorable and bearish tendencies, either simultaneously or alternately, and it may help traders in dealing
with volatile market conditions by predicting fluctuations in markets which include both upward and
downward oscillations.

(a) 3D plot of V3 at α = 0.9. (b) 3D plot of U3 at α = 0.9.

(c) (V3) (U3) at α = 0.9. (d) V3 at (α = 0.9) (α = 0.7).

Figure 2. Graphical representation of combined dark-bright soliton solution for V3 and U3

with β = 1, γ = 0.6, c = 1, θ = 0.8, ω0 = 0.1, ω1 = 0.1, and different values of α.

The combined dark-singular soliton solution for V5 and U5 is depicted graphically in Figure 3. 3D
graphs of V5 and U5 at α = 0.8, a comparison of their solutions, and a comparison of V5 at α = 0.8 and
α = 0.45 make up this presentation. The combined dark-singular soliton may be capable to observe
complex market dynamics in distinct, focused disruptions. For investors as well as traders, it may
be highly enlightening for understanding the actions and relationships of variables such as V5 and U5

inside the financial model. Further, it enhances decision-making and assists with modeling, which
allows stakeholders in the financial sector in navigating the system with broadened expertise.
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(a) 3D plot of V5 at α = 0.8. (b) 3D plot of U5 at α = 0.8.

(c) (V5) (U5(x, t)) at α = 0.8. (d) V5 at (α = 0.8) (α = 0.45).

Figure 3. Graphical representation of combined dark-singular soliton solution for V5 and U5

with β = 1, γ = 0.6, c = 1, θ = 0.8, ω0 = 0.1, ω1 = 0.1, and different values of α.

The visual illustration in Figure 4 portrays the periodic-singular soliton for V14 and U14. The
selection of visualizations encompasses 3D plots demonstrating V14 and U14 at α = 0.8. Likewise,
a comparative analysis at α = 0.8 indicates the correlation among the solutions of V14 and U14 in the
financial model. Ultimately, it highlights V14 at two independent values of α, particularly α = 0.8 and
α = 0.5. Understanding the periodic-singular soliton in financial modeling is essential to express the
oscillations related to external shocks or transforms in economic cycles.

The diagram in Figure 5 highlights the singular soliton solution for V27 and U27. 3D graphs of V27

and U27 at α = 0.7, a comparison of their solutions, and a comparison of V27 at α = 0.7 and α = 0.5
make up this presentation. Localized disturbance is demonstrated by singular solitons and they have
an essential role in financial modeling. These interruptions may be caused by multiple factors such as
unexpected fluctuations in stocks and changing behavior of investors.
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(a) 3D plot of V14 at α = 0.8. (b) 3D plot of U14 at α = 0.8.

(c) (V14) (U14) at α = 0.8. (d) V14 at (α = 0.8) (α = 0.5).

Figure 4. Graphical representation of periodic-singular soliton solution for V14 and U14 with
β = 1, γ = 0.6, c = 1, θ = 0.8, ω0 = 0.1, ω1 = 0.1, and different values of α.
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(a) 3D plot of V27 at α = 0.7. (b) 3D plot of U27 at α = 0.7.

(c) (V27) (U27) at α = 0.7. (d) V27 at (α = 0.7) (α = 0.5).

Figure 5. Graphical representation of singular soliton solution for V27 and U27 with β = 1,
γ = 0.6, c = 1, c1 = 1, θ = 0.8, ω0 = 0.1, ω1 = 0.1, and different values of α.

The bright soliton solution for V1,2 and U1,2 is shown graphically in Figure 6. 3D graphs of V1,2

and U1,2 at α = 0.8, a comparison of their solutions, and a comparison of V1,2 at α = 0.8 and α = 0.5
make up this presentation. Bright solitons demonstrate high intensity at their peaks that can be linked
to specific asset price trends or incidents, such as unexpected rises or falls in value.

Hence, the integration of fractional calculus into option pricing models offers a more realistic
depiction of financial market dynamics, enhancing risk management strategies and enabling more
informed decision-making. Soliton solutions improve market forecasting and option valuation, aiding
financial institution in minimizing risk and maximizing returns. Beyond finance, our research
contributes to fields such as signal processing, telecommunication, material science, biomedical
engineering, and environmental sciences. For instance, soliton behavior can enhance signal integrity
in telecommunications and model complex materials’ properties. In addition, understanding wave
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propagation in biological tissues can improve medical imaging and diagnostics. The adoption of
these models across industries can lead to significant technological advancements, including enhanced
financial software, innovative engineering solutions, and improved diagnostic tools, thereby driving
progress and innovation across multiple domains.

(a) 3D plot of V1,2 at α = 0.8. (b) 3D plot of U1,2 at α = 0.8.

(c) (V1,2) (U1,2) at α = 0.8. (d) V1,2 at (α = 0.8) (α = 0.5).

Figure 6. Graphical representation of bright soliton solution for V1,2 and U1,2 with β = 1,
γ = 0.6, c = 1, θ = 0.8, and different values of α.

7. Conclusions

The intricate nature and stochastic characteristics in option pricing problems pose challenges in
obtaining the precise value of options. Consequently, there is a need for precise approximation
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techniques to comprehend the intricacies of these problems. Such methods play a crucial role in
advancing scientific understanding within financial markets, contributing significantly to ongoing
developments in the field. The model under study emerges as a novel fractional nonlinear coupled wave
alternative to the established Black-Scholes option pricing framework. This groundbreaking innovation
introduces a leveraging effect, aligning stock volatility with stock returns through the utilization of
GREM and NKM. The study reveals the successful generation of kink, dark, bright, periodic-singular,
singular, dark-singular, and dark-bright solitons. Notably, altering the fractional order induces left or
right shifts in the graphs, along with changes in amplitude. The comparison between two profiles
reveals distinctive phase components and amplitude differences. This comprehensive investigation
positions the proposed method as a reliable and versatile solution, preserving the inherent physical
attributes of realistic processes within the domain of option pricing. In summary, the main findings of
our study highlight a fractional nonlinear coupled wave system as an alternative to the Black-Scholes
option pricing model, which enhances the accuracy and flexibility in modeling market dynamics. The
generalized Ricatti mapping and new Kudryashov methods effectively generate novel solitonic wave
structures, and the graphical representations aid in understanding pulse propagation and parameter
alignment with observed data. Comparative analysis of different fractional order values validates the
flexibility of our proposed methods.
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