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Abstract: We present a comprehensive investigation of the long-term dynamics generated by a
semilinear wave equation with time-dependent coefficients and quintic nonlinearity on a bounded
domain subject to Dirichlet boundary conditions. By employing rescaling techniques for time and
utilizing the Strichartz estimates applicable to bounded domains, we initially study the global well-
posedness of the Shatah–Struwe (S–S) solutions. Subsequently, we establish the existence of a uniform
weak global attractor consisting of points on complete bounded trajectories through an approach based
on evolutionary systems. Finally, we prove that this uniformly weak attractor is indeed strong by means
of a backward asymptotic a priori estimate and the so-called energy method. Moreover, the smoothness
of the obtained attractor is also shown with the help of a decomposition technique.
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1. Introduction

In this paper, we are concerned with the following semilinear damped wave model
∂t(α(t)∂tu) + β(t)Au + γ(t)∂tu + β(t)g(u) = β(t) f (x),
u|∂Ω = 0,
u(x, τ) = u0τ, ∂tu(x, τ) = u1τ.

(1.1)
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Here, Ω ⊂ R3 is a bounded domain with a smooth boundary, A = −∆, g(u) is a given source term,
and the coefficients α(t), β(t), and γ(t) all depend on time. From now on, we assume the external force
f ∈ L2(Ω).

The semilinear wave equations with time-dependent coefficients have been investigated quite
extensively by several authors in recent years, with particular regard to its long-term behavior. For
example, wave equations with time-dependent speed of propagation were investigated by Conti
et al. [12, 13], and very recently this model was generalized to the hyperbolic equations with
time-dependent memory kernel in [15]; Uesaka et al. [19] made some significant progress in the
oscillation property of semilinear wave equations with time-dependent coefficients, and subsequently
the dynamics of this equation were studied by Aragão et al. in [1], including the continuity of pullback
attractors.

It is worth observing that the nonlinear term g satisfies g(u) ∼ u|u|q−1 with 1 ≤ q ≤ 3 in the
aforementioned papers. Thus, it seemed natural to extend these results to the sup-cubic case. The case
of sup-cubic growth rate is a bit more complicated since the uniqueness of energy-weak solutions is
unknown as q > 3, see, e.g., [3, 20]. In order to overcome these difficulties, the authors in [4] studied
the semilinear oscillon equation with the growth index 3 < q < 5 by using parabolic approximations
governed by the fractional powers of the wave operator. Another effective way to deal with sup-
cubic nonlinearity is using S–S solutions, which have more delicate space-time integrability, such as
u ∈ L4

loc(R, L
12(Ω)). Very recently, based on the recent extension of Strichartz estimates for the bounded

domains, the Eq (1.1) in the case α = β = 1 with a sign changing damping and sub-quintic nonlinearity
(0 < q < 5) was discussed in detail in [5].

In this paper, motivated by the studies in [1, 5, 14], we consider the problem of the existence of
a uniform global attractor for Eq (1.1) with quintic nonlinearity in the natural energy phase space
H1

0(Ω) × L2(Ω). The difficulties with this problem mainly stem from the following aspects:

• How do you generalize the usual Strichartz estimates to wave equations with time-dependent
coefficients? In the case of the whole space Ω = R3, the Strichartz type estimates for variable
coefficient wave equations have been studied by many authors, one can refer to [16] and the
references cited therein. However, when Ω ⊂ R3 is a general bounded domain, as far as we
known, the corresponding results are still lacking.
• How to establish the asymptotic compactness of the system generated by S–S solutions of Eq (1.1)

with quintic nonlinearity? In the sub-quintic case, one can establish the so-called energy-
to-Strichartz (ETS) estimate (2.2), and based on the ETS estimate, one can obtain the well-
posedness, dissipativity, asymptotic compactness, and existence of attractors in way that is similar
to the classical cubic case. In contrast to this, in the quintic case, the ETS estimate is only proved
in the case when Ω = R3 or Ω = T3 with periodic boundary conditions. Since the ETS estimate for
a general domain is still an open problem, it is impossible to deduce the asymptotic compactness
by giving any control of the Strichartz norm in terms of the initial data, and the control of this
norm may be a priori lost when passing to the limit t → ∞, and the attractor may contain solutions
that are less regular than the S–S ones, for which we may not have the energy equality.

In this paper, in order to circumvent the difficulties mentioned above, we present a new scheme to
study the dynamics of the wave equations (1.1), and summarize the main method in Figure 1 for clarity.

(1) By rescaling techniques for time, we can reduce the Eq (1.1) to an equation of simple form (2.3),
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and then the well-posedness as well as the energy dissipativity of S–S solutions can be proved by
the usual method.

(2) We apply a newly developed framework named evolutionary systems (see [7]) for studying the
asymptotic dynamics of S–S solutions, and obtain the existence and structure of the uniform weak
global attractor Aw. Since the evolutionary systems E (3.3) generated by S–S solutions may not
be closed with respect to weak topology on the phase space, we follow an interesting technique
initiated by Cheskidov and Lu in [10], which is based on taking a closure of the evolution systems
Ē (3.4). In what follows, our main task is to show that E((−∞,∞)) = Ē((−∞,∞)) via a newly
developed approach presented in [20].

(3) Using the energy method developed in [3] and remembering the backward regularity of complete
trajectories contained in E((−∞,∞)), we can prove that the uniform weak global attractor Aw

constructed in Step 2 is in fact a strongly compact strong global attractor As. Moreover, we obtain
a bounded uniform attractor A Σ

s ⊂ E 1 by a decomposition technique.

S–S Solution E–S E

E–S Ē

Dissipative–E

Aw

A1–Property

A1–Property

B–A–R

Aw = {ξu(0)}
ξu ∈ E((−∞,∞))

E((−∞,∞))
=Ē((−∞,∞))

E–M

A–C in E

Aw = As

1. S–S: Shatah–Struwe. 2. E–S: evolutionary system. 3. Aw : weak attractor. 4. As : strong attractor. 5. B–A–R: backward asymptotic regularity.
6. A–C: asymptotic compact. 7. E–M: energy method. 8. A1–Property: E([0,∞)) is pre-compact in C([0,∞); Ew).

Figure 1. Overview of the technique.

We impose the following standing assumptions on the nonlinear damping and coefficients:

Assumption 1.1. (G) g ∈ C2(R) with g(0) = 0 and satisfies

|g′′(s)| ≤ Cg(1 + |s|q−2), g′(s) ≥ −κ1 + δ|s|q−1, (1.2)
g(s)s − 4G(s) ≥ −κ2, G(s) ≥ κ3|s|q+1 − κ4, ∀s ∈ R. (1.3)

Here 3 ≤ q ≤ 5, G(s) =
∫ s

0
g(τ)dτ, κi (i = 1, 2, 3, 4), δ, and Cg are given positive constants.

(COEF) α, β, γ ∈ C2
b(R) satisfying

α0 ≤ α(t) ≤ α1, β0 ≤ β(t) ≤ β1, γ0 ≤ γ(t) ≤ γ1, (1.4)
|α′(t)| ≤ α2, |β

′(t)| ≤ β2, γ
′(t) ≤ γ2, ∀t ∈ R, (1.5)

where αi, βi and γi (i = 0, 1, 2) are all positive constants, and 2γ0β0 > α2β1 + α1β2.

The outline of our paper is given below. In Section 2, the property of the S–S solutions of Eq (1.1) is
discussed in Theorem 2.2. In Section 3, the existence and structure of the uniform weak global attractor
are studied in Theorem 3.7, and the backward asymptotic regularity of complete trajectories contained
in Ē((−∞,∞)) are proved in Theorem 3.11. Finally, the existence and regularity of the uniformly strong
global attractor is established in Theorems 4.3 and 4.4.
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2. Well-posedness of S–S solutions

Let ‖ · ‖ and 〈·, ·〉 be the usual norm and inner product in L2(Ω). For convenience, we denote
H s = D(A

s
2 ), E s = H s+1 × H s, s ∈ R. Then, H0 = L2(Ω), H1 = H1

0(Ω), H2 = H2(Ω) ∩ H1
0(Ω), and

H−1 is the dual space to H1
0(Ω). In particular, we denote E := E 0 = H1

0(Ω) × L2(Ω).

Definition 2.1. A function u(t) is a weak solution of Eq (1.1) iff ξu := (u, ∂tu) ∈ L∞(τ,T ; E ) and Eq (1.1)
is satisfied in the sense of distribution, i.e.,

−

∫ T

τ

〈α(t)∂tu, ∂tφ〉dt +

∫ T

τ

β(t)〈∇u · ∇φ, 1〉dt

+

∫ T

τ

γ(t)〈∂tu, φ〉dt +

∫ T

τ

β(t)〈g(u), φ〉dt =

∫ T

τ

β(t)〈 f , φ〉dt

for any φ ∈ C∞0 ((τ,T ) × Ω). A weak solution is a Shatah–Struwe (S–S) solution of Eq (1.1) on the
interval [τ,T ] iff u ∈ L4(τ,T ; L12(Ω)).

Theorem 2.2. Under Assumption 1.1, then for every ξu(τ) = (u0τ, u1τ) ∈ E , the Eq (1.1) admits a
unique global S–S solution u(t) with the estimate

‖ξu(t)‖E ≤ e−$(t−τ)Q(‖ξu(τ)‖E ) + Q(‖ f ‖2), ∀t ≥ τ, (2.1)

where the positive constant $ and the monotone increasing function Q are independent of u, t and τ.
In the sub-quintic case, we have, in addition, the estimate

‖ξu(t)‖E + ‖u‖L4(t,t+1;L12(Ω)) ≤ e−$(t−τ)Q(‖ξu(τ)‖E ) + Q(‖ f ‖2), ∀t ≥ τ. (2.2)

Moreover, if ξu(τ) ∈ E 1, then Eq. (1.1) admits a unique global strong solution and estimate (2.1) also
holds.

Proof. (Sketch) Using the change of variable s = φ(t) =
∫ t

0

√
β(ω)
α(ω)dω and chain rule (see [1, Section 3]

for more details), we can rewrite the Eq (1.1) as follows:
∂2

sv − ∆v + η(s)∂sv + g(v) = f (x),
v|∂Ω = 0,

v(x, µ) = u0τ, ∂tv(x, µ) =

√
α(τ)
β(τ) u1τ,

(2.3)

where u(x, t) = u(x, φ−1(s)) = v(x, s), η(s) =
(
√
αβ)s+γ
√
αβ

and µ = φ(τ). The local well-posedness
of Eq (2.3) can be verified by using the Galerkin method and Strichartz estimate, and the global
existence and regularity of the S–S solution can be proved by Morawetz–Pohozhaev identity and a
prior estimate; see [17] for further details. Analyzing the term η(s) and recalling the assumption
(COEF), we have

η0 ≤ η(s) =
(
√
αβ)s + γ
√
αβ

=
αtβ + αβt + 2βγ

2β
√
αβ

≤ η1, ∀s ≥ µ. (2.4)
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Here, we can choose η0 =
2β0γ0−α2β1−α1β2

2β1
√
α1β1

and η1 =
2β1γ1+α2β1+α1β2

2β0
√
α0β0

. Taking the multiplier ∂sv + εv (ε > 0
is small enough) in Eq (2.3), and applying dissipative assumptions (1.3) and (1.4) and Gronwall’s
inequality, we can obtain the estimate (2.1) for v, e.g., see [5]. In the sub-quintic case, we can also
obtain an estimate (2.2) for v by using the standard bootstrapping method in [17]. Finally, in view of

‖ξu(t)‖E � ‖ξv(φ(t))‖E and ‖u‖L4(τ,T ;L12(Ω)) � ‖v‖L4(φ(τ),φ(T );L12(Ω)), (2.5)

then the theorem is completed. �

3. Uniform weak global attractors

3.1. Evolutionary systems

Here we recall some basic ideas and results from the abstract theory of evolutionary systems; see [7–
10] for details. Let (X, ds(·, ·)) be a metric space endowed with a metric ds, which will be referred to as
a strong metric. Let dw(·, ·) be another metric on X satisfying the following conditions:

(1) X is dw-compact.

(2) If ds(un, vn)→ 0 as n→ ∞ for some un, vn ∈ X, then dw(un, vn)→ 0.

Due to the property 2, dw(·, ·) and ds(·, ·) will be referred to as weak metric, and strong metric
respectively. Let C([a, b];X•), where • = s or w, be the space of d•-continuous X-valued functions on
[s, t] endowed with the metric

dC([a,b];X•)(u, v) := sup
t∈[a,b]

d•(u(t), v(t)).

Let also C([a,∞);X•) be the space of d•-continuous X-valued functions on [a,∞) endowed with the
metric

dC([a,∞);X•)(u, v) :=
∑
K∈N

1
2K

dC([a,a+K];X•)(u, v)
1 + dC([a,a+K];X•)(u, v)

. (3.1)

To define an evolutionary system, first let

T := {I : I = [T,∞) ⊂ R, or I = (−∞,∞)},

and for each I ∈ T , let F(I) denote the set of all X-valued functions on I.

Definition 3.1. A map E that associates with each I ∈ T a subset E(I) ⊂ F(I) will be called an
evolutionary system if the following conditions are satisfied:

(1) E([0,∞)) , ∅.

(2) E(I + s) = {u(·) : u(· − s) ∈ E(I)} for all s ∈ R.

(3) {u(·) |I2: u(·) ∈ E(I1)} ⊂ E(I2) for all pairs I1, I2 ⊂ T , such that I2 ⊂ I1.

(4) E((−∞,∞)) = {u(·) : u(·) |[T,∞)∈ E([T,∞)),∀T ∈ R}.

AIMS Mathematics Volume 9, Issue 9, 24677–24698.
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We will refer to E(I) as the set of all trajectories on the time interval I. Let P(X) be the set of all
subsets of X. For every t ≥ 0, define a map

R(t) : P(X)→ P(X),
R(t)A := {u(t) : u(0) ∈ A, u ∈ E([0,∞))}, A ⊂ X.

Definition 3.2. A set Aw ⊂ X is a dw-global attractor of E if Aw is a minimal set that is

(1) dw-closed;

(2) dw-attracting: for any B ⊂ X and ε > 0, there exists t0, such that

R(t)B ⊂ Bw (Aw, ε) :=
{

u : inf
x∈Aw

dw(u, x) < ε
}
, ∀t ≥ t0.

Definition 3.3. The ω•-limit set (• = s,w) of a set A ⊂ X is

ω•(A) :=
⋂
T≥0

⋃
t≥T

R(t)A
•

.

In order to extend the notion of invariance from a semiflow to an evolutionary system, we will need
the following mapping:

R̃(t)A := {u(t) : u(0) ∈ A, u ∈ E((−∞,∞))}, A ⊂ X, t ∈ R.

Definition 3.4. A set A ⊂ X is positively invariant if

R̃(t)A ⊂ A, ∀t ≥ 0.

A is invariant if
R̃(t)A = A, ∀t ≥ 0.

A is quasi-invariant if, for every a ∈ A, there exists a complete trajectory u ∈ E((−∞,∞)) with u(0) = a
and u(t) ∈ A for all t ∈ R.

As shown in [7, 10], a semiflow {S (t)} or a family of a processes {Uσ(t, τ)}, σ ∈ Σ, defines an
evolutionary system. In order to investigate the existence and structure of Aw, we use a new method
initiated by Cheskidov and Lu in [10] by taking a closure of the evolutionary system E. Let

Ē([τ,∞)) := E([τ,∞))
C([τ,∞);Xw)

, ∀τ ∈ R.

Obviously, Ē is also an evolutionary system. We call Ē the closure of the evolutionary system E, and
add the top-script − to the corresponding notations. Below is an important assumption that we will
impose on E in some cases.

� A1 E([0,∞)) is pre-compact in C([0,∞);Xw).

Theorem 3.5. [10] Let E be an evolutionary system. Then the weak global attractor Aw exists.
Furthermore, assume that E satisfies A1. Let Ē be the closure of E. Then
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(1) Aw = ωw(X) = ω̄w(X) = ¯Aw = {u0 ∈ X : u0 = u(0) for some u ∈ Ē((−∞,∞))}.

(2) Aw is the maximal invariant and maximal quasi-invariant set w.r.t. Ē.

(3) (Weak uniform tracking property) For any ε > 0, there exists t0, such that for any t∗ > t0, every
trajectory u ∈ E([0,∞)) satisfies

dC([t∗,∞);Xw)(u, v) ≤ ε,

for some complete trajectory v ∈ Ē((−∞,∞)).

3.2. The existence and properties of Aw

Let Uσ(t, τ) : E → E , t ≥ τ be the S–S solution operator of Eq (1.1), where σ = (α, β, γ) ∈ Σ :=
[Thσ, h ∈ R]C2

b(R), (Thσ)(·) := σ(· + h), then ThΣ = Σ. We construct the skew product flow by

S(t)(ξ, σ) := (Uσ(t, 0)ξ,Ttσ), t ≥ 0, (3.2)

where (ξ, σ) ∈ E = E × Σ with norm ‖(ξ, σ)‖E = (‖ξ‖2E + ‖σ‖2
C2

b(R)
)

1
2 . Then {S(t)}t≥0 forms a semigroup.

Now define an evolutionary systems (ES) on E by

E([0,∞)) := {(ξu(·), σ(·)) : (ξu(t), σ(t)) = S(t)(ξ, σ), ξu(t) ∈ X, σ ∈ Σ, ∀t ≥ 0}, (3.3)

where X := {ξu ∈ E : ‖ξu‖
2
E ≤ 2Q(‖ f ‖2)}. Let

Ē([0,∞)) := E([0,∞))
C([0,∞);Xw)

, (3.4)

whereXw = Xw × C
2
b(R) and the metric on C([0,∞);X•) defined in the same manner as (3.1).

Lemma 3.6. Suppose σ is translation compact in C2
b(R), and let ξun = (un, ∂tun) be a sequence of S–S

solutions of Eq (1.1) with symbols σn such that (ξun(t), σn(t)) ∈ X for all t ≥ t0. Then

ξun is bounded in L∞([t0,T ]; E ), ∂tξun is bounded in L∞([t0,T ]; E −1), ∀T > t0. (3.5)

Moreover, there exists a subsequence n j such that σn j converges in C2
b(R) to some σ ∈ Σ and ξun j

converges to some ξu in C([t0,T ]; Ew), i.e., (ξun j
, φ) → (ξu, φ) uniformly on [t0,T ] as n j → ∞ for all

φ ∈ E .

Proof. Applying Theorem 2.2 and remembering that ξun are the S–S solutions of Eq (2.3), thus we
obtain (3.5). Now applying the Alaoglu compactness theorem to extract a subsequence ξun j

which
w∗-converges to some function ξu ∈ L∞([t0,T ]; E ), i.e.,

ξun j
⇀ ξu weakly-∗ in L∞([t0,T ]; E ). (3.6)

Recalling the following compact embedding

{(u, ∂tu) ∈ L∞([t0,T ]; E )} ∩ {∂2
t u ∈ L∞([t0,T ];H−1(Ω))}

⊂⊂ {(u, ∂tu) ∈ C([t0,T ];H1−ι(Ω) ×H−ι(Ω))}

for some 0 < ι ≤ 1, we deduce that the weak-∗ convergence (3.6) implies the strong convergence
ξun j
→ ξu in C([t0,T ]; Ew)}. The proof is completed. �
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Theorem 3.7. Under Assumption 1.1 assume that σ is translation compact in C2
b(R). Then the

uniform weak global attractor Aw for ES E defined by (3.3) exists. In addition, E satisfies A1 and
Aw := {(ξu0 , σ0) : (ξu0 , σ0) = (ξu(0), σ(0)) for some Ξ = (ξu, σ) ∈ Ē((−∞,∞))}. Moreover, ∀ε > 0
there is some t0 := t0(ε) such that for any t∗ > t0 and every trajectory Ξ ∈ E([0,+∞)) satisfies
dC([0,∞):Xw)(Ξ,Ξ∗) < ε for some complete trajectory Ξ∗ ∈ Ē((−∞,∞)).

Proof. The existence of the attractor Aw can be established by using Theorem 3.5 directly. Let Ξn

be a sequence in E([0,∞)). Using Lemma 3.6, we extract a subsequence (still denoting by Ξn) that
converges to some Ξ1 ∈ C([0, 1];Xw) as n → ∞. Passing to a subsequence and still denote ξun once
more, we obtain that Ξn → Ξ2 ∈ C([0, 2];Xw) as n → ∞ for some Ξ2 ∈ C([0, 2];Xw) with Ξ1 =

Ξ2 on [0, 1]. Continuing this diagonalization process, we get a subsequence Ξn j converges to Ξ ∈

C([0,∞);Xw), and A1 is proven. The other statement contained in the above theorem can be proved
by applying Theorem 3.5 again. �

Theorem 3.8. Under Assumption 1.1 assume thatσ is translation compact inC2
b(R). Then the complete

trajectory Ξ = (ξu, σ) ∈ Ē((−∞,∞)) iff there exists a sequence of times tn → −∞ and a sequence of
S–S solutions ξun(t) of Eq (1.1):∂t(αn(t)∂tun) − βn(t)∆un + γn(t)∂tun + βn(t)g(un) = βn(t) f (x),

ξun(tn) = ξ0
n ∈ X, t ≥ tn,

(3.7)

such that (ξun , σn) ⇀ (ξu, σ) in C([−T,∞);Xw) for any T > 0, where σn = (αn, βn, γn) ∈ Σ.

Proof. Let Ξ = (ξu, σ) ∈ Ē((−∞,∞)) and denote Ξn = Ξ|[tn,∞) ∈ Ē([tn,∞)), where tn → −∞ as n → ∞.
Obviously Ξn ⇀ Ξ in C([−T,∞);Xw), ∀T > 0. Since Ξn ∈ Ē([tn,∞)), then there exists a sequence
{Ξ

(k)
n }
∞
k=1 ∈ E([tn,∞)) such that Ξ

(k)
n ⇀ Ξn in C([tn,∞);Xw) as k → ∞. By a standard diagonalization

process, we obtain that there exists a sequence Ξ
(n)
n (denoted by Ξn = (ξun , σn)) such that Ξn ⇀ Ξ in

C([−T,∞);Xw) for any T > 0. Recalling the definition of E and Ξ, we know that ξun is the S–S solution
of Eq (1.1).

Conversely, let Ξn = (ξun , σn) ∈ E([tn,∞)) and Ξn ⇀ Ξ in C([−T,∞);Xw), ∀T > 0. So {Ξn|[−T,∞) :
Ξn ∈ E([tn,∞)} ⊂ E([−T,∞)) converges to Ξ|[−T,∞) ∈ C([−T,∞);Xw). Thus Ξ ∈ Ē([−T,∞)) for any
T > 0. By definition, this implies Ξ ∈ Ē((−∞,∞)). �

Remark 3.9. Since every S–S solution ξun can be obtained as a limit of Galerkin approximations
(see [14,17] for more detail), then for any Ξ = (ξu, σ) ∈ Ē((−∞,∞)), we can extract a sequence ξ(k)

uk by
using a standard diagonalization process again such that ξ(k)

uk ⇀ ξu in C([−T,∞);Xw) for any T > 0,
and u(k)

k =
∑k

l=1 dk
l (t)el satisfies∂t(αk(t)∂tu

(k)
k ) − βk(t)∆u(k)

k + γk(t)∂tu
(k)
k + βk(t)Pkg(u(k)

k ) = βk(t)Pk f (x),
ξ(k)

uk (tk) = Pkξuk(tk), t ≥ tk,
(3.8)

where tk → −∞ as k → ∞, {ek}
∞
i=1 be the orthonormal system of eigenvectors of the Laplacian −∆ with

Dirichlet boundary conditions and Pk is the projector from L2(Ω) to Ek := span{e1, e2, · · · , ek}.

Corollary 3.10. Let the assumptions of Theorem 3.8 be satisfied. Then, for any Ξ = (ξu, σ) ∈
Ē((−∞,∞)), we have∫ ∞

−∞

‖∂tu(r)‖2dr ≤ Q(‖ f ‖2), ∂tu ∈ Cb(R,H−ι) and lim
t→±∞

‖∂tu(t)‖H−ι = 0 (3.9)
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for any 0 < ι ≤ 1, where Q(·) is a monotone increasing function.

Proof. Let Ξ = (ξu, σ) ∈ Ē((−∞,∞)), taking the multiplier ∂tv in (2.3) and combining Theorem 2.2 and
Remark 3.9 to deduce that

∫ ∞
−∞
‖∂tu(r)‖2dr ≤ Q(‖ f ‖2). In order to prove convergence in (3.9), we note

that Ē((−∞,∞)) is bounded in
(
Cb(R; E )∩C1

b(R; E −1)
)
× C2

b(R) and σ is translation compact in C2
b(R),

then the convergence is a standard corollary of dissipative integral in (3.9) and the compact embedding
[Cb(R; E ) ∩ C1

b(R; E −1)] ⊂⊂ Cloc(R;H1−ι ×H−ι) for every 0 < ι ≤ 1. �

3.3. Backward smoothness of complete trajectories

The following Theorem 3.11 discusses the backward smoothing property of the complete trajectory
included in Ē((−∞,∞)), and the proof is similar to the ones given in [20, Theorem 2.1], and for this
reason we give a sketch of the main steps of the proof for the reader’s convenience.

Theorem 3.11. Under Assumption 1.1 and assume that σ is translation compact in C2
b(R), then for

every complete trajectory Ξ = (ξu, σ) ∈ Ē((−∞,∞)), there exists a time T = T (u, σ) such that ξu ∈

Cb((−∞,T ]; E 1) and ‖ξu‖Cb((−∞,T ];E 1) ≤ Q(‖ f ‖2, ‖σ‖C2
b(R)).

Proof. We divide the proof into several steps.
Step 1. Rewrite Eq (2.3) as follows:

∂2
sv − ∆v + η(s)∂sv + L(−∆)−1v + g(v) = h(s) := L(−∆)−1v + f (x).

From the definition of h and applying Theorem 2.2, we have ‖h(s)‖2 ≤ Q(‖ f ‖2) and∫ S +1

S
‖∂sh(s)‖2

H2ds =
∫ S +1

S
‖∂sv(s)‖2ds ≤ Q(‖ f ‖2). Using Corollary 3.10, we infer that

∂th ∈ Cb(R;H2−ι), lim
s→−∞

‖∂sh(s)‖H2−ι = 0, ∀0 < ι ≤ 1. (3.10)

Step 2. Applying Lemma 2.2 in [20], we know that for sufficiently large L (depending on the
coefficients in Assumption 1.1), the parabolic equation

∂sw − ∆w + g(w) + L(−∆)−1w = h(s), s ∈ R (3.11)

possesses a unique solution w(s) in the class Cb(R;H2) with the following estimates:

‖w(s)‖H2 ≤ Q(‖ f ‖2), ∂sw ∈ Cb(R;H2), ∂2
sw ∈ L2([S , S + 1];H1), ∀S ∈ R, (3.12)

and the following convergence

lim
S→−∞

{‖∂sw(S )‖H2 + ‖∂2
sw‖L2([S ,S +1];H1)} = 0. (3.13)

Step 3. For a sufficiently large L, there exists a time S = S (v, L, σ) such that the problem

∂2
sz − ∆z + η(s)∂sz + L(−∆)−1z + g(z) = h(s), s ≤ S (3.14)

possesses a unique regular bounded backward solution ξz ∈ E 1, which satisfies

‖∂sz(s)‖H2 + ‖z(s)‖H2 ≤ Q(‖ f ‖2, ‖σ‖C2
b
), s ≤ S and lim

s→−∞
‖∂sz(s)‖L∞(Ω) = 0. (3.15)
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To see this, let z = w + Z, where w satisfying Eq (3.11), then Z satisfies

∂2
sZ − ∆Z + η(s)∂sZ + L(−∆)−1Z + g(w + Z) − g(w) = Fw(s) := −∂2

sw − (η(s) − 1)∂sw. (3.16)

We can apply the implicit function theorem in order to solve Eq (3.16) in the space

ΦS := Cb((−∞, S ],E 1)), (3.17)

where S is small enough. Applying Step 2, we have

Fw ∈ L2([s, s + 1],H1) ∀s ∈ R and lim
S→−∞

‖Fw‖L2([S ,S +1],H1) = 0.

Now, we intend to verify that the variation equation at Z = 0

∂2
sZ − ∆Z + η(s)∂sZ + L(−∆)−1Z + g′(w)Z = H(s), s ≤ S (3.18)

is uniquely solvable for every H ∈ L2
loc((−∞, S ],H1) such that

‖H‖L2
b((−∞,S ],H1) := sup

s∈(−∞,S−1)
‖H‖L2((s,s+1],H1) < ∞

if S is small enough. Firstly, taking the multiplier ∂sZ + εZ in (3.18) yields

d
dt
EZ + QZ = 2〈H, ∂sZ + εZ〉 + 〈g′′(w)∂sw,Z2〉, (3.19)

where

EZ = ‖∂sZ‖2 + ‖Z‖2
H1 + 〈g′(w)Z,Z〉 + 2ε〈∂sZ,Z〉 + L‖Z‖2

H−1 ,

QZ = 2(η − ε)‖∂sZ‖2 + 2ε‖Z‖2
H1 + 2εη〈∂sZ,Z〉 + 2εL‖Z‖2

H−1 + 2ε〈g′(w)Z,Z〉.

Choosing L ≥ 4C2κ2
1, we obtain

−2〈g′(w)Z,Z〉 ≤ 2κ1‖Z‖2 ≤ 2Cκ1‖Z‖H1‖Z‖H−1

≤
1
2

(‖Z‖2
H1 + 4C2κ2

1‖Z‖
2
H−1) ≤

1
2

(‖Z‖2
H1 + L‖Z‖2

H−1). (3.20)

Combining (3.19) and (3.20) and recalling (3.12), there exists a sufficiently small parameter ε > 0 such
that

C‖ξZ(s)‖2E ≤ EZ(s) ≤ C‖ξZ(s)‖2E

and

d
ds
EZ(s) + εEZ(s) ≤ C‖H(s)‖2 + 〈g′′(w)∂sw,Z2〉 −

α

4
‖Z‖2

H1 .

Using (3.12), (3.13), and embeddingH2(Ω) ⊂ L∞(Ω), we have

d
ds
EZ(s) + εEZ(s) ≤ C‖H(s)‖2, if s ≤ S and S is small enough.
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Applying Gronwall’s inequality, we deduce

‖∂sZ(s)‖2 + ‖Z(s)‖2
H1 ≤ C

∫ s

−∞

e−ε(s−r)‖H(r)‖2dr, s ≤ S . (3.21)

Thus, the solution to (3.18) is unique. Secondly, taking the multiplier −∆(∂sZ + εZ) in (3.18),
interpreting g′(w)Z as an external force, and using (3.21) yields

‖∂sZ(s)‖2
H1 + ‖Z(s)‖2

H2 ≤ C
∫ s

−∞

e−ε(s−r)‖H(r)‖2
H1dr ≤ C‖H‖2L2

b((−∞,S ],H1), s ≤ S . (3.22)

Thus, the Eq (3.18) is uniquely solvable in space (3.17) if S is small enough. Now, applying the
implicit function theorem for Eq (3.16), for a sufficiently small S ∈ R, there exists a unique solution
ξZ ∈ ΦS of problem (3.16) satisfying

‖∂sZ(s)‖2
H1 + ‖Z(s)‖2

H2 ≤ Q(‖ f ‖2, ‖σ‖C2
b
), s ≤ S and lim

s→−∞
‖∂sZ(s)‖H1 = 0. (3.23)

Combining the estimates of w in Step 2 and (3.23) we have

‖∂sz(s)‖2
H1 + ‖z(s)‖2

H2 ≤ Q(‖ f ‖2, ‖σ‖C2
b
), s ≤ S (L, v, σ) and lim

s→−∞
‖∂sz(s)‖H1 = 0. (3.24)

Finally, differentiate equation (3.14) and set ∂sz = ζ, we have

∂2
sζ − ∆ζ + η(s)∂sζ + L(−∆)−1ζ = hz(s) := h′(s) − g′(z)∂sz − η′(s)∂sz. (3.25)

Recalling (3.10) and (3.24), we obtain

lim
s→−∞

‖hz(s)‖H1 = 0. (3.26)

Similar to (3.22), we have

‖∂sζ(s)‖2
H1 + ‖ζ(s)‖2

H2 ≤ C
∫ s

−∞

e−ε(s−r)‖hz(r)‖2dr, s ≤ S . (3.27)

SinceH2 ⊂ C(Ω), then (3.26) and (3.27) imply (3.15).
Step 4. We need to prove z = v, for s ≤ S . Applying Remark 3.9, there exists a sequence of

Galerkin approximations such that ξ(k)
vk ⇀ ξv in C([−T,∞);Xw) for any T > 0, and

∂2
sv

(k)
k − ∆v(k)

k + ηk(s)∂sv
(k)
k + L(−∆)−1v(k)

k + Pkg(v(k)
k )

=hk(s) := L(−∆)−1v(k)
k + Pk f , s ≥ sk. (3.28)

Here sk =
∫ tk

0

√
β(ω)
α(ω)dω, ηk ∈ C

1
b(R), so there exits a subsequence (still denote) ηk → η in C1

b(R). Now

let zk(s) = Pkz(s), s ≤ S . According to Step 3, the solution ξz(s) is bounded in E 1 when s ≤ S , and
consequently

lim
k→∞
‖ξzk − ξz‖Cb((−∞,s],E ) = 0, lim

k→∞
‖ξzk − ξz‖Cb((−∞,S ]×Ω) = 0. (3.29)
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Here we used the fact thatH2 ⊂⊂ C(Ω) again, and the convergence of the Fourier series is uniform on
compact sets. Now denote V(s) := v(s) − z(s) and Vk(s) := v(k)

k (s) − zk(s), recalling (3.28) yields the
following equation:

∂2
sVk − ∆Vk + ηk(s)∂sVk + L(−∆)−1Vk + Pk[g(Vk + zk) − g(zk)] = Ak, (3.30)

where Ak(s) = [η(s) − ηk(s)]∂szk(s) + Pk[g(z(s)) − g(zk(s))]. Taking the inner product between (3.30)
and ∂sVk + εVk, we have

d
ds
EVk(s) + εEVk(s) = 〈Ak(s), 2∂sVk(s) + εVk(s)〉 − QVk(s) + GVk(s), (3.31)

where

EVk =‖∂sVk‖
2 + ‖Vk‖

2
H1 + 2ε〈∂sVk,Vk〉 + L‖Vk‖

2
H−1 + 2〈G(Vk + zk) −G(zk) − g(zk)Vk, 1〉,

QVk =2εηk(s)〈∂sVk,Vk〉 + εL‖Vk‖
2
H−1 + ε‖Vk‖

2
H1 − 2ε2〈∂sVk,Vk〉 + (2ηk(s) − 3ε)‖∂sVk‖

2,

GVk =2ε[〈G(Vk + zk) −G(zk) − g(zk)Vk, 1〉 − 〈g(Vk + zk) − g(zk),Vk〉]+
+ 2〈g(Vk + zk) − g(zk) − g′(zk)Vk, ∂tzk〉.

Using the fact that

G(v + w) −G(v) − g(v)w − (g(v + w) − g(v))w ≤
κ1

2
|w|2,

|g(v + w) − g(v) − g′(v)w| ≤ C|w|2(1 + |v|q−2 + |w|q−2),

we have

GVk ≤
κ1ε

2
‖Vk‖

2 + C‖∂szk‖L∞(Ω)〈|Vk|
2(1 + |zk|

q−2 + |Vk|
q−2), 1〉.

Combining (3.15), (3.29), and (3.31), we can infer that there exists a time S ′ ≤ S such that, for
sufficiently large k, we have

d
ds
EVk(s) + εEVk(s) ≤ C‖Ak(s)‖2, ∀s ≤ S ′.

Applying Gronwall’s inequality, we obtain

EVk(s) ≤ EVk(sk)e−ε(s−sk) + C
∫ s

sk

e−ε(s−r)‖Ak(r)‖2dr,

where constants C and ε are independent of k. Indeed, we have

‖∂sVk(s)‖2 + ‖Vk(s)‖2
H1 ≤C(1 + ‖ξv(k)

k
(sk)‖2E + ‖ξzk(sk)‖2E )e−ε(s−sk)+

+ C
∫ s

sk

e−ε(s−r)‖Ak(r)‖2dr. (3.32)

Now, passing to the limit k → ∞ in (3.32), we obtain ‖ξV(s)‖E = 0 for all s ≤ S ′. The proof of
Theorem 3.11 is now complete. �
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Corollary 3.12. Let the assumptions of Theorem 3.11 be satisfied. Then the uniform weak global
attractor Aw for ES E is in a more regular space: Aw ⊂ E 1 × C2

b(R).

Proof. Let Ξu = (ξu, σ) be the complete trajectory of Eq (1.1), then Ξv := (ξv, η) be the corresponding
complete trajectory of Eq (2.3). Recall that there exists time S 0, such that ξv(s) ∈ E 1 for all s ≤ S 0.
Due to Theorem 2.2, there is an extension v̄ for s ≥ S 0 such that v̄(s) = v(s) for s ≤ S 0 and v̄(s) is a
S–S solution of Eq (2.3) for all s ∈ R. Indeed, we can conclude that ξv̄(s) ∈ E 1 for all s ∈ R. We are
now ready to prove that ξv̄(s) = ξv(s) for all s ∈ R. Since Ξv := (ξv, η) ∈ Ē((−∞,∞)), and applying
Remark 3.9, we get

∂2
sv

(k)
k − ∆v(k)

k + ηk(s)∂sv
(k)
k + Pkg(v(k)

k ) = Pk f , ξ(k)
vk

(sk) = Pkξvk(sk), (3.33)

where s ≥ sk and lim
k→∞

sk = −∞. Obviously, v̄k = Pkv̄ satisfying

∂2
s v̄k − ∆v̄k + η(s)∂sv̄k + Pkg(v̄) = Pk f , ξv̄k(sk) = Pkξv̄(sk). (3.34)

Denote W = v − v̄, Wk = v(k)
k − v̄k, then combining (3.33) and (3.34) we know that Wk satisfies

∂2
sWk − ∆Wk + ηk(s)∂sWk + Pk[g(v(k)

k ) − g(v̄k)] + L(−∆)−1Wk = Bk, (3.35)

where

Bk = Pk[g(v̄) − g(v̄k)] + [η − ηk]∂sv̄k + L(−∆)−1Wk.

Taking the multiplier ∂sWk + εWk in (3.35) yields

d
ds
EWk(s) + εEWk(s)

=Λk(s) := 2〈Bk(s), ∂sWk(s) + εWk(s)〉 − QWk(s) + GWk(s), (3.36)

where

EWk = ‖∂sWk‖
2 + ‖Wk‖

2
H1 + 2ε〈∂sWk,Wk〉

+ L‖Wk‖
2
H−1 + 2〈G(Wk + v̄k) −G(v̄k) − g(v̄k)Wk, 1〉,

QWk = (2εηk(s) − 2ε2)〈∂sWk,Wk〉 + εL‖Wk‖
2
H−1 + ε‖Wk‖

2
H1

+ (2ηk(s) − 3ε)‖∂sWk‖
2,

GWk = 2ε[〈G(Wk + v̄k) −G(v̄k) − g(v̄k)Wk, 1〉 − 〈g(Wk + v̄k) − g(v̄k),Wk〉]+
+ 2〈g(Wk + v̄k) − g(v̄k) − g′(v̄k)Wk, ∂tv̄k〉].

Choosing L large enough and applying [20, Proposition 2.1], we discover that the right-hand side
of (3.36) satisfies Λk(s) ≤ C‖Bk(s)‖2 and C is independent of k. Invoking Gronwall’s inequality, we
have the estimate

EWk(s) ≤ C(EWk(sk))e−ε(s−sk) + C
∫ s

sk

e−ε(s−r)‖Bk(r)‖2dr, ∀s ≥ S 0. (3.37)
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Passing to the limit k → ∞ and employing the convergence Bk → L(−∆)−1W strongly in
C((−∞, S 0],H0), ‖Bk‖C((−∞,S 0],H0) ≤ C (C is independent of k), EWk is equivalent to ‖ξWk‖

2
E and the

fact that v̄(s) = v(s) for s ≤ S 0, we have

‖ξv(s) − ξv̄(s)‖2E ≤ CL2
∫ s

S 0

e−ε(s−r)‖(−∆)−1(v(r) − v̄(r)‖2dr, ∀s ≥ S 0. (3.38)

Invoking again Gronwall’s inequality to relation (3.38) and noting v(S 0) = v̄(S 0), we derive that v(s) =

v̄(s) for all s ∈ R. �

Remark 3.13. The proof of Corollary 3.12 indicates that for any Ξ = (ξu, σ) ∈ Ē((−∞,∞)), then ξu is
the S–S solution of Eq (1.1), i.e., Ē((−∞,∞)) = E((−∞,∞)). Moreover, we have ξu(t) ∈ E 1 for all t ∈
R.

4. Strong global attractors

We introduce some definitions; see [2, 6, 11] for more details.

Definition 4.1. Let S (t) be a semigroup acting on a Banach spaceY. A set As ⊂ Y is a (strong) global
attractor of S (t) if

(1) The set As is compact in Y;

(2) The set As is strictly invariant: S (t)As = As;

(3) It is an attracting set for the semigroup S (t), i.e., for any bounded set B ⊂ Y,

distY(S (t)B,As) := sup
x∈B

inf
y∈As
‖S (t)x − y‖Y → 0, as t → ∞.

Definition 4.2. A set A ⊂ Y is said to be uniformly (w.r.t. σ ∈ Σ) attracting for the family of processes
{Uσ(t, τ)} , σ ∈ Σ, if for any fixed τ ∈ R and every bounded set B ⊂ Y

lim
t→+∞

(
sup
σ∈Σ

distY (Uσ(t, τ)B, A)
)

= 0.

A closed, uniformly attracting set A Σ
s is said to be the uniform (w.r.t. σ ∈ Σ) attractor of the family

of processes {Uσ(t, τ)} , σ ∈ Σ, if it is contained in any closed uniformly attracting set (minimality
property).

The kernel Kσ consists of all bounded complete trajectories of the process Uσ(t, τ), i.e.,

Kσ = {u(·) | ‖u(t)‖Y 6 Cu,Uσ(t, τ)u(τ) = u(t) ∀t ≥ τ, τ ∈ R} ,

and Kσ(s) denotes the kernel section at a time moment s ∈ R:

Kσ(s) = {u(s) | u(·) ∈ Kσ}, Kσ(s) ⊂ Y.

Theorem 4.3. Under Assumption 1.1 assume that σ is translation compact in C2
b(R). Then the

semigroup S defined in (3.2) possesses a strong global attractor As in E 1 × C2
b(R), which coincides

with the uniform weak attractor Aw in Theorem 3.7 and satisfies the following properties:
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(i) Π1As = A Σ
s is the uniform (w.r.t. σ ∈ Σ) attractor of the family of processes {Uσ(t, τ)}, σ ∈ Σ and

Π1 is projector from E × Σ onto E ;

(ii) The uniform attractor satisfies A Σ
s =

⋃
σ∈Σ
Kσ(0), where Kσ(0) is the section at t = 0 of the kernel

Kσ of the process {Uσ(t, τ)} with the symbol σ ∈ Σ.

Proof. In order to apply [6, Theorem IV.5.1] and [18, Theorem 3.4], we have to check that the processes
{Uσ(t, τ)}σ∈Σ,t≥τ corresponding to the S–S solutions of Eq (1.1) be (E ×Σ,E )-continuous and uniformly
asymptotically compact.

Firstly, consider two S–S solutions ξui of Eq (1.1) with symbols σi and with initial values ξuiτ , then
correspondingly, ξvi are S–S solutions of Eq (2.3) with symbols ηi, i = 1, 2. Then ξw = ξv1 − ξv2 satisfies
the equation

∂2
sw − ∆w + η1∂sv1 − η2∂sv2 + g(v1) − g(v2) = 0. (4.1)

Taking the scalar product of (4.1) with ∂sw, we obtain

d
ds
‖ξw(s)‖2E + (η1 + η2)‖∂sw‖2 = 2〈g(v2) − g(v1), ∂sw〉 + (η1 − η2)〈∂sv1 + ∂sv2, ∂sw〉. (4.2)

Thanks to Assumption 1.1 (G) and applying the elementary inequality, we have

2|〈g(v1) − g(v2), ∂sw〉| ≤ Cgq(s)‖ξw‖
2
E , (4.3)

|(η1(s) − η2(s))〈∂sv1 + ∂sv2, ∂sw〉| ≤ ε‖∂sw‖2 + Cε|η1(s) − η2(s)|2. (4.4)

Where q(s) = (1 + ‖v1(s)‖4L12(Ω) + ‖v2(s)‖4L12(Ω)). Applying (4.3) and (4.4) in (4.2) and employing
Gronwall’s inequality, we obtain that

‖ξw(s)‖2E ≤ eCg
∫ s
µ

q(r)dr(‖ξw(µ)‖2E + Cε(s − µ)‖η1 − η2‖
2
C1

b(R)). (4.5)

Then the (E × Σ,E )-continuity follows in a standard way from the energy inequality (4.5).
Secondly, we intend to verify the uniform asymptotic compactness of the processes {Ũη(s, µ)}η∈Σ̃,s≥µ

corresponding to the S–S solutions of Eq (2.3), where Σ̃ = [Th(η), h ∈ R]C1
b(R). Let {ηn} ⊂ Σ̃, {−µn} ⊂

(−∞, 0], µn → ∞ as n → ∞. ξµn belongs to a bounded subset in E . Since σ is translation compact in
C2

b(R), without loss of generality, we may assume that ηn → η (n→ ∞) in C1
b(R), and ξµn ⇀ ξµ weakly

in E as n→ ∞. Denote ξvn(s) = Ũηn(s, µn)ξµn the corresponding solutions, then vn solves

∂2
svn − ∆vn + ηn(s)∂svn + g(vn) = f , s ≥ µn and ξvn(µn) = ξµn . (4.6)

Taking the multiplier ∂svn + εvn with 0 < ε � 1 in Eq (4.6), we derive the following energy type
identity:

d
ds
Evn(s) + %Evn(s) + Qvn(s) + Gvn(s) + Fvn(s) = 0, (4.7)

where

Evn = ‖∂svn‖
2 + ‖vn‖

2
H1 + 2ε〈∂svn, vn〉 + 2〈G(vn), 1〉 − 2〈 f , vn〉,
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Qvn = (2ηn − 2ε − %)‖∂svn‖
2 + (2ε − %)‖vn‖

2
H1 + 2ε(ηn − %)〈∂svn, vn〉,

Gvn = 2[ε〈g(vn), vn〉 − %〈G(vn), 1〉], Fvn = 2(% − ε)〈 f , vn〉.

Now, integrate Eq (4.7) with respect to s ∈ [−µn, 0] to deduce that

Evn(0) +

∫ 0

−µn

e%r(Qvn(r) + Gvn(r) + Fvn(r))dr = Evn(0)e−%µn . (4.8)

Our intention now is to pass to the limit n → ∞ in equality (4.8). To do this, we remind that ξvn is
uniformly bounded in C((−µn,∞],E ) and ηn → η (n→ ∞) in C1

b(R), then we get that

Ξn = (ξvn , ηn) ⇀ Ξ = (ξv, η), in C(R,Xw)

and Ξ = (ξv, η) ∈ Ē((−∞,∞)) = E((−∞,∞)) by recalling Corollary 3.12. In addition, we also
know that ξv is an S–S solution and ξvn(0) ⇀ ξv(0) weakly in E . Applying the compact embedding
Cloc((−∞, 0],E ) ⊂⊂ Cloc((−∞, 0],H), we can get that vn → v strongly in Cloc((−∞, 0],H), including
almost everywhere. On the other hand, from the assumption (1.3), we can choose % = ε

4 , which
guarantees that Gvn(s) ≥ −κ2|Ω| and choose 0 < ε ≤ ε0 small enough such that the quadratic form Qvn

is positive definite and satisfying C1‖ξv‖
2
E ≤ Qv ≤ C2‖ξv‖

2
E . Now, using the Fatou lemma, we conclude

that

0 = lim inf
n→∞

(
Evn(0) +

∫ 0

−µn

e%r(Qvn(r) + Gvn(r) + Fvn(r))dr
)

≥Ev(0) +

∫ 0

−∞

e%r(Qv(r) + Gv(r) + Fv(r))dr. (4.9)

According to Theorem 3.11, v is an S–S solution with more regularity in E 1, and obviously v satisfies
the energy equality. Then, by repeating the derivation of (4.8), for solution v, we obtain the energy
equality

Ev(0) +

∫ 0

−∞

e%r(Qv(r) + Gv(r) + Fv(r))dr = 0. (4.10)

Combining (4.9) and (4.10), we ascertain

lim inf
n→∞

Evn(0) = Ev(0). (4.11)

Applying the Fatou lemma and weak lower semi-continuous of the norm, we find that

lim inf
n→∞

〈G(vn(0)), 1〉 ≥ 〈G(v(0)), 1〉, lim inf
n→∞

‖ξvn(0)‖2E ≥ ‖ξv(0)‖2E . (4.12)

Obviously, energy equality is true only when inequalities (4.12) are also equalities. Recalling
ξvn(0) ⇀ ξv(0), we obtain Uηn(0, µn)ξµn = ξvn(0) → ξv(0) strongly in E . Finally, we get the uniformly
asymptotically compact of the processes {Uσ(t, τ)}σ∈Σ,t≥τ and the theorem is proved. �

Theorem 4.4. Under Assumption 1.1 assume that σ is translation compact in C2
b(R). Then the global

attractor As of the solution semigroup S(t) defined in (3.2) is a bounded set in E 1 × C2
b(R).
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Proof. For any initial data (ξu0 , σ0) ∈ As, we will prove that

‖ξu(t)‖2E 1 ≤ e−
λ
8 tQ(‖ξu0‖

2
E 1 + ‖ f ‖2) + C‖ f ‖2,As , ∀t ≥ 0, (4.13)

where the positive constant λ and monotone increasing function Q(·) are independent of u and t. We
proceed in three steps:

Step 1. Claim #1: Denote the restriction of the trajectory in E((−∞,∞)) to the time interval t ∈ [0, 1]
as

F := {u|t∈[0,1],Ξ = (ξu, σ) ∈ E((−∞,∞))}.

Then F is a compact set of L4(0, 1; L12(Ω)):

F ⊂⊂ L4(0, 1; L12(Ω)). (4.14)

Proof of claim. First note that the attractor As is compact in E ×C2
b(R), then there exists T = T (As) > 0

such that

‖u‖L4(0,T ;L12(Ω)) ≤ C

for any S–S solution u(t) with ξu(0) ∈ Π1As, where C may depend on As, but is independent of u.
Indeed, we obtain

‖u‖L4(0,T ;L12(Ω)) ≤ C, ∀ Ξ = (ξu, σ) ∈ E((−∞,∞)). (4.15)

Using E((−∞,∞)) is invariant with respect to time shifts, for any Ξ = (ξu, σ) ∈ E((−∞,∞)) we have

sup
t∈R
‖u‖L4(t,t+1;L12(Ω)) ≤ C0 (4.16)

for some positive constant C0, independent of u. Now let ξvi are two S–S solutions of Eq (2.3) with
symbols ηi, i = 1, 2, and denote ξw = ξv1 − ξv2 , then recalling (4.5) and applying (4.15) or (4.16) to find
that

‖ξw(s)‖2E ≤ CeKs(‖ξw(0)‖2E + C‖η1 − η2‖
2
C1

b(R)), ∀s ∈ [0, 1], (4.17)

where the constants C and K are independent of ξvi(0), i = 1, 2. Then, applying (1.2) and (4.17), we
have

‖g(v1) − g(v2)‖L1(0,1;L2(Ω)) ≤ C
∫ 1

0
(1 + ‖v1‖

4
L12(Ω) + ‖v2‖

4
L12(Ω))‖v1 − v2‖L6(Ω)ds

≤ C(‖ξw(0)‖E + C‖η1 − η2‖C1
b(R)). (4.18)

Applying Strichartz estimates for Eq (4.1) and recalling (4.17) and (4.18) gives us

‖v1 − v2‖L4(0,1;L12(Ω)) ≤ C(‖ξw(0)‖E + ‖η1 − η2‖C1
b(R)). (4.19)

Assertion (4.14) is now a consequence of (4.19) and the general fact that As is compact in E × C2
b(R).
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Step 2. Claim #2: For any ε > 0 and any Ξ = (ξu, σ) ∈ E((−∞,∞)), we can split the solution into
two parts u = ū + ũ, where

sup
t≥0
‖ũ‖L4(t,t+1;L12(Ω)) ≤ ε and ‖ū(t)‖L∞(R+;H2) ≤ Cε. (4.20)

Here, the constant Cε depends on ε, but is independent of u.
Proof of claim. In fact, ∀ε > 0, there exists a finite ε-net {(yi, σi)}mi=1 ⊂ D satisfying

D ⊂
⋃

1≤i≤m

BL4(0,1;L12(Ω))×C2
b(R)

(
(yi, σi),

ε

4

)
, (4.21)

where D := {(u, σ)|t∈[0,1],Ξ = (ξu, σ) ∈ E((−∞,∞))} and BX (x0, r) denotes the r-ball centered on x0 in
the space X. By (4.16), we also have

sup
1≤i≤m

‖yi‖L4(0,1;L12(Ω)) ≤ C0.

Then approximate yi by a smoother function ỹi such that

‖ỹi − yi‖L4(0,1;L12(Ω)) ≤
ε

4
and ‖ỹi‖C(0,1;H2) ≤ Cε, (4.22)

where i = 1, 2, · · · ,m and the constant Cε is independent of yi. Combining (4.21) and (4.22), we otain

D ⊂
⋃

1≤i≤m

BL4(0,1;L12(Ω))×C2
b(R)

(
(ỹi, σi),

ε

2

)
. (4.23)

For every Ξ = (ξu, σ) ∈ E((−∞,∞)), we observe that

(u, σ)|t∈[n,n+1] = S(n)(u, σ)|t∈[0,1] ∈ D. (4.24)

So in view of (4.23) and (4.24), there exists (ỹin , σin) such that

(u, σ)|t∈[n,n+1] ∈ BL4(0,1;L12(Ω))×C2
b(R)

(
(ỹin , σin),

ε

2

)
. (4.25)

Define the function ũ(t) as

ū(t) = ỹin(t − n), if t ∈ [n, n + 1), ∀n ∈ N,

and the function ũ(t) = u(t) − ū(t). Then

‖ū(t)‖L∞(R+;H2) ≤ sup
n∈N
‖ỹin‖C(n,n+1;H2) ≤ Cε. (4.26)

For any t ≥ 0, [t, t+1] ⊂ [n, n+2) for some n, then combining (4.24) and (4.25) leads us to the estimate

‖ũ‖L4(t,t+1;L12(Ω)) ≤ ‖(u − ū, σ − σin)‖L4(n,n+1;L12(Ω))×C2
b(R)

+ ‖(u − ū, σ − σin+1)‖L4(n+1,n+2;L12(Ω))×C2
b(R)

= ‖S(n)(u, σ) − (ỹin , σin)‖L4(0,1;L12(Ω))×C2
b(R)
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+ ‖S(n + 1)(u, σ) − (ỹin+1 , σin+1)‖L4(0,1;L12(Ω))×C2
b(R) ≤ ε. (4.27)

Hence, (4.26) and (4.27) imply the stated assertion (4.20) easily.
Step 3. The following estimates will be deduced by a formal argument, which can be justified by

using Faedo–Galerkin method. Differentiating Eq (2.3) and setting θ(s) = ∂sv, we see that

∂2
sθ − ∆θ + η(s)∂sθ + η′(s)θ + g′(v)θ = 0 (4.28)

with the initial condition

ξθ(0) = (∂sv(0), ∂2
sv(0)) = (v1,∆v0 − g(v0) − η(0)v1 + f ) ∈ E . (4.29)

Taking the multiplier ∂sθ + λθ in (4.28), we can discover

d
ds
Eθ(s) + Qθ(s) + Gθ(s) = 0,

where

Eθ(s) = ‖∂sθ‖
2 + ‖∇θ‖2 + λ〈∂sθ, θ〉,

Qθ(s) = (2η(s) − λ)‖∂sθ‖
2 + λ‖∇θ‖2 + (2η′(s) + λη(s))〈θ, ∂sθ〉 + λη′(s)‖θ‖2,

Gθ(s) = λ〈g′(v), θ2〉 + 2〈g′(v)θ, ∂sθ〉.

Choosing λ small enough such that

Eθ � ‖ξθ‖
2
E , and

d
ds
Eθ(s) +

λ

2
Eθ(s) ≤ Cλ,‖η‖

C1
b(R)
‖θ(s)‖2 − 2〈g′(v)θ, ∂sθ〉. (4.30)

We employ the decomposition (4.20) and then let

v̄(x, s) = ū(x, φ−1(s)), ṽ(x, s) = ũ(x, φ−1(s)),

to discover

|〈g′(v)θ, ∂sθ〉| ≤ |〈(g′(ṽ + v̄) − g′(v̄))θ, ∂sθ〉| + |〈g′(v̄)θ, ∂sθ〉|

≤C〈(1 + |v̄|3 + |ṽ|3)|ṽ|, |θ||∂sθ|〉 + ‖g′(v̄)‖L∞‖θ‖‖∂sθ‖

≤C(1 + ‖ṽ‖3L12(Ω) + ‖v̄‖3L12(Ω))‖ṽ‖L12(Ω)‖θ‖L6(Ω)‖∂sθ‖ + C(1 + ‖v̄‖4
H2)‖∂sv‖‖∂sθ‖

≤C(1 + ‖ṽ‖3L12(Ω) + ‖v̄‖3L12(Ω))‖ṽ‖L12(Ω)‖ξθ‖
2
E +

λ

4
‖∂sθ‖

2 + Cλ,As,‖η‖C1
b(R)
‖∂sv‖2

≤lε(s)‖ξθ‖2E + Cλ,As,‖η‖C1
b(R)
‖∂sv‖2 +

λ

4
‖∂sθ‖

2, (4.31)

where lε(s) = C(1 + ‖ṽ‖3L12(Ω) + ‖v̄‖3L12(Ω))‖ṽ‖L12(Ω). Owing to (4.16) and (4.20), we conclude

∫ s+1

s
lε(r)dr ≤ C

(∫ s+1

s
(1 + ‖v̄‖3L12(Ω) + ‖ṽ‖3L12(Ω))

4
3 dr

) 3
4
(∫ s+1

s
‖ṽ‖4L12(Ω)dr

) 1
4

≤C
(
1 + ‖ṽ‖3L4(s,s+1;L12(Ω)) + ‖v̄‖3L4(s,s+1;L12(Ω))

)
‖ṽ‖L4(s,s+1;L12(Ω)) ≤ Cε (4.32)
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for some positive constant C independent of ε. Combining now (4.30) and (4.31) and employing
Gronwall’s inequality, we deduce

‖ξθ(s)‖2E ≤ e−
∫ s

0 ( λ4−lε(r))drQ(‖ξθ(0)‖2E ) + C
∫ s

0
e−

∫ r
0 ( λ4−lε(µ))dµ‖ξv(r)‖2E dr (4.33)

for some monotone function Q(·) and positive constant λ, which are independent of ε and v. We
estimate using (4.32) and (4.33):

‖ξθ(s)‖2E ≤ e−
λ
8 sQ(‖ξθ(0)‖2E ) + C‖ξv‖

2
C(R+;E ) ≤ e−

λ
8 sQ(‖ξθ(0)‖2E ) + C‖ f ‖2,As . (4.34)

Recalling now (4.29), we see that in fact

‖ξθ(0)‖2E ≤ C(‖ξv(0)‖2E 1 + ‖ f ‖2).

Inserting this estimate into (4.34), we discover that

‖ξθ(s)‖2E ≤ e−
λ
8 sQ(‖ξv(0)‖2E 1 + ‖ f ‖2) + C‖ f ‖2,As . (4.35)

Recalling (2.3) and employing (1.2), we deduce that

‖v(s)‖2
H2 ≤ C(‖ f ‖2 + ‖ξθ(s)‖2). (4.36)

Combining (4.35) and (4.36) and remembering (2.5), we derive the estimate (4.13). The estimate,
together with the invariance of As, completes the proof. �

Corollary 4.5. Under the assumptions of Theorem 4.4, the family of processes {Uσ(t, τ)}, σ ∈ Σ

corresponding to Eq (1.1) has a compact uniform (w.r.t.σ ∈ Σ) attractor A Σ
s which is bounded in the

phase space E 1.

Indeed, applying Theorems 4.3 and 4.4, we can state the result on the boundedness of the strong
uniform attractor A Σ

s in E 1.

5. Conclusions

We have investigated the dynamical behavior of a wave equation with time-dependent coefficients
and quintic nonlinearity on a bounded domain, and established results on the existence and smoothness
of a uniform attractor A Σ

s in natural energy spaces E .
There is still much work that needs to be done in this field. For example, the continuity of pullback

attractors for Eq (1.1) with cubic nonlinearity g was studied by Aragão et al. in [1]. Hence, a natural
question is: Is it possible to otain similar results for Eq (1.1) when the non-linearity g is assumed to
have a sub-quintic or quintic rate? As we have already mentioned, the key difficulty in this problem
is establishing the so-called ETS estimate (2.2). Nevertheless, we conjecture it is true, at least in the
sub-quintic case. On the other hand, up to the moment, we do not know how to establish an ETS
estimate in the quintic case, and this can be regarded as an open problem.
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