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Abstract: This paper presented the formulation and solution of the time fractional q-deformed tanh-
Gordon equation, a new extension to the traditional tanh-Gordon equation using fractional calculus,
and a q-deformation parameter. This extension aimed to better model physical systems with violated
symmetries. The approach taken involved the controlled Picard method combined with the Laplace
transform technique and the Caputo fractional derivative to find solutions to this equation. Our results
indicated that the method was effective and highlighted our approach in addressing this equation. We
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to the theoretical framework of mathematical physics and has potential applications across multiple
interdisciplinary fields.
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1. Introduction

Fractional calculus (FC) and fractional differential equations (FDEs) extending beyond integer
orders of differentiation and integration, has garnered broad applications across diverse fields [1–3]. In
physics, it illuminates anomalous diffusion processes and aids in modeling viscoelastic materials and
complex dynamical systems [4, 5]. Engineering exploits FC in signal processing, control theory, and
electromagnetics, optimizing system performance and designing efficient filters and antennas [6–8].
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Biomedical applications encompass modeling physiological processes such as drug release kinetics,
nerve conduction, and bioelectrical impedance analysis [9–11]. Furthermore, FC enhances economic
and financial models, refining long-term memory processes in asset price fluctuations and bolstering
risk management strategies [12, 13]. Its versatility and applicability continue to inspire innovative
solutions across interdisciplinary realms, driving progress in various fields.

The concept of q-deformation, first introduced by Arai, has been integrated into dynamical systems,
leading to the breaking of system symmetry. Symmetry breaking occurs when the inherent symmetry of
a dynamical system is not evident in its ground or equilibrium state [14]. These q-deformed equations,
emerging from the notion of q-deformation which generalizes certain algebraic structures like quantum
groups, Lie algebras, and associative algebras, introduce a deformation parameter q that induces
significant alterations in their properties compared to classical formulations. They find application in
various physical systems in describing the propagation of solitons in optical fibers. Also, it is employed
in condensed matter physics to model the dynamics of domain walls in ferromagnetic materials. It
also provides a mathematical model for studying nonlinear phenomena in fluid dynamics such as the
propagation of waves, the formation of solitons and rogue waves, and the dynamics of vortices and
turbulence, as well as having connections to quantum field theory, see [15–17].

H. Eleuch introduced the generalized q-deformed sinh-Gordon equation in 2018, expanding upon
the traditional form of the sinh-Gordon equation [18], in the form:

∂2y
∂κ2 −

∂2y
∂t2

= [sinhq(yv)]p −$, t ≥ 0, 0 < q ≤ 1, (1.1)

where sinhq(y) is in the form:

sinhq(y) =
ey − qe−y

2
, (1.2)

and v, p, and$ are constants ∈ R. Subsequently, it has undergone various modifications and treatments
either analytically or numerically in several studies [19–21], culminating in its current form:

∂2y
∂κ2 −

∂2y
∂t2

= eεy[sinhq(yv)]p −$, (1.3)

and ε is constant ∈ R.
Recently, a new form of q-deformed equations has been introduced in [22] called the q-deformed

tanh-Gordon equation. The authors presented an analytical solution using the G′/G method,
complemented by a numerical solution employing finite difference techniques. We seek to extend the
q-deformed tanh-Gordon equation (q-deformed TGE) and express it in fractional format by using the
Caputo fractional derivative (CFD) with the goal to find an approximate solution for this equation using
the controlled Picard method with Laplace transform and Adomian decomposition. This technique is
called controlled Picard transform method (CPT M).

The controlled Picard method, in conjunction with Laplace transform (LT ) and Adomian
decomposition, presents a robust strategy for addressing FDEs. This methodology involves
a progressive refinement of an initial approximation to approach the exact solution iteratively.
Incorporation of the LT enables the conversion of the problem into a set of algebraic equations,
simplifying the solving process. Additionally, through Adomian decomposition, FDEs are
deconstructed into a series of more manageable differential equations, which are subsequently
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solved step by step. This technique boasts numerous merits and exhibits computational efficiency,
necessitating fewer iterations compared to alternative numerical methods. However, but it has some
limitations, that is, convergence depends on the initial conditions, and this method is typically suitable
for initial value problems rather than boundary value problems; for more details, see [23].

The q-deformed TGE as presented in [22] is in the form:

∂2y
∂κ2 −

∂2y
∂t2

=

[
tanhqy(κ, t)υ

]P(
eεy(κ,t) + ζq

)ρ
−$, (1.4)

where
tanhq(y) =

ey − qe−y

ey + qe−y
, (1.5)

and υ, ε,P, $, ζ, and ρ are constants ∈ R. As we mentioned before that Eq (1.4) is recently introduced,
its solutions are still limited. It has not been addressed or solved in fractional format thus far. Therefore,
this study will provide a concise examination of the solutions of the q-deformed TGE in fractional form
using CFD to show the influence of the q deformed parameter with the fractional derivative parameter.

The time fractional q-deformed TGE ( T F q-deformed TGE) under investigation takes the form:

C
D
B
t y(κ, t) =

∂2y
∂κ2 −

[
tanhqy(κ, t)υ

]P(
eεy(κ,t) + ζq

)ρ
−$, (1.6)

subject to the initial constraints:

y(κ, 0) = y0(κ, t),
yt(κ, 0) = y0t(κ, t),

where CDBt is the CFD with respect to time, andB is the parameter that expresses the order of fractional
derivative (1 < B ≤ 2).

This paper is structured as follows: Section 2 presents the basics of CFD, the Adomian polynomials,
and a detailed explanation of the steps of CPT M. In Section 3, we discuss the existence and uniqueness
of the solutions of the proposed equation. In Section 4, we apply the CPT M on the T F q-deformed
TGE and present the numerical outcomes for the solution. Section 5 clarifies the results in a form
of two and three-dimensional graphs to show the influence of the parameters on each other. Finally,
Section 6 provides the final remarks of this investigation.

2. Fundamental concepts

2.1. Fractional derivatives

In FC there are various fractional derivatives, including Caputo, Riemann-Liouville, Jumarie,
Riesz, Caputo-Fabrizio, Atangana-Baleanu, and others, offering versatile tools for modeling complex
phenomena in a form of FDEs. Each derivative possesses unique properties and applications
tailored to specific problem domains. Focusing on the Caputo fractional derivative, it stands out for its
advantageous properties in practical applications. The Caputo derivative incorporates initial conditions
naturally, making it well-suited for modeling initial value problems. Furthermore, it exhibits linearity,
compatibility with classical calculus, and yields physically meaningful solutions for many physical
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systems. Its advantages lie in its ability to handle initial conditions straightforwardly, facilitating the
solution process for a wide range of FDEs [24–27].

Definition 2.1. [2] The Caputo derivative of B order is defined by:

C
D
B
z F (z) =


J`−B

d`

dz`
F (z), ` − 1 < B < `,

d`

dz`
F (z), B = `,

(2.1)

where J`−B denotes the Riemann-Liouville fractional integral, which can be expressed as:

JBF (z) =
1

Γ(B)

∫ z

0
(z − Υ)(B−1) F (Υ) dΥ, z > 0, B ∈ R+, (2.2)

where, R+ denotes all real positive numbers, and Γ(.) denotes the established Gamma function. The
operator JB satisfies the properties below for a, b ≥ −1:

JaJbF (z) = Ja+bF (z). (2.3)

JaJbF (z) = JbJaF (z). (2.4)

Jazm =
Γ(m + 1)

Γ(m + 1 + a)
zm+a. (2.5)

CFD satisfies the following properties:

C
D
B
z

[
JBF (z)

]
= F (z). (2.6)

JB
[
C
D
B
z F (z)

]
= F (z) −

`−1∑
ı=0

F ı(0)
zı

ı!
, z > 0. (2.7)

C
D
B
z zm =

Γ(m + 1)
Γ(m + 1 −B)

zm−B. (2.8)

Definition 2.2. [2, 3] The LT of CFD of order B is defined as:

L
[
C
D
B
t F (z)

]
= SBL(F (z)) −

n−1∑
`=0

SB−`−1F (`)(0), n − 1 < B ≤ n. (2.9)

2.2. Adomian polynomials

The Adomian decomposition method based on establishing the unknown function p in a form of
series of decompositions:

p =

∞∑
`=0

p`. (2.10)

AIMS Mathematics Volume 9, Issue 9, 24654–23676.



24658

The components p` calculated iteratively. The nonlinear term F(p), such as p2, p3, sinp, ep, etc. can be
represented using Adomian polynomials (APs) A` in the form:

F(p) =

∞∑
`=0

A`(p0, p1, ..., p`). (2.11)

APs find utility in addressing different formats of nonlinearity. Originally proposed by Adomian
(see [28]) a methodology for computing these polynomials was subsequently corroborated through
formal validations. Further approaches have emerged, encompassing methodologies rooted in Taylor
series and analogous techniques, as elucidated in references [29–31].

The calculation of APs, denoted as Ar, for the nonlinear component F(p), can be achieved utilizing
the general formula:

Ar =
1
r !

dr

dvr

[
F
( r∑
`=0

v`p`
)]

v=0
, r = 0, 1, 2, .... (2.12)

Equation (2.12) can be expanded as:

A0 = F(p0),
A1 = p1F′(p0),

A2 = p2F′(p0) +
1
2!

p2
1F′′(p0),

A3 = p3F′(p0) + p1 p2F′′(p0) +
1
3!

p3
1F′′′(p0).

:

(2.13)

From Eq (2.13), we notice that A0 relies only on p0, A1 relies only on p0 and p1, A2 relies only on
p0–p2, etc.

2.3. Controlled Picard transform method

The Picard method was first initiated by Émile Picard in 1890, and it has been modified several
times. One crucial modification involves the incorporation of a small parameter indicated by }, which
regulates the convergence rate and accuracy of the iterative process and also by utilizing the LT that
enables the transformation of the differential equation into an algebraic equation, simplifying the
solution process, [23, 32, 33]. In this study, we merge the controlled Picard method with LT and
AP to be able to deal with the nonlinear terms; this is because the APs facilitate the decomposition of
nonlinear terms, enabling systematic approximation of the solution.

The following steps summarize how to apply the CPT M to a nonlinear FDE. Assume the general
form of the fractional partial differential equation (FPDE):

C
D
B
t y(κ, t) + L {y(κ, t)} + N {y(κ, t)} = Ξ(κ, t), t > 0, 1 < B 6 2, (2.14)

related to the initial constraints:

y(κ, 0) = y0,

yt(κ, 0) =
∂y(κ, 0)
∂t

= y0t,
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where, L {y(κ, t)} and N {y(κ, t)} indicate the linear and nonlinear terms in the equation, while Ξ(κ, t)
indicates the source term.

Apply LT to both sides of Eq (2.14),

L
[
C
D
B
t y(κ, t)

]
+ L

[
L {y(κ, t)} + N {y(κ, t)}

]
= L

[
Ξ(κ, t)

]
. (2.15)

By using definition 2.2 of LP (2.15) becomes,

SBL{y(κ, t)} −
n−1∑
`=0

SB−`−1y(`)(κ, 0) = −L
[
L {y(κ, t)} + N {y(κ, t)}

]
+ L

[
Ξ(κ, t)

]
. (2.16)

For 1 < B 6 2,

Y(κ,S) =
1
S

y(κ, 0) −
1
S2 yt(κ, 0) −

1
SB

L
[
L {y(κ, t)} + N {y(κ, t)}

]
+

1
SB

L
[
Ξ(κ, t)

]
. (2.17)

Apply the inverse Laplace on the Eq (2.17),

y(κ, t) = L−1
{ 1
S

y(κ, 0) −
1
S2 yt(κ, 0) −

1
SB

L
[
L {y(κ, t)} + N {y(κ, t)}

]
+

1
SB

L
[
Ξ(κ, t)

]}
, (2.18)

hence, the recurrence relation of Picard becomes:

y`+1(κ, t) = y(κ, 0) + tyt(κ, 0) − L−1
{ 1
SB

L
[
L {y`(κ, t)} + N {y`(κ, t)} − Ξ(κ, t)

]}
. (2.19)

To merge the parameter } into the recurrence relation of Picard formula (2.19), we write Eq (2.14) as:

Θ
(
κ, t, y(κ, t),B

)
+ L {y(κ, t)} + N {y(κ, t)} − Ξ(κ, t) = 0, (2.20)

or
Θ
(
κ, t, y(κ, t),B

)
= 0, (2.21)

hence,

}Θ
(
κ, t, y(κ, t),B

)
= 0. (2.22)

Add and subtract CDBt y(κ, t) to the left-hand side of Eq (2.22):

C
D
B
t y(κ, t) + }Θ

(
κ, t, y(κ, t),B

)
− CDBt y(κ, t) = 0. (2.23)

Let
Θ∗

(
κ, t, y(κ, t),B, }

)
= − CDBt y(κ, t) + }Θ

(
κ, t, y(κ, t),B

)
. (2.24)

Therefore, Eq (2.23) can be written in the form:

C
D
B
t y(κ, t) + Θ∗

(
κ, t, y(κ, t),B, }

)
= 0. (2.25)
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By applying the recurrence formula (2.19) into the relation presented in Eq (2.25), we obtain:

y`+1(κ, t) = y(κ, 0) + tyt(κ, 0) − L−1
{ 1
SB

L
[
}[ CDBt y(κ, t) + Θ(κ, t, y(κ, t),B)]

]}
. (2.26)

The final recurrence relation of Picard takes the form:

y`+1(κ, t) = }y0(κ, t) + (1 − })y` − }L−1
{ 1
SB

L
[
L {y`(κ, t)} + N {y`(κ, t)} − Ξ(κ, t)

]}
, (2.27)

where y0(κ, t) = y(κ, 0) + tyt(κ, 0), and ` = 0, 1, 2, ....
To determine the values of } that lead to faster convergence, we plot the relationship between

the obtained solution and }, called the }-curves. The region where the solution converges rapidly
corresponds to the part of the curve parallel to the x-axis.

3. The existence and the uniqueness analysis

In this section, we will conduct a theoretical investigation into the T F q-deformed TGE,
encompassing examinations of its existence and uniqueness. Equation (1.6) can be written in a general
form as:

C
D
B
t y(κ, t) = F(y, yκκ), 1 < B ≤ 2, (3.1)

with starting constraints:

y(κ, 0) = h(κ),
yt(κ, 0) = k(κ).

First, let us consider the following important definitions and theorems:

Definition 3.1. Assume there exists a normed space represented by (y, ‖ . ‖). A contraction on y denotes
a mapping M : y −→ y satisfying the condition y1, y2 ∈ y.

‖ M(y1) −M(y2) ‖≤ ε ‖ y1 − y2 ‖,

where ε is a real value ∈ [0, 1].

Theorem 3.2. [34] (Banach fixed point theorem) Each contraction mapping within a complete metric
space possesses a unique fixed point.

Theorem 3.3. [35] (Schaefer-Krasnoselskii fixed point theorem) Suppose Y represents a convex subset
of a closed and bounded Banach space X, and let M : Y −→ Y be a mapping that is completely
continuous. In such a case, M necessarily possesses a fixed point within M.

Definition 3.4. Consider C(Ω,R) is a Banach space of all continuous functions from Ω to R with ‖ . ‖∞
where ‖ y ‖∞= sup{|y|, (κ, t) ∈ Ω}.

According to Eq (3.1), suppose that the following propositions are hold:
P1: There is a constant δ such that:

|y1κκ − y2κκ| ≤ δ|y1 − y2|,
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which is valid for all (κ, t) ∈ Ω and y ∈ C(Ω,R).
P2: There are constants %1 and %2 such that:

|F(y1, y1κκ) − F(y2, y2κκ)| ≤ %1|y1 − y2| + %2|y1κκ − y2κκ|,

which is valid for all (κ, t) ∈ Ω and y ∈ C(Ω,R).

Theorem 3.5. If the above propositions hold; and if
tB

Γ(B + 1)
(%1 + δ%2) < 1, then, the problem

described in Eq (3.1) possesses a unique solution.

Proof. We aim to convert the problem stated in Eq (3.1) into a fixed-point problem. For the operator:

Λ : C(Ω,R)→ C(Ω,R),

Λ(y(κ, t)) = h(κ) + t k(κ) + JBt
(
F(y, yκκ)

)
, 1 < B ≤ 2.

Clearly, the operator Λ constitutes the solution to the problem. Now, we apply the Banach fixed-point
theorem to demonstrate that the operator Λ possesses a fixed point. Let y1, y1 ∈ C(Ω,R), then for every
(κ, t) ∈ Ω:

|Λy1(κ, t) − Λy2(κ, t)| = JBt
F(y1, y1κκ) − F(y2, y2κκ)


≤ JBt

(
%1|y1 − y2| + %2|y1κκ − y2κκ|

)
≤ JBt

(
%1|y1 − y2| + %2δ|y1 − y2|

)
,

therefore,

|Λy1(κ, t) − Λy2(κ, t)| ≤
tB

Γ(B + 1)

(
%1 + %2δ

)y1 − y2


≤

tB

Γ(B + 1)

(
%1 + %2δ

)
sup

y1 − y2


≤

tB

Γ(B + 1)

(
%1 + %2δ

)wwwwwwwwy1 − y2

wwwwwwww
∞

.

Thus, according to the relation
tB

Γ(B + 1)
(%1 + δ%2) < 1, the operator Λ is identified as a contraction.

As an immediate result of the Banach fixed-point theorem, it follows that Λ possesses a unique fixed
point, which concludes the theorem’s proof. �

Next, we establish the conditions that guarantees the existence of the solution utilizing Schaefer’s
fixed-point theorem.

Theorem 3.6. If the following conditions are met, then, the equation presented in (3.1) possesses at
least one solution within C(Ω,R):
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Suppose that y : Ω→ R is continuous, and,
Condition 1. There is a constant ω > 0 in which

|F(y, yκκ)| ≤ ω, f or each (κ, t) ∈ Ω and y ∈ C(Ω,R).

Condition 2. There are two constants η1, η2 > 0 in which

|F(y(κ1, t1), yκκ(κ1, t1)) − F(y(κ2, t2), yκκ(κ2, t2))| ≤ η1|y(κ1, t1) − y(κ2, t2)|
+ η2|yκ1κ1(κ1, t1) − yκ2κ2(κ2, t2)|,

where (κ1, t1) and (κ2, t2) ∈ Ω, and y ∈ C(Ω,R).
Condition 3. There is a constant ℘ > 0 in which

|yκ1κ1(κ1, t1) − yκ2κ2(κ2, t2)| ≤ ℘|y(κ1, t1) − y(κ2, t2)|,

for each (κ1, t1) and (κ2, t2) ∈ Ω, and y ∈ C(Ω,R).
Condition 4. There are two constants `1, `2 > 0 in which:

|y(κ1, t1) − y(κ2, t2)| ≤ `1|κ1 − κ2| + `2|t1 − t2|.

Proof. Suppose ym is a sequence converging to y in C(Ω,R), then, for each (κ, t) Ω, it holds that:

|Λym(κ, t) − Λy(κ, t)| = JBt
F(ym, ymκκ) − F(y, yκκ)

.
By utilizing the relation

tB

Γ(B + 1)
(%1 + δ%2) < 1, we have

|Λym(κ, t) − Λy(κ, t)| ≤
tB

Γ(B + 1)
(%1 + δ%2)‖ym − y‖∞.

Since y is continuous, it follows that ‖Λym(κ, t) − Λy(κ, t)‖∞ tends to zero as m tends to∞.
Now, we want to prove that, the mapping Λ maps bounded sets into bounded sets:

|Λy(κ, t)| =
h(κ) + t k(κ) + JBt

(
F(y, yκκ)

)
≤ |h(κ)| + |t k(κ)| + JBt (ν)

≤ |h(κ)| + |t k(κ)| +
tB

Γ(B + 1)
ω.

Hence, ‖Λy(κ, t)‖∞ ≤ |h(κ)| + |t k(κ)| +
tB

Γ(B + 1)
ω, which means ‖Λy(κ, t)‖∞ < ∞. Next, we want

to show that, the mapping Λ is equi-continuous on C(Ω,R). To do that, let (κ1, t1), (κ2, t2) ∈ Ω and
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κ1 < κ2, t1 < t2, then:

|Λy(κ1, t1) − Λy(κ2, t2)| = JBt
F(y(κ1, t1), yκ1κ1(κ1, t1)) − F(y(κ2, t2), yκ2κ2(κ2, t2))


≤ JBt

(
η1|y(κ1, t1) − y(κ2, t2)| + η2|yκ1κ1(κ1, t1) − yκ2κ2(κ2, t2)|

)
≤ JBt

(
η1|y(κ1, t1) − y(κ2, t2)| + η2 ℘|y(κ1, t1) − y(κ2, t2)|

)
≤

tB

Γ(B + 1)

(
(η1 + η2 ℘)(`1|κ1 − κ2| + `2|t1 − t2|)

)
≤

tB

Γ(B + 1)

(
(η1 + η2 ℘)(`1 ‖ κ1 − κ2 ‖∞ +`2 ‖ t1 − t2 ‖∞)

)
.

Finally,

|Λy(κ1, t1) − Λy(κ2, t2)| ≤
tB

Γ(B + 1)

(
(η1 + η2 ℘)(`1 ‖ κ1 − κ2 ‖∞ +`2 ‖ t1 − t2 ‖∞)

)
. (3.2)

The right-hand side of the inequality (3.2) tends to zero as κ1 −→ κ2 and t1 −→ t2 and it is independent
of y, which implies that the mapping Λ : (Ω,R) −→ C(Ω,R) is continuous and completely continuous.
As a result of Schaefer’s fixed point theorem, we conclude that operator Λ possesses a fixed point,
serving as a solution to the problem outlined in Eq (3.1). �

4. Implementation of CPT M on the T F q-deformed TGE

Recall Eq (1.6) once again:

C
D
B
t y(κ, t) =

∂2y
∂κ2 −

[
tanhqy(κ, t)υ

]P(
eεy(κ,t) + ζq

)ρ
−$. (4.1)

According to the values of the constants υ,P, ε, ζ, ρ, and $, we will investigate Eq (4.1) in two cases:
Case I. For ε = 2, υ = P = ζ = ρ = 1, and $ = −q.

Using the relations (1.5) and (4.1) can be simplified into the form:

C
D
B
t y = yκκ − e2y, 1 < B ≤ 2, (4.2)
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related to the constraints:

y(κ, 0) =
1
2

ln

R0 + R1
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1
2 (kκ)

√
E2 − 4ν

)
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(
1
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))
2
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(
1
2 (kκ)

√
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)
+ P2 sin

(
1
2 (kκ)

√
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E

2
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
√
E2 − 4ν

(
P2 cos

(
1
2 (kκ)

√
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√
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))
2
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(
1
2 (kκ)

√
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)
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1
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√
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)) −
E

2
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2
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P1 sin
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2
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− P2 cos
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2
√
E
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√
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2
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E
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E
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1 − P2
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)
cos

κ√E2 − 4ν
√

R1 + Eϑ2

√
E


+ 2P1P2 sin

κ√E2 − 4ν
√

R1 + σϑ2

√
E

 )],

(4.3)

where R0 = R1ν
E
, R2 = R1

E
, and k =

√
R1+Eϑ2
√
E

.
Using the CPT M and employing the recurrence relation presented in Eq (2.27), we get:

y1(κ, t) = }y0(κ, t) + (1 − })y0 − }L−1
{ 1
SB

L
[
− y0κκ + e2y0

]}
, (4.4)

where y0 = y(κ, 0) + t yt(κ, 0). To find y2, y3, ..., we use APs to extract the nonlinear term e2y, where:

F(y) = e2y,

A0 = e2y0 ,

A1 = 2y1e2y0 ,

A2 = 2y2e2y0 +
1
2!

y2
1 4e2y0 .

:

Hence,

y2 = }y0 + (1 − })y1 − }L−1
{ 1
SB

L
[
− y1κκ + 2y1e2y0

]}
. (4.5)

Using the Mathematica 13.2 software, one can evaluate y1, y2, ...; however, due to the extensive
computations, we halt at the second term.

Tables 1 and 2 clarify a comparison between the analytical results in reference [22], the
approximated results that we obtained, and the absolute error at different values of κ for different
time steps. By noticing Figure 3, the region that is parallel to the x-axis is approximately [−1, 0.1],
and this region includes the values of } in which the solution converges rapidly. Table 1 represents the
comparison at } = −1 and Table 2 represents the comparison at } = 0.01. The results we obtained
illustrate the efficiency of the CPT M in solving nonlinear FPDEs.
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Table 1. The analytical results in [22] and the numerical values of y(κ, t) presented in Eq (4.5), and
absolute error at P1 = 0.1,P2 = 0.0001, ν = 0.01,R1 = 0.001,E = 0.001, and ϑ = 0.4 for B = 2 at

} = −1.
t = 0.01 t = 0.1 t = 0.2

κ Analy. Num. Error Analy. Num. Error Analy. Num. Error
-10 2.05903 2.05903 9.90 E-7 2.05838 2.05828 9.90 E-5 2.05766 2.05726 3.96 E-4
-7 2.13198 2.13198 8.59 E-7 2.13101 2.13093 8.60 E-5 2.12994 2.12960 3.44 E-4
-4 2.22619 2.22619 4.55 E-7 2.22514 2.22510 4.57 E-5 2.22397 2.22379 1.83 E-4
-1 2.29683 2.29683 1.02 E-7 2.29645 2.29646 1.01 E-5 2.29601 2.29605 3.98 E-5
2 2.28067 2.28067 5.01 E-8 2.28136 2.28135 4.80 E-6 2.28212 2.28210 1.83 E-5
5 2.19439 2.19439 6.29 E-7 2.19547 2.19540 6.27 E-5 2.19667 2.19642 2.50 E-4
8 2.10467 2.10467 9.24 E-7 2.10554 2.10545 9.23 E-5 2.10651 2.10614 3.69 E-4

Table 2. The analytical results in [22] and the numerical values of y(κ, t) presented in Eq (4.5), and
absolute error at P1 = 0.1,P2 = 0.0001, ν = 0.01,R1 = 0.001,E = 0.001, and ϑ = 0.4 for B = 2 at

} = 0.01.
t = 0.01 t = 0.1 t = 0.2

κ Analy. Num. Error Analy. Num. Error Analy. Num. Error
-10 2.05903 2.05903 1.17 E-8 2.05838 2.05838 1.17 E-6 2.05766 2.05766 4.67 E-6
-7 2.13198 2.13198 1.05 E-8 2.13101 2.13101 1.06 E-6 2.12994 2.12994 4.26 E-6
-4 2.22619 2.22619 2.01 E-8 2.22514 2.22514 1.99 E-6 2.22397 2.22398 7.88 E-6
-1 2.29683 2.29683 7.34 E-8 2.29645 2.29645 7.32 E-6 2.29601 2.29604 2.92 E-5
2 2.28067 2.28067 5.83 E-8 2.28136 2.28136 5.85 E-6 2.28212 2.28214 2.35 E-5
5 2.19439 2.19439 5.26 E-9 2.19547 2.19547 5.40 E-7 2.19667 2.19667 2.22 E-6
8 2.10467 2.10467 1.29 E-8 2.10554 2.10554 1.29 E-6 2.10651 2.10651 5.17 E-6

Case II . For ε = P = ρ = 2, υ = ζ = 1, and $ = q2.
Using the relation (1.5), the T F q-deformed TGE presented in (4.1) transformed into:

C
D
B
t y(κ, t) = yκκ − e4y + 2qe2y, 1 < B ≤ 2, (4.6)

subject to:

y(κ, 0) =

ln

R0 +

R1
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(4.7)
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where R0 =
q2E2

√
q2E2(E2−4ν)

+ q, and R1 =
2q2E

√
q2E2(E2−4ν)

.

By substituting into the recurrence relation presented in Eq (2.27), we get:

y1 = }y0 + (1 − })y0 − }L−1
{ 1
SB

L
[
− y0κκ + e4y0 − 2qe2y0

]}
, (4.8)

where y0 = y(κ, 0) + t yt(κ, 0). To find the higher iterations y2, y3, ..., we use APs for the nonlinear term
e2y and e4y where e2y expanded before in Case I and e4y expanded as follows:

B0 = e4y0 ,

B1 = 4 y1e4y0 ,

:
:

hence,

y2 = }y0 + (1 − })y1 − }L−1
{ 1
SB

L
[
− y1κκ + 4y1e4y0 − 2q(2y1e2y0)

]}
. (4.9)

We can expand other terms, y3, y4, ... to obtain an approximate solution with high accuracy.
Table 3 shows the values of the analytical solution that was presented in reference [22] and the

approximate values we obtained at the same values of all parameters for } = −0.01. We chose a
value of } equal to -0.01 because, looking at Figure 6, it becomes apparent that the region where the
solution converges more rapidly lies on the interval [−1, 0.1]. So, any value inside this region gives
good accuracy. The results reflect the accuracy of the CPT M as the error is very small.

Table 3. The numerical values of the unknown function y(κ, t) introduced in Eq (4.9) and the
analytical solution obtained in [22], and absolute error at P1 = 0.4, P2 = 0.01, ν = 0.1,

k = 0.3, E = 0.001, and q = 0.001 for B = 2 for } = −0.01.
t = 0.01 t = 0.1 t = 0.2

κ Analy. Num. Error Analy. Num. Error Analy. Num. Error
-10 3.35615 3.35615 9.55 E-8 3.35689 3.35688 9.57 E-6 3.35773 3.35769 3.83 E-5
-7 3.38502 3.38502 6.85 E-8 3.38600 3.38599 6.82 E-6 3.38708 3.38706 2.72 E-5
-4 3.41786 3.41786 2.72 E-8 3.41877 3.41878 2.81 E-6 3.41978 3.41979 1.16 E-5
-1 3.43986 3.43986 1.42 E-7 3.44015 3.44016 1.43 E-5 3.44044 3.44049 5.74 E-5
2 3.43484 3.43484 1.12 E-7 3.43425 3.43426 1.11 E-5 3.43358 3.43362 4.43 E-5
5 3.40695 3.40695 1.30 E-8 3.40595 3.40595 1.37 E-6 3.40484 3.40484 5.79 E-6
8 3.37435 3.37435 8.36 E-8 3.37345 3.37344 8.37 E-6 3.37245 3.37242 3.34 E-5

To examine the influence of different parameters on the equation, particularly the parameter q, we
will resolve the second case, this time considering different initial conditions.
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Case II under different initial condition. For the T F q-deformed TGE (4.6) constrained by:

y(κ, 0) =

ln
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(4.10)

where R0 = q − q2E2
√

q2E2(E2−4ν)
, and R1 = −

2q2E
√

q2E2(E2−4ν)
.

Using the iterative scheme that we obtained in Eq (2.27) and substituting with the initial conditions
to obtain the sequence of solution:

y0 = y(κ, 0) + t yt(κ, 0),

y1 = }y0(κ, t) + (1 − })y0 − }L−1
{ 1
SB

L
[
− y0κκ + e4y0 − 2qe2y0

]}
.

:

(4.11)

We can proceed to compute higher terms, but we will halt due to the large and intricate calculations,
which constitute the main drawback of this method.

Table 4 shows the analytical results, our obtained results, and the absolute error between the two
values under the same values of parameters for } = −1. The results are the solution of the T F q-
deformed TGE for Case II, which is presented in Eq (4.11). The results are at different values of κ and
at various values of t.

Table 4. The obtained values for the function y(κ, t) introduced in Eq (4.11), the analytical solution,
and the absolute error at P1 = 0.3, P2 = 0.4, ν = 0.001, k = 0.4, E = 0.1, and q = 0.4 for B = 2 and

} = −1.
t = 0.01 t = 0.1 t = 0.2

κ Analy. Num. Error Analy. Num. Error Analy. Num. Error
-10 1.76634 1.76633 9.02 E-6 1.71114 1.71013 1.01 E-3 1.65164 1.64712 4.52 E-3
-7 1.79373 1.79372 8.29 E-6 1.74050 1.73958 9.22 E-4 1.6831 1.67902 4.08 E-3
-4 1.8219 1.82189 7.61 E-6 1.77047 1.76963 8.40 E-4 1.71497 1.71128 3.69 E-3
-1 1.85078 1.85078 6.98 E-6 1.8010 1.80024 7.65 E-4 1.74726 1.74391 3.34 E-3
2 1.88033 1.88033 6.40 E-6 1.83207 1.83137 6.97 E-4 1.77994 1.77691 3.03 E-3
5 1.9105 1.91050 5.87 E-6 1.86364 1.86300 6.36 E-4 1.81300 1.81025 2.75 E-3
8 1.94126 1.94125 5.38 E-6 1.89569 1.89511 5.80 E-4 1.84644 1.84394 2.49 E-3

Table 5 introduces the results that we obtained and the analytical results supported by the absolute
error for Case II, which its solution is presented in Eq (4.11), but this time at } = −0.01 and q = 0.004.
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Table 5. The obtained values for the function y(κ, t) introduced in Eq (4.11), the analytical solution,
and the absolute error at P1 = 0.3, P2 = 0.4, ν = 0.001, k = 0.4, E = 0.1, and q = 0.004 for B = 2

and } = −0.01.
t = 0.01 t = 0.1 t = 0.2

κ Analy. Num. Error Analy. Num. Error Analy. Num. Error
-10 3.49675 3.49675 3.02 E-9 3.49819 3.49819 3.22 E-7 3.49979 3.49978 1.36 E-6
-7 3.54785 3.54785 2.64 E-9 3.54926 3.54926 2.81 E-7 3.55083 3.55083 1.18 E-6
-4 3.59811 3.59811 2.33 E-9 3.59950 3.59950 2.47 E-7 3.60105 3.60104 1.03 E-6
-1 3.64763 3.64763 2.05 E-9 3.64901 3.64901 2.17 E-7 3.65053 3.65053 9.14 E-7
2 3.69652 3.69652 1.82 E-9 3.69788 3.69788 1.92 E-7 3.69938 3.69938 8.07 E-7
5 3.74484 3.74484 1.62 E-9 3.74619 3.74619 1.70 E-7 3.74768 3.74768 7.15 E-7
8 3.79268 3.79268 1.44 E-9 3.79401 3.79401 1.52 E-7 3.79549 3.79548 6.35 E-7

5. Visual representations

Graphical depictions, whether in 2D or 3D, provide an innovative way to showcase the behavior
of the model under study. These graphics allow for a direct comparison between the precise and
approximate solutions and also clarify the relations between all parameters that affect the equation.
In this investigation, we address the T F q-deformed TGE according to different initial conditions.
Figure 1 presents the two-dimensional depiction of the solution obtained from the proposed model,
incorporating starting conditions specified in Case I. In Figure 1(a), the depiction varies at varying
the fractional order parameter values B with a constant time of t = 3. In Figure 1(b), the illustration
remains constant at B = 2 but varies across different time intervals. Figure 2 depicts the three-
dimensional setup of Case I, where Figure 2(a) elucidates the approximate solution derived in this
study, while Figure 2(b) showcases the analytical solution outlined in [22]. The graphs exhibit a high
degree of consistency under identical conditions, indicating the accuracy of the solutions obtained.
Figures 4 and 5 represent the 2D and 3D approximate solution we obtained for the second case at
convergence parameter } = −0.01. We choose the value of } such that it is located in the interval
that parallel to x-axis as presented in Figures 3 and 6. Figure 7 shows the effect of the deformation
parameter q on the shape of the wave solution using initial conditions in Case I at fixed time t = 1,
B = 2, and } = −0.01. Figure 7(a) presents small values of q; in this case, decreasing q tends to
dampen nonlinear effects in the equation, which can lead to smoother and more regular behavior in
the solution, with less pronounced solitons and nonlinear waves. While increasing the values of q
as presented in Figure 7(b) leads to stronger nonlinear effects in the equation, this can result in the
amplification of soliton-like structures and nonlinear waves in the system. Figures 8 and 9 depict the
solution of the T F q-deformed TGE (Case II) under varying initial conditions specified in Eq (4.10),
elucidating the influence of initial parameters on solution behavior for deformation parameter q = 0.4.
Figure 10 presents the solution of the T F q-deformed TGE (Case II) at q = 0.004. Figure 11 presents
the solution of the T F q-deformed TGE with initial conditions specified in Eq (4.10) at fixed B = 2
and } = −0.01 at different values of q.
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Figure 1. The calculated solution of T F q-deformed TGE (Case I) shown in Eq (4.5) using
CPT M at P1 = 0.1,P2 = 0.0001, ν = 0.01,R1 = 0.001,E = 0.001 and ϑ = 0.4 for } = −1.
(a) At t = 3 for various values of B. (b) At B = 2 for several steps of time.

(a) (b)

Figure 2. The three-dimensional representation of the T F q-deformed TGE (Case I) at
P1 = 0.1,P2 = 0.0001, ν = 0.01,R1 = 0.001,E = 0.001, ϑ = 0.4, and B = 2. (a) The
estimated solution presented in Eq (4.5) at } = −1. (b) The exact solution.
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Figure 3. The graphs of the }-curves of the T F q-deformed TGE (Case I) at P1 = 0.1,P2 =

0.0001, ν = 0.01,R1 = 0.001,E = 0.001, and ϑ = 0.4 at κ = 0.8 and t = 0.1 at various values
of B.
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Figure 4. The calculated solution of T F q-deformed TGE (Case II) shown in (4.9) using
CPT M at P1 = 0.4, P2 = 0.01, ν = 0.1, k = 0.3, E = 0.001, and q = 0.001 for } = −0.01.
(a) At t = 4 for various values of B. (b) At B = 2 for several steps of time.

(a) (b)

Figure 5. The 3D representation of the solution of T F q-deformed TGE (Case II) at P1 =

0.4, P2 = 0.01, ν = 0.1, k = 0.3, E = 0.001, q = 0.001 and B = 2 for } = −0.01. (a) The
estimated solution presented in (4.9). (b) The exact solution.
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Figure 6. The }-curves of the T F q-deformed TGE (Case II) at P1 = 0.4, P2 = 0.01, ν =

0.1, k = 0.3, E = 0.001, and q = 0.001 at κ = 0.8 and t = 0.1 for different values of B.
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Figure 7. The approximate solution of T F q-deformed TGE (Case II) presented in (4.9) at
P1 = 0.4, P2 = 0.01, ν = 0.1, k = 0.3, E = 0.001, t = 1, and B = 2 at various q values for
} = −0.01.
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Figure 8. The calculated solution of T F q-deformed TGE (Case II) presented in (4.11) at
P1 = 0.3, P2 = 0.4, ν = 0.001, k = 0.4, E = 0.1, and q = 0.4 for } = −1. (a) At t = 2 for
various values of B (b) At B = 2 for distinct values of t.

(a) (b)

Figure 9. The 3D representation of the solution of T F q-deformed TGE (Case II) presented
in (4.11) at P1 = 0.3, P2 = 0.4, ν = 0.001, k = 0.4, E = 0.1, q = 0.4 and B = 2. (a) The
estimated solution when } = −1. (b) The exact solution.
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Figure 10. 2D and 3D representation of the solution of T F q-deformed TGE (Case II)
presented in (4.11) at P1 = 0.3, P2 = 0.4, ν = 0.001, k = 0.4, E = 0.1, q = 0.004 and B = 2
for } = −0.01.
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Figure 11. The calculated solution of T F q-deformed TGE (Case II) presented in (4.11) at
P1 = 0.3, P2 = 0.4, ν = 0.001, k = 0.4, E = 0.1, t = 2, and B = 2 at various values of q for
} = −0.01.

6. Conclusions

This paper has introduced a revolutionary equation, the T F q-deformed TGE, representing a
significant breakthrough in mathematical physics. This innovative equation combines fractional
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calculus and q-deformation, providing a flexible framework for modeling physical systems with
violated symmetries. The novelty of our approach lies in solving this equation in fractional form
utilizing the CPT M, known for its effectiveness in handling such equations. Our results demonstrate
the efficiency and accuracy of this method, as evident from the absolute error calculations presented in
the corresponding tables for each case. We have investigated both the existence and the uniqueness of
the solution. Additionally, the depiction of various 2D and 3D graphs has provided insights into the
impact of different parameters on the solution’s behavior.

For the future directions in exploring the T F q-deformed TGE, we aim to investigate this
equation with boundary conditions and incorporate additional elements such as external source term.
Furthermore, examining the stability and numerical implementation of this equation could facilitate
practical applications and simulations across a range of domains.
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