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1. Introduction

The nonlinear equation is a popular topic in many research fields [1–5], including engineering
design, physics, computational science, etc. However, with the increase in data scale and problem
complexity, solving nonlinear equations has become incrementally challenging. Therefore, studying
effective numerical methods to solve nonlinear equations has highly theoretical and practical
significance.

We consider solving nonlinear equations

F(x) = 0, (1.1)

where F (x) : Rn → Rm is continuously differentiable and the solution set of (1.1) is nonempty
denoted by X∗. There are many numerical methods [6–12] to solve nonlinear equations. Among
them, the Levenberg–Marquardt (LM) method [13,14] has attracted much attention by introducing the
LM regularizer into the Gauss–Newton method, which enables the algorithm to be well-defined when
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the Jacobian is singular or close to singular. It computes the LM step d̃k as

d̃k = −(JT
k Jk + λkI)−1JT

k Fk, (1.2)

where Fk = F (xk) and Jk = F′(xk) is the Jacobian of F(x) at xk, λk > 0 is an appropriate LM parameter
updated with each iteration, and I ∈ Rn×n is the identity matrix. Throughout the paper, ∥·∥ denotes the
Euclidean norm.

The choice of the LM parameter is essential for the LM method. Yamashita and Fukushima [15]
proved that the LM method had the quadratic convergence rate under the local error bound condition
when λk = ∥Fk∥

2. Fan and Yuan [16] proposed λk = ∥Fk∥, which overcame the shortcoming that the
LM step was too small when the iteration xk was far away from the solution. Subsequently, Fan [17]
chose λk as µk∥Fk∥, in which µk was updated by a trust region technique. Amini [18] proposed the LM
parameter µk∥Fk∥

1+∥Fk∥
, and proved the convergence under the local error bound condition. On the other hand,

Ma and Jiang [19] chose the LM parameter as θ∥Fk∥ + (1 − θ)∥JT
k Fk∥ with θ ∈ [0, 1] and obtained the

quadratic convergence rate under the local error bound condition. Fan and Pan [20] proposed the LM
parameter

λk = µk

(
θ∥Fk∥ + (1 − θ)∥JT

k Fk∥
)
, (1.3)

and preserved the quadratic convergence. From this, we can find that the LM parameter is an important
component of algorithm research and deserves further study.

To improve the convergence rate and efficiency of the algorithm, Fan [21] proposed the modified
LM algorithm with the LM step d̃k in (1.2) and the approximate step

d̂k = −(JT
k Jk + λkI)−1JT

k F(yk), (1.4)

where yk = xk + d̃k and λk = µk∥Fk∥
δ with δ ∈ [1, 2]. Using Jk instead of J(yk) could effectively save the

calculations of the Jacobian. Under the local error bound condition, the modified LM method achieved
a cubic convergence. Fan and Zeng [22] introduced a new correction step:

d̂k = (JT
k Jk + λkI)−1λkd̃k,

where λk = µk∥Fk∥
δ with δ ∈ (0, 2] and the convergence rate was min {2, 1 + 2δ} under the same

conditions. Above all, the trial step of each iteration became

s̄k = d̃k + d̂k,

and the step size was a unit. Then, Fan [23] proposed the accelerated modified LM method, which
introduced a line search along d̂k of (1.4). The step size was the solution of

max
α∈[1,α̂]

∥F(yk)∥2 − ∥F(yk) + αJkd̂k∥
2 := ϕ(α), where α̂ > 1. (1.5)

By a simple derivation,

α̃k := argmax ϕ(α) = 1 +
λkd̂T

k d̂k

d̂T
k JT

k Jkd̂k
> 1, when Jkd̂k , 0. (1.6)
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If Jkd̂k was close to 0, α̃k would be too large. An upper bound α̂ > 1 for α in (1.5) was set and the step
size was chosen as αk = min(α̃k, α̂). Moreover, the trust region ratio was introduced by

rk =
Aredk

Predk
=

∥Fk∥
2 − ∥F(xk + d̃k + αkd̂k)∥2

∥Fk∥
2 − ∥Fk + Jkd̃k∥

2 + ∥F(yk)∥2 − ∥F(yk) + αkJkd̂k∥
2
, (1.7)

which was used to decide whether to accept the trial step and updated the parameter µk. However,
the choice strategy of α̂ and its influence to the convergence of the algorithm is not mentioned. This
inspires us to consider an adaptive updated strategy to the upper bound of the step size in each iteration,
which enables the algorithm to preserve the cubic convergence and not increase the computational cost
of the Jacobian evaluations. Note that the different choice strategy of λk also leads to the different LM
method. We will propose a new LM parameter and construct a new two-step LM method with adaptive
step size.

When proving the convergence rate, some problems do not satisfy the local error bound condition,
but practically satisfy the Hölderian error bound condition. Zhu et al. [24], Wang et al. [25], Zeng et
al. [26], and Chen et al. [27] studied the local convergence rate of the LM method under the Hölderian
local bound condition with different LM parameters, respectively. To expand the scope and practicality
of the algorithm, we devote our research to giving the global and local convergence under the Hölderian
conditions.

The aim of our research is to propose an effective accelerated adaptive two-step LM algorithm
based on a modified criterion for solving nonlinear equations. The key innovations of this paper are as
follows: First, we use the convex combination of ∥Fk∥

1+∥Fk∥
and ∥JT

k Fk∥

1+∥JT
k Fk∥

as a new LM parameter to update
the trial step. Second, considering that different approximate steps may have different upper bounds,
we introduce a new modified criterion to update the upper bound of the approximate step size, rather
than changing at a constant. Third, the convergence of the new method is proved under the Hölderian
local error bound condition and the Hölderian continuity of the Jacobian.

The paper is organized as follows. In next section, a new two-step LM algorithm is described and
the global convergence under the Hölderian continuity of the Jacobian is presented. In Section 3,
we derive the convergence rate of the new algorithm under the Hölderian local error bound condition
and the Hölderian continuity of the Jacobian. In Section 4, numerical experiments show that the new
algorithm reduces the numbers of function and Jacobian evaluations. We conclude the paper in Section
5.

2. Algorithm and global convergence

In this section, we propose a novel two-step LM method with a new parameter λk. The upper bound
of the approximate step size is adjusted by the modified Metropolis criterion. The global convergenceof
the new method is proved under the Hölderian continuity of the Jacobian which is weaker than the
Lipschitz continuity.

Since the LM step d̃k in (1.2) and the approximate step d̂k in (1.4) rely on the choice of λk, we
construct a new LM parameter

λk = µk

(
θ
∥Fk∥

1 + ∥Fk∥
+ (1 − θ)

∥JT
k Fk∥

1 + ∥JT
k Fk∥

)
, where θ ∈ [0, 1]. (2.1)
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When xk is far from the optimal solution, ∥Fk∥ and ∥JT
k Fk∥ are large enough to make ∥Fk∥

1+∥Fk∥
and ∥JT

k Fk∥

1+∥JT
k Fk∥

close to 1. At this time, λk is close to µk. Conversely, when xk approaches the optimal solution, θ ∥Fk∥

1+∥Fk∥

and (1 − θ) ∥JT
k Fk∥

1+∥JT
k Fk∥

degenerate into θ∥Fk∥ and (1 − θ) ∥JT
k Fk∥, which indicates that λk is close to the LM

parameter mentioned in (1.3). The new LM parameter in (2.1) provides flexibility with the iteration
process and enhances the performance of the LM method.

The trial step of the new method is

sk = d̃k + αkd̂k,

where αk is the step size along d̂k. Unlike the reference [23], we will propose a new upper bound α̂k

of the step size in (1.5). Similar to the Metropolis criterion suggested by [28], we give a new modified
Metropolis criterion

ᾱk =

 1, if |rk−1 − 1| ≤ τ,

e−
|rk−1−1|

Tk , otherwise,
with k ≥ 1, (2.2)

where 0 < τ < 1 represents a sufficiently small constant and Tk is the temperature decreasing to 0
as k → ∞ by the cooling schedule. If |rk−1 − 1| ≤ τ, rk−1 is close enough to 1, and we set ᾱk as

1. Otherwise, |rk−1 − 1| > τ, we set ᾱk = e−
|rk−1−1|

Tk , which can be regarded as a probability and also
decreases to 0 as k → ∞. This is similar to the simulated annealing. We define the upper bound of the
step size as α̂k = 1 + ᾱk. In each iteration, α̂k is self-adaptively updated by (2.2). Now, we set the step
size along d̂k as

αk = min (α̃k, α̂k) , (2.3)

where α̃k is given by (1.6). Moreover, since ϕ(α) has the monotonically increasing property on [1, α̃k]
and αk ∈ [1, α̃k], it is easy to find ϕ(αk) ≥ ϕ(1). This implies

∥F(yk)∥2 − ∥F(yk) + αkJkd̂k∥
2 ≥ ∥F(yk)∥2 − ∥F(yk) + Jkd̂k∥

2. (2.4)

Based on the above description, we present the accelerated adaptive two-step Levenberg–Marquardt
(AATLM) algorithm.

AIMS Mathematics Volume 9, Issue 9, 24610–24635.



24614

Algorithm 1 AATLM algorithm.
Step 0. Set x0 ∈ R

n, F0 = F(x0), J0 = J(x0), ε > 0, µ0 > m0 > 0, 1 ≥ θ ≥ 0, ᾱ0 > 0, τ > 0, T0 = 1,
C = 0.99, 1 > q2 > q1 > q0 > 0, u > 1, a1 > 1 > a2 > 0. Let k := 0.
Step 1. If ∥JT

k Fk∥ ≤ ε, stop, else compute λk by (2.1).
Step 2. Solve

(JT
k Jk + λkI)d = −JT

k Fk (2.5)

to obtain d̃k, and solve
(JT

k Jk + λkI)d = −JT
k F(yk) with yk = xk + d̃k

to obtain d̂k. If ∥d̂k∥ ≤ ε, set sk = d̃k, else compute αk by (1.6), (2.2), (2.3), and set sk = d̃k + αkd̂k.
Step 3. Compute rk =

Aredk
Predk

by (1.7). Set

xk+1 =

{
xk + sk, if rk ≥ q0,
xk, otherwise.

Compute Fk+1 and Jk+1.
Step 4. Choose µk+1 as

µk+1 =


a1µk, if rk ≤ q1,
µk, if q1 < rk ≤ q2,
max{a2µk,m0}, otherwise.

(2.6)

Set Tk+1 = CTk and k := k + 1, and go to step 1.

Remark 2.1. In Step 2, α̃k is computed by (1.6), which is proposed in [23] with Jkd̂k , 0. In [23],
when Jkd̂k was close to 0, α̂ was set as the upper bound of α̃k. However, the case of Jkd̂k = 0 was not
mentioned. Note that, if d̂k , 0, then Jkd̂k , 0. In fact, if Jkd̂k = 0 holds, from the definition of d̂k, we
have

−JT
k F (yk) =

(
JT

k Jk + λkI
)

d̂k = JT
k Jkd̂k + λkd̂k = λkd̂k , 0.

Due to d̂k being the solution of

min
d∈Rn
∥F(yk) + Jkd∥2 s.t. ∥d∥ ≤ ∆k,2 := ∥d̂k∥, (2.7)

it is easy to obtain

∥F(yk)∥2 − ∥F(yk) + Jkd̂k∥
2 ≥ ∥JT

k F(yk)∥min
{
∥d̂k∥,

∥JT
k F(yk)∥
∥JT

k Jk∥

}
.

At this time, the left side of the above equation is 0, but the right side is larger than 0. This leads to a
contradiction. Therefore, if d̂k = 0, we set sk = d̃k, and the algorithm degenerates into a general LM
algorithm.

To prove the global convergence of the algorithm, we give the following assumption.

Assumption 2.1. (a) The Jacobian J(x) is Hölderian continuous of order ν ∈ (0, 1], i.e., there exists a
positive constant κh j such that
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∥J(y) − J(x)∥ ≤ κh j∥y − x∥ν, ∀x, y ∈ Rn. (2.8)

(b) The Jacobian J(x) is bounded above, i.e., there exists a positive constant κb j such that

∥J(x)∥ ≤ κb j, ∀x ∈ Rn. (2.9)

By using (2.8), we have

∥F(y) − F(x) − J(x)(y − x)∥ =

∥∥∥∥∥∥
∫ 1

0
J(x + t(y − x))(y − x)dt − J(x)(y − x)

∥∥∥∥∥∥
≤ ∥y − x∥

∫ 1

0
∥J(x + t(y − x)) − J(x)∥dt

≤ κh j∥y − x∥1+ν
∫ 1

0
tνdt

=
κh j

1 + ν
∥y − x∥1+ν. (2.10)

Lemma 2.1. Under the conditions of Assumption 2.1, the sequence {xk} generated by the AATLM
algorithm satisfies:

Predk ≥ ∥JT
k Fk∥min

{
∥d̃k∥,

∥JT
k Fk∥

∥JT
k Jk∥

}
+ ∥JT

k F(yk)∥min
{
∥d̂k∥,

∥JT
k F(yk)∥
∥JT

k Jk∥

}
for all k.

Proof. Since d̃k is the solution of the following trust region subproblem,

min
d∈Rn
∥Fk + Jkd∥2 s.t. ∥d∥ ≤ ∆k,1 := ∥d̃k∥,

for any β ∈ [0, 1], it follows:

∥Fk∥
2 − ∥Fk + Jkd̃k∥

2 ≥ ∥Fk∥
2 −

∥∥∥∥∥∥Fk − Jk
β∆k,1

∥JT
k Fk∥

JT
k Fk

∥∥∥∥∥∥2

≥ 2β∆k,1∥JT
k Fk∥ − β

2∆2
k,1∥J

T
k Jk∥.

Then,

∥Fk∥
2 − ∥Fk + Jkd̃k∥

2 ≥ max
0≤β≤1

{
2β∆k,1∥JT

k Fk∥ − β
2∆2

k,1∥J
T
k Jk∥

}
≥ ∥JT

k Fk∥min
{
∥d̃k∥,

∥JT
k Fk∥

∥JT
k Jk∥

}
. (2.11)

If d̂k = 0, (2.11) implies that the conclusion of Lemma 2.1 holds. Otherwise, d̂k is the solution of (2.7),
and it holds that

∥F(yk)∥2 − ∥F(yk) + Jkd̂k∥
2 ≥ ∥F(yk)∥2 −

∥∥∥∥∥∥F(yk) − Jk
β∆k,2

∥JT
k F(yk)∥

JT
k F(yk)

∥∥∥∥∥∥2
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≥ 2β∆k,2∥JT
k F(yk)∥ − β2∆2

k,2∥J
T
k Jk∥.

According to (2.4), we have

∥F(yk)∥2 − ∥F(yk) + αkJkd̂k∥
2 ≥ max

0≤β≤1

{
2β∆k,2∥JT

k F(yk)∥ − β2∆2
k,2∥J

T
k Jk∥

}
≥ ∥JT

k F(yk)∥min
{
∥d̂k∥,

∥JT
k F(yk)∥
∥JT

k Jk∥

}
. (2.12)

The conclusion follows from adding (2.11) and (2.12). □

Now, we give the global convergence of the AATLM algorithm.

Theorem 2.1. Under the conditions of Assumption 2.1, the sequence {xk} generated by the AATLM
algorithm satisfies

lim
k→∞
∥JT

k Fk∥ = 0. (2.13)

Proof. We prove by contradiction. Suppose (2.13) is not true. There exist a positive constant δ and
infinitely many k such that

∥JT
k Fk∥ ≥ δ, ∀k. (2.14)

Let the sets of the indices S 1 and S 2 be

S 1 =
{
k|∥JT

k Fk∥ ≥ δ
}
,

S 2 =

{
k|∥JT

k Fk∥ ≥
δ

2
and xk+1 , xk

}
,

where S 1 is an infinite set. Consider the following two cases.
Case 1: S 2 is finite. We have

S 3 =
{
k|∥JT

k Fk∥ ≥ δ and xk+1 , xk

}
is also finite. Let k̃ be the largest index of S 3, which means xk+1 = xk holds for all k ∈ {k > k̃|k ∈ S 1}.
Define the indicator set

S 4 =
{
k > k̃|∥JT

k Fk∥ ≥ δ and xk+1 = xk

}
.

We notice that ∥JT
k+1Fk+1∥ ≥ δ and xk+2 = xk+1 for all k ∈ S 4. Otherwise, if xk+2 , xk+1, then

k + 1 ∈ S 3, which means that k̃ is not the largest index of S 3. It is easy to get k + 1 ∈ S 4. By induction,
∥JT

k Fk∥ ≥ δ and xk+1 = xk hold for all k > k̃.
According to Step 3 in the AATLM algorithm, rk < q0 means that xk+1 = xk holds for all k > k̃, and

from (2.1), (2.5), and (2.6), we obtain:

µk → +∞ and λk → +∞, (2.15)

which implies that
d̃k → 0.
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From (2.9), (2.10), (2.7), (2.15), and the definition of d̂k, we find

∥d̂k∥ = ∥ − (JT
k Jk + λkI)−1JT

k F(yk)∥

≤ ∥(JT
k Jk + λkI)−1JT

k Fk∥ + ∥(JT
k Jk + λkI)−1JT

k Jkd̃k∥ +
κh j

1 + ν
∥d̃k∥

1+ν∥(JT
k Jk + λkI)−1JT

k ∥

≤ ∥d̃k∥ + ∥d̃k∥ +
κh jκb j

(1 + ν)λk
∥d̃k∥

1+ν

≤ c̄∥d̃k∥ (2.16)

for all sufficiently large k, where c̄ is a positive constant. So, we conclude

∥sk∥ = ∥d̃k + αkd̂k∥ ≤ (1 + c̄αk) ∥d̃k∥. (2.17)

On the other hand, it is clear from (2.10) that{
|∥F(yk)∥ − ∥Fk + Jkd̃k∥| ≤

κh j

1+ν∥d̃k∥
1+ν,

|∥F(xk + sk)∥ − ∥F(yk) + αkJkd̂k∥| ≤
κh j

1+ν∥sk∥
1+ν +

κh j

1+ν∥d̃k∥
1+ν,

and {
|∥F(yk)∥ + ∥Fk + Jkd̃k∥| ≤ 2∥Fk + Jkd̃k∥ +

κh j

1+ν∥d̃k∥
1+ν,

|∥F(xk + sk)∥ + ∥F(yk) + αkJkd̂k∥| ≤ 2∥Fk + Jksk∥ +
κh j

1+ν∥sk∥
1+ν +

κh j

1+ν∥d̃k∥
1+ν.

From the above formulas and Lemma 2.1, (2.10), (2.14), and (2.17), we have

|rk − 1| =
∣∣∣∣∣Aredk − Predk

Predk

∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣∣∣
∥F(xk + sk)∥2 − ∥Fk + Jkd̃k∥

2 + ∥F(yk)∥2 − ∥F(yk) + αkJkd̂k∥
2

∥JT
k Fk∥min

{
∥d̃k∥,

∥JT
k Fk∥

∥JT
k Jk∥

}
+ ∥JT

k F(yk)∥min
{
∥d̂k∥,

∥JT
k F(yk)∥
∥JT

k Jk∥

}
∣∣∣∣∣∣∣∣∣∣

≤
∥Fk + Jkd̃k∥O

(
∥d̃k∥

1+ν
)
+ ∥Fk + Jksk∥O

(
∥d̃k∥

1+ν + ∥sk∥
1+ν

)
∥d̃k∥

+
O

(
∥d̃k∥

2+2ν + ∥d̃k∥
1+ν∥sk∥

1+ν + ∥sk∥
2+2ν

)
∥d̃k∥

→ 0, (2.18)

which means that rk → 1. According to the updating rule of µk, we know that there exists a positive
constant M > m0, such that µk < M holds for all sufficiently large k, which contradicts with (2.15).
Now, we point out that the assumption (2.14) is not true.
Case 2: S 2 is infinite. From Lemma 2.1, (2.10), and the fact that sk is accepted by the AATLM
algorithm, we have

∥F1∥
2 ≥

∑
k∈S 2

(
∥Fk∥

2 − ∥Fk+1∥
2
)
≥

∑
k∈S 2

q0Predk

≥
∑
k∈S 2

q0

{
∥JT

k Fk∥min
{
∥d̃k∥,

∥JT
k Fk∥

∥JT
k Jk∥

}
+ q0∥JT

k F(yk)∥min
{
∥d̂k∥,

∥JT
k F(yk)∥
∥JT

k Jk∥

}}
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≥
∑
k∈S 2

q0δ

2
min

∥d̃k∥,
δ

2κ2b j

 , (2.19)

and xk+1 − xk = 0 if k < S 2, which implies that

d̃k → 0, k ∈ S 2, (2.20)

and from the definition of d̃k, we obtain:

λk → +∞, k ∈ S 2. (2.21)

Similarly to (2.16) and (2.17), there exists a constant c̃ > 0, which makes it true for all sufficiently
large k ∈ S 2, so,

∥sk∥ = ∥d̃k + αkd̂k∥ ≤ (1 + c̃αk) ∥d̃k∥. (2.22)

It follows from (2.19) that ∑
k∈S 2

∥sk∥ =
∑
k∈S 2

∥d̃k + αkd̂k∥ < +∞.

Moreover, combining with Assumption 2.1, we get∑
k∈S 2

∣∣∣∥JT
k Fk∥ − ∥JT

k+1Fk+1∥
∣∣∣ < +∞.

Since (2.14) holds for sufficiently large k, there exists a large k̂, such that∥JT
k̂

Fk̂∥ ≥ δ, and

∑
k∈S 2,k≥k̂

∣∣∣∥JT
k Fk∥ − ∥JT

k+1Fk+1∥
∣∣∣ < δ

2
.

By induction, we find that ∥JT
k Fk∥ ≥

δ
2 holds for all k ≥ k̂, and then, we can derive from (2.19)–(2.22)

that
lim
k→∞

d̃k = 0 and lim
k→∞

d̂k = 0,

and thus,
µk → +∞.

Similarly, to the analysis of (2.18), we have

rk → 1.

Therefore, there exists a positive constant M > m0 such that µk < M holds for sufficiently large k,
which contradicts (2.14). Above all, we get the conclusion immediately. □

Theorem 2.1 indicates that there is x∗ ∈ X∗ such that the sequence {xk} generated by the AATLM
algorithm converges to x∗. For the sufficient large k, if xk lies in a neighborhood of x∗, then xk+1 and yk

also lie in the neighborhood.
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3. Convergence rate of the AATLM algorithm

In this section, we give the properties of the trial step and the boundary of the LM parameter. In
order to establish the convergence rate of the AATLM algorithm under the Hölderian local error bound
and Hölderian continuity of the Jacobian, we use the following assumption.

Assumption 3.1. (a) F(x) provides a Hölderian local error bound of order γ ∈ (0, 1] in some
neighborhoods of x∗ ∈ X∗, i.e., there exist constants c > 0 and 0 < b < 1, such that

c dist(x, X∗) ≤ ∥F(x)∥γ, ∀x ∈ N (x∗, b) = {x|∥x − x∗∥ ≤ b} , (3.1)

and when γ = 1, F(x) provides the local error bound.
(b) The Jacobian J(x) is Hölderian continuous of order ν ∈ (0, 1], i.e., there exists a constant κh j > 0

such that
∥J(y) − J(x)∥ ≤ κh j∥y − x∥ν, ∀x, y ∈ N (x∗, b) . (3.2)

From (3.2), we immediately have

∥F(y) − F(x) − J(x)(y − x)∥ ≤
κh j

1 + ν
∥y − x∥1+ν, where ∀x, y ∈ N

(
x∗,

b
2

)
, (3.3)

and there is a constant κb f > 0 such that

∥F(y) − F(x)∥ ≤ κb f ∥y − x∥, where ∀x, y ∈ N
(
x∗,

b
2

)
. (3.4)

Moreover, we denote x̄k as the closest point to xk in X∗, i.e., dist (xk, X∗) = ∥x̄k − xk∥.
Combining the results given by Behling and Iusem [29], we assume that rank(J(x̄)) = r for all

x̄ ∈ N(x∗, b) ∩ X∗. Suppose the singular value decomposition (SVD) of J(x̄k) is

J̄k = ŪkΣ̄kV̄T
k =

(
Ū1, Ū2

) ( Σ̄1

0

) (
V̄T

1
V̄T

2

)
= Ū1Σ̄1V̄T

1 ,

where Σ̄1 = diag(σ̄1, ..., σ̄r), and σ̄1 ≥ σ̄2 ≥ ... ≥ σ̄r > 0. Thus, we obtain:

Jk = UkΣkVT
k = (U1,U2,U3)


Σ1

Σ2

0




VT
1

VT
2

VT
3

 = U1Σ1VT
1 + U2Σ2VT

2 ,

where Σ1 = diag(σ1, ..., σr), σ1 ≥ σ2 ≥ ... ≥ σr > 0, and Σ2 = diag(σr+1, ..., σr+q), σr ≥ σr+1 ≥ σr+2 ≥

... ≥ σr+q > 0. Following from the theory of matrix perturbation [30], and the Hölderian continuity of
Jk, we know

∥diag(Σ1 − Σ̄1,Σ2, 0)∥ ≤ ∥Jk − J̄k∥ ≤ κh j∥x̄k − xk∥
ν,

which yields
∥Σ1 − Σ̄1∥ ≤ κh j∥x̄k − xk∥

ν and ∥Σ2∥ ≤ κh j∥x̄k − xk∥
ν. (3.5)

Lemma 3.1. Under the conditions of Assumption 3.1, if xk, yk ∈ N
(
x∗, b

4

)
, and
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ν > max
{

2
(
1
γ
− 1

)
,

1
2γ

}
,

there exists a constant c1 > 0 such that

∥sk∥ ≤ c1dist(xk, X∗). (3.6)

Proof. Since xk ∈ N
(
x∗, b

4

)
=

{
x|∥xk − x∗∥ ≤ b

4

}
, it follows from the definition of x̄k that

∥x̄k − x∗∥ ≤ ∥x̄k − xk∥ + ∥xk − x∗∥ ≤ 2∥xk − x∗∥ ≤
b
2
,

which means x̄k ∈ N
(
x∗, b

2

)
.

From the definition of λk, we set λ1k =
µkθ∥Fk∥

1+∥Fk∥
, and λ2k =

µk(1−θ)∥JT
k Fk∥

1+∥JT
k Fk∥

. Then, together with (3.1) and
µk > m0, we have

λ1k ≥

 µkθ

2 ∥Fk∥ ≥
m0θ

2 c
1
γ ∥x̄k − xk∥

1
γ , if ∥Fk∥ ≤ 1;

µkθ

2 ≥
m0θ

2 , otherwise.

As we know, ∥Fk∥
2 = FT

k Fk = FT
k [F(x̄k)+ Jk(x̄k − xk)]+ FT

k Hk, in which Hk = Fk − F(x̄k)− Jk(x̄k − xk).
So, we have FT

k Jk(x̄k − xk) = ∥Fk∥
2−FT

k Hk. From the Assumption 3.1, and ν > 2
(

1
γ
− 1

)
, it is clear that

∥JT
k Fk∥ ≥ ĉ∥x̄k − xk∥

2
γ−1

holds for some ĉ > 0. In the same way, we obtain:

λ2k ≥

 µk(1−θ)
2 ∥JT

k Fk∥ ≥
m0(1−θ)

2 ĉ∥x̄k − xk∥
2
γ−1, if ∥JT

k Fk∥ ≤ 1;
µk(1−θ)

2 ≥
m0(1−θ)

2 , otherwise.

Thus, we find that the LM parameter λk satisfies:

λk = µk

(
θ
∥Fk∥

1 + ∥Fk∥
+ (1 − θ)

∥JT
k Fk∥

1 + ∥JT
k Fk∥

)
≥ max

{m0θ

2
,

m0θ

2
c

1
γ ∥x̄k − xk∥

1
γ

}
+max

{
m0(1 − θ)

2
,

m0(1 − θ)
2

(
ĉ∥x̄k − xk∥

2
γ−1

)}
≥ c̀∥x̄k − xk∥

1
γ , (3.7)

where c̀ > 0.
In addition, the equivalence problem of (2.11) is

min
d∈Rn
∥Fk + Jkd∥2 + λk∥d∥2 ≜ φk,1(d),

which has the optimal solution d̃k. Combining with (3.7), we have that

∥d̃k∥
2 ≤

φk,1(x̄k − xk)
λk

AIMS Mathematics Volume 9, Issue 9, 24610–24635.



24621

=
∥Fk + Jk(x̄k − xk)∥2

λk
+ ∥x̄k − xk∥

2

≤
k2

h j∥x̄k − xk∥
2+2ν

c̀(1 + ν)2∥x̄k − xk∥
1
γ

+ ∥x̄k − xk∥
2

≤ c1,1∥x̄k − xk∥
2min

{
1,1+ν− 1

2γ

}

holds for some c1,1 > 0, which means that

∥d̃k∥ ≤ c1,2∥x̄k − xk∥
min

{
1,1+ν− 1

2γ

}
(3.8)

holds for some c1,2 > 0.
By the definition of d̂k and (3.3), we obtain

∥d̂k∥ = ∥ − (JT
k Jk + λkI)−1JT

k F(yk)∥
≤ ∥(JT

k Jk + λkI)−1JT
k Fk∥ + ∥(JT

k Jk + λkI)−1JT
k Jkd̃k∥

+
κh j

1 + ν
∥d̃k∥

1+ν∥(JT
k Jk + λkI)−1JT

k ∥

≤ 2∥d̃k∥ +
κh j

1 + ν
∥d̃k∥

1+ν∥(JT
k Jk + λkI)−1JT

k ∥. (3.9)

By using the SVD of Jk, we have

∥(JT
k Jk + λkI)−1JT

k ∥ =

∥∥∥∥∥∥∥∥∥(V1,V2,V3)


(Σ2

1 + λkI)−1Σ1

(Σ2
2 + λkI)−1Σ2

0




UT
1

UT
2

UT
3


∥∥∥∥∥∥∥∥∥

≤

∥∥∥∥∥∥∥∥∥


(Σ2
1 + λkI)−1Σ1

(Σ2
2 + λkI)−1Σ2

0


∥∥∥∥∥∥∥∥∥

≤

∥∥∥∥∥∥
(
Σ−1

1
λ−1

k Σ2

)∥∥∥∥∥∥ . (3.10)

Due to the sequence {xk} converging to the nonempty solution set X∗, if κh j∥x̄k − xk∥
ν ≤

σ̄r
2 for any

sufficiently large k, from the lower bound of λk, we get

∥Σ−1
1 ∥ ≤

1
σ̄r − κh j∥x̄k − xk∥

ν
≤

2
σ̄r
,

and

∥λ−1
k Σ2∥ ≤

κh j∥x̄k − xk∥
ν

c̀∥x̄k − xk∥
1
γ

= ć∥x̄k − xk∥
ν− 1
γ ,

where ć > 0 is a constant. Then, combining with (3.9), (3.10), the lower bound of λk, and the range of
ν, we can deduce

∥d̂k∥ ≤ 2∥d̃k∥ +
κh j

1 + ν
∥d̃k∥

1+ν∥(JT
k Jk + λkI)−1JT

k ∥

AIMS Mathematics Volume 9, Issue 9, 24610–24635.
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≤ 2∥d̃k∥ +
2ćκh j

σ̄r(1 + ν)
∥d̃k∥

1+ν∥x̄k − xk∥
ν− 1
γ

≤ 2∥d̃k∥ +
2ćκh jc1+ν

1,2

σ̄r(1 + ν)
∥x̄k − xk∥

min
{
1+2ν− 1

γ ,1+3ν+ν2− ν2γ−
3

2γ

}

≤ č∥x̄k − xk∥
min{1,τ},

where č > 0 is a constant, and

τ = min
{

1 + ν −
1

2γ
, 1 + 2ν −

1
γ
, 1 + 3ν + ν2 −

ν

2γ
−

3
2γ

}
. (3.11)

From assumption ν > max
{
2
(

1
γ
− 1

)
, 1

2γ

}
and the condition ν, γ ∈ (0, 1], we know ν > 1

γ
− 1, and

γ ∈ (2
3 , 1]. It is easy to find ν ∈ ( 1

2 , 1]. As the exponent γ increases, smaller values on the exponent ν
are allowed. We obtain:

τ1 − 1 = 1 + ν −
1

2γ
− 1 = ν −

1
2γ
> 0,

τ2 − 1 = 1 + 2ν −
1
γ
− 1 = 2

(
ν −

1
2γ

)
> 0,

τ3 − 1 = 1 + 3ν + ν2 −
ν

2γ
−

3
2γ
− 1 = 3

(
ν −

1
2γ

)
+ ν

(
ν −

1
2γ

)
> 0,

which implies

∥d̃k∥ ≤ O (∥x̄k − xk∥) , ∥d̂k∥ ≤ O (∥x̄k − xk∥) . (3.12)

Due to the definition of sk, it is easy to know

∥sk∥ = ∥d̃k + αkd̂k∥ ≤ O (∥x̄k − xk∥) .

The proof is complete. □

Lemma 3.2. Under the conditions of Assumption 3.1, if xk, yk ∈ N
(
x∗, b

4

)
, and

ν > max
{

2
(
1
γ
− 1

)
,

1
2γ

}
,

there exists a constant M > m0, such that
µk ≤ M (3.13)

holds for all large k.

Proof. We consider the following two cases.
Case 1: If ∥x̄k − xk∥ ≤ ∥d̃k∥, it follows from (3.1), (3.3), and ν > 2

(
1
γ
− 1

)
that

∥Fk∥ − ∥Fk + Jkd̃k∥ ≥ ∥Fk∥ − ∥Fk + Jk(x̄k − xk)∥
≥ c

1
γ ∥x̄k − xk∥

1
γ + O

(
∥x̄k − xk∥

1+ν
)
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≥ c2,1∥x̄k − xk∥
1
γ , (3.14)

where c2,1 > 0 is a constant.
Case 2: If ∥x̄k − xk∥ > ∥d̃k∥, it follows from the second and third inequalities of (3.14), that we have

∥Fk∥ − ∥Fk + Jkd̃k∥ ≥ ∥Fk∥ −

∥∥∥∥∥∥Fk +
∥d̃k∥

∥x̄k − xk∥
Jk(x̄k − xk)

∥∥∥∥∥∥
≥

∥d̃k∥

∥x̄k − xk∥
(∥Fk∥ − ∥Fk + Jk(x̄k − xk)∥)

≥
∥d̃k∥

∥x̄k − xk∥
c2,1∥x̄k − xk∥

1
γ

≥ c2,1∥d̃k∥∥x̄k − xk∥
1
γ−1. (3.15)

Using the same analysis as (3.14) and (3.15), we deduce

∥F(yk)∥ − ∥F(yk) + Jkd̂k∥ ≥ ∥F(yk)∥ − ∥F(yk) + Jk(ȳk − yk)∥
≥ ∥F(yk)∥ − ∥F(yk) + J(yk)(ȳk − yk)∥ − ∥(Jk − J(yk))(ȳk − yk)∥
≥ c

1
γ ∥ȳk − yk∥

1
γ + O

(
∥ȳk − yk∥

1+ν
)
+ O

(
∥d̃k∥

ν∥ȳk − yk∥
)

≥ c2,2∥ȳk − yk∥
1
γ , (3.16)

where c2,2 > 0 is a constant with ∥ȳk − yk∥ ≤ ∥d̂k∥, and

∥F(yk)∥ − ∥F(yk) + Jkd̂k∥ ≥ ∥F(yk)∥ −

∥∥∥∥∥∥F(yk) +
∥d̂k∥

∥ȳk − yk∥
Jk(ȳk − yk)

∥∥∥∥∥∥
≥

∥d̂k∥

∥ȳk − yk∥
(∥F(yk)∥ − ∥F(yk) + Jk(ȳk − yk)∥)

≥
∥d̂k∥

∥ȳk − yk∥
c2,2∥ȳk − yk∥

1
γ

≥ c2,2∥d̂k∥∥ȳk − yk∥
1
γ−1 (3.17)

holds for ∥ȳk − yk∥ > ∥d̂k∥.
Hence, it follows from (3.14)–(3.17), and the definition of Predk that

Predk ≥ ∥Fk∥
(
∥Fk∥ − ∥Fk + Jkd̃k∥

)
+ ∥F(yk)∥

(
∥F(yk)∥ − ∥F(yk) + Jkd̂k∥

)
≥ Ck,

where

Ck = c2,1∥Fk∥min
{
∥x̄k − xk∥

1
γ , ∥d̃k∥∥x̄k − xk∥

1
γ−1

}
+c2,2∥F(yk)∥min

{
∥ȳk − yk∥

1
γ , ∥d̂k∥∥ȳk − yk∥

1
γ−1

}
.

From (JT
k Fk)T d̃k < 0, we can derive that ∥F(yk)∥ < ∥Fk∥. Combining (3.1) and (3.3) with (3.12) yields

|rk − 1| =
∣∣∣∣∣Aredk − Predk

Predk

∣∣∣∣∣
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≤

∣∣∣∣∣∣∥F(xk + sk)∥2 − ∥Fk + Jkd̃k∥
2 + ∥F(yk)∥2 − ∥F(yk) + αkJkd̂k∥

2

Ck

∣∣∣∣∣∣
≤
∥Fk + Jkd̃k∥O

(
∥d̃k∥

1+ν
)
+ ∥Fk + Jksk∥O

(
∥d̃k∥

1+ν + ∥sk∥
1+ν

)
O

(
∥d̃k∥∥x̄k − xk∥

2
γ−1

)
+

O
(
∥d̃k∥

2+2ν + ∥d̃k∥
1+ν∥sk∥

1+ν + ∥sk∥
2+2ν

)
O

(
∥d̃k∥∥x̄k − xk∥

2
γ−1

) .

Due to ν > max
{
2
(

1
γ
− 1

)
, 1

2γ

}
, it is clear that rk → 1. Therefore, we conclude that (3.13) is valid

from Step 4 in the AATLM algorithm and Lemma 3.2 is proved. □

Lemma 3.3. Under the conditions of Assumption 3.1, if xk, yk ∈ N
(
x∗, b

4

)
and ν > 2

(
1
γ
− 1

)
, we have

c̀∥x̄k − xk∥
1
γ ≤ λk ≤ Mθκb f ∥x̄k − xk∥ + M(1 − θ)κ2b f ∥x̄k − xk∥,

where c̀ > 0 is a constant.

Proof. It follows from (3.7) that
c̀∥x̄k − xk∥

1
γ ≤ λk.

By using Lemma 3.2, (3.2), (3.4), and the definition of λk, we conclude

λk = µk

(
θ
∥Fk∥

1 + ∥Fk∥
+ (1 − θ)

∥JkFk∥

1 + ∥JkFk∥

)
≤ µkθ∥Fk∥ + µk(1 − θ)∥JkFk∥

≤ Mθκb f ∥x̄k − xk∥ + M(1 − θ)κ2b f ∥x̄k − xk∥, (3.18)

which means that λk is bounded. Above all, we have the conclusion immediately. □

We use the SVD to calculate the convergence rate of the AATLM algorithm. By the SVD of Jk, we
get

d̃k = −V1(Σ2
1 + λkI)−1Σ1UT

1 Fk − V2(Σ2
2 + λkI)−1Σ2UT

2 Fk, (3.19)

d̂k = −V1(Σ2
1 + λkI)−1Σ1UT

1 F(yk) − V2(Σ2
2 + λkI)−1Σ2UT

2 F(yk), (3.20)

Fk + Jkd̃k = Fk − U1Σ1(Σ2
1 + λkI)−1Σ1UT

1 Fk − U2Σ2(Σ2
2 + λkI)−1Σ2UT

2 Fk

= λkU1(Σ2
1 + λkI)−1UT

1 Fk + λkU2(Σ2
2 + λkI)−1UT

2 Fk + U3UT
3 Fk, (3.21)

F(yk) + Jkd̂k = F(yk) − U1Σ1(Σ2
1 + λkI)−1Σ1UT

1 F(yk) − U2Σ2(Σ2
2 + λkI)−1Σ2UT

2 F(yk)
= λkU1(Σ2

1 + λkI)−1UT
1 F(yk) + λkU2(Σ2

2 + λkI)−1UT
2 F(yk)

+ U3UT
3 F(yk). (3.22)

Lemma 3.4. Under the conditions of Assumption 3.1, if xk, yk ∈ N
(
x∗, b

4

)
, we have
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(a) ∥U1UT
1 Fk∥ ≤ κb f ∥x̄k − xk∥;

(b) ∥U2UT
2 Fk∥ ≤ ( κh j

1+ν + κh j)∥x̄k − xk∥
1+ν;

(c) ∥U3UT
3 Fk∥ ≤

κh j

1+ν∥x̄k − xk∥
1+ν.

Proof. We could obtain (a) directly from (3.4). Let s̄k = −J+k Fk, where J+k is the pseudo-inverse of Jk

and s̄k is the least squares solution of min∥Fk + Jks∥. Then, we obtain (c) from (3.3) that

∥U3UT
3 Fk∥ = ∥Fk + Jk s̄k∥ ≤ ∥Fk + Jk(x̄k − xk)∥ ≤

κh j

1 + ν
∥x̄k − xk∥

1+ν.

Let J̃k = U1Σ1VT
1 and s̃k = −J̃+k Fk, where J̃+k is the pseudo-inverse of J̃k and s̃k is the least squares

solution of min∥Fk + J̃ks∥. Together with (3.4) and (3.5) implies

∥(U2UT
2 Fk + U3UT

3 Fk)∥ = ∥Fk + J̃k s̃k∥

≤ ∥Fk + J̃k(x̄k − xk)∥
≤ ∥Fk + Jk(x̄k − xk)∥ + ∥(J̃k − Jk)(x̄k − xk)∥

≤
κh j

1 + ν
∥x̄k − xk∥

1+ν + ∥(U2Σ2VT
2 )(x̄k − xk)∥

≤
κh j

1 + ν
∥x̄k − xk∥

1+ν + κh j∥x̄k − xk∥
ν∥x̄k − xk∥

≤ (
κh j

1 + ν
+ κh j)∥x̄k − xk∥

1+ν,

which means that we obtain (b) from the orthogonality of U2 and U3. The proof is complete. □

Lemma 3.5. Under the conditions of Assumption 3.1, if xk, yk ∈ N
(
x∗, b

4

)
and ν > max

{
2
(

1
γ
− 1

)
, 1

2γ

}
,

we have

(a) ∥U1UT
1 F(yk)∥ ≤ O

(
∥x̄k − xk∥

1+ν
)

;

(b) ∥U2UT
2 F(yk)∥ ≤ O

(
∥x̄k − xk∥

ν+γ(1+ν)
)

;

(c) ∥U3UT
3 F(yk)∥ ≤ O

(
∥x̄k − xk∥

ν+γ(1+ν)
)
.

Proof. From (3.21), Lemmas 3.3 and 3.4, and the range of ν, we have

∥Fk + Jkd̃k∥ ≤ λk∥Σ
2
1∥
−1∥U1UT

1 Fk∥ + ∥U2UT
2 Fk∥ + ∥U3UT

3 Fk∥

≤ O
(
∥x̄k − xk∥

2
)
+ O

(
∥x̄k − xk∥

1+ν
)

≤ O
(
∥x̄k − xk∥

1+ν
)
, (3.23)

and from (3.3), (3.8), and (3.23), we have

∥F(yk)∥ = ∥F(xk + d̃k)∥

≤ ∥Fk + Jkd̃k∥ +
κh j

1 + ν
∥d̃k∥

1+ν

≤ O
(
∥x̄k − xk∥

1+ν
)
+ O

(
∥x̄k − xk∥

1+ν
)

= O
(
∥x̄k − xk∥

1+ν
)
.

Thus, it is clear that
∥U1UT

1 F(yk)∥ ≤ ∥F(yk)∥ ≤ O
(
∥x̄k − xk∥

1+ν
)
,
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which indicates that the following condition of the Hölderian local error bound,

∥ȳk − yk∥ ≤
1
c
∥F(yk)∥γ ≤ O

(
∥x̄k − xk∥

γ(1+ν)
)
, (3.24)

is obtained.
Then, we let p̄k = −J+k F(yk), and p̄k is the least squares solution of min∥F(yk) + Jk p∥. From (3.2),

(3.3), (3.9), (3.24), and the range of ν, we have

∥U3UT
3 F(yk)∥ = ∥F(yk) + Jk p̄k∥

≤ ∥F(yk) + Jk(ȳk − yk)∥
≤ ∥F(yk) + J(yk)(ȳk − yk)∥ + ∥(Jk − J(yk))(ȳk − yk)∥

≤
κh j

1 + ν
∥ȳk − yk∥

1+ν + κh j∥d̃k∥
ν∥ȳk − yk∥

≤ O
(
∥x̄k − xk∥

min{γ(1+ν)2,ν+γ(1+ν)}
)

≤ O
(
∥x̄k − xk∥

ν+γ(1+ν)
)
.

Let J̃k = U1Σ1VT
1 and p̃k = −J̃+k F(yk), where p̃k is the least squares solution of min∥F(yk) + J̃k p∥. It

follows from (3.2), (3.3), (3.6), (3.8), (3.24), and the range of ν that

∥(U2UT
2 + U3UT

3 )F(yk)∥ = ∥F(yk) + J̃k pk∥

≤ ∥F(yk) + J̃k(ȳk − yk)∥
≤ ∥F(yk) + J(yk)(ȳk − yk)∥ + ∥(J̃k − J(yk))(ȳk − yk)∥

≤
κh j

1 + ν
∥ȳk − yk∥

1+ν + ∥(Jk − J(yk))(ȳk − yk)∥ + ∥U2Σ2VT
2 (ȳk − yk)∥

≤
κh j

1 + ν
∥ȳk − yk∥

1+ν + κh j∥d̃k∥
ν∥ȳk − yk∥ + κh j∥x̄k − xk∥

ν∥ȳk − yk∥

≤ O
(
∥x̄k − xk∥

min{γ(1+ν)2,ν+γ(1+ν)}
)

≤ O
(
∥x̄k − xk∥

ν+γ(1+ν)
)
,

and then, together with the orthogonality of U2 and U3, we obtain (b) and Lemma 3.5 is proved. □

Theorem 3.1. Under the conditions of Assumption 3.1, if xk, yk ∈ N
(
x∗, b

4

)
, ν > 2

(
1
γ
− 1

)
, and ν > 1

2γ ,
the sequence {xk} generated by the AATLM algorithm converges to the solution set of (1.1) with order
νγ + γ2(1 + ν).

Proof. From (3.5), (3.20), Lemma 3.5, and the upper bound of ∥λ−1
k Σ2∥, we have

∥d̂k∥ = ∥ − V1(Σ2
1 + λkI)−1Σ1UT

1 F(yk) − V2(Σ2
2 + λkI)−1Σ2UT

2 F(yk)∥
≤ ∥Σ−1

1 ∥∥U
T
1 F(yk)∥ + ∥λ−1

k Σ2∥∥UT
2 F(yk)∥

≤ O
(
∥x̄k − xk∥

1+ν
)
+ O

(
∥x̄k − xk∥

2ν+γ(1+ν)− 1
γ

)
≤ O

(
∥x̄k − xk∥

min
{
1+ν,2ν+γ(1+ν)− 1

γ

})
. (3.25)

It follows from (3.18), (3.22), and Lemma 3.5 that

∥F(yk) + αkJkd̂k∥ ≤ ∥F(yk) + Jkd̂k∥

AIMS Mathematics Volume 9, Issue 9, 24610–24635.



24627

= ∥λkU1(Σ2
1 + λkI)−1UT

1 F(yk) + λkU2(Σ2
2 + λkI)−1UT

2 F(yk) + U3UT
3 F(yk)∥

≤ λk∥Σ
−2
1 ∥∥U1UT

1 F(yk)∥ + ∥U2UT
2 F(yk)∥ + ∥U3UT

3 F(yk)∥
≤ O

(
∥x̄k − xk∥

2+ν
)
+ O

(
∥x̄k − xk∥

ν+γ(1+ν)
)

≤ O
(
∥x̄k − xk∥

ν+γ(1+ν)
)
. (3.26)

Hence, combining with (3.8), (3.25), (3.26), and Assumption 3.1, we know

c
1
γ ∥x̄k+1 − xk+1∥

1
γ ≤ ∥F(xk+1)∥ = ∥F(yk + αkd̂k)∥

≤ ∥F(yk) + αkJ(yk)d̂k∥ +
κh j

1 + ν
α1+ν

k ∥d̂k∥
1+ν

≤ ∥F(yk) + αkJkd̂k∥ + αk∥(J(yk) − Jk)d̂k∥ +
κh j

1 + ν
α1+ν

k ∥d̂k∥
1+ν

≤ ∥F(yk) + αkJkd̂k∥ + kh jαk∥d̃k∥
ν∥d̂k∥ +

κh j

1 + ν
α1+ν

k ∥d̂k∥
1+ν

≤ O
(
∥x̄k − xk∥

ν+γ(1+ν)
)
+ O

(
∥x̄k − xk∥

min
{
1+2ν,3ν+γ(1+ν)− 1

γ

})
+O

(
∥x̄k − xk∥

min
{
(1+ν)2,(1+ν)(2ν+γ(1+ν)− 1

γ )
})

≤ O
(
∥x̄k − xk∥

ξ
)
, (3.27)

where ξ = min
{
ν + γ(1 + ν), 1 + 2ν, 3ν + γ(1 + ν) − 1

γ
, (1 + ν)2, (1 + ν)(2ν + γ(1 + ν) − 1

γ
)
}
. Consider

γ ∈ (2
3 , 1] and ν ∈ (1

2 , 1], and we have

1 + 2ν − (ν + γ(1 + ν)) = (1 − γ) (1 + ν) > 0,

and
(1 + ν)2 − (1 + 2ν) = ν2 > 0.

By ν > 1
2γ and γ ∈ (2

3 , 1], we derive

3ν + γ(1 + ν) −
1
γ
− (ν + γ(1 + ν)) = 2

(
ν −

1
2γ

)
> 0,

and

(1 + ν)(2ν + γ(1 + ν) −
1
γ

) −
(
3ν + γ(1 + ν) −

1
γ

)
= ν

(
2ν + γ + νγ −

1
γ
− 1

)
> ν

(
γ −

1
2

)
> 0.

These mean that ξ = ν + γ(1 + ν) and {xk} converges to some solution of (1.1) with the rate of νγ +
γ2(1 + ν).

Moreover, together with ∥x̄k − xk∥ ≤ ∥x̄k+1 − xk∥ ≤ ∥x̄k+1 − xk+1∥ + ∥sk∥ and (3.27), we have

∥x̄k − xk∥ ≤ 2∥sk∥

for all sufficiently large k. It is clear from Lemma 3.1 that

∥sk+1∥ ≤ O
(
∥sk∥

νγ+γ2(1+ν)
)
.

By the above explanation, along with the condition that ν > max
{
2
(

1
γ
− 1

)
, 1

2γ

}
, we can conclude that

Theorem 3.1 is valid. The proof is complete. □
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In addition, when the values of ν and γ are different, we have convergence rates as follows

∥sk+1∥ ≤


O

(
∥sk∥

γ+2γ2
)
, if ν = 1;

O
(
∥sk∥

1+2ν
)
, if γ = 1;

O
(
∥sk∥

3
)
, if ν = 1 and γ = 1.

4. Numerical experiments

This section shows the numerical results of the AATLM algorithm. All experiments were performed
on a PC with an Intel i7-13700UH CPU with 32.00 GB RAM and MATLAB R2022a (64-bit).

We compare the AATLM algorithm with that of LM1 in [26], the MLM algorithm in [21], and the
AMLM algorithm in [23]. Their parameters are chosen as follows:

LM1 : q0 = 10−4, q1 = 0.25, q2 = 0.75, µ0 = 1,m0 = 10−8;
MLM : q0 = 10−4, q1 = 0.25, q2 = 0.75, µ0 = 1,m0 = 10−8, δ = 1;
AMLM : q0 = 10−4, q1 = 0.25, q2 = 0.75, µ0 = 1,m0 = 10−8, δ = 1, α̂ = 4;
AATLM : q0 = 10−4, q1 = 0.25, q2 = 0.75, θ = 0.6, ᾱ0 = 1, µ0 = 1,m0 = 10−8, τ = 0.1, a1 = 4, a2 =

1
4 .

The termination condition of the algorithm is ∥JT
k Fk∥ ≤ 10−6 or k ≥ 1000. In the listed numerical

results, “NF”, “NJ”, “NT = NF + NJ × n”, “NK”, and “Time” represent the numbers of functions,
Jacobian evaluations, total evaluations, iterations, and CPU time, respectively. Examples 4.1 and 4.2
are two singular problems from [26]. These problems do not satisfy the local error bound condition, but
satisfy the Hölderian local error bound condition. J(x) of these problems are not Lipschitz continuous,
but are Hölderian continuous.

Example 4.1. [26] Consider the following Function 1:

F1(x) = x1 + 10x2,
F2(x) = x3 − x4,
F3(x) = (x2 − 2x3)

3
2 ,

F4(x) = (x1 − x4)
3
2 .

The initial point is x0 = (3, 1, 0, 1)T , and the optimal solution is x∗ = (0, 0, 0, 0)T . The results are listed
in Table 1.

Table 1. Numerical results of Example 4.1.
LM1 MLM AMLM AATLM

(n,m) x0 NF/NJ/NT/NK/Time/∥F∥ NF/NJ/NT/NK/Time/∥F∥ NF/NJ/NT/NK/Time/∥F∥ NF/NJ/NT/NK/Time/∥F∥
(4, 4) −10x0 11/11/55/10/0.00/7.99e−6 19/10/59/9/0.00/7.98e−6 17/9/53/8/0.00/4.62e−6 17/9/53/8/0.00/2.23e−6

−x0 10/10/50/9/0.00/4.14e−6 15/8/47/7/0.00/2.76e−6 13/7/41/6/0.00/8.90e−6 13/7/41/6/0.02/2.77e−6
x0 10/10/50/9/0.00/4.14e−6 15/8/47/7/0.00/2.76e−6 13/7/41/6/0.00/8.90e−6 13/7/41/6/0.00/2.77e−6
10x0 11/11/55/10/0.00/7.99e−6 19/10/59/9/0.00/3.15e−6 17/9/53/8/0.00/4.62e−6 17/9/53/8/0.00/1.63e−6
100x0 13/13/65/12/0.00/7.90e−6 23/12/71/11/0.00/6.77e−6 21/11/65/10/0.02/1.14e−5 17/9/53/8/0.00/1.59e−5

Example 4.2. [26] Consider the following Function 2:

AIMS Mathematics Volume 9, Issue 9, 24610–24635.



24629

F1(x) = x1 + 10x2,
F2(x) = x3 − x4,
F3(x) = (x2 − 2x3)

4
3 ,

F4(x) = (x1 − x4)
4
3 .

The initial point is x0 = (3,−1, 0, 1)T , and the optimal solution is x∗ = (0, 0, 0, 0)T . The results are
listed in Table 2.

Table 2. Numerical results of Example 4.2.
LM1 MLM AMLM AATLM

(n,m) x0 NF/NJ/NT/NK/Time/∥F∥ NF/NJ/NT/NK/Time/∥F∥ NF/NJ/NT/NK/Time/∥F∥ NF/NJ/NT/NK/Time/∥F∥
(4, 4) −10x0 11/11/55/10/0.00/1.47e−6 19/10/59/9/0.00/7.46e−7 19/10/59/9/0.00/1.26e−6 15/8/47/7/0.00/1.75e−6

−x0 9/9/45/8/0.00/4.88e−6 15/8/47/7/0.00/7.98e−7 13/7/41/6/0.00/7.14e−6 13/7/41/6/0.00/2.44e−6
x0 9/9/45/8/0.00/4.88e−6 13/7/41/6/0.02/8.13e−6 13/7/41/6/0.02/2.30e−6 13/7/41/6/0.00/1.58e−6
10x0 11/11/55/10/0.00/1.47e−6 19/10/59/9/0.00/6.73e−7 17/9/53/8/0.00/1.27e−6 15/8/47/7/0.00/9.30e−7
100x0 12/12/60/11/0.00/2.67e−6 23/12/71/11/0.00/1.43e−6 21/11/65/10/0.00/2.31e−6 17/9/53/8/0.00/8.23e−7

Tables 1 and 2 show that the numbers of iterations and the function and Jacobian evaluations of the
AATLM algorithm are less than that of the LM1, MLM, and AMLM algorithms. Due to the dimension
of the problems being small, there is almost no difference in the CPU time.

Similar to [21, 23], we also consider the following singular problem [31]

F̂(x) = F(x) − J(x∗)A(AT A)−1AT (x − x∗), (4.1)

where F(x) is a nonsingular test function given by Moré, Garbow, and Hillstrom in [32], x∗ is the root
of F(x), and A ∈ Rn×k has full column rank with 1 ≤ k ≤ n. There exists

Ĵ(x∗) = J(x∗)(I − A(AT A)−1AT ),

with rank n − k. In this paper, we define

A ∈ Rn×1, A = (1, 1, . . . , 1)T ,

which means that the rank of Ĵ(x∗) is n − 1.

Example 4.3. [32] Consider the extended Rosenbrock function

F2i−1(x) = 10(x2i − x2
i−1),

F2i(x) = 1 − x2i−1.

The initial point is x0 = (−1.2, 1,−1.2, 1, ...)T , and the optimal solution is x∗ = (1, 1, ..., 1)T . The results
are listed in Table 3.

Table 3. Numerical results of the extended Rosenbrock function.
LM1 MLM AMLM AATLM

(n,m) x0 NF/NJ/NT/NK/Time/∥F∥ NF/NJ/NT/NK/Time/∥F∥ NF/NJ/NT/NK/Time/∥F∥ NF/NJ/NT/NK/Time/∥F∥
(500, 500) −10x0 18/18/9018/17/1.56/2.50e−3 259/130/65259/129/18.61/2.23e−2 339/170/85339/169/53.36/2.73e−2 31/16/8031/15/4.38/1.59e−3

−x0 141/141/70641/140/16.06/3.56e−2 171/86/43171/85/7.77/2.02e−2 313/157/78813/156/27.23/2.84e−2 31/16/8031/15/4.67/1.38e−3
x0 55/55/27555/54/4.27/1.38e−2 223/112/56223/111/11.09/2.00e−2 337/169/84837/168/28.22/2.78e−2 101/51/25601/50/13.80/3.60e−1
10x0 21/21/10521/20/1.53/2.76e−3 187/94/47187/93/9.14/2.17e−2 339/170/85339/169/39.33/2.65e−2 31/16/8031/15/1.31/2.03e−3
100x0 24/24/12024/23/4.72/2.40e−3 63/32/16063/31/3.36/2.12e−3 379/190/95379/189/49.78/2.66e−2 35/18/9035/17/2.53/1.23e−3

(1000, 1000) −10x0 19/19/19019/18/11.58/1.89e−3 323/162/162323/161/224.11/3.48e−2 411/206/206411/205/245.09/4.56e−2 31/16/16031/15/28.98/2.37e−3
−x0 172/172/172172/171/88.95/5.66e−2 307/154/154307/153/152.39/3.46e−2 421/211/211421/210/333.70/4.51e−2 31/16/16031/15/36.92/2.10e−3
x0 62/62/62062/61/70.03/2.00e−2 321/161/161321/160/236.45/3.28e−2 447/224/224447/223/306.64/4.52e−2 181/91/91181/90/199.53/6.03e−2
10x0 22/22/22022/21/33.22/1.91e−3 305/153/153305/152/246.50/3.19e−2 455/228/228455/227/218.16/4.53e−2 31/16/16031/15/10.45/3.00e−3
100x0 25/25/25025/24/12.39/1.65e−3 61/31/31061/30/51.36/2.04e−3 55/28/28055/27/41.64/1.75e−3 35/18/18035/17/15.00/1.71e−3
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Example 4.4. [32] Consider the extended Powell singular function

F4i−3(x) = x4i−3 + 10x4i−2,
F4i−2(x) = 51/2(x4i−1 − x4i),
F4i−1(x) = (x4i−2 − 2x4i−1)2,
F4i(x) = 101/2(x4i−3 − x4i)2.

The initial point is x0 = (3,−1, 0, 1, ...)T , and the optimal solution is x∗ = (0, 0, ..., 0)T . The results are
listed in Table 4.

Table 4. Numerical results of the extended Powell singular function.
LM1 MLM AMLM AATLM

(n,m) x0 NF/NJ/NT/NK/Time/∥F∥ NF/NJ/NT/NK/Time/∥F∥ NF/NJ/NT/NK/Time/∥F∥ NF/NJ/NT/NK/Time/∥F∥
(500, 500) −10x0 15/15/7515/14/0.95/5.29e−5 35/18/9035/17/1.09/1.77e−5 27/14/7027/13/0.11/1.51e−5 21/11/5521/10/0.14/4.31e−5

−x0 12/12/6012/11/0.25/3.80e−5 21/11/5521/10/0.48/5.28e−5 19/10/5019/9/0.09/3.35e−5 17/9/4517/8/0.11/2.45e−5
x0 12/12/6012/11/0.11/3.80e−5 21/11/5521/10/0.42/5.28e−5 19/10/5019/9/0.03/3.35e−5 17/9/4517/8/0.06/2.45e−5
10x0 15/15/7515/14/0.485.29e−5 35/18/9035/17/0.39/1.77e−5 27/14/7027/13/0.13/1.51e−5 21/11/5521/10/0.13/4.31e−5
100x0 19/19/9519/18/0.48/2.06e−5 29/15/7529/14/1.17/3.96e−5 45/23/11545/22/0.14/5.18e−5 27/14/7027/13/0.13/1.19e−5

(1000, 1000) −10x0 15/15/15015/14/0.59/2.37e−1 25/13/13025/12/0.89/4.42e−1 25/13/13025/12/1.53/1.94e−1 21/11/11021/10/0.81/2.52e−1
−x0 12/12/12012/11/0.58/3.80e−1 21/11/11021/10/0.45/3.60e−1 19/10/10019/9/1.19/3.80e−1 17/9/9017/8/0.75/3.73e−1
x0 12/12/12012/11/0.61/3.80e−1 21/11/11021/10/0.75/3.60e−1 19/10/10019/9/1.14/3.80e−1 17/9/9017/8/0.34/3.73e−1
10x0 15/15/15015/14/0.69/2.37e−1 25/13/13025/12/0.56/4.42e−1 25/13/13025/12/1.18/1.94e−1 21/11/11021/10/0.50/2.52e−1
100x0 19/19/19019/18/0.58/1.40e−1 31/16/16031/15/1.00/2.10e−1 31/16/16031/15/1.58/2.85e−1 27/14/14027/13/1.11/1.08e−1

Tables 3 and 4 show that the AATLM algorithm performs better than the LM1, MLM, and AMLM
algorithms on the numbers of iterations and the function and Jacobian evaluations. For most problems,
the AATLM algorithm has less CPU time than the other algorithms.

We tested 100 experiments and all functions are listed in Table 5. Problems 1 and 2 are Examples
4.1 and 4.2 from [26], Problems 3 and 4 are Examples 4.3 and 4.4, Problems 3–12 are from [32] and
have the same form as (4.1), and Problems 13–16 are transformed from the CUTEr library in [33]. All
of the test problems satisfy the assumptions required in this paper.

Table 5. Test functions.
Prob. Function (n,m) x0 Prob. Function (n,m) x0
1 Function 1 (4, 4) −10x0 ,−x0 , x0 , 10x0 , 100x0 2 Function 2 (4, 4) −10x0 ,−x0 , x0 , 10x0 , 100x0
3 Extended Rosenbrock (500, 500) −10x0 ,−x0 , x0 , 10x0 , 100x0 4 Extended Powell singular (500, 500) −10x0 ,−x0 , x0 , 10x0 , 100x0

(1000, 1000) −10x0 ,−x0 , x0 , 10x0 , 100x0 (1000, 1000) −10x0 ,−x0 , x0 , 10x0 , 100x0
5 Freudenstein and Roth (2, 2) −10x0 ,−x0 , x0 , 10x0 , 100x0 6 Powell badly scaled (2, 2) −10x0 ,−x0 , x0 , 10x0 , 100x0
7 Beale (2, 3) −10x0 ,−x0 , x0 , 10x0 , 100x0 8 Helical valley (3, 3) −10x0 ,−x0 , x0 , 10x0 , 100x0
9 Wood (4, 6) −10x0 ,−x0 , x0 , 10x0 , 100x0 10 Extended Wood (500, 750) −10x0 ,−x0 , x0 , 10x0 , 100x0
11 Trigonometric (500, 500) −10x0 ,−x0 , x0 , 10x0 , 100x0 12 Brown almost-linear (500, 500) −10x0 ,−x0 , x0 , 10x0 , 100x0

(1000, 1000) −10x0 ,−x0 , x0 , 10x0 , 100x0 (1000, 1000) −10x0 ,−x0 , x0 , 10x0 , 100x0
13 EG2 (500, 500) −x0 , x0 14 ARWHEAD (500, 500) −10x0 , 10x0

(1000, 1000) −x0 , x0 (1000, 1000) −10x0 , 10x0
15 LIARWHD (500, 500) −10x0 , x0 , 10x0 16 TRIDIA (500, 500) −10x0 , x0 , 10x0

(1000, 1000) −10x0 , x0 , 10x0 (1000, 1000) −10x0 , x0 , 10x0

According to Dolan’s [34] evaluation criteria, we show the performance profiles for the numbers
of function evaluations, Jacobian evaluations, iterations, and CPU time of the algorithm in Figure 1.
The parameter τ represents the performance ratio. When τ is close to 1 and Ψ remains constant,
the numbers of Jacobian evaluations or iterations of the current algorithm are closer to the minimum
value than the other algorithms. When τ is a constant and Ψ is close to 1, this means that the current
algorithm can solve more problems.
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It can be seen from Figure 1 that the AATLM algorithm performs better than other algorithms in
the numbers of Jacobian evaluations and iterations. From Figure 1(a), the AATLM algorithm performs
better than the MLM and AMLM algorithms in the number of function evaluations. Since the LM1
algorithm calculates Fk only once in each iteration, the LM1 algorithm has a higher curve in Figure
1(a) when τ ∈ [1, 2.38]. In Figure 1(b), the AATLM algorithm can solve more testing problems with
less Jacobian evaluations. When τ ∈ (1.49, 5], the LM1 algorithm performs better than the MLM
and AMLM algorithms. According to Figure 1(c), the AATLM can solve 86% of the problems with
the least number of iterations, while the LM1, MLM, and AMLM can solve 12%, 32%, and 34% of
the problems, respectively, which means that the AATLM algorithm could solve more problems with
fewer iterations. In Figure 1(d), the LM1, MLM, AMLM, and AATLM algorithms can solve 60%,
54%, 42%, and 68% of the problems with the least CPU time, respectively. In summary, the results
indicate that the AATLM algorithm is a promising method for solving nonlinear equations.
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(b) Performance profiles for the number of Jacobian
evaluations.
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(c) Performance profiles for the number of iterations.
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Figure 1. Performance profiles of the numerical results.

In addition, we also consider the influence of different θ on the AATLM algorithm. We show
the performance profiles for the numbers of Jacobian evaluations and the iterations of the AATLM
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algorithm in Figure 2, where θ is chosen from the set {0.2, 0.4, 0.6, 0.8}. We find that when θ in the
AATLM algorithm is 0.6, the curve is higher than the others. This means that the new algorithm with
θ = 0.6 can solve more problems with fewer Jacobian evaluations and iterations.
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(a) Performance profiles for the number of Jacobian
evaluations.
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Figure 2. Performance profiles of the numerical results with different θ.

5. Conclusions

In this paper, we constructed a new LM parameter in the form of a convex combination to obtain
the LM step and the approximate step. A new modified Metropolis criterion was introduced to update
the upper bound of the approximate step size, so as to obtain an adaptive acceleration two-step LM
algorithm. The global and local convergence of the new algorithm were studied under the Hölderian
local error bound condition and the Hölderian continuity of the Jacobian, which are more general than
the local error bound condition and the Lipschitz continuity of the Jacobian. The numerical results
showed the efficiency of the AATLM algorithm. In the course of research, we noticed that different
LM parameters could be considered at different stages of the algorithm. In future work, we will explore
a new LM parameter and introduce a nonmonotone technique into the two-step LM algorithm to solve
nonlinear equations.
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